
COMPUTING
PRACTICES

Improving Computer Program Readability
to Aid Modification
James L. Elshoff and Michael Marcotty
General Motors Research Laboratories

1. The Modification Cycle

The modification of computer programs is a costly
and constant job. An informal survey conducted at Gen-
eral Motors and reported on by Elshoff [6] concluded
that about 75 percent of all programmer/analysts' time
in a commercial data processing installation is spent on
program modification. This conclusion agrees with in-
dependent assessments made by Liu [16], Boehm [2], and
Lientz and Swanson [15]. Moreover, the reasons for
modifying programs will not disappear. As pointed out
by Lehman [14], all programs are models of some part
of the real world and, as the world changes, programs
must be modified to keep pace with these changes or
they become progressively less relevant, less useful, and
less cost-effective. As new software is developed, the
inventory of programs to be maintained grows, and thus
this high level of modification work is not expected to
decrease.

The modification cycle is composed of a sequence of
steps such as:

(l) The user requests that a program be changed.
(2) The specifications for the change are written and

the cost of the change estimated.
(3) It is decided that the changes are worth being made.
(4) The program is changed to meet the new specifi-

cations.

Unfortunately, the modification environment is not
as simple as this list. The frequency of change, the extent

CR Categories and Subject Descriptors: D.2.2 [Software Engineering]:
Tools and Techniques; D.2.7 [Software Engineering]: Distribution and
Maintenance-documentation, enhancement, and restructuring.
General Terms: Documentation, Human Factors, Languages
Additional Key Words and Phrases: software modification cycle.
Authors' present address: J .L Elshoff and M. Marcotty, Computer
Science Department, General Motors Research Laboratories, Warren,
MI 48090-9055.
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0001-0782/82/0800-0512 $00.75.

512

SUMMARY: Frequently, when circumstances
require that a computer program be modified,
the program is found to be extremely difficult
to read and understand. In this case a new
step to make the program more readable
should be added at the beginning of the
software modification cycle. A small invest-
ment will make (1) the specifications for the
modifications easier to write, (2) the estimate
of the cost of the modifications more accu-
rate, (3) the design for the modifications sim-
pler, and (4) the implementation of the mod-
ifications less error-prone.

of a change, the acceptable cost for a change, and other
change attributes vary with the individual program. The
one common denominator of the modification process is
that it starts with an existing program and its documen-
tation. In most cases this means a listing of the program's
source text. The readability of that source text can have
a great impact on the decisions made during the modi-
fication cycle.

2. Unreadable Programs

In a study of commercial programming practices by
Elshoff [6], it was found that most programs were poorly
written. They were very large, extremely difficult to read,
and more complex than necessary. Furthermore, the
study determined that programming language usage was
poor and inconsistent. The results of the survey by Lientz
and Swanson [15] show that the quality of programming
is a generally perceived problem.

During the last five years and continuing today, there
has been a major effort in data processing installations

Communications August 1982
of Volume 25
the ACM Number 8

http://crossmark.crossref.org/dialog/?doi=10.1145%2F358589.358596&domain=pdf&date_stamp=1982-08-01

to improve programming practices. Programmer training
and installation procedures are being upgraded through
the use of better practices as described by Kernighan
and Plauger [13], and Elshoff [4, 5]. The improvements
achieved with better practices have been shown by EI-
shoff [7] to be significant and are supported by the
experimental evidence of Sheppard et al. [21].

Nevertheless, most data processing installations still
have large inventories of programs that are nearly im-
possible to read. Programs from this inventory must
regularly be modified or replaced. Before this can be
done, it is first necessary to understand exactly what that
program currently does. In fact, the very decision
whether to modify or completely replace a program may
hinge on how well the program is understood. The need
for readability is apparent and imperative in a commu-
nication medium like the source text of a computer
program. The life of the program depends on it.

The thesis of this paper is that modifying a program
simply to improve its readability is generally a worth-
while endeavor. With proper timing, the improvements
in readability can be achieved at little or no cost. Fur-
thermore, once the program is readable, the advantages
of improved readability will accrue with each subsequent
modification. Here, we present a method for improving
the readability of a program through a set of specific
transformations that can be applied directly to the pro-
gram text. The effects of applying the transformations to
a samPle program are shown and discussed.

3. Readability
The readability of a computer program depends on

many factors. The reader's familiarity with the program,
knowledge of the application area, and own program-
ming style are important factors that are mostly indepen-
dent of the program to be modified. In this paper, we
concentrate on those attributes of the program's text that
impact its readability. Thus, we will take the pragmatic,
realistic point of view of a programmer who is knowl-
edgeable in the application area but who is seeing a
particular program for the first time.

A readable program always seems to exhibit a com-
mon set of properties, as listed, for example, by Ker-
nighan and Plauger [13], Yourdon [24], and Myers [19].
The program is well commented. The logical structure
of the program is constructed of single-entry single-exit
flow of control units. Variable names are mnemonic and
references to them localized. The program's physical
layout makes the salient features of the algorithm that is
implemented stand out. It is true that a program may
have all these properties and still be unreadable; how-
ever, the readability of a program is certain to suffer
when it lacks one or more of the properties.

