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This communication presents an algorithm for 
searching in the Aho-Ul lman dynamic memory consisting 
of  (2 m - 1) cells. Mean search time of  1.5m steps to the 
first specified record is obtained with a subsequent se- 
quential access capability. Thus, in such a dynamic mem- 
ory, the mean access time for content addressing is the 
same as the mean access  time for random addressing. 
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Stone [3] proposed a pair of  memory transformations, 
namely, Shuffle and Exchange-Shuffle in a dynamic 
memory of  N = 2 m cells. The mean random access time 
Ln such a memory is (log2 N - 1) = (m - I). Following 
Stone, we have counted Exchange-Shuffle as being a 
single transformation taking unit time even though, in 
practice, it takes two steps. 

Aho and Ullman [1] considered a memory of  N = 
(2 m - 1) cells with two transformations, namely, modi- 
fied Shuffle and Cyclic transformations. The cyclic trans- 
formation is also known as the Minus-one transforma- 
tion. Aho and Ullman's scheme yields a mean random 
access time of  1.5m t and a worst access time of  2m - 1. 
Besides random access, this scheme has an additional 
advantage for sequential access, requiring one Minus-one 
transformation per access, after retrieving the first two 
data words of  a block of  data. Stone [4] indicated minor 
variations and improvements to the random access al- 
gorithm for the Aho-Ul lman memory. 

We develop an algorithm to retrieve a record with a 
given key in the Aho-Ul lman memory. It is assumed 
that the records are presorted and stored in ascending 
order of  the keys. The proposed method yields a mean 
access time of  1.5m to the first cell with the specified key 
and subsequent sequential access requiring one Minus- 
one transformation per access. The longest time in the 
worst case to retrieve a record with a specified key is (2m 
- 1). Thus, access of  contents takes the same average 
time as the access of  an address in the Aho-Ul lman 
memory. After the completion of  the retrieval, the mem- 
ory is returned to its original status with keys in ascend- 
ing sequence to facilitate further retrieval. This is done 
using the Aho-Ullman algorithm and takes 1.5m units of  
time. 

1. Introduction 

A dynamic memory consists of  N cells interconnected 
by several memory transformations. At each clock time 
one of  these transformations is selected and applied to 
the data stored in the memory. The conventional shift- 
register is a dynamic memory with a cyclic memory 
transformation. In this memory the mean access time to 
access a specified cell is (N - 1)/2 assuming unit time to 
transfer a datum from one cell to another. 
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2. The Aho-Ullman Memory 

The Aho-Ul lman memory consists of  (2 m - 1) cells. 
The cells are numbered as 1, 2 . . . . .  N, where N = 
2 m - 1. Cell 1 is the read/write port. Two memory 
transformations, namely, Shuffle and Minus-one are em- 
ployed. 

The Shuffle transformation transfers the datum in 
position a to position S(a) given by 

S(a) = ÷a (1) 

where ÷ is an operator which left circular shifts the m- 
bit binary representation of  the address a by 1 bit. 

The Minus-one transformation transfers the datum in 
position a to position M(a) given by 

m(a) = a • (-1),  a # 0 (2) 

where (~ denotes one's complement addition of  m-bit 
integers. 

~We have assumed that Minus-one and Shuffle take unit time 
each. 
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Observe that the M i n u s - o n e  transformation is a left 
circular shift of  the contents o f  the memory and the 
Shuf f le  transformation a left circular shift of  the address 
bits. 

Data stored in the memory  have distinct logical 
addresses, namely, 1, 2 . . . . .  N. In order to access a 
datum with a specified logical address, a sequence of 
Shuf f le  and Minus -one  transformations are applied and 
eventually the datum with the desired logical address 
reaches the read/write port, that is, cell 1. The sequence 
of  transformations can be determined as follows: Let t 
be the logical address of  the datum to be accessed and s 
be the logical address of  the datum currently available at 
the read/write  port. We define the distance d between t 
and s as d = t • ( -s) .  Let (din-l, dm-2 . . . . .  dl ,  do) be the 
binary representation ofd.  Thus d = dm-~2 m-~ + dm-22 m-2 

+ . . .  + d121 + do. 
The distance d determines the sequence of  transfor- 

mations required to bring the da tum at logical address t 
to the read-write port and place the memory  in a cyclic 
shift of  the initial state which allows data with successive 
logical addresses to be accessed sequentially. The algo- 
ri thm which achieves this is 

Algorithm 1: Aho-Ul lman random access algorithm 
F o r k = m -  1 s t e p - I  u n t i l 0 d o  
begin comment:  (Minus d~ means  Minus-one if d,  = 1 

and skip if d~ = 0); 
Shuffle; 
Minus dk; 
end. 

