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Abstract
We introduce the abstract notion of a chain, which is a sequence of n points in the plane, ordered
by x-coordinates, so that the edge between any two consecutive points is unavoidable as far as
triangulations are concerned. A general theory of the structural properties of chains is developed,
alongside a general understanding of their number of triangulations.

We also describe an intriguing new and concrete configuration, which we call the Koch chain due
to its similarities to the Koch curve. A specific construction based on Koch chains is then shown to
have Ω(9.08n) triangulations. This is a significant improvement over the previous and long-standing
lower bound of Ω(8.65n) for the maximum number of triangulations of planar point sets.
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1 Introduction

Let P be a set of n points in the Euclidean plane. Throughout the paper, P is assumed to be
in general position, which means for us that no two points have the same x-coordinate and
that no three points are on a common line. A geometric graph on P is a graph with vertex
set P combined with an embedding into the plane where edges are realized as straight-line
segments between the corresponding endpoints. It is called crossing-free if the edges have no
pairwise intersection, except possibly in a common endpoint.

Triangulations. Perhaps the most prominent and most studied family of crossing-free
geometric graphs is the family of triangulations, which may be defined simply as edge-
maximal crossing-free geometric graphs on P . It is easy to see that such a definition implies
that the edges of any triangulation subdivide the convex hull of P into triangular regions.

Let tr(P ) denote the number of triangulations on a given point set P . Trying to better
understand this quantity is a fundamental question in combinatorial and computational
geometry. For very specific families of point sets, exact formulas or at least asymptotic
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estimates can be derived. For example, it is well-known that if P is in convex position,
then tr(P ) = Cn−2 where Ck = 1

k+1
(2k

k

)
= Θ(k−3/24k) is the k-th Catalan number [1]. In

general, however, this problem turns out to be much more elusive.
There is an elegant algorithm by Alvarez and Seidel [7] from 2013 that computes tr(P ) in

exponential time O(2nn2). It was surpassed by Marx and Miltzow [16] in 2016, who showed
how to compute tr(P ) in subexponential time nO(

√
n). Moreover, Avis and Fukuda [9] have

shown already in 1996 how to enumerate the set of all triangulations on P (i.e., to compute
an explicit representation of each element) by using a general technique called reverse search
in time tr(P ) · p(n) for some polynomial p. A particularly efficient implementation of that
technique with p(n) = O(log log n) has been described by Bespamyatnikh [10].

Extensive research has also gone into extremal upper and lower bounds in terms of the
number of points. That is, if we define

trmax(n) = max
P : |P |=n

tr(P ), trmin(n) = min
P : |P |=n

tr(P )

to be the respectively largest and smallest numbers of triangulations attainable by a set P

of n points in general position, then various authors have attempted to establish and improve
upper and lower bounds on these quantities.

As far as the maximum is concerned, a seminal result by Ajtai, Chvátal, Newborn, and
Szemerédi [6] from 1982 shows that the number of triangulations – and, more generally, the
number of all crossing-free geometric graphs – is at most 1013n. A long series of successive
improvements [23, 11, 20, 19, 22] using a variety of different techniques has culminated in
the currently best upper bound trmax(n) ≤ 30n due to Sharir and Sheffer [21], which has
remained uncontested for over a decade. Coming from the other side, attempts have been
made to construct point sets with a particularly large number of triangulations. For some
time, the double chain by García, Noy, and Tejel [17] with approximately Θ(8n) triangulations
was conjectured to have the largest possible number of triangulations. However, variants like
the double zig-zag chain by Aichholzer et al. [5] with Θ(8.48n) triangulations and a specific
instance of the generalized double zig-zag chain by Dumitrescu, Schulz, Sheffer, and Tóth [12]
with Ω(8.65n) triangulations have since been discovered. But also on this front, no further
progress on the lower bound trmax(n) = Ω(8.65n) has been made for a decade.

The situation for the minimum is different insofar that the double circle with Θ(3.47n)
triangulations, as analyzed by Hurtado and Noy [15] in 1997, is still conjectured by many to
have the smallest number of triangulations. In other words, it is believed that the resulting
upper bound trmin(n) = O(3.47n) is best possible. On the other hand, Aichholzer et al. [4]
have shown that every point set has at least Ω(2.63n) triangulations, thereby establishing
the lower bound trmin(n) = Ω(2.63n).

The focus of this paper lies on trmax(n) and, more specifically, on establishing an improved
lower bound on that quantity. Ultimately, we show how to construct a new infinite family of
point sets with Ω(9.08n) triangulations, thereby proving trmax(n) = Ω(9.08n).

General chains. It has occurred to us that almost all families of point sets whose numbers
of triangulations have been analyzed over the years have a very special structure, which we
are trying to capture in the following definition.

▶ Definition 1. A chain C is a sequence of points p0, . . . , pn sorted by increasing x-coordinates,
such that the edge pi−1pi is unavoidable (i.e., contained in every triangulation of C) for
each i = 1, . . . , n. These specific unavoidable edges are also referred to as chain edges.
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convex position “double circle” double chain double zig-zag chain

Figure 1 Some classic point sets realized as chains. For the double circle, we need to remove one
of the inner points. Chain edges are displayed black and bold, other unavoidable hull edges in gray.

In contrast to previous convention, we use the parameter n to denote the number of
chain edges and not the number of points in C, which is n + 1. Also note that Definition 1
implies that the edge p0pn is an edge of the convex hull and, hence, also unavoidable. Indeed,
since all chain edges are unavoidable, the edge p0pn cannot possibly cross any of them and,
hence, is either above or below all the points in between. Therefore, a chain always admits a
spanning cycle of unavoidable edges with at least one hull edge. We prove in Section 2 that
this is also a characterization of chains in terms of order types (see [14] for a definition).