4. Program Transformations
There are many known source program transforma-

tions described by Kernighan and Plauger [13], and
Standish et al. [22]. Algorithms have even been devel-
oped to perform the complete restructuring of programs;

these are described by Mills [18] and Ashcroft and
Manna [1], and have also been implemented in computer
programs. However, as Dijkstra pointed out in 1968 [3],

The exercise to translate an arbitrary flow diagram more or
less mechanically to a jumpless one, however, is not to be
recommended. Then the resulting flow diagram cannot be
expected to be more transparent than the original one.

This has been borne out in actual examples--for in-
stance, Elshoff and Marcotty [8].

Our own experience with the manual restructuring of
PL / I programs indicates that the use of the set of trans-
formations listed in the next section is a key to making
programs more readable. We have found that the actual
text manipulation gives the programmer an increased
understanding of the program and insights for further
modifications. The understanding developed by the pro-
grammer is generally well beyond the capability of arti-
ficial intelligence, and the undesirable side-effects often
introduced by automatic restructuring techniques can be
avoided.

All the transformations described in the next section
aim to simplify the program by modifying the executable
statements and rearranging the sequence in which they
are executed. As a result of these changes, the program
may need to be reformatted and additional comments
added. These operations are really program transfor-
mations that enhance readability without altering the
program's execution and are discussed in this section.
Reformatting and commenting should be done for each
pass over the source text. As understanding increases,
the programmer will be able to add more meaningful
comments.

4.1 Add Comments

Programmers consistently state that few programs
have documentation outside of the source text. More-
over, when there is external documentation, it is most
frequently no longer in step with the program text. Since
the source text represents reality, the final authority on
what is executed, it should be self-documenting, which
means it must be readable.

Comments should be used to make the source text of
a program understandable. Block comments should be
placed at the beginning of a program to describe the
program's purpose, external interface, and how it works.
The program should be divided into major sections,
paragraphs, separated by blank lines or page boundaries.
Block comments should also be used to describe the
functions performed by the paragraphs.

Comments can be the most important contribution
that a programmer makes. The programmer modifying
a program must be able to read and understand it even
though it is difficult. This difficulty can be reduced for
all future modifications by adding appropriate comments
as discoveries about the program are made. Surprisingly,
adding comments is often one of the last tasks that can
be done; the programmer just cannot understand the
program text well enough to add comments early on.

513 Communications August 1982
of Volume 25
the ACM Number 8

COMPUTING
PRACTICES

4.2 Reformat
Maintaining a consistent format adds greatly to the

readability of a program. Just as paragraphing and sec-
tioning help written English, so can indentation, key
word positioning, and logical grouping aid a program-
ming langauge. Using an automatic formatter such as
the one on the IBM PL/ I Checkout Compiler [12] can
standardize style for an installation. However, even when
the reformatting must be done by hand, it should be
done consistently. Consistency of style is more important
than the details of the style itself. The few extra minutes
the programmer spends keeping a program consistently
formatted will pay dividends the next time the program
is read.

5. Readability Transformations
In this section, we describe a set of simple changes

that can be made to a program to improve its readability.
A programmer using a good editor can quickly apply
these transformations. Where sample program text is
provided as an illustration, the PL / I programming lan-
guage is used. However, most of the transformations
described have direct analogies in other programming
languages. Some of the programming examples are ac-
companied by simple flowgraphs with the convention
that at branch points, the true branch is always to the
left.

The transformations are presented in approximately
the order they will be applied, although the specific
ordering will vary from program to program. Moving
labeled blocks and adding ELSE clauses are easy trans-
formations to apply and should be done early on. Fre-
quently, the application of one transformation will
change the pattern of the program text so that additional
transformations may be applied. The recommended ap-
proach is to read the source code, apply a set of straight-
forward and obvious transformations, add comments,
and readjust the indentation.

Since the programmer may make a mistake while
applying a transformation, a policy of checking the
program after each pass is recommended. The first sim-
ple check is to compile the program. The compiler will
check the syntactical correctness of the program and
produce a symbol table that can be easily compared with
the symbol table produced for the preceding pass. A
second check is to execute the program against a set of
test data. The idea behind this testing is not to check all
possible paths but to simply check the repeatability of
results. An execution test can prevent an error in an early
pass from being compounded in succeeding passes.

The modified program should then be reread to find
the next set of transformations to apply. The process is

thus an iterative one with the program's readability and
the programmer's understanding increasing simultane-
ously. Depending on the size of the program and its
unreadability, the number of passes will vary, but sooner
or later the mainline of the program will begin to become
obvious and the program will be understood by the
programmer.

5.1 Move Single Entry Labeled Blocks

A structure frequently found in an unreadable pro-
gram is the single-entry labeled block, called code-block.
This consists of a sequence of statements that may only
be entered at the first statement and, when executed, will
be executed to the last statement without any other
possible exit.

