
Technical Note
Computer Architecture
and Systems

John P. Hayes*
Editor

Searching in a Dynamic Memory with
Fast Sequential Access

Om Vikas
National Informatics Centre, New Delhi, India
V. Rajaraman
Indian Institute of Technology, Kanpur, India

This communication presents an algorithm for
searching in the Aho-Ul lman dynamic memory consisting
of (2 m - 1) cells. Mean search time of 1.5m steps to the
first specified record is obtained with a subsequent se-
quential access capability. Thus, in such a dynamic mem-
ory, the mean access time for content addressing is the
same as the mean access time for random addressing.

CR Categories and Subject Descriptors: H.3.3 [Infor-
mation Storage and Retrieval]: Information Search and
Retrieval--search process; B.3.2 [Memory Structures]:
Design Styles--sequential-access memory

General Term: Algorithms
Additional Key Words and Phrases: dynamic mem-

ory, shuffle transformation, content addressing

Stone [3] proposed a pair of memory transformations,
namely, Shuffle and Exchange-Shuffle in a dynamic
memory of N = 2 m cells. The mean random access time
Ln such a memory is (log2 N - 1) = (m - I). Following
Stone, we have counted Exchange-Shuffle as being a
single transformation taking unit time even though, in
practice, it takes two steps.

Aho and Ullman [1] considered a memory of N =
(2 m - 1) cells with two transformations, namely, modi-
fied Shuffle and Cyclic transformations. The cyclic trans-
formation is also known as the Minus-one transforma-
tion. Aho and Ullman's scheme yields a mean random
access time of 1.5m t and a worst access time of 2m - 1.
Besides random access, this scheme has an additional
advantage for sequential access, requiring one Minus-one
transformation per access, after retrieving the first two
data words of a block of data. Stone [4] indicated minor
variations and improvements to the random access al-
gorithm for the Aho-Ul lman memory.

We develop an algorithm to retrieve a record with a
given key in the Aho-Ul lman memory. It is assumed
that the records are presorted and stored in ascending
order of the keys. The proposed method yields a mean
access time of 1.5m to the first cell with the specified key
and subsequent sequential access requiring one Minus-
one transformation per access. The longest time in the
worst case to retrieve a record with a specified key is (2m
- 1). Thus, access of contents takes the same average
time as the access of an address in the Aho-Ul lman
memory. After the completion of the retrieval, the mem-
ory is returned to its original status with keys in ascend-
ing sequence to facilitate further retrieval. This is done
using the Aho-Ullman algorithm and takes 1.5m units of
time.

1. Introduction

A dynamic memory consists of N cells interconnected
by several memory transformations. At each clock time
one of these transformations is selected and applied to
the data stored in the memory. The conventional shift-
register is a dynamic memory with a cyclic memory
transformation. In this memory the mean access time to
access a specified cell is (N - 1)/2 assuming unit time to
transfer a datum from one cell to another.

* Former editor of Computer Architecture and Systems, of which
Duncan Lawrie is the current editor.

Authors' Present Addresses: Om Vikas, National Informatics
Centre, Electronics Commission, E-Wing, Pushpa Bhavan, Chirag
Delhi-Madangir Road, New Delhi 110 062, India; V. Rajaraman,
Computer Centre, Indian Institute of Technology, Kanpur 208 016,
India.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0001-0782/82/0700-0479 $00.75

479

2. The Aho-Ullman Memory

The Aho-Ul lman memory consists of (2 m - 1) cells.
The cells are numbered as 1, 2 N, where N =
2 m - 1. Cell 1 is the read/write port. Two memory
transformations, namely, Shuffle and Minus-one are em-
ployed.

The Shuffle transformation transfers the datum in
position a to position S(a) given by

S(a) = ÷a (1)

where ÷ is an operator which left circular shifts the m-
bit binary representation of the address a by 1 bit.

The Minus-one transformation transfers the datum in
position a to position M(a) given by

m(a) = a • (-1), a # 0 (2)

where (~ denotes one's complement addition of m-bit
integers.

~We have assumed that Minus-one and Shuffle take unit time
each.

Communications July 1982
of Volume 25
the ACM Number 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F358557.358579&domain=pdf&date_stamp=1982-07-01

Observe that the M i n u s - o n e transformation is a left
circular shift of the contents o f the memory and the
Shuf f le transformation a left circular shift of the address
bits.