▶ Theorem 2. For every point set that admits a spanning cycle of unavoidable edges including
at least one convex hull edge, there exists a chain with the same order type.

All of the mentioned families of point sets (convex position, double chain, and so on) are
usually neither defined nor depicted in a way that makes it clear that they may be thought of
as chains as in Definition 1. Still, the premise of Theorem 2 is easily verified for all of them
except for the double circle, which may however be transformed into a chain by removing
one of the inner points. Figure 1 shows realizations of some such point sets as chains.

Imagine walking along the chain edges and recording at each point the information whether
we make a left turn or a right turn. It can be noted already now that such information –
while crucial – is not enough to really capture all of the relevant combinatorial structure of a
given chain. Instead, the right way of looking at it turns out to be recording for each edge
pipj whether it lies above or below all the chain edges in between.

The simple linear structure inherent to chains allows us to develop a combinatorial theory
in Section 2, by which every chain admits a unique construction starting from the primitive
chain with only one edge. Two types of sum operations, so-called convex and concave sums,
are used to “concatenate” chains, while an inversion allows to “flip” a chain on its head. This
yields for every chain a concise and unique description as an algebraic formula. Based on
this, we will also see that the number of combinatorially different chains is equal to Sn−1,
where Sk =

∑k
i=0

1
i+1
(

k
i

)(
k+i

i

)
= Θ(k−3/2(3 +

√
8)k) is the k-th large Schröder number [2].

Triangulations of chains. The unavoidable chain edges separate every triangulation cleanly
into an upper triangulation of the region above the chain edges and into a lower triangulation
of the region below. Therefore, both upper and lower triangulations may be analyzed
separately. It also follows that there is no further complication due to inner vertices as one
would typically encounter them in general point sets.

There is a simple cubic time dynamic programming algorithm for counting triangulations
of simple polygons [13]. Such an algorithm can of course also be used to count both the
upper and lower triangulations of a given chain. However, we show in Section 3 that the
additional structure of chains allows us to devise an improved quadratic time algorithm,
which plays a crucial role in the derivation of our main result.

▶ Theorem 3. Given a chain C with n chain edges as input, it is possible to compute the
number tr(C) by using only O(n2) integer additions and multiplications.

SoCG 2022
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K0

K1

K2

K3

K4

Figure 2 The Koch chains Ks for s = 0, . . . , 4 and the corresponding Koch curves. Even though
it is hard to recognize for larger values of s, the changes in direction along the Koch curve on the
right are reflected one-to-one by the chain edges of the corresponding Koch chain on the left.

The Koch chain. There is a particular type of chain that has caught our interest and
which, to the best of our knowledge, has not been described in the literature before. We call
it the Koch chain due to its striking similarity in appearance and definition to the famous
Koch curve. More precise definitions follow later in Definition 14; for now, suppose K0 is a
primitive chain with just one chain edge, and let the s-th iteration Ks of the Koch chain be
defined by concatenating two flipped and sufficiently flattened copies of Ks−1 in such a way
that the chain edges at the point of concatenation form a left turn, see Figure 2.

Koch chains turn out to have a particularly large number of triangulations, much more
so than any other known point sets. For values of s up to 21, we have computed the
corresponding numbers of upper and lower triangulations, as well as complete triangulations,
by using our algorithm from Theorem 3. The results are displayed in Table 1.

In consequence, concatenating copies of K21 side by side results in an infinite family of
point sets with at least 9.082798n triangulations. This alone already establishes the improved
lower bound of trmax(n) = Ω(9.082798n).
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Table 1 The computed numbers of triangulations of the Koch chain Ks for s = 0, . . . , 21. As
usual, n is the number of chain edges, whereas U , L, and T stand, respectively, for the numbers of
upper, lower, and complete triangulations of the corresponding Koch chain.

s n n
√

U n
√

L n
√

T s n n
√

U n
√

L n
√

T

0 1 1.0 1.0 1.0 11 2048 3.121029 2.858643 8.921910
1 2 1.0 1.0 1.0 12 4096 2.882177 3.121029 8.995359
2 4 1.189207 1.0 1.189207 13 8192 3.134955 2.882177 9.035496
3 8 1.791279 1.189207 2.130201 14 16384 2.889213 3.134955 9.057554
4 16 2.035453 1.791279 3.646065 15 32768 3.139056 2.889213 9.069406
5 32 2.558954 2.035453 5.208633 16 65536 2.891256 3.139056 9.075820
6 64 2.564646 2.558954 6.562814 17 131072 3.140236 2.891256 9.079229
7 128 2.935733 2.564646 7.529118 18 262144 2.891838 3.140236 9.081055
8 256 2.783587 2.935733 8.171870 19 524288 3.140569 2.891838 9.082019
9 512 3.075469 2.783587 8.560839 20 1048576 2.892001 3.140569 9.082530

10 1024 2.858643 3.075469 8.791671 21 2097152 3.140662 2.892001 9.082799

Poly chains and Twin chains. We were unable to nail down the exact asymptotic behavior
of the number of triangulations of Ks as s approaches infinity. It is also unclear how much is
lost due to undercounting by not considering any interactions between the different copies of
K21 in our simple lower bound construction from just before.

To remedy the situation somewhat, in Section 4 we define and analyze more carefully the
poly-C chain (a specific way of concatenating k copies of a given chain C) and the twin-C
chain (a construction where two copies of a poly-C chain face each other, similar in spirit to
the classic double chain). Based on these considerations, we get a slightly improved lower
bound construction, and we are also able to conclude that the numbers in the last column of
Table 1 will not grow significantly larger than what we already have.