G00
I GO TO l a b e l - l ;

c o d e - b l o c k " PO 0
l a b e l - 2 : ; t

A quick check of a program's symbol table can usually
be used to fmd labels that are only referenced once. After
the programmer verifies that the code-block cannot be
reached by normal sequential execution, the code-block
is moved to its proper location.

code-b lock P00

GO TO l a b e l - 2 ; GOI

label-2 :

There are many minor variations of this change. Often,
the code-block must be embedded in statement blocking
symbols such as the DO-END statements in PL/I . Fre-
quently, the code-block ends with a GO TO statement and
the additional GO TO label-2 statement is unnecessary. In
any case, this modification removes a label and relocates
a code-block physically closer to the decisions governing
its invocation.

5.2 Duplicate Labeled Blocks

This transformation is directly analogous to the pre-
vious one except that the label on the block, i.e., label-I,
is referenced more than once. When this is the case and
the code-block is small (say, less than 10 statements), the
code-block is simply duplicated at each of the locations
where a GO TO label-1 statement occurs. I f the code-
block is large or invoked many times, consideration
might be given to making it into a procedure, as de-
scribed in a succeeding section. However, at this stage in
the transformation process, we are expanding text in
order to gain understanding. The fact that a sequence of
code is repeated several times does not necessarily mean
that it would be wise to make it into a procedure; the
function that it performs must instead be considered.
This usually cannot be done until understanding is
reached.

514 Communicat ions August 1982
of Volume 25
the ACM Number 8

5.3 Add ELSE Clauses

The addition of an ELSE clause tO every IF statement
clarifies a program immensely. In the simplest case, the
p rogrammer walks through the program fmding each IF
statement that has no ELSE clause and adds one with a
null statement. The null ELSE clause is a construct that
many programmers view as a waste of time. It takes a
second to write, has no effect on a program's compilation
or execution, and can save a reader hours of effort by
making a program more explicit and thus easier to read.
The presence of the ELSE clause on all IF statements
resolves any ambiguity that might be present in the
reader 's mind because of the optional nature of the ELSE
clause. The structure

- ~ t e s t F I o o - - - I
THEN GO TO l a b e l - I ;
c o d e - b l o c k - a GO0 PO0
GO TO label-2; ~ - ~ i GOI

label- 1 :
code-block-b PO1

label-2

is not uncommon. Its readability can be improved by
making the relationship of the code-blocks to the IF test
explicit in terms of THEN and ELSE clauses.

IF test
THEN

D O ; o d e _ b l o c k _ b f f - - IO0-~
END; PO0 POl

ELSE I I DO;
code-blocR-a

END;

5.4 Renest IF Statements

After null ELSE clauses, as suggested in the previous
section, have been inserted, it will become obvious in
many instances that the ELSE clause is not really null.
The pattern

ZT test ~'--IO0

code-block-a
GO TO l a b e l - l ; G~0 J

END;
ELSE.

code-block-b P01

is found in the program such that code-block-b is really
the ELSE clause but is not packaged that way. Eliminating
the null statement and putting code-block-b in a DO-END
group make the program text more obvious. This change
has the additional benefit o f increasing the probabili ty
that the GO TO label-1 statement can be easily removed.

5.5 Make Loops Obvious

Using a GO TO statement to implement a loop greatly
obscures a program. The program segment

l a b e i - 1 :
c o d e - b l o c k 0

GO TO l a b e l - l ; I Gj00

515

in which the code-block may be from one to several
hundred statements long is not unusual. The problem is
that the programmer reads the source text from top to
bot tom and does not realize the code-block is a loop
body until the Go TO statement is read. Simply replacing
the label and the GO XO with a DO WHILE as in

DECLARE NEVER_ENDING B I T (I) STATIC I H I T Z A L (' I ' B) ;

. t i

DO NHILE (NEVER ENDING) ; ~ [

c o d e - b l o c k

END;

establishes the fact that the program contains a loop
structure at this point. This modification also alerts the
reader to the existence of a loop whose termination
condition is not yet understood, as will be described in
the next section.

Experience has shown that making more than one of
these modifications during a pass can sometimes result
in intersecting loops. When this occurs, either the mod-
ification of one of the Go TO loops will have to be delayed
until a subsequent pass or some sub-code-blocks will
have to be interchanged.

5.6 Make Loop Termination Explicit

As discussed by Gries [10], one of the hardest pro-
gramming constructs to understand is the loop. This
difficulty is increased considerably when the conditions
for terminating the loop are not explicit. This can arise
when the loop itself is hidden, as discussed in the previ-
ous section. Another common fault is to use an iterative
loop when it is not an intrinsic part of the process being
performed. The third method is to use a LEAVE or GO TO
statement to branch out of the loop, as will be discussed
in the next section. The basic problem is that the reader
cannot determine from the statement at the head of the
loop the exact conditions that will cause termination of
the loop and thus cannot determine the real reason for
the loop.

