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There is an increasing demand for running neural network inference on edge devices. Memristor cross-

bar array (MCA) based accelerators can be used to accelerate neural networks on edge devices. However,

reliability issues in memristors, such as stuck-at faults (SAF) and variations, lead to weight deviation of

neural networks and therefore have a severe influence on inference accuracy. In this work, we focus on the

reliability issues in memristors for edge devices. We formulate the reliability problem as a 0–1 programming

problem, based on the analysis of sum weight variation (SWV). In order to solve the problem, we simplify

the problem with an approximation - different columns have the same weights, based on our observation

of the weight distribution. Then we propose an effective mapping method to solve the simplified problem.

We evaluate our proposed method with two neural network applications on two datasets. The experimental

results on the classification application show that our proposed method can recover 95% accuracy consider-

ing SAF defects and can increase by up to 60% accuracy with variation σ = 0.4. The results of the neural

rendering application show that our proposed method can prevent render quality reduction.
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Reliability;
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1 INTRODUCTION

There has been a substantial growth of data generated by edge devices such as mobile and Internet

of Things (IoT) devices [17]. Due to the significant data communication overhead and privacy
issues, data generated from some tasks, such as real-time voice and video recognition, need to be
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efficiently processed on the edge side [5]. Neural networks have shown to be effective in image and
voice recognition [1] in past years. As a result, there is an increasing demand of running neural
network inference on edge devices.

In the inference process of neural networks, the inputs and weights are used to execute
multiply-and-accumulate (MAC) operations, which are the most expensive operations. In or-
der to accelerate such operations, the crossbar structure is applied which can perform MAC op-
erations using Kirchhoff’s law natively [7] by representing inputs and weights with voltages and
conductances, respectively. In crossbar structures, memristor [21] can be used as a variable resis-
tor, and has been proposed to be used in edge devices for its small on-chip area and low power
dissipation [9, 22, 26]. Therefore, memristor-based crossbar arrays (MCAs) are suitable for
accelerating neural networks on edge devices.

There exist two methods to program the conductances of memristors. One is “Close-Loop on-
Device” [6] that requires expensive hardwares [14]. The other method, which is suitable for edge
devices, first trains networks offline and then programs memristors to desired conductances ac-
cording to the weights. This method programs the memristors with pre-calculated voltage magni-
tudes and pulse widths [13]. However, because of the reliability issues (i.e., defects and variations)
of memristors, the programmed conductances are not equal to the desired conductances, which
leads to the accuracy degradation of the neural networks [12].

The most critical reliability issue of memristors is the stuck-at-fault (SAF) defect [27]. If a
memristor suffers from this defect, its conductance is stuck at the high resistance state (stuck-
off) or low conductance state (stuck-on). In this way, the weight represented by this memristor
is also fixed at the maximum or the minimum weight, respectively. The accuracy of the neural
network degrades [15] because of the change in weights. In order to solve this problem, two kinds
of methods are proposed. One is the retraining method [4, 15] and the other is the permutation
of rows and columns of the weight matrix [23, 28]. The former re-trains networks with software,
which is a computation-expensive process for computing platforms [27]. The latter studies matrix
permuting methods to tolerate defects. However, both methods need SAF maps of crossbars and
then perform complex algorithms to find the best permutation, which is not efficient for edge
devices because of the stringent processing resources.

Another reliability issue of memristors is the variation, which originates from the devia-
tion in the memristor’s conductance when applying pre-calculated programming amplitude and
width [14]. Some researchers propose to first measure variation distribution and then map the
weight according to the measured distribution [4, 8, 14]. This process needs a large amount of
computation which is intolerable for edge devices. As a result, these methods are not suitable to be

applied to edge devices. Besides, these works use two memristors to represent one weight, which
is a challenge for edge devices because of the limited computing resources. The quantization
method [25] is also proposed to enhance the variation tolerant capability. However, the results
of this work show that this method can only tolerate a small variation [20, 29].

All previous works don’t consider the limitation of the crossbar size. Although the crossbar
size can be large in ideal, it is always limited in reality [2] because of the power and reliability
issues [19]. Therefore, multiple crossbars are integrated using a shared interconnect, such as Net-

works on Chip (NoCs) (see Figure 1). Large weight matrices are always separated into pieces and
then mapped to several MCAs [3]. Then the peripheral circuit combines the results of the MCAs.
In this paper, we propose a mapping method to tolerate both SAF and variation of memristors
while considering both the crossbar size limitation and the stringent resources of edge devices.
The contributions of this paper are summarized as follows.