▶ Theorem 4. Let Ck be the twin-K21 chain that uses 2k copies of K21 in total. Then,

lim
k→∞

n
√

tr(Ck) = 9.083095 . . . , trmax(n) = Ω(9.083095n).

▶ Theorem 5. For the Koch chain Ks with n = 2s chain edges, we have

9.082798 ≤ lim
s→∞

n
√

tr(Ks) ≤ 9.083139.

2 Structural Properties of Chains

Recall Definition 1 from the introduction. Note that the unavoidable chain edges form an
x-monotone curve p0p1 . . . pn, to which we refer as the chain curve. An edge pipj that is not
a chain edge cannot cross the chain curve, and so it lies either above or below that curve.

▶ Definition 6. To every chain C we associate a visibility triangle V (C) with entries

V (C)i,j =


+1, if pipj lies above the chain curve;
−1, if pipj lies below the chain curve;

0, if pipj is a chain edge (i.e., i + 1 = j);
(0 ≤ i < j ≤ n).

As an example, the visibility triangles of the chains that correspond to the classic point
sets from the introduction can be seen in Figure 3.

SoCG 2022
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0 + + + + + + + + +
0 + + + + + + + +

0 + + + + + + +
0 + + + + + +

0 + + + + +
0 + + + +

0 + + +
0 + +

0 +
0

convex position

0 − + + + + + + + +
0 + + + + + + + +

0 − + + + + + +
0 + + + + + +

0 − + + + +
0 + + + +

0 − + +
0 + +

0 −
0

“double circle”

0 − − − + + + + +
0 − − + + + + +

0 − + + + + +
0 + + + + +

0 + + + +
0 − − −

0 − −
0 −

0
double chain

0 + − − + + + + +
0 − − + + + + +

0 + + + + + +
0 + + + + +

0 + + + +
0 + − −

0 − −
0 +

0
double zig-zag chain

Figure 3 The visibility triangles corresponding to the chains depicted earlier in Figure 1. For
improved clarity, we only display the signs of the respective entries.

For i < j < k, the triangle pipjpk is oriented counter-clockwise if and only if pj lies
below the edge pipk or, equivalently, if and only if V (C)i,k = +1. It follows that two chains
with the same visibility triangle have the same order type and, therefore, the same set of
crossing-free geometric graphs and triangulations. For this reason, we consider from now on
two chains to be equal if their visibility triangles are identical.

The edge p0pn plays a crucial role in determining the shape of a chain. For example,
if V (C)0,n = +1, then this edge is the only edge on the upper convex hull and, from a global
perspective, the chain curve looks like it is curving upwards. Conversely, if V (C)0,n = −1,
then the chain curve looks like it is curving downwards. Correspondingly, we call a chain C

with V (C)0,n ≥ 0 an upward chain, and a chain with V (C)0,n ≤ 0 a downward chain. This
implies that every chain is either an upward or a downward chain, and the primitive chain
with only n = 1 chain edge is the only chain that is both.

2.1 Flips
Chains may be flipped upside-down by reflection at the x-axis, thus turning an upward chain
into a downward chain, and vice versa. See Figure 4 for an example.

▶ Proposition 7. Let C be a chain with n chain edges. Then, there is another chain (which
we denote by C and call the flipped version of C) with n chain edges and visibility triangle

V (C)i,j = −V (C)i,j (0 ≤ i < j ≤ n).

C
0 − −

0 +
0

C
0 + +

0 −
0

Figure 4 A chain C and its flipped version C with the corresponding visibility triangles.
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C1
0 − −

0 +
0

C2

0 − + +
0 + +

0 −
0

C1 ∨ C2

0 − − + + + +
0 + + + + +

0 + + + +
0 − + +

0 + +
0 −

0

C1 ∧ C2

0 − − − − − −
0 + − − − −

0 − − − −
0 − + +

0 + +
0 −

0

Figure 5 In the top row, two chains C1 and C2 with their visibility triangles. Below, the
corresponding convex and concave sums C1 ∨C2 and C1 ∧C2. Red and blue color is used to highlight
the contained substructures and their origin.

2.2 Convex and Concave Sums
Given two chains C1 and C2, we would like to concatenate them so that we get a new chain
containing C1 and C2 as substructures. As shown in Figure 5, there are two ways to do so.

▶ Proposition 8. Let C1 and C2 be chains with n1 and n2 chain edges, respectively. Then,
there is an upward chain (which we denote by C1 ∨ C2 and call the convex sum of C1 and
C2) with n1 + n2 chain edges and visibility triangle

V (C1 ∨ C2)i,j =


V (C1)i,j , if i, j ∈ [0, n1];
V (C2)i−n1,j−n1 , if i, j ∈ [n1, n1 + n2];
+1, if i < n1 < j;

(0 ≤ i < j ≤ n1 + n2).

▶ Proposition 9. Similarly, there is a downward chain (which we denote by C1 ∧ C2 and
call the concave sum of C1 and C2) with n1 + n2 chain edges and visibility triangle

V (C1 ∧ C2)i,j =


V (C1)i,j , if i, j ∈ [0, n1];
V (C2)i−n1,j−n1 , if i, j ∈ [n1, n1 + n2];
−1, if i < n1 < j;

(0 ≤ i < j ≤ n1 + n2).

Proof of Proposition 8. We focus on the convex sum; the proof for the concave sum is
analogous. We have to show that there is a point set that forms a chain with the specified
visibility triangle. Intuitively speaking, this is achieved by first flattening the two given
chains and then arranging them in a ∨-shape.

To be more precise, we employ vertical shearings, which are maps (x, y) 7→ (x, y + λx) in
R2 for some λ ∈ R. Vertical shearings preserve signed areas and x-coordinates. Hence, if a
point set realizes a specific chain, then so does its image under any vertical shearing.