Using an iterative loop when it does not apply, as in

DO I " l TO 9999; I ~_.~0 I

. L i . t e s t f - - I ; * - - 2 THEN I z I0000;
ELSE P00 P01

; I l
• j

END; i

is one example of a misleading loop terminat ion. T h e
p r o g r a m m e r p robab ly used the wrong form of the DO
s ta tement . I f the index I is not used anywhere else in
the body of the loop, a s imple DO WHILE should have
been used, as in the example

Communications August 1982
of Volume 25
the ACM Number 8

COMPUTING
PRACTICES

DECLARE CONTINUE_LOOP BIT(1),
YES BIT(l) STATIC INITIAL('I'B),
NO BIT(1) STATIC IHITIAL('O'B);

CONTINUE_LOOP = YES;
DO MHILE (CONTINUE_LOOP);

IF test
THEN CONTINUE_LOOP = NO;
ELSE

END;

to clarify the loop termination condition. The selection
of the name for the loop control variable, CON-
TINUE_LOOP above, can greatly improve the structure's
readability. A name that makes the DO WHILE read in a
straightforward manner, such as

DO WHILE (HOT END OF FILE_A);
DO WHILE (OUTSIDE_ERROR_BOUNDS) ;
DO 14HILE (HORE_CHARACTERS_IN_STRING);

should be used. When the programmer really under-
stands the loop, the termination condition is obvious and
the selection of a variable name follows naturally.

I f the index I is referenced within the loop, the
p rogrammer can choose one of two ways to make the
loop termination explicit. The variable I can be explicitly
controlled by initializing it before entering the loop and
incrementing it within the loop, or a more complicated
form of the DO statement

DO I = 1 TO MAX MHILE (NOT_FOUND);

can be used. The latter approach should only be used
when the loop may be terminated by either the indexing
condition or the WHILE condition. This is a form of
multiple loop termination that is examined more closely
in the following section.

5.7 Remove Multiple Exits from Loops
It is not unusual to find a loop with more than one

exit. In addition to the normal loop termination, the loop
may be exited with a LEAVE statement, a Go TO statement,
or an exception condition that is t rapped by an oN unit.
In order to change the multiple exit loop

,i
DO I = 1 TO ,,.; I ~___~o--

IF test-I
THEN 00 TO label-l; FIOO~
ELSE GO0 PO0

' F - - ' , J
IF t e s t - 2
THEN GO TO label-Z; Ic--IOl--~
ELSE GO1 POI

. i i j EH D ;
r

to a single exit loop, the WHILE clause must usually be
made into a compound conditional like

DO IdHILE (Nor_tNv_or_rILE_A r H0_ERROR_ENCOUMTERED);

using techniques like those discussed in the two previous
sections. In some tougher cases, the introduction of a
variable may be required. A SELECT statement or a nest
of IF statements can then be used to maintain the proper
logical flow. For example, the variable STATE could be
used to m o d i f y t h e code above to

DECLARE STATE CHARACTER(&);
$

STATE = 'NORMAL'; P00

, f
DO .NILE (STATE =), I I

. i i IF t e s t - I 1 - - I 0 0
THENELSEDo; STATE = 'label-1'; P~0

. ii i
IF t e s t - 2 i
THEN STATE = 'label-2'; ELSE F I 0 1 - - ~

DO; PO1 /

END; ~
SELECT (STATE); S00

~ENt'l,bei-l')] " I GO TO l a b e l - l ; GO0

MHEH (' l a b e l - 2 ') ~,
GO TO l a b e l - 2 ; GO1

t i

. ii OTHERWISE / " s h o u l d n o t occu r a / ~ D,
SIGNAL ERROR; aoo -~u - -*

END;

A proper choice of names for the values assigned to
STATE can further increase the readability of the program.
Limited experience with this tougher case has shown that
moving from loops with many exits to single-exit loops
greatly clarifies the program text even though a multiple-
exit SELECT structure is introduced. In fact, in all observed
cases, the multiple-exit SELECT structure was quite easily
t ransformed to a single-exit structure in subsequent
passes over the program.

5.8 Remove Label Variables Used for Blocking
Label variables are used occasionally to simulate

internal, nonparameterized procedures. For example, the
code sequence

l a b e l - v a r i a b l e = l a b e l - l ;
GO TO l a b e l - 2 ;

l a b e l - 1 :

label-2 :
code-block
GO TO l a b e l - v a r i e b l e ;

sends control to the code-block at label-2 and then
returns control to the next sequential statement following
label-1. Either the code-block should be made into a
PROCEDURE that is called, or the code block should be
distributed throughout the program. In either case, the
labels, the GO TOS, and the label-variable with its multi-
way branch are removed and the program becomes more
readable in a top-to-bottom fashion.