The above algorithm for random accessing yields a 
mean access time of 1.5m. 

3. Searching 

In a number  of  applications it is desirable to retrieve 
a group of  records from a memory  with the first record 
in the group having a given key. This requires us to 
develop an algorithm to search in a memory  for a record 
with a given key at the lowest logical address and to 
retrieve sequentially a specified number  of  records fol- 
lowing this record. 

We assume that the records are presorted by key and 
stored in a nondecreasing order in a memory  of size (2 m 
- 1). A binary search method [2] may now be employed 
to retrieve a record with a specified key. 

The following Lemma  establishes the address of  the 
cell whose contents will be brought to cell 1 (i.e., the 
read/wri te  port) o f  the memory.  S is used as an abbre- 
viation for Shuf f le  and M for Minus-one .  

LEMMA 1. Let the sequence of  transformations applied to 
the memory  be 

$ 6 t 2 . . .  6, p < _ ( m -  1) 

where each ti is either S or M S .  Then the contents of  the 
cell 

bib2 . . .  bpl00 . . -  0 
rh 

(where bi is 1 if ti is M S  and bi is 0 if  t~ is S) will be 
brought to cell 1. 

PROOF. The proof  is by induction on the length of 
memory  transformation sequence. From the definitions 
of  S and M in Eqs. (1) and (2), it is easy to verify that 

S S  (OIO0 . . .  0 ) = 0 0 . . .  O1 

and 
s g S  ( l l O 0  . . .  0 ) = 0 0 . . .  O1 

Let the lemma be true for 

S tit2 . . .  tp, p < (m - 1) (Induction hypothesis) 

Therefore 

S t l t 2 . . ,  t e ( b l b 2 . . ,  b p l 0 - - .  0) 
i n  

= 0 0 0 . . .  1 ( p < m -  1) 
,n 

Let us now consider a sequence of  transformations 

0 = S 6t2 . . .  tp+l 

Let B be defined as: 

B =  blb2 . . .  bpbp+l lO0 . . .  0 
fn 

where bi = 0 if ti is S and 1 if ti is M S .  We are required 
to show that 

o (B)=O0 . . .  1 
rh 

Now 

a ( B )  = S t i t 2 . . ,  tp+l(bab2 . . .  bpbp+llO0 . . .  O) 

= t l t 2 . . ,  tp+l(b2 . . . .  bpbp+~100 . . .  b~) 

We have two cases: 
Case 1 : 6  = S 

Then by definition of  B, bl = 0, 
therefore 

o(B) = S t2 - - -  tp+~(b2 . . .  bpbp+~lO0 . . .  0) 

= 000 . . .  1 (invoking the induction hypothesis) 

Case 2: tl = M S  

Then by definition of  B, b~ = 1, 
therefore 

o ( B )  = M S t z  . . .  tp+l 

• (b2 . . .  bpbp+xlO0 . . .  1) 
= St2 . . .  tp+a 

• (b2 . . -  bpbp+~lO0 . . .  O) 

= 000 . - .  01 
(invoking the induction hypothesis) [] 

Using this l emma we observe that a judicious appli- 
cation of  a sequence of  S and M S  transformations leads 
to the binary search tree of  Figure 1. We interpret the 
tree as follows: Take any node in the tree. The node is 
labeled with the address of  the cell whose contents will 
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Fig. 1. Binary Search Tree Obtained Using Lemma 1. 