• We analyze MCA-based edge devices with two features. One is to apply one memristor
representing one weight method according to the characteristic of edge devices – limited
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resources. The other is to apply vector-vector multiplication, which allows us to flexibly
assign weights to different MCAs to perform MAC operations. According to the aforemen-
tioned circumstances, we analyze the weight deviation caused by SAF and variation using
the sum weight variation (SWV) metric. We formulate the SWV optimization problem as
a 0–1 programming problem.
• Since the 0–1 programming is hard for edge devices to get a suitable solution, we use a local

mapping method to reduce the SWV and study its influence on neural networks. As the
local mapping method can only get limited improvement, we simplify the 0–1 programming
problem based on an observation – different columns have similar values in neural networks.
Then we propose an optimal remapping method for the simplified problem and modify the
computing pipeline of MCAs.
• We evaluate our proposed method with two neural network applications – classification and

neural rendering. The experimental results on the MNIST dataset show that the proposed
method can increase the reliability of MCAs for edge devices, the inference accuracy can be
maintained even if the SAF rate reaches 28%, and our proposed method can tolerate variation
with σ = 0.4. The experimental results on the FERN dataset show that our proposed method
can obviously reduce the reliability influence on the rendered image quality.

The rest of this paper is organized as follows. In Section 2, we first introduce MCA-based neural
network inference according to characteristics of edge devices and then introduce the models of
the SAF defect and variation. Then we present the problem formulation in Section 3. After that, we
introduce our proposed method based on the characteristics of neural networks for edge devices
in Section 4. Finally, we show our experimental results in Section 5, followed by the conclusion in
Section 6.

2 BACKGROUND

Edge devices, which are used to execute real-time tasks such as translation and objective recogni-
tion, have stringent computing resources and a tight power budget [5]. MCA-based accelerators
can be used in edge devices. In this section, we first introduce the circuitry structure of the crossbar
for edge devices. Then we demonstrate the neural network computing and weight programming
methods. Lastly we introduce the SAF defect and variation models of memristors which lead to
errors in computing and neural network inference.

2.1 MCA Architecture

When running neural network inference on edge devices, MCA-based computing architecture
is considered as candidate hardware for accelerating neural networks [9] (see Figure 1). Each
MCA performs MAC operations and the peripheral circuits perform activation, routing, and other
operations.

2.2 Memristor Crossbar Based Computing

Tasks that are too large for one MCA are first split into pieces and the split tasks are mapped
to several MCAs. Then the peripheral circuit combines the results generated by the MCAs
and outputs the final result. The acceleration process for a given neural network is shown as
follows.

• Firstly, the neural network is trained offline and Figure 2(a) shows a three-layer network
and the weight matrix of the first layer as an example. In this work, the row and column
numbers of the weight matrix are the input and output sizes of the layer, respectively.
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Fig. 1. The architecture of MCA based devices. Tile and IMA (in-situ multiply-accumulate) are higher hier-

archies of MCAs [18].

Fig. 2. The architecture of MCA based devices. (a) neural network, (b) split network, (c) map weight to

different MCAs.

• Before executing the inference process, the weights of neural networks need to be mapped
to MCAs. Because of the limited size of MCAs [24], the weight matrix is firstly split into
pieces (see Figure 2(b)).
• Then each piece of the weight matrix is mapped to an MCA (see Figure 2(c)). In this pro-

cess, the conductances of memristors are programmed according to weights. Although one

weight can be represented by multiple memristors to increase the robustness of computing [27],

because of the limited resources in edge devices, the number of memristors should be as few as

possible. We consider the case that one memristor represents one weight (see Figure 3(a))
in our work. Each gate line (see Figure 3(b)) controls transistors of a certain column. In the
programming phase, each memristor is programmed to a certain conductance according to
the weight. In the inference phase, transistors of gate lines are open, and current can flow
through memristors.

Suppose we represent one weight with one memristor, the conductance of the memristor
is programmed linearly according to weights (see Figure 3(b)) which can be expressed as
Equation (1) [30]:

G =
Gmax −Gmin

Wmax −Wmin
(W −Wmin) +Gmin (1)

whereGmin andGmax are the minimum and maximum conductances of the memristor, respectively,
Wmin andWmax are the minimum and maximum weights, respectively.

After mapping weights to MCAs, in the inference phase, the inputs are first fed to input regis-

ters (IRs) of MCAs. For a certain layer, in each cycle, each bit of the input is fed to the crossbars
and every column in the crossbars executes MAC operations in parallel according to Kirchhoff’s

law, I = �G · �V (see Figure 3(a)). The result of every cycle is shifted and added in shift-and-add unite
(S+A) (see Figure 1(c)). After all the bits are computed, the result of each MCA is combined to get
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Fig. 3. The MAC operation with memristor crossbar array. (a) Schematic of the 1T1R array and MCA opera-

tion. (b) Schematic of the 1T1R cell. (c) Linear one-to-one mapping.

the result of the layer. After activation, the result is transferred to the next layer. After the last
layer is processed, the inference result is generated.

2.3 Defect and Variation Modeling

Ideally, the conductance of a memristor can be programmed according to a given weight (see
Equation (1)). However, there are defects and variations in memristors. In this work, we consider
two reliability issues of memristors - SAF defect and variation.