5.9 Remove Label Variables Used as Memory
Another common use for label variables is to remem-

ber a particular decision or path in a program by assign-
ing a label to a label variable. In the code sequence

516 Communications August 1982
of Volume 25
the ACM N'umber 8

l a b e l - v a r i a b l e • l a b e l - l ;

l a b e l - v a r i a b l e • l i b e l - 2 ;

l a b e l - v a r i a b l e - l a b e l - 3 ;

GO TO label-variable;

for example, the label-variable is used to remember
which of three different paths was last executed in order
to determine which path of the multiway branch is taken.
The modification suggested in this case is the same as
that recommended for the more difficult multiple-exit
loops. Use a state variable as the memory device instead
of a label variable. The resulting source text

DECLARE STATE CHARACTER(8) STITIC INITIAL('UNKNOMH') ;

STATE = 'lebel-l';

STATE = 'label-2';

STATE = 'label-3';

SELECT (STATE);
WHEH ('label-l') GO TO label-I;
MHEN ('label-2') GO TO label-2;
MHEN ('label-5') GO TO label-5;
OTHERWISE SIGNAL ERROR; / * should n o t o c c u r * /
END ;

may even appear slightly more complex initially. How-
ever, as with multiple-exit loops, experience has shown
that removing label-variables is necessary to clarify the
program text so that the multiple-exit SELECT structure
can, in turn, be changed to a single-exit structure by
applying other simple transformations within each WHEN
clause. Although we appear to be swapping one kind of
memory for another, this form makes the program easier
to read and has the added advantage that its value can
be printed for debugging purposes.

5.10 Use Status Variables to Track Execution
A frequently used programming form that contrib-

utes to unreadability is the use of long branches to a
label that does standard error processing. Whether long
branches are for error handling or other purposes, the
introduction of a status variable is recommended to
eliminate the branches and the resulting multiple-exit,
multiple-entry code. As with the examples for multiple-
exit loops and label variables, a character string variable
is declared. Set the variable to 'NORMAL' and in the event
an error is uncovered, set the variable to a value indicat-
ing the nature of the error. The variable can then be
tested at the beginning of each major functional block
within the program to determine whether that function
should be performed or bypassed. The program text has
a form like

IF STATUS = 'NORMAL'
THEN DO;

ma jor-~unc%ion- 1
END;

ELSE ;
IF STATUS = 'NORMAL'
THEN DO;

m a j o r ~ u n c t i o n - 2
END;

ELSE ;

and execution proceeds through the functions as long as
everything is normal.

The judicious selection of the character string values
assigned to a status variable can also make the program

517

clearer by making it more self-documenting. A simple
method is to maintain a block comment with the decla-
ration for the status variable that indicates all of the
values the status variable may have and what each value
means.

5.11 Use Switches in ON-Units

The use of switches in ON-units can eliminate an
excess of branching. In particular, switches should be
used to control the program flow for conditions such as
the end of file. A typical code sequence

ON ENDFILE(~lle-a) 000-'**~
GO TO label-l; I GO0

keii~

l a b e l - 2 : f - - - - ---J

READ FILE(~ile-a) ... ; I P~O

GO TO label-Z; I G,01
label- I ; q - -

can be transformed to a sequence of single-entry, single-
exit control structures like

DECLARE MORE_RECORDS BIT(1),
YES BIT(1) STATIC IHITIAL('I'B),
NO BIT(1) STATIC INITIAL('O'B);

i
OH ENDFILEC~ile-s) 0 0 0 - * ' * ~

MORE_RECORDS = NO; / PO0 ~ oeeJ

MORE_RECORDS = YES; PO0

READ FILElfile-a) ... ;

END;

with the addition of a switch.

5 . 1 2 Localize References
The transformation implied here is to move state-

ments around so that the references to a single variable
or name are close together. The use of the file constant,
FILE_A, in the source text

ON ENDFILE(FILE A)
MORE_RECORDS = NO;

many-statements

OPEN FILE_A ;

m a n y - s t a t e m e n t s

MORE_RECORDS = Y E S ;
DO WHILE (MORE RECORDS);

READ FILE(FILE A) ... ;
END;

m a n y - s t a t e m e n t s

CLOSE FILE_A;

is not uncommon. However, there is no rule that ON-
units and OPEN statements must come first and CLOSE
statements last in a program. Since the association be-
tween an input statement and its corresponding ON END-
FILE statement is implicit, putting the two close together,
as was done in the previous section, makes this associa-
tion more obvious. Localizing the uses of the name
F I L E _ A ,

C o m m u n i c a t i o n s Augus t 1982
o f Vo lume 25
the A C M N u m b e r 8

COMPUTING
PRACTICES

OPEN F I L E A;
ON E N D F I L E (F I L E _ A)

NORE_RECORDS = NO;
MORE_RECORDS = Y E S ;
DO WHILE (MORE RECORDS) ;

READ F I L E (F I L E _ A) . . . ;
END;
CLOSE F I L E _ A ;

means the reader does not have to keep details of that
file in mind while reading other parts of the program.
Moreover, if the reader is particularly interested in FILE_
A, its uses are not spread all over the program. A pleasant
side-effect of localizing references is that the execution
efficiency of a program may be improved due to reduced
paging.

