
control nets. He has described process, message types 
which implement his algorithm in detail. Our approach 
departs from Nutt's in its basis in discrete-event simula- 
tion. As in sequential simulation there are cases where 
discrete-event approaches are preferable to time driven 
simulations and there are cases where the reverse is true. 

The running time of the distributed algorithm de- 
pends upon the model being simulated. It is known 
empirically [15] that the distributed scheme approaches 
ideal performance when there are no multiple loops in 
the network. Extensive experimentation with various 
models is necessary in order to predict the performance 
of the proposed algorithm. 
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Use of Polya 
Distributions in . 
Approximate Solutions 
to Nonstationary 
M/M/s Queues 
Gordon M. Clark 
The Ohio State University 

Delays are important processes represented by 
continuous simulation models; however, representing 
queueing delays efficiently within continuous 
simulations merits the development of new 
methodology. Rothkopf and Oren introduced the 
concept of using a surrogate distribution, viz., the 
negative-binomial, as a closure approximation to the 
infinite set of Chapman-Kolmogorov equations 
representing a nonstationary 
M/M/s queue. The method presented in this paper 
uses the Polya-Eggenberger distribution as a surrogate 
for the true distribution of the number in the queueing 
system at a particular time and only requires the 
numerical integration of five differential equations. The 
paper presents numerical results comparing the Polya 
surrogate and Rothkopf and Oren's approximation for a 
number of diverse cases, and these results indicate that 
the Polya surrogate is, in general, more accurate, 
although exceptions were encountered. Moreover, 
queueing delays represented by a closure approximation 
involving a surrogate distribution, in particular, the 
Polya, are suitable for use within a larger continuous 
simulation. 

Key Words and Phrases: continuous simulation, 
queueing delays, M/M/s queue, queueing 
approximation, system dynamics. 
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1. Introduction 

System dynamics or continuous simulation models 
employ delays to represent processes requiring elapsed 
time before system quantities or entities change state [4]. 
Three processes frequently modeled as delays are 

(1) Clerical processing by retailers or orders for more 
inventory prior to mailing the orders, 

(2) Handling of orders received from retailers by a 
wholesaler prior to shipment, and 

(3) Shipment of goods from a wholesaler to a retailer. 

The basic modeling approach towards depicting delays 
in simulation languages such as DYNAMO [5] or SLAM [12] 
involves the use of an nth order exponential delay. If  it 
is assumed that the delay process is equivalent to a queue 
with a time-dependent arrival process, an unlimited 
number of servers, and independent service times from 
the same negative exponential distribution [6], then the 
expected delay content is equivalent to a first order 
exponential delay. An nth order exponential delay de- 
scribes a queue with an unlimited number of  identical 
servers having nth order Erlang-distributed service times. 

This paper presents a methodology for delineating 
M / M / s  queueing delays in dynamic continuous simu- 
lations. The most important characteristic of a queueing 
delay is the representation of a finite number of servers 
having a defined upper limit on their capacity to process 
entities. This methodology involves an approximation to 
the solution of a dynamic or nonstationary M / M / s  
queue having arrivals from a time-dependent Poisson 
process, unlimited waiting space, s servers having service 
times from identical independent but possibly time-de- 
pendent Markov processes. The queueing delay is rep- 
resented in a system-dynamics flow diagram by a symbol 
having the format 

# (t) 

E (N(t)) o (t) 

M / M / s  

where 
N(t )  = contents of the queueing delay at time t; 

E(N( t ) )  = expected delay contents at time t; 
/.t(t) = single server service rate at time t; 
o(t) = expected delay output rate at time t; and 
X(t) = delay input rate or arrival rate at time t. 

The symbol M / M / s  implies an M / M / s  queueing delay. 
In addition to E(N( t )  and o (t), the queueing delay model 
computes the expected queue waiting time for a new 
arrival at time t, i.e., w(t), and the variance of N(t),  
V(N(t)).  

The lack of  closed-form analytic solutions to dynamic 
queues complicates the continuous simulation of queues. 
Admittedly, expressions exist for the transient solutions 

to M / M / 1  [8] and M / M / 1 / k  [11] queues1; however, 
these solutions are impractical for use in continuous 
simulations since they are very cumbersome to evaluate 
and are limited to single server queues. 

Coupling the theory of Markov processes and nu- 
merical integration permits the solution or simulation of  
a much more comprehensive set of queueing situations. 
Kleinrock [8] describes the well-known procedure for 
constructing the Chapman-Kolmogorov equations for a 
constant-coefficient M / M / s  queue. These equations are 
simultaneous differential-difference equations involving 
the time-state probabilities, 

Pi(t) = probability the queueing system contains i 
entities at time t, i.e., N(t)  = i. 