2.3.1 Stuck at Fault. SAF defect is the most critical reliability issue in memristor crossbar [27].
Assume that we want to program the conductance of one memristor toG, if the memristor suffers
from the SAF defect, the conductance state of the memristor cannot be changed and is stuck at
high (stuck-on) or low (stuck-off). Considering the SAF defect, the programmed conductance can
be expressed as Equation (2):

G ′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

Gmin, stuck-off

G, no defect

Gmax, stuck-on

(2)

where G ′ is the conductance we program in practice. If the memristor suffers from this issue, the
weight which is programmed to this memristor is fixed because the conductance represents the
weight. In this case, the accuracy of the given neural network degrades [15].

2.3.2 Variation. In addition to SAF defect, variation also has a huge influence on the inference
accuracy of MCA-based neural networks [4, 14]. As the conductance is programmed with pre-
calculated voltage magnitude and pulse width, the conductance we program in practice follows a
lognormal distribution [11] which can be expressed as Equation (3):

G ′ = G · eθ (3)

where G ′ is the programmed conductance in practice, G is the conductance we want to program,
and θ ∼ N (0,σ 2) is the variation distribution.

2.3.3 SWV Metric. Because of the SAF defect and variation of memristors, the effective weights
represented by the memristors don’t equal the weight that we want to program. In order to evaluate
the programming error, we use the SWV [14] metric to calculate the difference between weight
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(W ) and effective weight (W ef f ):

SWV =
∑

i

���w
ef f
i −wi

��� (4)

whereWi is the i-th weight value of the weight matrix. The larger SWV is, the larger the error and
the accuracy loss are.

3 PROBLEM ANALYSIS

We first formulate the minimization of SWV caused by SAF and variation issues as an optimization
problem. In this section, we optimize the SWV metric by assigning weights to different MCAs in
the mapping process. Then we propose our method to solve this problem in the next two sections.

3.1 SWV Analysis

At the system level, digital results from MCAs are gathered and processed before producing the
output of one layer because the weight matrices are split into pieces. As a result, we consider the
piece of weight matrix which is mapped to the k-th MCA, i.e.:

G =
Gmax −Gmin

W k
max −W k

min

(
W −W k

min

)
+Gmin (5)

whereW k
min andW k

max are the minimum and maximum weights in the k-th MCA. As there are SAF
defects and variations of memristors in MCAs, the weights which are programmed to memristors
are not accurate. We analyze the weight deviation in the programming phase. If we program one
memristor to conductance G, we can represent the conductance deviation as ΔG (= G ′ − G) be-
cause of the SAF defect and variation. According to Equation (5), the effective weightW ef f can be
expressed as:

W ef f =W k
min +

W k
max −W k

min

Gmax −Gmin
(G + ΔG −Gmin) (6)

As a result, considering one certain weight, the error between the changed weight and the initial
weight can be expressed as:

���W
ef f −W ��� =

W k
max −W k

min

Gmax −Gmin
· |ΔG | (7)

Then, considering that the weight matrix is split into several IMAs, the SWV of one weight matrix
is the sum of SWVs of every IMA which can be expressed as:

SWV =
∑

k ∈MCAs

SWVk

=
∑

k ∈MCAs

∑

i ∈MCAk

W k
max −W k

min

Gmax −Gmin
· ��ΔGk,i

��
(8)

where ΔGk,i is the conductance deviation at the i-th position in the k-th MCA. In Equation (8),
Gmax and Gmin are constants and ΔG is subject to a distribution because of the SAF defect and
variation. Therefore, we can minimize the sum of the (Wmax −Wmin ) of each MCA to minimize
SWV:

min SWV ∼ min
∑

k

(
W k

max −W k
min

)
(9)

As a result, our objective is to minimize the range of the weights which are mapped to each MCA
while ensuring that MAC operations can be executed. For convenience, we denote our optimization
objective as sum(max-min).
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3.2 Problem Formulation

In this section, we develop a mathematical model to describe the problem. As aforementioned, we
can reduce the difference between the maximum and minimum values of every crossbar to reduce
the reliability influence. The problem is described from Equations (10) to (18). In order to perform
matrix-vector multiplication, we should ensure that the mapping method meets the following three
requirements.