Data stored in the memory have distinct logical
addresses, namely, 1, 2 N. In order to access a
datum with a specified logical address, a sequence of
Shuf f le and Minus -one transformations are applied and
eventually the datum with the desired logical address
reaches the read/write port, that is, cell 1. The sequence
of transformations can be determined as follows: Let t
be the logical address of the datum to be accessed and s
be the logical address of the datum currently available at
the read/write port. We define the distance d between t
and s as d = t • (-s) . Let (din-l, dm-2 dl , do) be the
binary representation ofd. Thus d = dm-~2 m-~ + dm-22 m-2

+ . . . + d121 + do.
The distance d determines the sequence of transfor-

mations required to bring the da tum at logical address t
to the read-write port and place the memory in a cyclic
shift of the initial state which allows data with successive
logical addresses to be accessed sequentially. The algo-
ri thm which achieves this is

Algorithm 1: Aho-Ul lman random access algorithm
F o r k = m - 1 s t e p - I u n t i l 0 d o
begin comment: (Minus d~ means Minus-one if d, = 1

and skip if d~ = 0);
Shuffle;
Minus dk;
end.

The above algorithm for random accessing yields a
mean access time of 1.5m.

3. Searching

In a number of applications it is desirable to retrieve
a group of records from a memory with the first record
in the group having a given key. This requires us to
develop an algorithm to search in a memory for a record
with a given key at the lowest logical address and to
retrieve sequentially a specified number of records fol-
lowing this record.

We assume that the records are presorted by key and
stored in a nondecreasing order in a memory of size (2 m
- 1). A binary search method [2] may now be employed
to retrieve a record with a specified key.

The following Lemma establishes the address of the
cell whose contents will be brought to cell 1 (i.e., the
read/wri te port) o f the memory. S is used as an abbre-
viation for Shuf f le and M for Minus-one .

LEMMA 1. Let the sequence of transformations applied to
the memory be

$ 6 t 2 . . . 6, p < _ (m - 1)

where each ti is either S or M S . Then the contents of the
cell

bib2 . . . bpl00 . . - 0
rh

(where bi is 1 if ti is M S and bi is 0 if t~ is S) will be
brought to cell 1.

PROOF. The proof is by induction on the length of
memory transformation sequence. From the definitions
of S and M in Eqs. (1) and (2), it is easy to verify that

S S (OIO0 . . . 0) = 0 0 . . . O1

and
s g S (l l O 0 . . . 0) = 0 0 . . . O1

Let the lemma be true for

S tit2 . . . tp, p < (m - 1) (Induction hypothesis)

Therefore

S t l t 2 . . , t e (b l b 2 . . , b p l 0 - - . 0)
i n

= 0 0 0 . . . 1 (p < m - 1)
,n

Let us now consider a sequence of transformations

0 = S 6t2 . . . tp+l

Let B be defined as:

B = blb2 . . . bpbp+l lO0 . . . 0
fn

where bi = 0 if ti is S and 1 if ti is M S . We are required
to show that

o (B)=O0 . . . 1
rh

Now

a (B) = S t i t 2 . . , tp+l(bab2 . . . bpbp+llO0 . . . O)

= t l t 2 . . , tp+l(b2 bpbp+~100 . . . b~)

We have two cases:
Case 1 : 6 = S

Then by definition of B, bl = 0,
therefore

o(B) = S t2 - - - tp+~(b2 . . . bpbp+~lO0 . . . 0)

= 000 . . . 1 (invoking the induction hypothesis)

Case 2: tl = M S

Then by definition of B, b~ = 1,
therefore

o (B) = M S t z . . . tp+l

• (b2 . . . bpbp+xlO0 . . . 1)
= St2 . . . tp+a

• (b2 . . - bpbp+~lO0 . . . O)

= 000 . - . 01
(invoking the induction hypothesis) []

Using this l emma we observe that a judicious appli-
cation of a sequence of S and M S transformations leads
to the binary search tree of Figure 1. We interpret the
tree as follows: Take any node in the tree. The node is
labeled with the address of the cell whose contents will

48O Communicat ions July 1982
of Volume 25
the ACM Number 7

Fig. 1. Binary Search Tree Obtained Using Lemma 1.