These differential equations are 

P~ (t) = -)~Po(t) + #el(t), 
e~ (t) = - (2~ + i#)Pi(t) + (i + l)ttPi+~(t) 

+~Pi-l( t)  for i = 1, 2, . . .  , s -  1 
e~ (t) = - (~ + s#)Pi(t) + sgPi÷~(t) + )~Pi_~(t) 

f o r i = s , s +  1, . . . .  (1) 

To numerically integrate these equations, one ap- 
proximates an unlimited waiting space by specifying that 
all values of P~(t) are zero for i > k. In essence, an 
M / M / s / k  queue is represented where k is large. This is 
accomplished by using Eq. (1) for i < k, and 

e~ (t) = -#sek( t )  + ) k e k - l ( l )  

Pi (t) = 0 for i > k. (2) 

Equations (1) and (2) are readily extended to portray 
time-dependent arrival rates and/or  service rates by 
regarding ~ and # as functions of time. 

Numerical integration of the Chapman-Kolomogo- 
rov equations has been applied by Koopman [10] and 
Kolesar et al. [9]. However, this is a cumbersome ap- 
proach for a continuous simulation because of the large 
number of equations integrated to represent congested 
queues, e.g., larger than 100 when the time average of 
)~(t)/(sg(t)) is 0.9 and s = 1. Also, the simulation may 
have several queueing delays along with other state 
variables (or levels) integrated numerically. Moreover, 
for each simulation run, the simulation user will have to 
verify whether k is sufficiently large to approximate an 
unlimited waiting space. 

In an attempt to reduce the number of differential 
equations integrated numerically, Rider [13] and Chang 
[1], following an approach used earlier by Clarke [2], 
assumed a single server, multiplied each differential 
equation in Eq. (1) by i, and summed the resulting 
equations to obtain: 

E'(N(t))  = ~(t) - #(t)(1 - Po(t)) 

for an M / M / 1  queue. Then they developed approxi- 
mations for Po(t) and integrated E'(N(t))  numerically to 
approximate the expected queueing system contents. 

l An M / M / s / k  queue is the same as an  M / M / s  queue except that 
incoming arrivals balk and do not enter the queue when the contents 
of  the queue plus the number  being served equals k. 
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Rothkopf  and Oren [14] extended this approach to 
represent multiple servers. They derived the following 
differential equations for an M / M / s  queue by the ap- 
proach outlined above. 

E'(N(t)) = X(t) - g(t)s + #(t) ~i%-~ (s - i)Pi(t) (3) 

V'(N(t)) = X(t) + g(t)s 
- g(t) ~i%-~ (2E(N(t)) + 1 - 2i)(s - i)Pi(t) (4) 

V(N(t)) = variance of  N(t)  

They approximated Pi(t), i = 0, 1, . . .  , s - 1, using a 
negative binomial distribution given values of  E(N(t))  
and V(N(t)). The fact that the geometric distribution is 
a special case of  the negative binomial is one supporting 
reason for choosing the negative binomial. This implies 
that the approximation will converge to the true steady 
state distribution when there is only one server. To 
improve the approximation for the multiple server case, 
they published a table of  constants that are a function of  
both the average value of  h(t)/(sg(t)) and s. Rothkopf  
and Oren found their approximation produced less error 
in approximating E(N(t))  than Rider's for a single server 
case. Moreover, Rothkopf  and Oren tested their approx- 
imation using a variety of  single and multiple server 
cases and published results indicating that their approx- 
imation produces errors of  an acceptable magnitude. 

2. Polya Surrogate Representation 

The surrogate distribution approach to approximat- 
ing dynamic queueing systems involves numerical inte- 
gration of  differential equations giving desired system 
moments. To illustrate the approach, consider the system 
moments E(N(t))  and V(N(t)) and their differential 
equations (3) and (4). The numerical integration is per- 
formed in time steps using a procedure such as the 
fourth-order Runge-Kut ta  procedure implemented in 
SLAM [12]. In SLAM, the simulation user must specify a 
subroutine that calculates derivatives of  E(N(t))  and 
V(N(t)). All quantities in Eqs. (3) and (4) are known 
during the time step and available to this subroutine 
other than Pi(t) for all i. Since the true values of Pi(t) are 
unavailable, the user simply assumes a distribution as a 
surrogate for Pi(t). The parameters for this surrogate 
distribution are calculated from the known moments, 
i.e., E(N(t))  and V(N(t)). 