• Every weight is mapped and only mapped once.
• The items in the same row are mapped to the same row of the MCA.
• The items in the same column are mapped to the same column of the MCA.

min
δi, j,k

Σk

(
maxi, j (δi, j,k ·wi, j ) −mini, j (δi, j,k ·wi, j )

)
(10)

s.t. δi, j,k ∈ {0, 1}, ∀i, j,k (11)
∑

k

δi, j,k = 1, ∀i, j (12)

lk, j ∈ {0, 1} ∀k, j (13)
∑

j

lk, j = S, ∀k (14)

∑

i

δi, j,k = lk, j · S, ∀j,k (15)

rk,i ∈ {0, 1} ∀k, i (16)
∑

i

rk,i = S, ∀k (17)

∑

j

δi, j,k = rk,i · S, ∀i,k (18)

where i = 0, 1, . . . ,R, j = 0, 1, . . . ,C , k = 0, 1, . . . ,K , R andC are numbers of rows and columns of
one weight matrix, respectively, S is the size of MCA (assume MCA is square) and K = �R/S� ×
�C/S� is the number of MCAs to use, wi, j is the i-th row j-th column weight in the weight matrix,
lk, j = 1 indicates that there are weights in j-th column mapped to the k-th MCA, rk,i = 1 indicates
that there are weights in i-th row mapped to the k-th MCA, and δi, j,k is to record whether wi, j is
mapped to the k-th MCA.

Taking Figure 4 as an example, the weight matrix (size 4× 4) is split into four pieces (the size of
each piece is 2 × 2): top left, top right, bottom left, and bottom right. Each piece is mapped to one
MCA. The marks (k) of the MCAs are 0, 1, 2, 3, respectively. For example, in MCA1, there are four
memristors representing four weights. The bottom left memristor represents the weight in the
second row, the third column. As a result, δ1,2,1 = 1 and δ1,2,k (k � 1) = 0. Besides, only elements
in the second and third columns are mapped to this MCA. As a result, l1,2 and l1,3 are both 1 and
l1,k (k � 2, 3) = 0. The r symbol is similar to l , for example, r1,2 = 1 and r1,3 = 0.

Equation (12) ensures that every weight is mapped and can be only mapped to one MCA,
Equation (14) ensures that S columns are mapped to each MCA and Equation (15) ensures that
S items in j-th column are mapped to k-th MCA. Equation (17) ensures that S rows are mapped
to each MCA and Equation (18) ensures that S items in i-th row are mapped to k-th MCA. The
Equations (14), (15), (17), and (18) ensure that we can execute matrix-vector multiplication in
MCAs, i.e., the weights, that are mapped to the same column in one MCA, are in the same column
of weight matrix.
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Fig. 4. 0–1 programming problem analysis. The crosspoint is the abstraction of the memristor device. (a) One

mapping solution. (b) An example of parameters in the problem formulation.

Fig. 5. Two weight map examples: (a) describes a special case; (b) describes a general case.

3.3 Local Mapping Method

The 0–1 programming problem described in Section 3.2 is hard to solve, especially on edge de-
vices. The most direct method is to use the local maximum and minimum weight values in weight
mapping, rather than use the global weight. In this way, theW k

max can be reduced while theW k
min

can be increased. As a result, the optimization objective can be reduced. For example, Figure 5(a)
shows an example that the weights with similar values are gathered. If we use the global mapping
method, the objective function is (5–2) × 4. This value can be reduced to 0 if we use the local map-
ping method. In this case, we can simply use the local maximum and minimum values to reduce
the loss.

However, in real cases, the weight distribution is quite even. For example, if the weight distri-
bution is Figure 5(b), the local mapping method fails to reduce the loss. Thus, we need to further
modify the distribution of the weights to make the mapping method robust.

4 COLUMN BY COLUMN METHOD

Generally, computing with all columns in parallel leads to high power and more computing
resources, i.e., large fan-out of DACs and high frequency of ADCs. If all columns are computed
together, each layer can be computed in 103ns [18], which is overpowered for edge devices.
Secondly, the power consumption is too large for an edge device. Furthermore, sneak path [31]
is also an import reliability issue. Considering these three aspects, we apply column by column

computing method in our work (this satisfies the performance requirement which will be introduced

in Section 4.3). We further provide a new direction to improve the reliability of MCA-based neural
network inference for edge devices.

We have formulated the weight mapping problem for matrix-vector multiplication in the previ-
ous section. In this section, we reduce the constraints by using vector-vector multiplication and
propose our method for solving this problem. As a result, the mapping method should meet the
following two requirements.
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• Every weight is mapped and only mapped once: Equation (21).
• The items in the save column are mapped to the same column of the MCA: Equations

(22)–(24).

We can formulate this problem as an 0–1 programming problem as Equations (19)–(24).

min
δi, j,k

Σk (maxi, j (δi, j,k ·wi, j ) −mini, j (δi, j,k ·wi, j )) (19)

s.t. δi, j,k ∈ {0, 1}, ∀i, j,k (20)
∑

k

δi, j,k = 1, ∀i, j (21)

lk, j ∈ {0, 1} ∀k, j (22)
∑

j

lk, j = S, ∀k (23)

∑

i

δi, j,k = lk, j · S, ∀j,k (24)

The new 0–1 programming problem is still a difficult optimization problem and inappropriate
for edge devices to solve. As a result, we propose a simple approximate solution to this problem.