0001 

0001 0011 0101 0111 1001 1011 1101 1111 

reach cell 1 by applying the t ransformations indicated 
on the branches  o f  the tree leading to this node f rom the 
root o f  the tree. For  example, take the node labeled 0110. 
Then  employing S S M S  t ransformat ion to the memory  
will take the contents o f  location 0110 to cell 1. This can 
be verified by observing that m = 4, bl  = 0, b2 = 1, p = 
2. Thus  the sequence S S M S  applied to 0110 gives, by  
L e m m a  1 

S S M S  (0110) = 0001 

4. A l g o r i t h m  for S e a r c h  

Let R~, R2 . . . .  , RN be records whose keys K1, K2, 
. . . .  K N  are in nondecreasing order, so that K~ <_ Kz 
• • • ~ K N .  Let Z be the key o f  the record in cell 1 and 
K be the key o f  the record to be retrieved. Let S be the 
m-bit logical address o f  the record brought  to cell 1 by 
a sequence o f  S and M S  t ransformations.  Let r be a flag 
which is set to 1 if the search for the key succeeds before 
applying m S  t ransformations.  The  value o f  s is derived 
using L e m m a  1. The  symbol  @ indicates one 's  comple-  
ment  addit ion o f  m-bit numbers.  

Algorithm 2: Algorithm for binary search in Aho-Ullman memory 
begin 

If Z = K then Write "No Search needed" 
Else If Z > K then Write "Record not in memory" 
Else If Z < K then Call Search 

end 
Search: 
begin 

r ~--- 0 

Shuffle 
s ~-- 2 "*-1 
For i = 1 to ( m - l )  step 1 do 
begin 

If Z < K then begin Minus-one 
Shuffle 
S <'-- S (~  2 m - i - l  end 

Else If Z = K then begin Shuffle 
r <--- 1 

s ~ s (3 (-2 "-I-1 ) end 
Else If Z > K then begin Shuffle 

S <-- S (~ ( - -2  m - i - l )  end 
end 

If r = 1 and Z # K then begin Minus-one 
s *-- s ~) -1 end 

Else If r = 0 and Z # K then Write "Search Fails" 
end. 
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P r o o f  o f  t h e  a l g o r i t h m  

The algori thm enters the routine Search  when the 
key K > C(00 . . .  1), where the notat ion C(00 . . .  1) is 
used to indicate the contents o f  cell 00 • • • 1. Thus,  if K 
is in the memory ,  then 

C(O00 . . -  Ol).< K _ C ( l l  . . .  1), 
rh m 

The  routine Search  first effects an S t ransformat ion 
and then it enters the for loop which iterates exactly 
(m - 1) times. In  each iteration o f  the for loop either an 
S or an M S  t ransformat ion is applied to the memory.  
Therefore  after p iterations o f  the for loop the trans- 
formations applied on the memory  is given by the se- 
quence: 

S tl t2 " ."  tp 

where ti is either S or M S  depending on the transfor- 
mat ion  applied in the ith iteration. F r o m  L e m m a  1 it 
follows that  cell 1 will contain at the end o f p  iterations 
the contents o f  cell 

bib2 . . .  bplO0 . . .  0 
m 

where bi is 1 if ti is M S  and bi is 0 if  ti is S. Thus  at the 
end o f p  iterations 

Z = C(blbz  . . .  bplO0 "LL_-Q) 
m - p  

LEMMA 2. Let the contents o f  Cell 1 at the end o f  p(0 < 
p <_ m - 1) iterations o f  the for loop be (from L e m m a  1) 

Z = C(blb2 . . .  bpl00 . . .  0) 

I f  the record with key K is in the memory,  then if 
r = 0 at the end o f p  iterations o f  the for loop 

C(bxb2 . . -  bp 0 0 - . . 0 1  ) <_ K <  C(b,  b2 . . .  b p ! l  . . .  1) 
m - p  1 m ~ p  

I f  r becomes 1 at the end o f  the p th  iteration, then 

K =  C(blb2 . . .  b p l l  . . .  1 + 1) 
m - - p  

I f  r becomes 1 before p iterations o f  the for loop, then 
the first occurrence o f  K will be in the range o f  addresses: 

blbe . . .  bp , 0 . . .  0 l < _ A ( K ) < _ b l b 2  . . .  b p l l  . . .  1 
m - ) 7  -- 1 m L p  

where the notat ion A ( K )  indicates the address o f  K. 