Of course, the choice of  the surrogate distribution is 
crucial for developing an accurate approximation. Flex- 
ibility is a desirable property for the surrogate distribu- 
tion because the distribution may be required to repre- 
sent diverse values of the mean and variance. Thus, any 
limits imposed by the surrogate on possible combinations 
of  mean and variance may be important. Also the distri- 
bution ought to accurately represent certain known spe- 
cial cases of the true distribution, i.e., the steady state 
distribution. However, the accuracy of  the resulting ap- 

2.08 

proximation to desired queueing system quantities is the 
only real test. 

The surrogate distribution approximation described 
in this paper differs from Rothkopf  and Oren's approx- 
imation in two significant ways. First, the distribution of 
N(t) is represented by two conditional distributions de- 
pending on whether N(t)  is larger than s, i.e., whether a 
queue exists. The desirability of  this additional detail is 
suggested by the steady state distribution of  an M / M / s  
queue [11 ]. That  is, 

Pi=fP°(?~/l 't)i/i ' ,  s ,  for 0_< i_< s 

t P o ( h / g ) / ( s -  s.) for i >_ s. (5) 

Note the change in form of the steady state distribution 
once a queue exists. The second significant difference is 
the use of the Polya-Eggenberger distribution [7] here- 
after referred to as simply the Polya distribution rather 
than the negative binomial. Accordingly, let the condi- 
tional random variables A and B represent N(t), i.e., 

A = N(t)  given that there is no queue, i.e., N(t)  _< s and 
B = N(t)  - s  - 1 given N(t)  > s. 

Also, A and B both have conditional Polya distributions 
with their own unique parameter values. 

The probability a Polya random variable X assumes 
the value i is 

j=O \k=0 q +  

1 + a ~  
\a=0 

where i = 0, 1, 2 . . . . .  n 

0_~p_~ l , q =  1 - p ,  and 

a > - ( ra in(p ,  q))/(n - 1). 

Note that the binomial distribution is a special case of  
the Polya when a = 0. The first two moments of the 
Polya are 

E(X)  = np 
E ( X  z) = np(np + q + na)/(1 + a). 

Also, the variance is 

V(x) = npq (1 + na)/(1 + a). 

Observe that the variance of  a Polya random variable 
can be less than the mean which is not possible for a 
negative binomial random variable. This property is 
important only for queues having more than one server. 
Rothkopf  and Oren have successfully applied their ap- 
proximation to M / M / 1  queues where V(N(O)) < 
E(N(O)). 

A random variable X having a Polya distribution can 
assume values on a finite set, i.e., 

X = 0 ,  1,2, . . .  n; 

however, under conditions specified in [7] the negative 
binomial distribution is a limiting distribution for the 

Communications April 1981 
of Volume 24 
the ACM Number 4 



Polya as n ~ oo. That is, let n ~ oo, p ~ 0, ct ~ 0 in a 
manner such that np and na converge to the nonzero 
quantities 0 and 6, respectively. Then X has a negative 
binomial distribution and 

0 = E ( X )  
= V ( X ) / E ( X ) -  1. 

To apply the Polya, the user must solve for the Polya 
parameters, given the first two moments. Thus, 

p = E ( X ) / n .  (6) 
a = ( E ( X ) ( E ( X )  + q) 

- E ( X 2 ) ) / ( E ( X  2) - E ( X ) n ) .  (7) 

I f a  ~ - (min(p, q ) ) / ( n  - 1), then a is set to 

a = - (min  (p ,  q ) ) / ( n  - 1) + 0.0001. 

However, the conditional random variables A and B 
represent N ( t )  so their moments are used in Eqs. (6) and 
(7). 

Let 

Q ( t )  = Probability a queue exists at time t, 

O f f )  = 1 - -  Q( t ) ,  

O(t) = X ~ o  P~(t), (8) 

C( t )  = ~=0 iPi(t) + sQ( t ) ,  (9) 

D ( t )  = ~ o  i2pi(t) + s2Q(t) ,  (10) 

then 

E ( A )  = ( C ( t )  - s Q ( t ) ) / Q ( t  ), (11) 

E ( A  2) = ( D ( t )  - s 2 a ( t ) ) / Q ( t ) ,  (12) 

E ( B )  = ( E ( N ( t ) )  - C( t )  + s O ( t ) ) / Q ( t )  (13) 
- ( s +  1), 

E ( B  2) = ( E ( N 2 ( t ) )  - O ( t )  + s 2 O ( t ) ) / Q ( t )  
-2(s  + I)E(B) + (s + 1) 2. (14) 

The surrogate representation requires four Polya param- 
eters: 

pa, a~ = Polya parameters for A 
pb, ab = Polya parameters for B. 