SoCG 2022
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With the help of an appropriate vertical shearing, we may realize C1 as a point set in
the rectangle [−1, 0] × [−1, 1] in such a way that the first point is at (−1, 0) and the last
point is at (0, 0). Then, given any ε ≥ 0, we may rescale vertically to get a point set Q1(ε)
in the rectangle [−1, 0] × [−ε, ε]. Let now R1(ε) be the image of Q1(ε) under the vertical
shearing with λ = −1. Then, the first point of R1(ε) lies at (−1, 1), while the last point
remains at (0, 0). For ε > 0, since Q1(ε) is a realization of C1, so is R1(ε). On the other
hand, for ε = 0, the points of R1(ε) all lie on the segment between (−1, 1) and (0, 0).

With C2 we proceed similarly to get a point set Q2(ε) in the rectangle [0, 1] × [−ε, ε], but
we now apply the vertical shearing with λ = 1 to get R2(ε) with the first point at (0, 0) and
the last point at (1, 1).

Let T (ε) = R1(ε) ∪ R2(ε). We claim that for ε > 0 small enough, T (ε) is a chain with
visibility triangle V (C1 ∨ C2) as specified. Indeed, as Ri(ε) is a realization of Ci, we only
need to check that the edges between any point of R1(ε) and any point of R2(ε) (excluding
the common point at the origin) lie above all the points in between. Since this is the case
for ε = 0 and T (ε) depends continuously on ε, the claim follows. ◀

2.3 Algebraic Properties
Using the formulas for the visibility triangles from the corresponding transformations in
Propositions 7–9, it can be checked easily that the following algebraic laws hold.

▶ Lemma 10. Let C1, C2, C3 be arbitrary chains. Then, the following are all true.

Involution: C1 = C1

De Morgan: C1 ∨ C2 = C1 ∧ C2, C1 ∧ C2 = C1 ∨ C2

Associativity: (C1 ∨ C2) ∨ C3 = C1 ∨ (C2 ∨ C3), (C1 ∧ C2) ∧ C3 = C1 ∧ (C2 ∧ C3)

However, note that for example (C1 ∧ C2) ∨ C3 is not the same chain as C1 ∧ (C2 ∨ C3).

2.4 Examples
We denote by E the primitive chain with only n = 1 chain edge; that is, the visibility triangle
has just the entry V (E)0,1 = 0. Using this as a building block, we may define two more
fundamental chains, the convex chain Ccvx(n) and the concave chain Cccv(n), by setting

Ccvx(n) = E ∨ · · · ∨ E︸ ︷︷ ︸
n copies

, Cccv(n) = E ∧ · · · ∧ E︸ ︷︷ ︸
n copies

.

The convex chain is an upward chain, while the concave chain is a downward chain. Also,
since E = E, we get Ccvx(n) = Cccv(n) by using De Morgan’s law. Finally, note that Ccvx(n)
and Cccv(n) are distinct as chains, even though they both are in convex position.

As already mentioned in the introduction, many previously studied point sets are in fact
chains, or can be seen as such. Using flips as well as convex and concave sums, we can now
describe these configurations with very concise formulas.

▶ Example 11. The double chain with n = 2k + 1 chain edges is the chain

Cdbl(n) = Cccv(k) ∨ E ∨ Cccv(k).

▶ Example 12. The zig-zag chain with n = 2k chain edges (which, in essence, is a double
circle with one of the inner points removed) is the chain

Czz(n) = Cccv(2) ∨ · · · ∨ Cccv(2)︸ ︷︷ ︸
k copies

.
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▶ Example 13. The double zig-zag chain with n = 4k + 1 chain edges is the chain

Cdzz(n) = Czz(2k) ∨ E ∨ Czz(2k).

All these examples involve formulas of constant nesting depth only. But the tools
developed up to this point allow us to also define more complicated chains via formulas of
non-constant nesting depth, without having to worry about questions of realizability. One
such chain with logarithmic nesting depth is indeed the Koch chain.

▶ Definition 14. The Koch chain Ks is an upward chain with n = 2s chain edges, defined
recursively via K0 = E and Ks = Ks−1 ∨ Ks−1 for all s ≥ 1.

Indeed, after expanding the recursive definition twice and using De Morgan’s law on both
sides, we see that the formula Ks = (Ks−2 ∧ Ks−2) ∨ (Ks−2 ∧ Ks−2) has a complete binary
parse tree with alternating convex and concave sums on any path from the root to a leaf.

2.5 Unique Construction
We want to prove the following result. In essence, it states that every chain can be constructed
in a unique way by using only convex and concave sums.

▶ Theorem 15. Every chain can be expressed as a formula involving convex sums, concave
sums, parentheses, and copies of the primitive chain with only one chain edge. This formula
is unique up to redundant parentheses (redundant due to associativity as in Lemma 10).

In particular, the above theorem allows us to encode a chain with O(n) bits (as opposed
to the O(n2) bits required for the visibility triangle) and to easily enumerate all chains of a
fixed size. We further see that the number of upward chains is given by the little Schröder
numbers [3] and the number of all chains is given by the large Schröder numbers [2].

The theorem follows by induction from the following proposition (and from an analogous
proposition that expresses downward chains as a unique concave sum of upward chains).

▶ Proposition 16. Let C be an upward chain with n > 1 chain edges. Suppose that the
lower convex hull of C is pi0pi1 . . . pik

with 0 = i0 < · · · < ik = n. For j = 1, . . . , k, let
Cj be the chain with points pij−1 , . . . , pij

. Then, each Cj is a downward chain. Moreover,
C = C1 ∨ · · · ∨ Ck and any formula that evaluates to C has the same top-level structure.