4.1 Problem Simplification

In order to simplify the problem, we analyze the weight distribution of neural networks. We ana-
lyze one layer (size 784 × 1000) of a well-trained network as an example. We sort weights in each
column and then compare the difference of weights among the sorted columns. Then we calculate
the normalized average difference (NAD) between two columns, i.e., average difference divided
by the range of the two columns. We find that the NAD of the most different two columns is less
than 10%. As for the two most similar columns, the NAD is smaller than 0.5%, the distributions
of which are shown in Figure 6. To summarize, in neural networks, we observe that weight distri-
butions in different columns are very similar. In order to simplify the programming problem (19),
we approximately assume that different columns have the same weights. For example, as shown in
Figure 7(a), weights in every column are {1, 2, 3, 4, 5}.

4.2 Mapping Method

Our purpose is to map similar values to the same MCA with the assumption that different columns
have the same weights. Our proposed mapping method is shown in Algorithm 1. Given a weight
matrix with size R×C and MCA size S , our proposed method is to determine which weight should
be mapped to which MCA. Firstly, we compute the number of MCAs that we need to map the
weight as �R/S�×�C/S� (line 1) and judge whether the weight matrix can fill all the MCAs assigned
for it (line 2). If not, we add rows or columns to the end of the weight matrix to fill all MCAs (line 3).
Then we sort the values of the weight matrix by columns and store the sorting index matrix (line 6).
At last, we map the sorted matrix to MCAs in order (line 8) and return the mapping label δ .

For example, Figure 7(a) shows a 5×5 matrix we need to map and the size of MCAs is 3. Initially,
the weight matrix is chaotic (see Figure 7(a)). Then we need �5/3�×�5/3� = 4 MCAs and then insert
one dummy column and one dummy row for this matrix (see Figure 7(b)). Thus, MCA0 - MCA3
are assigned for this weight matrix. After that, we sort the weights by columns (see Figure 7(c)). At
last, we assign the weight matrix to MCAs as shown in Figure 7(d). Then we can get the mapping
label δ . For example, the location (0, 0) is mapped to MCA0 and location (4, 4) is mapped to MCA3,
therefore δ0,0,0 = 1 and δ4,4,3 = 1.
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Fig. 6. Weight distribution of the two most similar columns.

Fig. 7. Mapping method.

ALGORITHM 1: Mapping Method.

Input: Weight matrixW (with R rows and C columns), MCA crossbar size S
Output: δ

1: Compute number of needed MCAs;
2: if R or C is not divisible by S then

3: Insert maximum values;
4: end if

5: for all Columns do

6: Sort and store index matrix I ;
7: end for

8: Assign weights to MCAs in sequence;
9: Return δ

In our solution, all the weights are mapped only once. Thus, Equation (21) is satisfied. We don’t
exchange weights between two columns. As a result, Equations (23) and (24) are also satisfied.
Besides, our proposed method only needs a sorting operation which is very simple and therefore
suitable for edge devices. Our proposed method is optimal for the simplified problem (because of
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the limited space, we don’t prove it here). Thus, our proposed method can increase the robustness
of the computing considering variation and SAF.

Proof. Assume that the sizes of MCAs are S and we haveK MCAs. We first consider one column
case, i.e., we haveK×S weights in one column. Assume thatA1,A2,A3, . . . ,AKS are sorted weights
in this column and 1, 2, 3, . . . ,KS are indexes of the weights. For a mapping solution, we denote as
[Si ](i = 1, 2, 3, . . . ,K ) where Si is the set of weight that mapped to the i-th MCA. Let li and ri be
the index of the minimum and maximum weights which are mapped to the i-th MCA. We have:

SWV =
k∑

i=1

(
Ari
−Ali

)
=

k∑

r=1

ri−1∑

j=li

(Aj+1 −Aj )

Defining a set T =
⋃K

i=1{r |li ≤ r ≤ ri − 1, r ∈ Z}, we have:

SWV =
∑

j ∈T
Aj+1 −Aj

Define P = {p |1 ≤ p ≤ KS,p � kS,k = 1, 2, 3, . . . ,K }. For any p ∈ P , assume that p = kS + α ,α =
1, 2, 3, . . . , S − 1, there exists a setT whose li ≤ p and ri > p. If there isn’t, ∀li ≤ p, ri ≥ p. In other
words, the first p weights is divided by several sets, which is in conflict with p = km + α . As a
result, ∀p,∃i,p ∈ [li , ri − 1]. Thus, P ⊆ T . Thus, we have:

SWV =
∑

j ∈T
(Aj+1 −Aj ) ≥

∑

j ∈P

(Aj+1 −Aj )

The set P is our solution. As a result, our proposed method is optimal if we only have one column.
According to our assumption that different columns have the same weights. We sort all columns
and then map to MCAs that don’t increase the cost. As a result, our proposed method is optimal
for the simplified problem. �

4.3 Computing Pipeline

As we compute with MCA column by column, we need to modify the computing pipeline from the
conventional method which is introduced in Section 2. Input data are stored in the input registers
(IRs). The required data are sent to IRs by routers cycle by cycle. In the first cycle, data are fed to
IRs by routers. In the following cycles, the first column is computed by the MCA bit by bit. After
that, the second column is computed, and so on. For example, Figure 8 shows the input of one layer
and the weight assignment. Figure 8(a) shows the input and Figure 8(b) shows which data are fed
to which MCA. The upper data are fed to MCA0 and MCA2, the lower data are fed to MCA1 and
MCA3 according to our mapping label (generated in the mapping phase) by routers in the first
cycle. Assuming that the input data are 16-bit, in the 2nd to 17th cycle, the first columns of layers
of the MCAs are computed bit by bit. In the next 16 cycles, the second columns are computed.
After all the columns are computed, peripheral circuits gather the results of MCAs and transfer
the activation to the next layer.

5 EXPERIMENTAL RESULTS AND DISCUSSION

In order to evaluate the effectiveness of our proposed method, we study two applications on two
datasets. On each dataset, we compare the neural network inference accuracy with and without
our proposed method considering SAF and variation. On the other hand, our proposed method in-
troduces overhead to the accelerator. As a result, we discuss the overhead of our proposed method
after our experimental results.
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Fig. 8. Computing pipeline.

Fig. 9. Experiment flow.

In our experiment, the minimum and maximum nominal resistance of memristors are set to
10k and 1M Ω, respectively. The SAF defect and variation are modeled with Equation (2) and (3)
respectively. We assume that the SAF defects are distributed randomly in each MCA and 81.6%
of the defects are stuck-on and 18.4% of the defects are stuck-off [15]. The size of MCAs is set
to 64 [24] in the classification task and 32 in the neural rendering task. We use the Monte-Carlo
simulation method in our experiment and evaluate three cases.

• NO: use the conventional mapping method.
• LC: use the local mapping method.
• OP: use our proposed remapping method.

As simulating the memristor crossbar is time-consuming, we use the effective weight in our
experiment. Our experiment flow is shown in Figure 9. Firstly, we map the weight matrix to the
crossbar and then compute the effective weight by inputting vectors. For example, we can get
the first row of the effective weight by inputting [1, 0, 0, . . .] to our in-house simulator. Then we
use the effective weight to test the accuracy of the MNIST dataset and the rendering quality of the
FERN dataset. We have verified that the results from this way match the results from the simulator.
As a result, we use our simulator to simulate the effective weight rather than simulating the whole
computing process for ease of evaluation.
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Table 1. Properties of Neural Networks on MNIST

Number of layers Weight Matrix Dimension Ideal Accuracy

2 784 × 10 91.47%

3 784 × 256, 256 × 10 95.73%

Table 2. The Property of Each Layer in NeRF

#Weight matrix 1 2 3 4 5 6 7 8 9 10 Output

Size 60 256 256 256 316 256 256 256 280 128 3+1

Table 3. Sum(max-min) Results of

the Three Layer Network

Method NO LC OP

layer1 17.49 10.13 2.01

layer2 4.77 4.17 1.31

We evaluate our proposed method in the following three aspects.

• Performance – three-layer network on the MNIST dataset. We evaluate the effectiveness of our
proposed method with different SAF defect rates with the three-layer network.
• Scalability – two-layer network on the MNIST dataset. As our proposed method is sensitive

to weight matrix and MCA size, we analyze the scalability of our proposed method with the
two-layer network.
• Usability – eleven-layer network on the FERN dataset. To show that our proposed method

works in larger datasets and other applications, we evaluate our proposed method on the
FERN dataset in the neural rendering task [16].

We first quantitatively evaluate our proposed method with two feed-forward neural networks
(see Table 1) on the MNIST dataset [10] following the practice of previous works [4, 27]. To prove
the usability of our proposed method, we qualitatively evaluate our proposed method with an
eleven-layer network on the FERN dataset to perform the rendering task. The input size of each
layer and the output size of the last layer are shown in Table 2.

5.1 Performance

5.1.1 Results for SAF Defect. We evaluate the effectiveness of our method for the SAF defect
with varying defect rate p from 4% to 28%. Firstly, we evaluate the optimization objective in our
method, sum(max-min), and Table 3 shows the result. The local mapping method can reduce about
42% and 12.5% sum(max-min) for layer one and layer two, respectively. Our proposed remapping
method can further reduce sum(max-min) about 5× times and 3 times for the two layers. The SWV
reduction is similar to the sum(max-min) reduction as shown in Figure 10(a).