Substitution of Eqs. (11) and (12) into Eqs. (6) and (7) 
gives p~ and aa. Similarly, substitution of Eqs. (13) and 
(14) into Eqs. (6) and (7) givespb and ab. 

The surrogate representation requires values for 
E ( N ( t ) ) ,  E (N2( t ) ) ,  C( t ) ,  D( t ) ,  and Off) during each time 
step in order to use Eqs. (11), (12), (13), and (14). These 
quantities are obtained by integration of differential 
equations. In particular, integration of Eq. (3) gives 
E ( N ( t ) ) ,  but rewriting of Eq. (3) simplifies the compu- 
tations considerably. 

E ' ( N ( t ) )  = 2t(t) - ~t(t)C(t) .  (15) 

A differential equation for E ( N 2 ( t ) )  results from sum- 
ming each equation in Eq. (1) after multiplication by i2: 

E ' ( N 2 ( t ) )  = )t( t)  + 22 t ( t )E (N( t ) )  + g ( t ) C ( t )  
- 2 # ( 0 ( 9 ( 0  + s E ( N ( t ) )  - sC( t ) ) .  (16) 

Table I. Values of  P8 for Three-Server Case. 

A/(s#) Steady State Polya Approximation 

0. l 0.00333 0.00269 
0.5 0.134 0.130 
0.7 0.225 0.221 
0.9 0.309 0.306 
0.95 0.328 0.325 

Similarly, 

C'( t )  = ) t ( t ) (Q( t  ) - P , ( t ) )  - # ( t ) ( C ( t )  - sQ( t ) )  (17) 

D'( t )  = 2t ( t ) (2C(t )  - (2s + l)(O(t) + P,( t ) )  + 1) 

+t t ( t ) (C( t )  - 2D(t) + (2s 2 - s ) O ( t ) )  (18) 

Q'( t )  = g(t)sPs+l(t)  - ~ ( t )P , ( t ) .  (19) 

Note that the above differential equations only require 
two probabilities from the Polya surrogate, P d t )  and 
e~+dt). 

A comparison between P, computed by the Polya 
and P~ computed from the steady state solution for an 
M / M / s  queue reinforces the selection of the Polya as a 
surrogate. Table I presents the comparison for the three- 
server case. On a percentage basis, the accuracy is excel- 
lent until very low server utilization X/(st t )  values are 
encountered. 

For P~+i, the surrogate representation could utilize 
the limiting case when n ~ oo, which gives the negative 
binomial distribution and exact values for P~+i in steady 
state, at least. This is true because the random variable 
B has a geometric distribution under steady state condi- 
tions. However, tests of representing B with a negative 
binomial distribution give less accuracy than use of the 
Polya under conditions other than steady state. Since 
accuracy under nonstationary conditions is more impor- 
tant to a continuous simulation, the Polya is also used 
to approximate P~+a. This is done by selecting a value 
for n as an upper limit on the random variable B given 
by 

n = [ b ( E ( B )  + 1) + 0.5] 

where [y] is the greatest integer less than y and b is an 
empirically determined constant. To determine b, a se- 
quence of runs were made where 

X(t) = 0.7 + 0.25 sin(2~rt/25), 
#(t) =- 0.25, s = 3, 0 < t _< 200. 

At each integral value of time, a percentage error in 
approximating E ( N ( t )  was computed based upon use of 
results from integrating the Chapman-Kolmogorov 
equations (1) and (2). Figure 1 presents the range in 
error percentages, or difference between the minimum 
and maximum error percentages, as a function of b. 
Based upon these results, all other calculations for the 
Polya surrogate presented in this paper use a value of 
6.6 for b. 

Integration of Eqs. (15) through (19) automatically 
gives the mean system contents, i.e., E ( N ( t ) ) .  The vari- 
ance of N ( t )  is 

V ( N ( t ) )  = E ( N 2 ( t ) )  - ( E ( N ( t ) )  2. 
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Fig. 1. Calibration of  b. 
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The expected output rate is 

o(t)  = t t( t)C(t) .  

In addition the expected waiting time for an arrival at 
time t is 

w(t)  = (P~(t) + E ( N ( t ) )  - C(t)  + Q(t))/(stx(t)).  