Proof. As pij−1pij is an edge of the lower convex hull of C, it is below all the points in
between. Hence, each Cj is indeed a downward chain.

To prove C = C1 ∨ · · · ∨ Ck, we have to show that both chains have the same visibility
triangle. By definition of the Cj , the visibility triangles clearly agree on all entries that stem
from an edge papb where pa and pb are both part of the same Cj . On the other hand, if pa

and pb are not part of the same Cj , then there is a j with a < ij < b. As pij
is a vertex

of the lower convex hull, it lies below the edge papb and hence V (C)a,b = +1. But this is
precisely what we also get for the visibility triangle of the convex sum C1 ∨ · · · ∨ Ck.

For uniqueness, suppose we are given any formula for C. Since C is assumed to be an
upward chain and since any concave sum is a downward chain, the formula must be of the
form C ′

1 ∨ · · · ∨ C ′
k′ . We may further assume that each C ′

j is a downward chain by omitting
redundant parentheses. Observe now that in any such convex sum of downward chains, the
resulting lower convex hull is determined by the points that are shared by any two consecutive
chains C ′

j . Since the given formula evaluates to C, we must have k′ = k and C ′
j = Cj . ◀

SoCG 2022



59:10 Chains, Koch Chains, and Point Sets with Many Triangulations

p0

p1 p2

p3p4

p5

p6

p7

p8p9

p10 p11

p12

SC
SC2

SC4

SC6

Figure 6 The situation in the proof of Theorem 2. Beware that this is just a sketch; in reality,
the pockets would need to be much more narrow in order to make all edges of SC unavoidable.

2.6 Geometric Characterization

As already mentioned in the introduction, the chain edges together with the hull edge p0pn

form a spanning cycle of unavoidable edges. We are now ready to prove that this property
characterizes chains geometrically.

Proof of Theorem 2. Let SC = p0p1 . . . pn be the spanning cycle in counter-clockwise order,
with p0pn an edge of the convex hull, which we call the base edge. As SC consists of
unavoidable edges only, it cannot be crossed by any edge that is not part of SC. Hence, we
can associate a visibility triangle with the given point set, similar to the visibility triangle of
a chain, by setting

Vi,j =


+1, if pipj is inside SC or the base edge;
−1, if pipj is outside SC;

0, if pipj is part of SC (i.e., i + 1 = j);
(0 ≤ i < j ≤ n).

By using that p0pn is a hull edge and by some geometric considerations2, one can then
show that for i < j < k, the triangle pipjpk is oriented counter-clockwise if and only if
Vi,k = +1. Hence, it suffices to construct a chain whose visibility triangle agrees with V .

Let pi0 , pi1 , . . . , pik
be the vertices of the convex hull with 0 = i0 < · · · < ik = n. For

1 ≤ j ≤ k, let Pj = {pij−1 , . . . , pij
}. We now see that either Pj consists of only two points

or that it admits a spanning cycle of unavoidable edges, namely SCj = pij−1pij−1+1 . . . pij

with base edge pij−1pij
. The situation is depicted in Figure 6. Note that the inside of SCj is

outside of SC. In fact, SCj forms a so-called pocket of SC, which means that all edges of the
cycle SCj except for pij−1pij

are also edges of SC.
By induction, there is a chain Cj with the same order type as Pj , that is, with

V (Cj)a,b =


+1, if pij−1+apij−1+b is inside SCj or the base edge;
−1, if pij−1+apij−1+b is outside SCj ;

0, if pij−1+apij−1+b is part of SCj (i.e., a + 1 = b);
(0 ≤ a < b ≤ ij − ij−1).

2 This involves a lengthy case distinction that does not add much insight. We omit the details here.
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Let us consider the flipped version Cj . As noted before, the inside of SCj is outside of
SC. As SCj moreover forms a pocket of SC, any edge outside of SCj is inside SC. Hence,

V (Cj)a,b =


+1, if pij−1+apij−1+b is inside SC;
−1, if pij−1+apij−1+b is outside SC;

0, if pij−1+apij−1+b is part of SC (i.e., a + 1 = b);
(0 ≤ a < b ≤ ij − ij−1).

We claim that C = C1 ∨ · · · ∨ Ck has the desired visibility triangle V . We have just seen
that the entries stemming from the individual Cj are correct. So, all that is left to observe is
that edges between different pockets lie inside of SC, which is indeed the case. ◀

3 Triangulations of Chains

In the previous section, we have seen that any chain can be expressed as a formula involving
only convex and concave sums. Our goal here is to understand how triangulations behave
with respect to such convex and concave sums. In order for this to work out, we have to
consider not just triangulations, but a more general notion of partial triangulations.

We start by decomposing triangulations of a chain C into an upper and a lower part. An
edge pipj is an upper edge if V (C)i,j = +1, a chain edge if V (C)i,j = 0, and a lower edge
if V (C)i,j = −1. That is, upper edges lie above the chain curve, while lower edges lie below.

▶ Definition 17. An upper (lower) triangulation of a given chain C is a crossing-free
geometric graph on C that is edge-maximal subject to only containing chain edges and upper
(lower) edges. We denote the number of upper and lower triangulations by U(C) and L(C),
respectively, and as always the number of (complete) triangulations by tr(C).

Note that the chain edges are contained in every upper and lower triangulation. Moreover,
every triangulation is the union of a unique upper and a unique lower triangulation, which
implies tr(C) = U(C) · L(C). A lower triangulation of a chain C is an upper triangulation
of the flipped version C, and therefore L(C) = U(C). For this reason, we may restrict our
attention to studying only upper triangulations.