PROOF. We will prove this l emma using induct ion on p. 
At  the end o f  0th iteration r = 0, and clearly if  K is in 

the m e m o r y  then 

c(00  " ' "  9) 1 _< K <_ c ( ] c : : _  
m ' - - 1  m 

This serves as the base for the case r = O. 
For  the induct ion step o f  this case let us assume  that  

at the end o f  (p  - l) iterations 

C(bl  . . .  bp-lO . . L _ O l ) < _ K < _  C(bl  . . .  bp- ,  1 . . .  1 ) 

m - p  m - p  + '1 
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At the pth  iteration the key K is compared with Z the 
contents o f  cell 1. The original contents of  cell 1 are from 
Lemma  1: 

Z = C(ba . . .  bp-11,0 . . -  0) 
m ' - - p  

I f  K > Z, then, as the list is sorted, K obeys the 
inequality 

C(bl . . .  b p - , l  0 . . .  0 I) 
m - p - I  

< K ~_ C(b,  . . .  bp-11 l ~ . ~ )  
m - - _ p  

The pth  iteration will effect an M S  transformation on 
the memory  (as K > Z) ,  and thus 

Z = C(bl . . .  bp-,  11 00 . . .  Q ) 
m - - p - - I  

= C ( b l  . . .  bp 1 O0 . .  • 0 ) 
m - p - 1  

Thus bp = 1 and we see that Lemma 2 is true for r --- 0 
at the end of the pth  iteration. 

Similarly, we can verify the lemma when K < Z. The 
base case for the remaining parts of  Lemma 2 is that 
value o f p  when r becomes 1 from 0. Let this happen at 
the pth  iteration. 

At the beginning of  the pth  iteration using Lemma 1, 
we see that 

K = Z = C(blb2 . . .  bp-~ 1 O0 . ; _ ~ )  
m - p  

The pth  iteration effects an S transformation on the 
memory  as Z = K. Thus by Lemma 1 after the pth 
iteration 

Z =  C(bl " . .  b,o-10 1 DO . . .  0,)  
m - ] ~ -  | 

Thus bp = O. 
Therefore 

bl " ' "  b p  1 . . .  1 + 1 = bl " "  bp-11 0 . . .  0 

and m - p m - p 

K =  C(bt  . . .  bp-l  l 0 . . .  O) 

m )¢ 

Till the end of  the (p  - l)th iteration (by assumption) 
r = O. Invoking the first part  of  this lemma and knowing 
that 

K = C(bl . . .  bp-x l 0 0 ~ )  
m - p  

We can conclude that if  K repeats before this value, then 

C(b,  . . .  bp-lO . . .  01) ~ K <_ C(bl  ' ' "  bp_,O 1 ~ )  
rn - p  m - p  

From Lemma  1 we observe that bp = 0. Thus, if  more 
than one record has key K its first occurrence must be in 
the range of  addresses 

ba - . -  b. 0 . - .  01 to ba . . .  b , l  . . .  1 
m - ' p -  1 m - p  

For  the induction part of  the second part of  Lemma 
2, let the lemma be true at the end of  (p  - l)th iteration 
where r = 1. At the pth iteration also r will remain to be 
1. 

From the induction hypothesis 

K =  C ( b l . . .  bp-~ 1 . . -  1 + 1) 
m - p + l  

and 

C(b,  . . .  bp-100 • ~.O1) _< K 
m - p  

<--. C(bl  " . .  bp-1 ~ ) 
m - - p + l  

We compare the key K with the contents of  location 
(bl . . .  bp-1 1 0 • . ~ )  at the pth  iteration. K cannot be 

m - p  

less than this value. I f  K is equal to this, then bp becomes 
0 to make Z at the end o fp th  iteration = C(bl  • . .  bv-lO 

1 Q : ; . ~  ) But 
m - p - 1  

ba ' ' "  bp 1 . . .  1 + 1 = bl " ' "  b p - 1 1  0 . . .  0 
m - - p  m - - p  

and thus the lemma holds. 
I f  K is found greater than the contents o f  (bl - . .  

bp-~ 1 0 . . .  0) then the first occurrence of  K must be 
m - p  

after this value. Moreover, in this case when K is found 
greater bp becomes 1. Thus the lemma holds again. [] 

The correctness of  the algorithm is established from 
Lemma  2. First we observe that at the completion of  the 
for loop exactly S transformations have been carded out 
on the memory,  interspersed with one or more M trans- 
formations. From Aho-Ul lman  [1] it follows that the 
contents of  the memory  will be in the original order with 
a cyclic shift o f  addresses. The contents o f  (bib2 . . .  
b~-i  1) will be at cell 1. I f  r = 0, then f rom L e m m a  2, if  
K is in the memory  then 

C(bl . . .  bm-~ 1) <__ K <__ C(ba . ' "  bm-~ 1) 

In other words, i f K  = Z = C(b~ . . .  bm-11), with normal  
exit f rom the for loop, then K is in the memory,  otherwise 
it is not. 