0001

0001 0011 0101 0111 1001 1011 1101 1111

reach cell 1 by applying the t ransformations indicated
on the branches o f the tree leading to this node f rom the
root o f the tree. For example, take the node labeled 0110.
Then employing S S M S t ransformat ion to the memory
will take the contents o f location 0110 to cell 1. This can
be verified by observing that m = 4, bl = 0, b2 = 1, p =
2. Thus the sequence S S M S applied to 0110 gives, by
L e m m a 1

S S M S (0110) = 0001

4. A l g o r i t h m for S e a r c h

Let R~, R2 , RN be records whose keys K1, K2,
. . . . K N are in nondecreasing order, so that K~ <_ Kz
• • • ~ K N . Let Z be the key o f the record in cell 1 and
K be the key o f the record to be retrieved. Let S be the
m-bit logical address o f the record brought to cell 1 by
a sequence o f S and M S t ransformations. Let r be a flag
which is set to 1 if the search for the key succeeds before
applying m S t ransformations. The value o f s is derived
using L e m m a 1. The symbol @ indicates one 's comple-
ment addit ion o f m-bit numbers.

Algorithm 2: Algorithm for binary search in Aho-Ullman memory
begin

If Z = K then Write "No Search needed"
Else If Z > K then Write "Record not in memory"
Else If Z < K then Call Search

end
Search:
begin

r ~--- 0

Shuffle
s ~-- 2 "*-1
For i = 1 to (m - l) step 1 do
begin

If Z < K then begin Minus-one
Shuffle
S <'-- S (~ 2 m - i - l end

Else If Z = K then begin Shuffle
r <--- 1

s ~ s (3 (-2 "-I-1) end
Else If Z > K then begin Shuffle

S <-- S (~ (- -2 m - i - l) end
end

If r = 1 and Z # K then begin Minus-one
s *-- s ~) -1 end

Else If r = 0 and Z # K then Write "Search Fails"
end.

481

P r o o f o f t h e a l g o r i t h m

The algori thm enters the routine Search when the
key K > C(00 . . . 1), where the notat ion C(00 . . . 1) is
used to indicate the contents o f cell 00 • • • 1. Thus, if K
is in the memory , then

C(O00 . . - Ol).< K _ C (l l . . . 1),
rh m

The routine Search first effects an S t ransformat ion
and then it enters the for loop which iterates exactly
(m - 1) times. In each iteration o f the for loop either an
S or an M S t ransformat ion is applied to the memory.
Therefore after p iterations o f the for loop the trans-
formations applied on the memory is given by the se-
quence:

S tl t2 " ." tp

where ti is either S or M S depending on the transfor-
mat ion applied in the ith iteration. F r o m L e m m a 1 it
follows that cell 1 will contain at the end o f p iterations
the contents o f cell

bib2 . . . bplO0 . . . 0
m

where bi is 1 if ti is M S and bi is 0 if ti is S. Thus at the
end o f p iterations

Z = C(blbz . . . bplO0 "LL_-Q)
m - p

LEMMA 2. Let the contents o f Cell 1 at the end o f p(0 <
p <_ m - 1) iterations o f the for loop be (from L e m m a 1)

Z = C(blb2 . . . bpl00 . . . 0)

I f the record with key K is in the memory, then if
r = 0 at the end o f p iterations o f the for loop

C(bxb2 . . - bp 0 0 - . . 0 1) <_ K < C(b, b2 . . . b p ! l . . . 1)
m - p 1 m ~ p

I f r becomes 1 at the end o f the p th iteration, then

K = C(blb2 . . . b p l l . . . 1 + 1)
m - - p

I f r becomes 1 before p iterations o f the for loop, then
the first occurrence o f K will be in the range o f addresses:

blbe . . . bp , 0 . . . 0 l < _ A (K) < _ b l b 2 . . . b p l l . . . 1
m -) 7 -- 1 m L p

where the notat ion A (K) indicates the address o f K.