Intuitively speaking, we can create a partial upper triangulation by combining all the
chain edges with some upper edges, in such a way that all bounded faces are triangles. Note
that then, only some of the used edges are visible from above.

▶ Definition 18. Let C be any chain with n chain edges, and let V = pi0pi1 . . . piv
with

0 = i0 < i1 < · · · < iv = n be an (x-monotone) curve composed of chain edges and upper
edges only. A partial upper triangulation of C (with visible edges V ) consists of all chain
edges, all edges in V , and a triangulation of the areas between the two.

Figure 7 depicts some partial upper triangulations and their visible edges. We are
interested in counting such triangulations parameterized by the number of triangles. It can
be noted that a partial upper triangulation with k triangles has n − k visible edges.

▶ Definition 19. Let C be any chain with n chain edges. For k = 0, . . . , n − 1, let tk(C)
be the number of partial upper triangulations of C with k triangles (i.e., with n − k visible
edges). The upper triangulation polynomial of C is the corresponding generating function

TC(x) =
n−1∑
k=0

tk(C)xk.

SoCG 2022
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Figure 7 Four partial upper triangulations of the “double circle” with ten, six, three, and one
visible edge, respectively. As usual, chain edges are in bold, while visible edges are in blue.

As an example, enumerating all partial upper triangulations of the convex chain Ccvx(4)
shows that TCcvx(4)(x) = 1 + 3x + 5x2 + 5x3. In general, note that for every chain C we have
t0(C) = 1 and that the leading coefficient of TC(x) is equal to U(C). Moreover, we may
again think of TC(x) as the “lower triangulation polynomial” of C.

3.1 Convex and Concave Sums
Let us start with the easy case. For concave sums, we can establish the following relation.

▶ Lemma 20. A partial upper triangulation of C1 ∧ C2 is the union of a unique partial upper
triangulation of C1 and a unique partial upper triangulation of C2. Hence,

TC1∧C2(x) = TC1(x) · TC2(x), U(C1 ∧ C2) = U(C1) · U(C2).

Convex sums are more tricky. The main insight is that every partial upper triangulation
of C1 ∨ C2 consists of a partial upper triangulation of C1, a partial upper triangulation of C2,
and some edges between C1 and C2. More precisely:

▶ Proposition 21. There is a triangle-preserving bijection between
all triples (T1, T2, T3) where T1 is a partial upper triangulation of C1 (with v1 visible
edges), T2 is a partial upper triangulation of C2 (with v2 visible edges), and T3 is a partial
upper triangulation of the convex sum Cccv(v1) ∨ Cccv(v2), and
all partial upper triangulations of C1 ∨ C2.

This bijection is defined by taking the union of all triangles, see Figure 8. The proposition
then directly implies the following equation for the upper triangulation polynomial.

▶ Lemma 22. Let C1 and C2 be chains with n1 and n2 chain edges, respectively. Then,

TC1∨C2(x) =
n1−1∑
k1=0

n2−1∑
k2=0

tk1(C1) · tk2(C2) · xk1+k2 · TCccv(n1−k1) ∨ Cccv(n2−k2)(x).

Let us consider the special case of a convex sum of two concave chains with n1 and n2
chain edges, respectively. Note that any partial upper triangulation of such a chain has at
most one upper edge that is visible. Summing over all possibilities for that edge, we get

TCccv(n1) ∨ Cccv(n2)(x) = 1 +
n1∑
l=1

n2∑
r=1

(
l + r − 2

l − 1

)
xl+r−1.

C1 C2 Cccv(2) ∨ Cccv(3) C1 ∨ C2

Figure 8 From left to right, the respective partial upper triangulations T1 of C1, T2 of C2, T3 of
Cccv(2) ∨ Cccv(3), and the resulting partial upper triangulation of C1 ∨ C2 as in Proposition 21.
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Combining the above equation with Lemma 22 allows us to compute TC1∨C2(x) from
TC1(x) and TC2(x). Furthermore, by comparing the leading coefficients in the formulas from
Lemmas 20 and 22, we get the following obvious but important fact.

▶ Corollary 23. C1 ∨ C2 has at least as many upper triangulations as C1 ∧ C2. That is,

U(C1 ∨ C2) ≥ U(C1 ∧ C2).

Finally, note that the two chains C1 ∨ C2 and C2 ∨ C1 can be quite different from a
geometric point of view. But in terms of the number of triangulations, they are the same.

▶ Corollary 24. For any two chains C1 and C2, we have

TC1∨C2(x) = TC2∨C1(x), TC1∧C2(x) = TC2∧C1(x).

3.2 Dynamic Programming
In this subsection, we show how to use dynamic programming in order to speed up the
computations for a convex sum. To simplify the analysis, we assume a computational model
where all additions and multiplications take only constant time.

▶ Proposition 25. Let C1 and C2 be chains with n1 and n2 chain edges, respectively. Given
the coefficients of TC1(x) and TC2(x), we can compute TC1∨C2(x) in O(n1n2) time.

Recall that by Theorem 15, we can write any chain C as a formula involving only
convex sums, concave sums, and primitive chains with only one chain edge. Therefore, using
Proposition 25 for convex sums and Lemma 20 for concave sums, we are able to compute
TC(x) in quadratic time. Clearly, this proves Theorem 3 from the introduction.

Proof of Proposition 25. Observe that every partial upper triangulation of C1 ∨ C2 either
corresponds to a partial upper triangulation of C1 ∧ C2, or it has a unique visible upper
edge that connects a vertex of C1 with a vertex of C2. Let us call this edge the bridge. Let
further DP[l][r] be the number of partial upper triangulations whose visible edges consist
of l visible edges in C1, followed by the bridge, followed by r visible edges in C2. Then,

TC1∨C2(x) = TC1∧C2(x) +
n1−1∑
l=0

n2−1∑
r=0

DP[l][r] · xn1+n2−l−r−1.