On the other hand if r -- 1 at the normal  exit f rom the 
for loop, then Lemma 2 asserts that 

K = C(blb2 . . -  b,n-11 + 1) 

and if K repeats, then its first occurrence must be at 
(b~ . . .  b~-~ 1). Thus, i f  K = Z it is the first occurrence 
of  K. Otherwise the first (and maybe only) occurrence of  
K is at b~ • • • bm-11 + 1. Therefore if  K is not equal to 
the contents o f  bl • . .  b i n - 1 1  then by doing a M transfor- 
mation we get the contents of  (ha . . .  b m - x  1 + 1) at cell 

482 Communications July 1982 
of Volume 25 
the ACM Number 7 



Table I. Searching in a Dynamic Memory. 

i = 1  i = 2  
Physical Contents with Z < K Contents Z = K Contents Z < K Contents  Z < K Contents 
address logical address Apply S Apply S Apply M S  Apply M 

Search for K = 489, m = 3 

1 150(1) r = 0 489(4) r = 1 200(2) r = 1 305(3) r = 1 489(4) 
2 200(2) 150(1) 489(4) 489(4) 520(5) 
3 305(3) 520(5) 520(6) 520(5) 520(6) 
4 489(4) 200(2) 150(1) 520(6) 699(7) 
5 520(5) 520(6) 305(3) 699(7) 150(1) 
6 520(6) 305(3) 520(5) 150(1) 200(2) 
7 699(7) 699(7) 699(7) 200(2) 305(3) 

? 
Logical 
address 

Initialization after retrieval 

1 489(4) Apply S M  489(4) Apply S 200(2) Apply S 150(1) 
2 520(5) 150(1) 489(4) 200(2) 
3 520(6) 520(5) 520(6) 305(3) 
4 699(7) 200(2) 150(1) 489(4) 
5 150(1) 520(6) 305(3) 520(5) 
6 200(2) 305(3) 520(5) 520(6) 
7 305(3) 699(7) 699(7) 699(7) 

(,)  denotes logical address of  datum. 

1. This  is because after  m S  t ransformat ions ,  the m e m o r y  
has reverted back  to the original order  within a cyclic 
permuta t ion ,  and C(bl • . .  b m - 1 1  + 1) will be at the next  
higher  location to cell (bl , . .  b m - 1 1 ) .  

Initialization of  memory to original state 
After  retrieving the record(s) with the desired key the 

contents  o f  the m e m o r y  is to be placed back  in the 
original sorted order  with the record with the lowest key 
in cell 1. This  is done  by  apply ing  the A h o - U l l m a n  
a lgor i thm of  Sec. 2 as follows: At the te rminat ion  o f  the 
search a lgor i thm the var iable  s contains the initial ad- 
dress o f  the record which is now in cell 1. W e  define the 
distance d as 1 • ( - s ) .  Let  (dm-ldm-2 . . .  d i d o )  be the 
b inary  representat ion o f  d. W e  use this with Algor i thm 
1 (Sec. 2) to initialize the m e m o r y  to its original state. 

Illustrative example 
Table  I traces Algor i thm 2. The  initial and  subse- 

quent  contents  o f  the m e m o r y  are listed. We  consider  m 
= 3. Init ially r <--- O. Search for K = 489 shows a 
successful ma tch  when  i = 1; consequently,  r ~-- 1 and  
s ~ 100. In  order  to test for  a mult ipl ici ty o f  records 
containing the specified key, we examine  records at 
addresses less than  s, and  hence app ly  an S t rans forma-  
tion. At i = 2, Z < K and hence M S  is applied. W h e n  we 
leave the loop, Z # K, and  r = I. A Minus-one t ransfor-  
ma t ion  brings the most  recently ma tched  record (Key  
489) to cell 1. N o w  the m e m o r y  is ready for  consecutive 
retrievals. The  value of  s is incremented  by  one for every 
subsequent  retrieval. Init ial ization is carried out by 
knowing the b inary  representat ion o f  d = 1 @ ( - s ) .  In 
our  example ,  d = 001 @ ( - 1 0 0 )  -- 100. Thus  the sequence 
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of  t ransformat ions  ( S M  S S) places the m e m o r y  in its 
initial state. 