PROOF. We will prove this l emma using induct ion on p.
At the end o f 0th iteration r = 0, and clearly if K is in

the m e m o r y then

c(00 " ' " 9) 1 _< K <_ c (] c : : _
m ' - - 1 m

This serves as the base for the case r = O.
For the induct ion step o f this case let us assume that

at the end o f (p - l) iterations

C(bl . . . bp-lO . . L _ O l) < _ K < _ C(bl . . . bp- , 1 . . . 1)

m - p m - p + '1

Communications July 1982
of Volume 25
the ACM Number 7

At the pth iteration the key K is compared with Z the
contents o f cell 1. The original contents of cell 1 are from
Lemma 1:

Z = C(ba . . . bp-11,0 . . - 0)
m ' - - p

I f K > Z, then, as the list is sorted, K obeys the
inequality

C(bl . . . b p - , l 0 . . . 0 I)
m - p - I

< K ~_ C(b, . . . bp-11 l ~ . ~)
m - - _ p

The pth iteration will effect an M S transformation on
the memory (as K > Z) , and thus

Z = C(bl . . . bp-, 11 00 . . . Q)
m - - p - - I

= C (b l . . . bp 1 O0 . . • 0)
m - p - 1

Thus bp = 1 and we see that Lemma 2 is true for r --- 0
at the end of the pth iteration.

Similarly, we can verify the lemma when K < Z. The
base case for the remaining parts of Lemma 2 is that
value o f p when r becomes 1 from 0. Let this happen at
the pth iteration.

At the beginning of the pth iteration using Lemma 1,
we see that

K = Z = C(blb2 . . . bp-~ 1 O0 . ; _ ~)
m - p

The pth iteration effects an S transformation on the
memory as Z = K. Thus by Lemma 1 after the pth
iteration

Z = C(bl " . . b,o-10 1 DO . . . 0,)
m -] ~ - |

Thus bp = O.
Therefore

bl " ' " b p 1 . . . 1 + 1 = bl " " bp-11 0 . . . 0

and m - p m - p

K = C(bt . . . bp-l l 0 . . . O)

m)¢

Till the end of the (p - l)th iteration (by assumption)
r = O. Invoking the first part of this lemma and knowing
that

K = C(bl . . . bp-x l 0 0 ~)
m - p

We can conclude that if K repeats before this value, then

C(b, . . . bp-lO . . . 01) ~ K <_ C(bl ' ' " bp_,O 1 ~)
rn - p m - p

From Lemma 1 we observe that bp = 0. Thus, if more
than one record has key K its first occurrence must be in
the range of addresses

ba - . - b. 0 . - . 01 to ba . . . b , l . . . 1
m - ' p - 1 m - p

For the induction part of the second part of Lemma
2, let the lemma be true at the end of (p - l)th iteration
where r = 1. At the pth iteration also r will remain to be
1.

From the induction hypothesis

K = C (b l . . . bp-~ 1 . . - 1 + 1)
m - p + l

and

C(b, . . . bp-100 • ~.O1) _< K
m - p

<--. C(bl " . . bp-1 ~)
m - - p + l

We compare the key K with the contents of location
(bl . . . bp-1 1 0 • . ~) at the pth iteration. K cannot be

m - p

less than this value. I f K is equal to this, then bp becomes
0 to make Z at the end o fp th iteration = C(bl • . . bv-lO

1 Q : ; . ~) But
m - p - 1

ba ' ' " bp 1 . . . 1 + 1 = bl " ' " b p - 1 1 0 . . . 0
m - - p m - - p

and thus the lemma holds.
I f K is found greater than the contents o f (bl - . .

bp-~ 1 0 . . . 0) then the first occurrence of K must be
m - p

after this value. Moreover, in this case when K is found
greater bp becomes 1. Thus the lemma holds again. []

The correctness of the algorithm is established from
Lemma 2. First we observe that at the completion of the
for loop exactly S transformations have been carded out
on the memory, interspersed with one or more M trans-
formations. From Aho-Ul lman [1] it follows that the
contents of the memory will be in the original order with
a cyclic shift o f addresses. The contents o f (bib2 . . .
b~-i 1) will be at cell 1. I f r = 0, then f rom L e m m a 2, if
K is in the memory then

C(bl . . . bm-~ 1) <__ K <__ C(ba . ' " bm-~ 1)

In other words, i f K = Z = C(b~ . . . bm-11), with normal
exit f rom the for loop, then K is in the memory, otherwise
it is not.