To compute the table DP, let us see what happens when we remove the bridge. We either
end up with a partial upper triangulation of C1 ∧ C2 with l + 1 and r + 1 visible edges in C1
and C2, respectively, or we get a new bridge, which used to be an edge of the triangle below
the old bridge. In the latter case, depending on which of the two possible edges this is, we
end up with one more visible edge in either C1 or C2. Figure 9 depicts these three cases. To
summarize, for all l and r (0 ≤ l < n1, 0 ≤ r < n2),

DP[l][r] = tn1−l−1(C1) · tn2−r−1(C2) + DP[l + 1][r] + DP[l][r + 1],

with the base case DP[n1][r] = DP[l][n2] = 0. Therefore, filling up the table DP takes
O(n1n2) time, as desired. ◀

SoCG 2022
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C1 C2 C1 C2 C1 C2

Figure 9 The three cases when removing the bridge from a partial upper triangulation of C1 ∨ C2

in the proof of Proposition 25. On the left, both C1 and C2 gain a visible edge. In the middle, only
C1 gains a visible edge. On the right, only C2 gains a visible edge. The current bridge is red, and
the edge that becomes the new bridge is blue.

3.3 Koch Chains
Recall Definition 14 and that the formula for Koch chains expands to the nested expression

Ks = (Ks−2 ∧ Ks−2) ∨ (Ks−2 ∧ Ks−2)

with alternating convex and concave sums. This repeated mixing of the two types of sums
appears to make an exact analysis of the number of triangulations of Ks very difficult.

Instead, we have implemented the quadratic time algorithm from the previous subsection
and used it to compute TKs

(x) and TKs
(x) for all s ≤ 21. To deal with the exponentially

growing coefficients, we rely on a custom floating point type with a 64 bit mantissa and a 32
bit exponent from the boost multiprecision library. As only additions and multiplications are
involved, we do not have to deal with numerical issues; in fact, the rounding errors grow at
most linearly. In addition, we make use of multi-threading and take advantage of symmetries
of Ks for a constant factor speed-up. This allows us to compute TK21(x) in around a day on
a regular workstation (Intel i7-6700HQ, 2.6GHz).

Table 1 from the introduction lists the resulting numbers. For example, K21 has ap-
proximately 9.082799n triangulations, where n = 221. In the next section, we show how the
computed coefficients of TK21(x) can be used to give bounds on tr(Ks) as s → ∞.

4 Poly Chains and Twin Chains

Let C0 be a chain with m chain edges. We want to define two particular families of chains
that can be built from many copies of C0 via concave and convex sums.

▶ Definition 26. For N ≥ 1, the poly-C0 chains (of length n = mN) are the chains

Cpoly(C0, N) = C0 ∨ · · · ∨ C0︸ ︷︷ ︸
N copies

.

▶ Definition 27. For N ≥ 1, the twin-C0 chains (of length n = 2mN + 1) are the chains

Ctwin(C0, N) = Cpoly(C0, N) ∨ E ∨ Cpoly(C0, N).

Note that both resulting chains are upward chains, as long as N > 1. For example, the
poly-E chains are the convex chains, the twin-E chains are the classic double chains, and
the twin-(E ∨ E) chains are the double zig-zag chains.

We are interested in the asymptotic behavior of the number of triangulations of these
constructions as N → ∞. Lemma 20 gives us the number of lower triangulations.

L(Cpoly(C0, N)) = U(C0 ∧ · · · ∧ C0) = U(C0)N

L(Ctwin(C0, N)) = U(Cpoly(C0, N) ∧ E ∧ Cpoly(C0, N)) = U(Cpoly(C0, N))2

For the upper triangulations, we make use of the following general result.
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▶ Theorem 28. The chains Cpoly(C0, N) have Θ̃(λn) upper triangulations, while the chains
Ctwin(C0, N) have Θ̃(τn) upper triangulations, where

λ = m

√√√√ m∑
k=1

2k(k + 1) · tm−k(C0), τ = m

√√√√ m∑
k=1

2k · tm−k(C0).

It follows that the chains Ctwin(C0, N) have Θ̃((λτ)n) complete triangulations.

▶ Example 29. Let us analyze the poly-Ccvx(4) chains and twin-Ccvx(4) chains. We have

T
Ccvx(4)(x) = 1, TCcvx(4)(x) = 1 + 3x + 5x2 + 5x3,

which yields λ = 4
√

80 and τ = 4
√

70. Therefore, the twin-Ccvx(4) chains have Θ̃( 4
√

5600n)
triangulations, where 4

√
5600 ≈ 8.6506154. Note that these chains are the generalized double

zig-zag chains from [12]. By comparison, the numerical bound there was Ω̃(8.6504n).

Using the coefficients of TK21(x) and TK21
(x) that we computed with our algorithm, we

can also analyze the twin-K21 chains and, therefore, prove Theorem 4 from the introduction.

▶ Corollary 30. The chains Ctwin(K21, N) have Θ̃(λn) triangulations, for λ ≈ 9.083095.

The next lemma, combined with the first part of Theorem 28, can further be used to
show asymptotic upper bounds for families of chains that are built from the same C0.

▶ Lemma 31. Let C be any chain that can be written as a formula involving convex sums,
concave sums and exactly N copies of C0. Then,

U(C0)N ≤ U(C) ≤ U(Cpoly(C0, N)).

Proof. Use induction on N with Corollary 23. ◀

▶ Corollary 32. In the same setting, we have

tr(C0)N ≤ tr(C) ≤ U(Cpoly(C0, N)) · U(Cpoly(C0, N)).