5. Mean Access  Time Estimation 

Every  search, successful or  unsuccessful,  ends after  
m Shuffle t ransformat ions  are appl ied to the initial m e m -  
ory state. I f  a search is successful at the last state, no 
reorder ing is required. I f  it is successful at any  state but  
the last, a search for  a possible ma tch  over  lower ad- 
dresses is required. I f  this search fails, a Minus-one 
t r ans format ion  is applied.  

T o  obtain  the m e a n  access time, we assume that  each 
t rans format ion  is pe r fo rmed  in unit  t ime and the keys 
are un i formly  distributed. Fo r  a dynamic  m e m o r y  o f  size 
(2 m - 1), the average  n u m b e r  of  Shuffle and Minus-one 
t ransformat ions  is 1 + 1.5(m - 1) if  the search succeeds 
at the (m - 1)th step. It is 1 + 1.5(m - 1) + l i f  the 
search succeeds at an earlier stage. Hence,  the average  
n u m b e r  o f  t ransformat ions  for  a successful search is 1.5m 
and for an unsuccessful  search is 1 + 1.5(m - 1). 

Fo r  initialization, i f  d = (000 • • • 0) is detected then 
no t rans format ion  is applied. The  case d = (I 1 . . .  1) 
never  occurs. The  remaining  values o f  d are equal ly  
likely. A 0 in the b inary  representat ion o f  d corresponds  
to the t rans format ion  S, and  1 to the t rans format ion  S 
fol lowed by  M. As 0 and  1 are equal ly  probable ,  the 
average  n u m b e r  o f  t ransformat ions  for initialization is 
1.5m. 

Thus,  it is concluded that  the m e a n  search t ime is 
1.5m, the m e a n  initialization t ime is 1.5m, and  the worst  
case search t ime is 1 + 2(m - 1) = 2m - 1. It m a y  be 
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assumed that the mean interrequest time is sufficiently 
large compared to the mean initialization time so that a 
queue of  requests does not build up. The initialization 
overhead is needed to bring the memory to its initial 
state so as to facilitate another binary search in the 
memory. 

6. Conclusions 

It has been shown that if records in a dynamic 
memory of  size (2 m - 1) are stored in a nondecreasing 
order of  their keys, then it is possible to retrieve a record 
with a given key by applying a pair of  memory transfor- 
mations called Shuffle and Minus-one. A binary search 
algorithm has been implemented by an appropriate se- 
quence of  applications of  Shuffle and Minus-one Shuffle 
transformations. The mean time to search and retrieve 
a record with a specified key is shown to be 1.5m. This 
time is identical to that needed to retrieve a record from 
a specified random address [4]. After the search is over, 
it is necessary to spend an average of  1.5m steps to return 
the dynamic memory to its initial state, namely, with the 
keys in nondecreasing order, to facilitate further search. 
This initialization may, however, be done between search 
requests. 
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We consider the problems of estimating the number 
of secondary storage blocks and the number of distinct 
records accessed when a transaction consisting of pos- 
sibly duplicate requested records is presented to a file 
management system. Our main results include (1) a new 
formula for block access estimation for the case where 
the requested records may have duplications and their 
ordering is immaterial and (2) a simple formula for 
estimating the number of distinct records in the trans- 
action. 

CR Categories and Subject Descriptors: H.2.2 [Data- 
base Management]: Physical Design; H.2.3 [Database 
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1. Introduction 

In file management, in order to estimate the sizes of  
the buffer, secondary storage space and core space for a 
transaction, or the cost of  its transmission, two seemingly 
different problems frequently arise. 

I. The block access estimation problem: Suppose that the 
n records of  a file are stored randomly and uniformly in 
m blocks of  secondary storage and that k records are 
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