On the other hand if r -- 1 at the normal exit f rom the
for loop, then Lemma 2 asserts that

K = C(blb2 . . - b,n-11 + 1)

and if K repeats, then its first occurrence must be at
(b~ . . . b~-~ 1). Thus, i f K = Z it is the first occurrence
of K. Otherwise the first (and maybe only) occurrence of
K is at b~ • • • bm-11 + 1. Therefore if K is not equal to
the contents o f bl • . . b i n - 1 1 then by doing a M transfor-
mation we get the contents of (ha . . . b m - x 1 + 1) at cell

482 Communications July 1982
of Volume 25
the ACM Number 7

Table I. Searching in a Dynamic Memory.

i = 1 i = 2
Physical Contents with Z < K Contents Z = K Contents Z < K Contents Z < K Contents
address logical address Apply S Apply S Apply M S Apply M

Search for K = 489, m = 3

1 150(1) r = 0 489(4) r = 1 200(2) r = 1 305(3) r = 1 489(4)
2 200(2) 150(1) 489(4) 489(4) 520(5)
3 305(3) 520(5) 520(6) 520(5) 520(6)
4 489(4) 200(2) 150(1) 520(6) 699(7)
5 520(5) 520(6) 305(3) 699(7) 150(1)
6 520(6) 305(3) 520(5) 150(1) 200(2)
7 699(7) 699(7) 699(7) 200(2) 305(3)

?
Logical
address

Initialization after retrieval

1 489(4) Apply S M 489(4) Apply S 200(2) Apply S 150(1)
2 520(5) 150(1) 489(4) 200(2)
3 520(6) 520(5) 520(6) 305(3)
4 699(7) 200(2) 150(1) 489(4)
5 150(1) 520(6) 305(3) 520(5)
6 200(2) 305(3) 520(5) 520(6)
7 305(3) 699(7) 699(7) 699(7)

(,) denotes logical address of datum.

1. This is because after m S t ransformat ions , the m e m o r y
has reverted back to the original order within a cyclic
permuta t ion , and C(bl • . . b m - 1 1 + 1) will be at the next
higher location to cell (bl , . . b m - 1 1) .

Initialization of memory to original state
After retrieving the record(s) with the desired key the

contents o f the m e m o r y is to be placed back in the
original sorted order with the record with the lowest key
in cell 1. This is done by apply ing the A h o - U l l m a n
a lgor i thm of Sec. 2 as follows: At the te rminat ion o f the
search a lgor i thm the var iable s contains the initial ad-
dress o f the record which is now in cell 1. W e define the
distance d as 1 • (- s) . Let (dm-ldm-2 . . . d i d o) be the
b inary representat ion o f d. W e use this with Algor i thm
1 (Sec. 2) to initialize the m e m o r y to its original state.

Illustrative example
Table I traces Algor i thm 2. The initial and subse-

quent contents o f the m e m o r y are listed. We consider m
= 3. Init ially r <--- O. Search for K = 489 shows a
successful ma tch when i = 1; consequently, r ~-- 1 and
s ~ 100. In order to test for a mult ipl ici ty o f records
containing the specified key, we examine records at
addresses less than s, and hence app ly an S t rans forma-
tion. At i = 2, Z < K and hence M S is applied. W h e n we
leave the loop, Z # K, and r = I. A Minus-one t ransfor-
ma t ion brings the most recently ma tched record (Key
489) to cell 1. N o w the m e m o r y is ready for consecutive
retrievals. The value of s is incremented by one for every
subsequent retrieval. Init ial ization is carried out by
knowing the b inary representat ion o f d = 1 @ (- s) . In
our example , d = 001 @ (- 1 0 0) -- 100. Thus the sequence

483

of t ransformat ions (S M S S) places the m e m o r y in its
initial state.

5. Mean Access Time Estimation

Every search, successful or unsuccessful, ends after
m Shuffle t ransformat ions are appl ied to the initial m e m -
ory state. I f a search is successful at the last state, no
reorder ing is required. I f it is successful at any state but
the last, a search for a possible ma tch over lower ad-
dresses is required. I f this search fails, a Minus-one
t r ans format ion is applied.