Proof. Apply Lemma 31 twice. First to C with C0, then to C with C0. ◀

The Koch chains Ks with s ≥ 21 can be written as formulas involving copies of K21, so
Corollary 32 applies to them. We get 9.082798n ≤ tr(Ks) ≤ 9.083139n, as in Theorem 5.

4.1 Tools for the proof of Theorem 28
We only sketch the main steps here. We use similar ideas as Section 2 of [12] with three
improvements that yield an exact Θ̃ instead of a numerical lower bound. The first improvement
is that our chain framework allows us to analyze even more general “double circles”.

▶ Theorem 33. Let c1, . . . , cm ≥ 0 be integers. Define

V (c1, . . . , cm) = Cpoly(Ccvx(1), c1) ∨ · · · ∨ Cpoly(Ccvx(m), cm)

where we omit poly chains with ck = 0. Then,

U(V (c1, . . . , cm)) ∈ Ω̃
( m∏

k=1

(
2k(k + 1)

)ck
)

where the polynomial factors in the Ω̃ only depend on m (and not on the ck).

SoCG 2022
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Proof. By Corollary 23 and Corollary 24, we get

U(V (c1, . . . , cm)) ≥ U(Cpoly(Ccvx(1), c1)) · · · U(Cpoly(Ccvx(m), cm)).

In [8] it is shown that U(Cpoly(Ccvx(k), N)) ∈ Ω̃((2k(k + 1))N ). ◀

The second improvement is to replace the numerical optimization in [12] by this lemma.

▶ Lemma 34. Let u1, . . . , um ≥ 0 be given. Let H(α1, . . . , αm) = −
∑

k αk ln αk be the
entropy function. Then,

max
0≤α1,...,αm≤1
α1+···+αm=1

eH(α1,...,αm) ·
m∏

k=1
uαk

k =
m∑

k=1
uk.

Proof. Without loss of generality, assume that uk > 0. Then, by Lagrange multipliers, the
only maximum is at αk = uk/(u1 + · · · + um). ◀

The third improvement is a special type of generating function that behaves well with
regards to convex sums, allowing us to prove a matching upper bound for Theorem 33.

▶ Definition 35. Let C be a chain of length n. The triangulation generating function is

ϕC(x) := TC(x) −
( x

1 − x

)n+1
TC(1 − x).

Note that ϕC(x) is a rational function. As a formal power series, ϕC(x) = TC(x) + O(xn+1).

▶ Theorem 36. For any two chains C1 and C2, we have

ϕC1∨C2(x) = ϕC1(x) · ϕC2(x) · 1 − x

1 − 2x
.

Proof. By Lemma 22, it suffices to prove this for Ci = Cccv(ni). We have

ϕCccv(n)(x) = 1 −
( x

1 − x

)n+1
, TCccv(n1)∨Cccv(n2)(x) = 1 +

n1∑
l=1

n2∑
r=1

(
l + r − 2

l − 1

)
xl+r−1.

Then, induction on (n1, n2) and raw computations on power series suffice. ◀

▶ Corollary 37. We have

U(V (c1, . . . , cm)) ≤
m∏

k=1
(2k(k + 1))ck .

Proof. Let n = c1 + 2c2 + · · · + mcm be the length of V (c1, . . . , cm). Theorem 36 allows us
to compute ϕV (c1,...,cm). We have U(V (c1, . . . , cm)) = [xn−1]ϕV (c1,...,cm)(x), so we compute

[xn−1]ϕV (c1,...,cm)(x) = [xn−1]
( 1 − x

1 − 2x

)c1+···+cm−1
·

m∏
k=1

(
ϕCccv(k)(x)

)ck

= [xn−1] 1 − 2x

1 − x

m∏
k=1

(
k∑

i=0

( x

1 − x

)i
)ck

≤ [xn−1]
m∏

k=1

(
k∑

i=0

( x

1 − x

)i
)ck

≤ 2n
m∏

k=1
(k + 1)ck

as expanding the second to last term gives us
∏

(k + 1)ck summands, each some power of
x

1−x , the xn−1-coefficient of which is always less than 2n. ◀
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4.2 Proof of Theorem 28 (only Poly Chains)
Using Lemma 22, we can expand TCpoly(C0,N)(x) into an N -fold sum where each summand is
a product of N triangulation numbers tki

and some TV (a1,...,am)(x). After grouping together
summands with the same monomial of triangulation numbers, the leading coefficients are

U(Cpoly(C0, N)) =
∑

0≤a1,...,am≤N
a1+···+am=N

(
N

a1, . . . , am

) m∏
k=1

tm−k(C0)ak · U(V (a1, . . . , am)).

Then, on one hand, by Corollary 37 and the multinomial theorem,

U(Cpoly(C0, N)) ≤
∑

0≤a1,...,am≤N
a1+···+am=N

(
N

a1, . . . , am

) m∏
k=1

tm−k(C0)ak ·
m∏

k=1

(
2k(k + 1)

)ak

≤
( m∑

k=1
2k(k + 1) · tm−k(C0)

)N

.

On the other hand, by Theorem 33 and the entropy bound for multinomial coefficients,

U(Cpoly(C0, N)) ≥ 1
N c(m)

∑
0≤a1,...,am≤N
a1+···+am=N

eH( a1
N ,..., am

N )
m∏

k=1
tm−k(C0)ak ·

m∏
k=1

(
2k(k + 1)

)ak

.

By picking the largest summand, given by Lemma 34, we get the lower bound

U(Cpoly(C0, N)) ∈ Ω̃
(( m∑

k=1
tm−k(C) · 2k(k + 1)

)N
)

.
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