3. Testing the Polya Surrogate 

Results obtained by comparing approximations from 
the Polya surrogate with numerical values regarded as 
exact indicate its accuracy. Direct numerical integration 
of  the Chapman-Kolmogorov equations provides results 
of sufficient accuracy to be regarded as exact. A double 
precision version of  SLAM [12] implemented on an Am- 
dah1470 computer performed all numerical calculations. 
SLAM uses a fourth-order Runge-Kut ta  procedure with 
an automatic reduction of step size until the estimated 
truncation error on each step is within allowable limits. 

210 

This truncation error bound is given by 

I EERR [ <- AAERR + RRERR.  I SS  1, 

where EERR = estimate of  truncation error derived by 
Fehlberg [3], SS = value of  variable integrated, e.g., 
Pi(t). When integrating the Kolmogorov equations, 
AAERR = 1 0  -7 ,  RRERR = 10 -6. A comparison between 
numerical results by Runge-Kut ta  integration and the 
closed form transient solution [11] for an M / M / 1 / k  
queue serves as a check on the numerical integration. 

The cases compared are 

A A/# k T 
0.5 0.5 100 240 
0.5 0.9 180 2400 

Each run started in the  empty and idle condition, and 
values of  E(N( t ) ) ,  V(N(t ) ) ,  w(t), and o(t) were sampled 
and compared every 5 time units until time T. The 
absolute value of  the error percentages expressed as a 
percentage of  results computed by the transient solution 
never exceeded 2 × l0 -5. 
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Fig. 2. Starting ~om Exac t ly9 inSys tem.  
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Fig. 4. DynamicLow Utilization MultipleSe~erComparison. 
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The use of a queueing system with capacity k is 
another source of error when integrating the Chapman- 
Kolmogorov equations. The value of  k was varied from 
100-190, depending on the average queue congestion, in 
order to control this error contribution. The potential 
error introduced by truncating an infinite queue can be 
visualized by realizing that the counting process defined 
by the number of  rejections imposed by the finite queue 
is a time-dependent Poisson process with mean 

r = X (t) Pk (t) dr. 

Thus, the probability an arrival is rejected at some time 
in the interval of  duration T is approximately equal to r. 
Moreover, the error in E(N(t))  at a specified value of 
time would certainly be less than r. Since 

v(z) - v(x)_< v( Y) + 

for all random variables where Z = X + y. then the 
error in V(N(t)) at a specified point in time must be less 
than r + 2~r x / ~ .  The value of  r was never larger 
than 0.5 x 10 -7. 

Figures 2-6 present the results from five different 
comparisons where the situations were taken from Roth- 
kopf and Oren [14]. In each figure, the left vertical axis 
depicts the scale for the exact result computed by inte- 
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grating Chapman-Kolmogorov equations. The right ver- 
tical axis gives the scale for the approximation error, i.e., 
approximation--exact. Of course, a large deviation from 
the zero error line by the approximation error is unde- 
sirable. The averages were computed by sampling the 
processes at each integral value of  time. Figure 2 depicts 
a single server queue starting with exactly 9 in the system. 
Note that the average errors for both approximations are 
less than 1.5 percent of  the time average for the expected 
number in the system. However, the Rothkopf and Oren 
error approaches 20 percent of  E(N(t))  just prior to 60 
time units. Figures 3-6 present results that are more 
representative of  the limiting periodic condition. The 
period of  the input arrival rate is 60 in Figures 4 and 5 
and 24 in Figures 3 and 6. The performance of  the 
approximations is compared subsequent to three cycles 
after the initial condition in Figures 4 and 5 and nine 
cycles in Figures 3 and 6. The initial condition was 
empty and idle for each figure other than Figure 5 which 
is a continuation of the situation depicted in Figure 2. 

Figures 3 and 4 present dynamic results for the 
expected system contents for the one- and three-server 
cases, respectively. The average errors are less than 7.7 
percent of the time average for E(N(t))  in each case. 
Figure 5 represents what Rothkopf and Oren term a 
worst case. Although the errors are as large as 11 percent 
of  the exact values at some time during the interval 
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Fig. 5. Dynamic High UtilizationSingleServerComparison. 
One Server 
Utilization = 0.9 
~(t) = i + SIN (2nt/60) 

Average E(N(t)) Value = 14.029 
Average R-0 Error = 0.77 
Average Polya Error = -0.45 
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Fig. 6. Dynamic VarianceComparison. 

One Server 
Utilization = 0.6 
I (t) = i + SIN (2nt/24) 
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Table II. Test Case Specifications. 