5.13 Extract Common Code Sequences
The final area to be discussed is the extraction of

common code sequences into procedures. C om mon code
sequences may be labeled blocks that are either too large
or too frequently referenced to be distributed throughout
the program, as discussed earlier. They may be labeled
blocks that are terminated by GO TO label variables, as
discussed earlier. They may just be duplicate blocks of
code that the reader discovers in the code. Finally, a
common code sequence may simply be a single-entry,
single-exit, functional block of code, in which case the
extraction of the code block will make the main program
easier to comprehend merely by making it smaller.

Just because a large block of code happens to appear
many times is not sufficient grounds for making it into
a procedure. In order to be of help in the readability and
subsequent modifiability of the program, procedures
should be constructed so that they each perform a spe-
cific logically self-contained task. The fact that an iden-
tical sequence of instructions happens to occur repeat-
edly does not mean that those instructions perform a
cohesive task. Guidelines for recognizing and organizing
code into functional procedures are described by Myers
[19] and Stevens [23].

Once a sequence of instructions has been identified
as suitable for transformation into a procedure, a simple
method can be followed:

(1) Remove the common code sequence from the main
program and wrap a set of PROCEDURE-END state-
ments around it.

(2) Replace each reference to the common code se-
quence by a CALL statement in the main program.

(3) Recompile the main program and compile the com-
mon code sequence.

(4) Determine parameters by finding symbols common
to both programs.

(5) Determine local variables for the common code
sequence by finding symbols no longer referenced
in the main program.

(6) Add a declaration for the new procedure in the
main procedure. Update all CALL statements for the
new procedure to use a proper argument list.

(7) Add a block comment to the new procedure de-
scribing its purpose and use.

(8) Move declarations for local variables into the new
procedure.

6. Experience with the Transformations
Rather strange sections of source text may arise while

transforming a program for readability. Some examples
encountered in the past are (1) program text that cannot
be reached via any execution path, (2) branches into the
middle of loops, and even (3) an IF statement with
identical code in its THEN and ELSE clauses. The wise
p rogrammer will go back and check the original program
text when an odd section of code arises to make sure that
a transformation has not been improperly applied, but
the p rogrammer will usually discover that the oddity
really exists.

Often, the programmer will find other transforma-
tions to apply to make a program more concise and more
readable. For example, statements common to both the
THEN and ELSE clauses of an IF statement or common to
all clauses of a SELECT statement can frequently be
extracted to either immediately precede or follow the IV
or SELECT statement. The programmer should make mod-
ifications whenever the readability of the program can
be enhanced.

7. An Example Program
In this section the application of readability transfor-

mations to a production program is discussed. The par-
ticular program used here was selected because it was
the smallest nontrivial program in a set of commercial
data processing programs. The program turned out to be
particularly unreadable. Multiple applications of every
transformation mentioned above were used to make the
program more readable. The program was modified in
13 separate passes. It began as a single P L / I procedure,
P1, and finished as a program, P2, comprising six pro-
cedures, M l through M6, with M 1 identifying the resid-
ual mainline procedure. Table I shows some of the two
program's basic statistical properties.

Although the lines of source text have increased by
more than half, the program is actually smaller in many
respects. Duplicate code in the form of header blocks of

Table I. Comparison of Basic Statistical Properties.

Property PI P2 MI M2 M3 M4 M5 M6

Lines of source text 597 916 431 160 117 94 49 65
Identifiers 218 274 132 22 42 33 19 26
Non-DECLAREstatements 270 336 176 83 29 23 8 17
CALL statements 3 48 25 12 5 2 1 3
Assignment statements 125 92 48 18 9 5 4 8
IF statements 24 39 21 11 3 3 0 0
DO statements 4 47 23 16 4 3 0 1
GO TO statements 80 0 0 0 0 0 0 0

518 Communications August 1982
of Volume 25
the ACM Number 8

519

°{,

:f:

d,

i J "~

" ; } : . . _ _

"--'h

l! c-

,o

,r,'i ,'3,.

d,-.., t

r " "

d.--..,

E

Program P1
(2 columns)

t

,t.~d,

{3, ,, ~ - q

_ J

Program P2
(6 modules)

Fig. 1. Logical Control Flows of Two Versions of a Program.

Communications August 1982
of Volume 25
the ACM Number 8

COMPUTING
PRACTICES

comments and declarations accounts for most of the
increase. Duplicate declarative information also accounts
for the increase in identifiers. The extraction of subpro-
cedures increases the number of CALL statements, while
reducing the numbers of the type of statements extracted,
such as assignment statements. All 80 GO TO statements
were eliminated from the original program. The intro-
duction of status variables and their testing account for
the increase in IF statements. Introducing ELSE clauses
and logically grouping blocks of code account for most
of the increase in DO statements and a large increase in
the total number of lines of text and total statements; 40
grouping DO-END blocks now exist in a program that
started with none.

The load module increased in size from 8,800 bytes
for P1 to 13,400 bytes for P2. This increase is due mostly
to the additional prologue and epilogue code generated
for the subprocedures. Execution measurements were
not done for this program, but experience with other
programs has shown that an improvement of 5 to l0
percent is not unusual.