The accuracy results with different defect rates are shown in Figure 10(b). Without our proposed
method, the accuracy of the network is influenced greatly and degrades below 80% with only a 5%
defect rate. If the defect rate increases to about 20%, the accuracy is about 20%. The local mapping
method has little accuracy improvement compared with the conventional mapping method. With
our proposed remapping method, the inference accuracy is almost not influenced (maintains about
95% accuracy) with 5% defect rate and can be maintained at high accuracy (92%) with even 28%
defect rate.
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Fig. 10. Results for the SAF defect: (a) describes the relationship between the SWV and the defect rate; (b)

describes the relationship between the accuracy and the defect rate.

Table 4. Comparison with other Methods using

3-layer Neural Network and

20% Defect Memristors

Method [27] [15] Ours

Recovered accuracy 30.1% 95% 95.9%

Besides, as shown in Table 4, we compare our proposed method with state of the art meth-
ods [15, 27] with 20% defect rate. The recovered accuracy is defined as accuracy normalized with
the ideal classification accuracy of the neural network [27]. With stringent resources (one memris-
tor represents one weight), our proposed method reaches 95.9% recovery accuracy. [27] can only
get 30.1% while this method can get 97.6% recovered accuracy with multiple memristors repre-
senting one weight. Although [15] can also reach 95% recovery accuracy, our proposed method
doesn’t need the retraining process which is a very costly process for platforms [27]. As a result,
our method is friendly for edge devices and can reach state-of-the-art effectiveness.

5.1.2 Results for Variation. In order to evaluate the effectiveness of our proposed method with
different variations (see Equation (3)), we test σ from 0.2 to 1.0 with the three-layer network. The
SWV and accuracy results are shown in Figure 11. The SWV result of variation of local mapping
method and remapping method is similar to the result for SAF.

As for the accuracy, with the normal mapping method, the accuracy degrades lower than 85%
with σ = 0.2. The local mapping method can maintain a high accuracy of 90% with σ = 0.2. How-
ever, the improvement is not obvious. Our proposed remapping method can maintain a very high
accuracy (95%) with σ = 0.2, and a high accuracy (90%) with σ = 0.4. Our proposed method repre-
sents one weight with one memristor while previous works [4, 14] use two memristors to represent
one weight. As a result, we can’t compare our proposed method with them. The effectiveness of
our proposed method is limited with high σ in this experiment because the layer 256 × 10 has a
small number of rows.

Quantization methods [20, 29] can also be applied to mitigate the variation influence. However,
the quantization method can only be applied to small variation applications. On MNIST dataset
and with a 3-layer fully-connected network, the state-of-the-art method [29] can only increase the
accuracy from 50% (without the method) to 80% (with the method). When the accuracy reduces to
about 30%, the quantization method can hardly increase the accuracy. Meanwhile, our method can

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 2, Article 15. Publication date: May 2023.



A Mapping Method Tolerating SAF and Variation 15:15

Fig. 11. Results for the variation: (a) describes the relationship between the SWV and the variation;

(b) describes the relationship between the accuracy and the variation.

Fig. 12. sum(max-min) vs σ with 2-layer network.

increase the accuracy from 32% to 90% (see Figure 11(b)). As a result, our proposed method has
better performance than quantization methods. Besides, our proposed method doesn’t increase the
difficulty of the training process and can mitigate both SAF and variation problems.

5.2 Scalability

The effectiveness of our method is influenced by the size of the crossbar (S) and the number of rows
of the weight matrix (R). In this section, we study how the ratio (R/S) influences the effectiveness
of our proposed method with the two-layer network (see Table 1). We test the effectiveness of our
method with different ratios by varying the crossbar size. In this experiment, we use two reliability
problem cases: 1) 20% SAF defect rate with variation σ = 0.4, 2) 20% SAF defect rate with variation
σ = 0.8. We show the results in Figures 12 and 13.

Similar to the evaluation for SAF and variation, we first study our normalized optimization
objective as shown in Figure 12. When ratio = 20 = 1, the weight matrix is mapped to one crossbar.
As a result, the local mapping method and the remapping method don’t improve the results. As the
ratio increase, the local mapping method improves the results slightly. Even if the ratio increases
to 25 = 32, the local mapping method can only reduce about 50% loss. Our proposed remapping
method can reduce about 90% loss with ratio = 32. This result also proves our observation – the
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Fig. 13. SWV and accuracy vs ratio under 20% SAF defect rate with small σ = 0.4 and 0.8, respectively.

(a) and (c) describe the relationship between the SWV and the ratio; (b) and (d) describe the relationship

between the accuracy and the ratio.

weight value is distributed evenly in the weight matrix. The method without remapping can hardly
reduce the reliability influence.

As shown in Figure 13, under large variation σ = 0.8 with SAF defect, the accuracy with our
proposed method increases as the ratio increases. Under small variation (σ = 0.4) with SAF defect,
our proposed method can get a high accuracy (81.88%) when ratio = 2, and the accuracy also
increases when the ratio increases.