Case s p a T 

1 1 0.5 0 240 
2 1 0.5 0.25 240 
3 1 0.9 0 2400 
4 1 0.9 0.25 240 
5 2 0.5 0 240 
6 2 0.5 0.25 240 
7 2 0.9 0 2400 
8 2 0.9 0.25 240 
9 3 0.5 0 240 

10 3 0.5 0.25 240 
11 3 0.9 0 2400 
12 3 0.9 0.25 240 
13 5 0.5 0 240 
14 5 0.5 0.25 240 
15 5 0.9 0 2400 
16 5 0.9 0.25 240 

portrayed, the average Rothkopf  and Oren error is 5.4 
percent of  the average exact result while the Polya av- 
erage error is 3.2 percent of  the exact result. The results 
in Figure 5 depict a continuation o f  the conditions 
described in Figure 2, and this comparison illustrates the 
fact that the errors can increase for both approximations 
over time. Figure 6 illustrates another property of  both 
approximations, viz., errors in approximating the vari- 
ance exceed those for the mean on a percentage basis. 
For the Rothkopf  and Oren approximation the average 
error in the variance is 33 percent o f  the time average for 
V(N(t)). The errors for the Polya approximation are 
much smaller for this comparison, but later results show 
that the second moment  errors for the Polya tend to be 
larger than those for the first moment.  Note  than in these 
comparisons where the sinusoidal component  o f  the 
arrival rate is very large, the Polya surrogate appears to 
be more accurate than the Rothkopf  and Oren approxi- 
mation. 

Table II specifies 16 additional cases employed to 
test the approximations where the initial state for each 
case was always empty and idle. The input arrival rate 
w a s  

Table Ill. Error and Percentage Ranges for E(N(t)). 

?~(t) = 0.5 + a • sin (2~rt/120) 

where a was either 0 to specify a transient solution or 
0.25 to specify a periodic solution. The simulated time T 
was either 240 time units for the periodic cases that 
represent two periods or long enough in the transient 
cases to permit E(N(t)) to achieve its steady state result 
within two significant figures. The single server service 
rate /~(t) was a constant in each case and chosen to 
represent either a 0.5 utilization factor or 0.9. The aver- 
age utilization is 

p = 0 .5 / s~ t .  

At each integral value o f  time including the initial 
condition, the approximations were compared to the 
corresponding results from the Chapman-Kolmogorov  
equations integrations. Thus, at least 241 comparisons 
were made for each case, and the 0.9 utilization transient 
cases were subjected to 2401 comparisons. An error was 
computed for the output quantities: E(N(t)), V(N(t)), 
w(t), and off). Also a percentage error was calculated 
based upon a percentage of  the Chapman-Kolmogorov  
results. Since each case started at the empty and idle 
condition this percentage error test could be severe. For 
example, a small error in a quantity such as w(t) when t 
is small could result in a large percentage error. The 
performance measures tabulated are 

average error, 
error range = maximum error - min imum error, 
error percent range = maximum percent error - mini- 
mum percent error. 

Note  that the minimum error was no greater than 0 since 
each case was started at time zero when the approxima- 
tion had no error. Values for cases 13, 14, 15, and 16 are 
omitted for Rothkopf  and Oren's approximation since 
they did not publish correction constants for more than 
three servers. Tables III, IV, V, and VI present results 
for the four queueing system performance measures. 

Polya Surrogate 

Case Average Error Avg. Error Range Percent Range 

Rothkopf and Oren 

Error Avg. Error Range Percent Range 

1 0.98 0.00013 0.00095 0.096 
2 1.2 0.0017 0.027 2.5 
3 8.3 0.047 0.10 1.4 
4 7.3 0.0065 0.32 4.9 
5 1.3 0.84E-4 0.00059 0.044 
6 1.5 0.0012 0.029 1.8 
7 8.8 0.045 0.094 1.1 
8 7.7 0.0024 0.27 3.4 
9 1.7 -0.0029 0.0031 0.18 

10 1.9 -0.0014 0.029 1.8 
11 9.4 0.039 0.086 0.97 
12 8.1 -0.0085 0.22 2.5 
13 2.6 -0.0092 0.0099 0.38 
14 2.8 -0.0068 0.030 0.99 
15 11. 0.023 0.075 0.77 
16 9.2 -0.033 0.10 1.2 

0.22E-5 0.0062 0.75 
0.36E-3 0.079 6.2 

-0.0023 0.18 3.3 
-0.063 0.95 18. 
-0.030 0.032 2.4 
-0.026 0.060 6.7 
-0.048 0.096 1.1 