The decrease in complexity of the logical flow was
monitored as the program was modified. The cyclomatic
complexity measure, introduced by McCabe [17] and
discussed by Elshoff and Marcotty [8] and Myers [20],
associated with the number of testable paths in the
program was used. The results shown in Table II indicate
that the complexity of the program was reduced by more
than 40 with respect to its flow of control. The logical
flow of the program was also mapped using the same
conventions as were used in the flowgraphs illustrating
the program samples earlier in this paper. Figure 1 is a
photo-reduced picture of the logical flow of control for
the program's two versions. The reader can readily ob-
serve the difference.

An experimental measure of program clarity de-
scribed by Gordon [9] was also applied to the program
after each pass. This clarity measure theoretically deter-
mines the effort required to understand the program.

With a factor of 43,200 (12 units/second, as suggested
by Halstead [11]) used to convert the effort units to
hours, the results are listed in Table III. Although this
measurement indicated that the program grew slightly
more complicated after a few initial passes, the end-
result of applying the readability transformations repre-
sents a large reduction in the estimated effort required to
understand the program.

Although the clarity measure has not been validated
and must be treated as an average for any programmer,
the relative difference seems to understate the case for
the readable version of the program. In our opinion, the
original program could not be fully understood in 24
hours. On the other hand, the program module M1,
because of its use of status variables and the similarity of
several sections of source text, should not require 8 hours
to understand. The 13 passes to improve the program's
readability required 16 hours to complete. A single pass
took from 15 minutes to two hours. Thus, if we view the
clarity measure as an absolute value, the total time to
understand this program was increased by about four
hours, a small amount of time that should easily be
recouped when the program is modified. Real net bene-
fits should then accrue on all subsequent modifica-
tions since the program will be more readable from
the start.

8. R e c o m m e n d a t i o n - - A New Modification Cycle

A new step should be added to the modification
cycle: modifying the program to make it readable. If the
new program is judged to be already readable, this new
step may be skipped. However, when the program is
judged to be difficult to read, readability transformations
should be applied to make it more readable.

The time to make a program readable is at the
beginning of the modification cycle. The small invest-
ment will start paying dividend by making (1) the spec-
ifications for the modifications easier to write, (2) the
estimate of the cost of the modifications more accurate,
(3) the design for the modifications simpler, and (4) the
implementation of the modifications less error-prone.
Once the program is made readable, these benefits
should apply to all future modifications as well. In fact,
doing a better job on one modification cycle may elimi-
nate the need for some future cycles.

Table II. Compar i son of the Flow of Control.

Program Cyclomatic complexity

Table III. Clar i ty--Time to Understand the Program.

Program Time (hours)

PI (before) 91 PI (before) 23.6
P2 (after) 52 P2 (after) 11.4

MI 25 MI 7.5
M2 16 M2 2.8
M3 4 M3 0.3
M4 4 M4 0.4
M5 1 M5 0.1
M6 2 M6 0.3

520 Communicat ions
of
the ACM

August 1982
Volume 25
N u m b e r 8

The effective application of good programming prac-
tices to new program development and the application
of readability transformations during the modification
cycle should eventually result in an inventory of readable
programs. However, until all the programs in an instal-
lation's inventory are readable, the modification cycle
introduced in the first section of this report should be
changed to the five-step cycle listed below, where step 2
has been inserted.

(1) The user requests that a program be changed.
(2) The source text of the program is made readable.
(3) The specifications for the change are written and

the cost of the change estimated.
(4) It is decided that the changes are worth being made.
(5) The program is changed to meet the new specifi-

cations.

References

I. Ashcrofi, E., and Manna, Z. The translation of 'GOTO'
programs to 'WHILE' programs. Proc. 1971 IF1P Congress,
Ljubljana, Yugoslavia, Aug. 1971, pp. 250-255. Demonstrates that
every flowchart program can be written without GO TO statements
by using WHILE statements.

2. Boehm, B. Software engineering. IEEE Trans. Comptrs. C-25, 12
(Dec. 1976), 1226-1241. Provides a definition of the term "software
engineering" and a survey of the state of the art of software
production in 1976. Contains an extensive set of references.

3. Dijkstra, E.W. GO TO statement considered harmful. Comm.
ACM 11, 3 (March), 147-148. This famous letter contends that the
quality of programmers is a decreasing function of the density of GO
TOs in the programs they produce, and advocates the abolition of the
GO TO from high-level languages because it is too primitive a
construct,

4. Elshoff, J.L. A case study of experiences with top down design
and structured programming. GMR-1742, Comptr. Sci. Dept.,
General Motors Res. Labs., Warren, Mich., Oct. 1974. Describes the
author's personal experiences in consciously using top down
development techniques and structured programming techniques.

5. Elshofl, J.L. Defensive programming. GMR-1799, Comptr. Sci.
Dept., General Motors Res. Labs., Warren, Mich., Feb. 1975.
Presents a description of the techniques of defensive programming
and some of the trade-offs that should be considered by programmers
using them.