Although our proposed method doesn’t work with small ratios, in practice, the size of neural
networks is quite large and thus the ratio is also large. As a result, our proposed method is supposed
to work well in practice. In the next section, we study the usability of our method on a larger dataset
in another neural network application.

5.3 Usability

The effectiveness of our proposed method is based on the weight distribution pattern shown in
Section 4.2. The pattern is similar in the same task (regardless of the dataset). As a result, in or-
der to evaluate the usability our proposed method, we study another complicated neural network
application with our proposed method. Neural rendering is one of the most studied topics using
neural networks recently. Meanwhile, the rendering task needs to infer the sample points’ proper-
ties of the image. And one image has tens of millions of data (sample points). In other words, the
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Table 5. Sum(max-min) Results for NeRF

1 2 3 4 5 6 7 8 9 10

NO 18.81 81.87 118.2 120.44 163.16 132.39 151.66 37.95 145.89 8.16

LC 14.42 59.85 78.84 83.46 104.5 80.44 101.04 29.07 65.21 6.18

OP 8.41 13.6 17.93 18.32 21.97 18.69 24.08 4.71 15.4 2.12

Fig. 14. The SWV of different experimental setups in NeRF.

rendering of one image is to individually execute the inference process for tens of millions of data.
Meanwhile, the large-scale classification dataset ImageNet has about 15 million data, which is the
same scale as the data quantity of one image in the rendering task. As a result, we use the neural
rendering task to evaluate the usability of our proposed method. We train a neural network for
the rendering purpose, the input size of which is shown in Table 2. As the rendering network is
deep and the application is noise-sensitive, we use small defect rates and small variation σ in our
experiment when evaluating our proposed method in the neural rendering application.

Table 5 shows the results of our optimization objective. The local mapping method can reduce
the objective by 36% compared with the conventional method. Our proposed remapping method
can further reduce the loss by about 77%.

The SWV results are shown in Figure 14. The local mapping method can reduce by about 70%
SWV for every layer. As the network computation error is the product of errors of all layers, we
can reduce the network computation result exponentially. As a result, our proposed method can
improve the rendered image quality, which is shown in Figures 15 and 16. With the conventional
mapping method, we can only recognize the rendered images with p = 0.001. The local mapping
method increases little rendering quality with all the experimental settings. Our proposed remap-
ping method hardly reduces the rendering quality with p = 0.001 and has obvious improvement
with all the experimental setups.

5.4 Discussion

5.4.1 Speed. According to the computing pipeline in Section 4.3, we analyze the computing
speed with our proposed method. Without loss of generality, every cycle is set to 100ns [18], and
therefore, each layer of neural networks can be computed within 106ns if the size of MCA is 100.
Because of the pipeline design, this system can reach 103 frames per second (FPS). Generally,

the computing power for real-time applications is about 102 FPS. Although our computing method

causes a decrement in the processing speed, our method can still work in real-time mode for edge

devices.
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Fig. 15. A set of SAF results for NeRF: (a) shows NO method with defect rate 0.001; (b) shows LC method

with defect rate 0.001; (c) shows OP method with defect rate 0.001; (d) shows NO method with defect rate

0.005; (e) shows LC method with defect rate 0.005; (f) shows OP method with defect rate 0.005; (g) shows NO

method with defect rate 0.01; (h) shows LC method with defect rate 0.01; (i) shows OP method with defect

rate 0.01.

5.4.2 Energy. Our proposed method needs to re-arrange inputs, which may lead to workload
overhead for the peripheral circuits (such as controller, routers, and DACs) of the circuit. Consid-
ering that our method doesn’t introduce extra computation operations of crossbars, the energy
overhead should be low.

5.4.3 Storage. Our proposed method needs an extra area to store the mapping solution in the
system. Considering that tasks which are executed with edge devices should not be too compli-
cated, the networks should also not be complicated. As a result, the extra storage is small. Tak-
ing one weight matrix with 1024 × 1024 as an example, the device only needs 1024 × 1024 ×
loд(1024)bit < 2MB storage.

6 CONCLUSION AND FUTURE WORK

In this paper, we have discussed two reliability issues of MCAs for edge devices. Considering the
limitation of MCA size, we have formulated the reliability problem as a 0–1 programming problem
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Fig. 16. A set of variation results for NeRF: (a) shows NO method with σ = 0.05; () shows LC method with

σ = 0.05; (c) shows OP method with σ = 0.05; (d) shows NO method with σ = 0.1; (e) shows LC method

with σ = 0.1; (f) shows OP method with σ = 0.1.

based on the analysis of SWV for edge devices. Based on the observation – different columns have
similar weights, we have simplified the problem and proposed an optimal mapping method for
the simplified problem. The experimental results on two datasets have shown that our proposed
method can prevent the accuracy loss for neural networks. In our future work, we will optimize the
whole computing system to execute our proposed method more effectively. Besides, our proposed
method can work in tandem with other techniques such as quantization methods. We will combine
our proposed method with them in our future work.
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