0.0072 0.64 11. 
-0.037 0.040 2.3 
-0.038 0.087 6. 
-0.13 0.23 2.2 

0.014 0.40 6.5 
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Table IV. Error Averages and Ranges for V(N(t)) 

Case Average 

Polya Surrogate Rothkopf  and Oren 

Error Avg. Error Range Percent Range Error Avg. Error Range Percent Range 

1 1.9 -0.026 0.030 1.5 
2 3.2 -0 .060 0.16 10. 
3 75. -8 .0  13. 15. 
4 38. 3.4 8.1 18. 
5 2.2 -0 .017 0.020 0.90 
6 3.4 -0.045 0.10 6.4 
7 76. -7 .5  12. 14. 
8 38. 2.9 6.9 15. 
9 2.4 -0 .024 0.027 1.1 

10 3.6 -0 .044 0.091 4.5 
11 76. - 7 . 2  12. 13. 
12 38. 2.4 6.0 13. 
13 3.1 -0.055 0.059 1.8 
14 4.2 -0.065 0.12 2.7 
15 76. - 6 . 6  1 I. 12. 
16 37. 1.7 4.2 10. 

0.0044 0.042 2.6 
0.089 0.67 23. 
2.7 5.5 I 1. 
9.9 24. 48. 
0.021 0.19 31. 

-0 .050 0.74 50. 
2.8 10. 320. 

15. 28. 310. 
0.022 0.23 32. 

-0 .15 1.1 53. 
4.3 14. 680. 

19. 32. 671. 

Table V. Error Averages and Ranges for w(t). 

Case Average 

Polya Surrogate Rothkopf  and Oren 

Error Avg. Error Range Percent Range Error Avg. Error Range Percent Range 

1 0.98 0.00013 0.00095 0.096 
2 1.2 0.0017 0.027 2.5 
3 15. 0.085 0.19 i .4 
4 13. 0.012 0.58 4.9 
5 0.65 0.83E-4 0.0009 0.09 
6 0 90 0.0011 0.025 3.2 
7 1-, -0 .080 0.17 1.3 
8 12. 0.0047 0.48 3.9 
9 ~,.46 0.0060 0.0062 14. 

10 0.71 -0.0042 0.022 16. 
11 13. 0.069 0.16 14. 
12 i l .  -0 .016 0.38 15. 
13 0.25 -0 .019 0.020 62. 
14 0.47 -0.015 0.026 64. 
15 12. 0.038 0.14 65. 
16 10. -0 .062 0.22 66. 

0.18E-5 0.0062 0.75 
0.36E-3 0.079 6.2 

-0.0041 0.32 3.3 
- 0 .  I 1 1.7 18. 
-0 .014 0.020 3.6 
-0 .012 0.051 14. 
-0 .066 0.17 2.0 

0.039 1.2 14. 
-0 .024 0.027 5.7 
-0 .024 0.075 25. 
-0 .21 0.38 3.3 

0.064 0.84 11. 

Table VI. Error Averages and Ranges for o(t). 

Case Average Error Avg. 

Polya Surr-gate 

Error Range Percent Range 

Rothkopf  and Oren 

Error Avg. Error Range Percent Range 

1 0.49 0.19E-7 
2 0.50 0.14E-3 
3 0.89 -0 .84E-  
4 0.86 -0.16E- .', 
5 0.99 0.~ 3E-7 
6 0.99 ! .6E-3 
7 1.8 1.7E-4 
8 1.7 1.8E-3 
9 1.5 0.39E-4 

t0 1.5 0.32E-3 
11 2.7 0.15E-4 
12 2.6 0.40E-3 
13 2.4 0.2E-3 
14 2.4 0.97E-3 
15 4.5 0.22E-4 
16 4.2 -0 .002 

0.00013 0.027 
0.0054 1.5 
0.0012 0.15 
0.033 4. 
0.00014 0.014 
0.010 1.3 
0.0018 0.I 1 
0.055 3.5 
0.00095 0.097 
0.017 1.6 
0.030 0.18 
0.075 3.2 
0.0030 0.15 
0.021 1.1 
0.0084 0.30 
0.088 2.2 

0.13E-6 0.0020 0.50 
0.38E-3 0.0090 2.4 

-0.68E-5 0.0081 1.2 
0.0017 0.11 15. 
0.27E-3 0.0030 0.35 
0.40E-3 0.018 2.3 
0.14E-3 0.0058 0.39 

-0.0023 0.17 11. 
0.50E-3 0.005 0.36 
0.0012 0.030 2.3 
0.5 IE-3 0.0048 0.25 

-0.87E-3 0.19 8.1 
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Fig. 7. Dynamic  Waiting Time Comparison. 