6. Elshoff, J.L. An analysis of some commerical PL/I programs.
IEEE Trans. Software Eng. SE-2, 2 (June 1976), 113-120. Presents
the results of studying 120 commercial PL/I programs with respect to
their size, readability, complexity, programming discipline, and use of
programming language.

7. Elshoff, J.L. The influence of structured programming on PL/I
program profiles. IEEE Trans. Software Eng. SE-3, 5 (Sept. 1977),
364-368. Studies two sets of commercial PL/I programs representing
programming practice before and after the introduction of structured
programming techniques.

8. Elshoff, J.L., and Marcotty, M. On the use of the cyclomatic
number to measure program complexity. SIGPLAN Notices 13, 12
(Dec. 1978), 29-40. Further discussion of the cyclomatic complexity
measure of McCabe [17] and its extension by Myers [20].

9. Gordon, R.D. Measuring improvements in program clarity.
IEEE Trans. Software Eng. SE-5, 2 (March 1979), 79-90. A
functional relation between the clarity of a program and the number
and frequency of operators and operands in the program is presented.
This measure of program clarity gives an estimate of the amount of
mental effort required to understand the program.

10. Gries, D. The Science of Programming. Springer-Verlag, New
York, 1981. Describes with many examples and exercises the basic
principles behind the construction of programs that can be
demonstrated to be correct through reasoning.

11. Halstead, M.H. Elements of Software Science. Elsevier North-
Holland, New York, 1977. Halstead investigates the natural laws that
govern the construction of programs and presents some measures of
the effort required to write and understand programs.

12. IBM. OS PL/I Checkout,Compiler: Programmer's Guide. Pub.
SC33-0007, IBM Corp., White Plains, New York, Oct. 1976, 4th
edition.

13. Kernighan, B.W., and Plauger, P.J. The Elements of Programming
Style. McGraw-Hill, New York, 1974. A study of programming style
that discusses the shortcomings of examples drawn from
programming textbooks. General rules of style are then used to
rewrite the examples for readability.

14. Lehman, M.M. Laws and conservation in large-program
evolution. Proc. 2nd Software Life Cycle Management Workshop,
Atlanta, Georgia, 1978 (IEEE Pub. 78CH 1390-4C, pp. 140-145).
Lehman describes natural phenomena observed about the way in
which the maintenance and evolution of large programs are planned,
managed, and implemented.

15. Lientz, B.P., and Swanson, E. B. Software Maintenance
Management. Addison-Wesley, Reading, Mass., 1980. The results of
the authors' survey of almost 500 companies to compare software
maintenance and costs.

16. Liu, C.C. A look at software maintenance. Datamation 22, 11
(Nov. 1976), 51-55. Investigates the problems of software
maintenance and describes some improvements, in particular, in the
areas of documentation and testing.

17. McCabe, T.J. A complexity measure. IEEE Trans. Software Eng.
SE-2, 4 (Dec. 1976), 308-320. McCabe describes a graph-theoretic
program complexity measure that depends only on the decision
structure of the program. The use of this measure to manage and
control program complexity is described.

18. Mills, H.D. Mathematical foundations for structured
programming. Doc. FSC72-6012, IBM Federal Syst. Div.,
Gaithersburg, Md., Feb. 1972. The programming process is
formulated as a step-by-step expansion of mathematical functions. A
structure theorem guaranteeing that any program that can be
represented as a flowgraph can be transformed into one containing
only three types of structures--sequence, conditional, and iterative--
is proved.

19. Myers, G.J. Software Reliability. John Wiley, New York, 1976.
Defines software reliability, analyzes the major causes of
unreliability, discusses the design and testing of reliable software, and
touches on other factors in the production of reliable software such as
project organization.

20. Myers, G.J. An extension to the cyclomatic measure of program
complexity. SIGPLAN Notices 12, 10 (Oct. 1977), 61-64. Discusses
anomalies found when calculating the complexity of a program under
the assumption that it depends only on the program's decision
structure and describes a simple extension to McCabe's complexity
measure [17] to eliminate the anomalies.

21. Sheppard, S.B., et al. Modern coding practices and programmer
performance. IEEE Computer 12, (Dec. 1979), 4149. Describes the
results of a series of experiments on the effects of modern coding
practices on programming comprehension, program modification,
and debugging performance.

22. Standish, T.A., et al. The lrvine Program Tran.formation
Catalogue. Dept. Inform. and Comptr. Sci., Univ. of Calif at lrvine,
lrvine, Calif., 1976. A source book of ideas for improving programs
through source-to-source transformations.

23. Stevens, W.P. Using Structured Design. Wiley-Interscience, New
York, 1981. Illustrates the techniques of structured design with
numerous examples that demonstrate guidelines for splitting a
program into separate modules,

24. Yourdon, E. Techniques of Program Structure and Design.
Prentice-Hall, Englewood-Cliffs, N.J., 1975. Discusses program
design philosophies and methods; presents practical strategies for
developing modular programs that are clear and readable.

521 Communications August 1982
of Volume 25
the ACM Number 8