T o obtain the m e a n access time, we assume that each
t rans format ion is pe r fo rmed in unit t ime and the keys
are un i formly distributed. Fo r a dynamic m e m o r y o f size
(2 m - 1), the average n u m b e r of Shuffle and Minus-one
t ransformat ions is 1 + 1.5(m - 1) if the search succeeds
at the (m - 1)th step. It is 1 + 1.5(m - 1) + l i f the
search succeeds at an earlier stage. Hence, the average
n u m b e r o f t ransformat ions for a successful search is 1.5m
and for an unsuccessful search is 1 + 1.5(m - 1).

Fo r initialization, i f d = (000 • • • 0) is detected then
no t rans format ion is applied. The case d = (I 1 . . . 1)
never occurs. The remaining values o f d are equal ly
likely. A 0 in the b inary representat ion o f d corresponds
to the t rans format ion S, and 1 to the t rans format ion S
fol lowed by M. As 0 and 1 are equal ly probable , the
average n u m b e r o f t ransformat ions for initialization is
1.5m.

Thus, it is concluded that the m e a n search t ime is
1.5m, the m e a n initialization t ime is 1.5m, and the worst
case search t ime is 1 + 2(m - 1) = 2m - 1. It m a y be

Communications July 1982
of Volume 25
the ACM Number 7

assumed that the mean interrequest time is sufficiently
large compared to the mean initialization time so that a
queue of requests does not build up. The initialization
overhead is needed to bring the memory to its initial
state so as to facilitate another binary search in the
memory.

6. Conclusions

It has been shown that if records in a dynamic
memory of size (2 m - 1) are stored in a nondecreasing
order of their keys, then it is possible to retrieve a record
with a given key by applying a pair of memory transfor-
mations called Shuffle and Minus-one. A binary search
algorithm has been implemented by an appropriate se-
quence of applications of Shuffle and Minus-one Shuffle
transformations. The mean time to search and retrieve
a record with a specified key is shown to be 1.5m. This
time is identical to that needed to retrieve a record from
a specified random address [4]. After the search is over,
it is necessary to spend an average of 1.5m steps to return
the dynamic memory to its initial state, namely, with the
keys in nondecreasing order, to facilitate further search.
This initialization may, however, be done between search
requests.

Acknowledgment. The authors thank S. Biswas for
critically reading the manuscript and for assistance in
developing a proof of the algorithm.

Received 8/79; revised 5/81; accepted 9/81

References
1. Aho, A. and Ullman, J.D. Dynamic memories with rapid random
and sequential access. 1EEE Trans. Comput., C.23, (March 1974)
271-276.
2. Knuth, D.E. The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison Wesley, Reading, MA, 1973.
3. Stone, H.S. Dynamic memories with enhanced data access. IEEE
Trans. Comput., C.21, (April 1972) 359-366.
4. Stone, H.S. Dynamic memories with fast random and sequential
access. IEEE Trans. Comput., C.24, (Dec. 1975) 1167-1174.

484

Technical Note
Systems Modeling and
Performance Evaluation

Herbert D. Schwetman

Editor

Estimating Block Accesses and
Number of Records in
File Management

To-Yat Cheung
University of Ottawa

We consider the problems of estimating the number
of secondary storage blocks and the number of distinct
records accessed when a transaction consisting of pos-
sibly duplicate requested records is presented to a file
management system. Our main results include (1) a new
formula for block access estimation for the case where
the requested records may have duplications and their
ordering is immaterial and (2) a simple formula for
estimating the number of distinct records in the trans-
action.

CR Categories and Subject Descriptors: H.2.2 [Data-
base Management]: Physical Design; H.2.3 [Database
Management]: Languages

General Terms: Design, Theory
Additional Key Words and Phrases: files, block ac-

cess, number of records, transactions

1. Introduction

In file management, in order to estimate the sizes of
the buffer, secondary storage space and core space for a
transaction, or the cost of its transmission, two seemingly
different problems frequently arise.

I. The block access estimation problem: Suppose that the
n records of a file are stored randomly and uniformly in
m blocks of secondary storage and that k records are

This research was supported by the Natural Sciences and Engi-
neering Research Council of Canada under Grant #8963.

Author's Present Address: To-Yat Cheung, Computer Science
Department, University of Ottawa, 375 Nicholas, Ottawa, Ontario,
Canada, KIN 9B4.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0001-0782/82/0700-xxxx $00.75

Communications July 1982
of Volume 25
the ACM Number 7