Five Servers 
Utilization = 0.9 
l(t) = 0.5 + 0.25 SIN ( 2~t/120 ) 
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From an overall viewpoint, these tables clearly indi- 
cate the superiority of the Polya surrogate approximation 
over the one developed by Rothkopfand Oren. However, 
in some instances their approximation did produce better 
performance measure values. Relatively speaking, Roth- 
kopf and Oren's approximation performs best for the 
single server cases. Note that the largest percentage error 
in predicting the mean number in the system using the 
Polya surrogate is 4.9 over all cases. The percentage 
errors for V(N(t)) are larger and range up to 18 percent; 
however, they are much less for many cases. Table V 
presents some interesting comparisons for the expected 
waiting times. Although the absolute errors are less for 
the Polya approximation, some of the percentage errors 
are better using Rothkopf and Oren's approximation. 
Investigation of the detailed calculations shows that the 
largest percentage error produced by the Polya surrogate 
for w(t) occurs when t = 1 and the true value is quite 
small. This large error quickly damps out percentagewise 
although its magnitude grows. Figure 7 shows this pat- 
tern for case 16. Also, the Polya surrogate performs well 
approximating the expected output rate o(t). The largest 
percentage error shown in Table VI is 4.0 over all cases. 
A more detailed examination indicates that, on a per- 
centage basis, the errors do not grow as servers are 

2 1 6  

added, but they are larger with a sinusoidal input and 
increase with congestion. 

Although the Polya surrogate is more accurate, it 
does require the integration of five equations as opposed 
to two required by Rothkopf and Oren's approximation. 
Table VII presents the cpu times in seconds for each case 
on an Amdahl 470. Note that the compute time used by 
the Polya surrogate is larger but not significantly so. On 

Table VII. cpu Time (seconds). 

Case Kolmogorov Polya Surrogate Rothkopf  and Oren 

1 3.7 4.1 3.8 
2 15. 4.8 4.2 
3 45. 20. 16. 
4 19. 4.4 3.9 
5 3.6 3.9 4. 
6 14. 4.6 4.2 
7 45. 20. 16. 
8 18. 4.5 3.9 
9 3.8 3.9 3.8 

10 14. 4.6 4.2 
11 45. 20. 16. 
12 17. 4.4 4. 
13 4. 3.9 - -  
14 14. 4.6 - -  
15 48. 20. - -  

16 17. 4.6 
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the other hand, the Polya surrogate is much less expen- 
sive to use than integrating the Chapman-Kolmogorov 
equations. In several cases, the cpu times is as little as 25 
percent of the Chapman-Kolmogorov equation ap- 
proach. Interestingly, the light traffic transient cases 
show a compute time by the Chapman-Kolmogorov 
equation approach that is about identical to the two 
approximations. This result occurs because the SLAM 
Runge-Kutta algorithm automatically adjusts the step 
size and takes fewer steps with the Chapman-Kolmo- 
gorov equations for those cases. 

4. Conclusions 

The Polya surrogate representation closely approxi- 
mates the important output quantities desired from a 
nonstationary M/M/s queue. Moreover, these results are 
obtained with a significant reduction in cpu time over 
direct integration of the Chapman-Kolmogorov equa- 
tions. Also, the user is relieved of the responsibility for 
selecting a truncation point for the maximum queue 
length in approximating an unlimited waiting line ca- 
pacity..Both of the above problems with direct integra- 
tion of the Chapman-Kolmogorov equations are partic- 
ularly bothersome when ~(t) >s~(t) during rush periods. 
In addition, the core savings may be significant for some 
applications. Most fourth-order Runge-Kutta algorithms 
implemented in continuous simulations require from 
eight to eleven words of core storage per variable inte- 
grated. These economies make the Polya surrogate ap- 
proximation attractive when representing queueing de- 
lays as part of a larger simulation. 

The computational algorithm for the Polya surrogate 
uses the parameter b, and the basis for selecting its value 
involves a series of runs to find a value of b giving 
desirable error results for the case specified on p. 209. 
The possibility does exist for improving the performance 
of the Polya by recalibrating the approximation by em- 
ploying adjusted values of b for different cases. 

However, when analyzing a single station queue with 
multiple servers without involving a computer simula- 
tion, the savings indicated in this paper may not be worth 
the possible introduction of error, no matter how small. 
If performed with care, integration of the Chapman- 
Kolrnogorov equations is very accurate. 
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