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Figure 1: Two augmented formulas and their accompanying augmentation specifcations written in FFL (“Formula Formatting 
Language”). FFL is designed to be concise, writable, readable, and integrable into web-based document authoring environments. Augmenta-

tions are specifed using selectors (dark blue) that match classes of expressions, and properties (magenta) that apply augmentations like 
color and labels to formulas. The language can be processed with its live runtime ofering rapid feedback to notation authors. The pictured 
augmentations are adapted from those in documents by Hohman et al. [27] and Murad [52]. 

ABSTRACT 
As interest grows in learning math concepts in felds like data sci-
ence and machine learning, it is becoming more important to help 
broad audiences engage with math notation. In this paper, we ex-
plore how authoring tools can help authors better style and label 
formulas to support their readability. We introduce a markup lan-
guage for augmenting formulas called FFL, or “Formula Formatting 
Language,” which aims to lower the threshold to stylize and diagram 
formulas. The language is designed to be concise, writable, readable, 
and integrable into web-based document authoring environments. 
It was developed with an accompanying runtime that supports live 
application of augmentations to formulas. Our lab study shows that 
FFL improves the speed and ease of editing augmentation markup, 
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and the readability of augmentation markup compared to base-
line LATEX tools. These results clarify the role tooling can play in 
supporting the explanation of math notation. 
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1 INTRODUCTION 
Notation poses a barrier to understanding mathematical ideas. 
Whether in the physics classroom, data science research papers [53], 
or programming documentation [7], readers fnd important knowl-
edge locked behind the formalisms of formulas and symbols. Con-
sider a reader encountering this formula in a research 
paper [27]: 

This formula represents a linear regression model. If the reader 
is not familiar with its idioms, they are likely to fnd it hard to 
understand. For instance, what is “�” and how is it diferent from 
“�”? �0 and �1 share a common base—how are they related? What 
is the intuition of the formula as a whole? 

Suppose the formula was instead shown as follows: 

This alternative presentation helps a reader to unpack the mean-

ing of a formula. It helps the reader understand the purpose of 
the formula as predicting a target value from a set of input fea-
tures. It clarifes that “�” terms correspond to features, and “�” 
terms correspond to weights. And it brings the formula into a 
realm of familiarity by relating “�0” and “�1” to the ideas of inter-
cept and slope terms that are taught in algebra class. Annotated 
formulas like these help readers grasp their meaning at glance. 
The annotations’ value becomes particularly pronounced when 
applied to formulas of yet greater complexity and domain speci-
fcity. 

In this paper, we seek to advance the state of the art in tooling 
that allows authors to create augmented formulas like these. A 
recent survey by Head et al. [26] reveals the challenges present in 
building efective interactive tooling for this purpose. Conventional 
formula typesetting tools often make it a “struggle” to augment 
formulas. Formula markup gets too messy, and environments pro-
vide insufcient support for experimenting with cross-document 
formula styling choices. 

Our contribution is a reinvention of the process of augment-

ing formulas in typesetting tools. We envision formula augmenta-

tion as a process that involves a crisp markup language and live 
incremental feedback. We reify this vision in FFL, or “Formula 
Formatting Language,” a markup language for formula augmen-

tation. FFL is targeted for web-based math document authoring. 
Its key innovations are a design that splits augmentation markup 
from formula markup, a CSS-inspired familiar syntax, support for 
cross-document styling, and an implementation that permits live 
feedback. 

We assess FFL’s impact on the authoring experience in a con-
trolled usability study where 28 participants used FFL and a La-
TeX baseline. In complex editing tasks, FFL increased efciency 
and self-reported ease, and led to more readable augmentation 

code versus the baseline. For tasks involving writing simple aug-
mentations from scratch, FFL and LaTeX showed no signifcant 
diference. Reviewing the evidence in the framework of the cog-
nitive dimensions of notation [4], our study suggests FFL reduces 
viscosity, hard mental operations, and error proneness, while bene-
fting from closeness of mapping and progressive evaluation. These 
results suggest that FFL-like languages could make the formula 
augmentation task better supported in contemporary authoring 
tools. 

In summary, this paper contributes: 

• The design of FFL, a markup language for augmenting for-
mulas, designed for readability and efciency, 

• A runtime supporting live application of augmentations to 
formulas in web-based authoring environments, and 

• Evidence from a usability study that FFL leads to faster and 
easier edits to augmentation markup and results in more 
readable markup. 

2 BACKGROUND AND RELATED WORK 
In this section, we discuss why authors might wish to augment 
notation and then situate our system amid related work. 

2.1 Notation and augmentation 
Math notation is difcult to read. It has been described as a lan-
guage of its own, requiring practice to understand [1]. Over time, 
the human perceptual system can become trained to recognize struc-
tures in formulas [44]. Readers learn idioms in formulas through 
repeated exposure, such that experts can spot structures in for-
mulas novices miss [63]. For novices, notation poses a barrier 
to understanding mathematical texts and is often cited as a chal-
lenge in self-teaching machine learning [7] and reading research 
papers [53]. 

Subtle changes to the presentation of notation can afect its 
readability. For instance, coloring and annotating formulas can 
reduce cognitive load in solving algebra problems [77]. Readers 
can be aided in understanding operator precedence by altering 
which letters are used for variables and spacing between vari-
ables [21, 24]. The design space for augmented notation is large. 
Dragunov and Herlocker [15] propose augmenting formulas with 
symbols defnitions, annotations that show how variables are ma-

nipulated across stages of derivation, and controls that adjust the 
level of detail in a derivation. Head et al. [26] and Hohman et 
al. [28] expand this design space, with the former describing 16 
classes of augmentations. In this paper, we explore how authoring 
environments could be extended to equip authors with tools to 
perform common some of the most common kinds of augmenta-

tions. 

2.2 Tools for augmenting notation 
Markup languages. One of the most common kinds of tools for 

writing and augmenting notation is the markup language. Markup 
languages, like TeX [33], allow authors to write formulas in plain 
text and render them as cleanly typeset formulas. Some such tools 
provide support for augmentation. LaTeX [57], for instance, sup-
ports the addition of color with the color [8] package, and labels 
with macros from the mathtools [43] and annotate-equations [30] 



FFL: Live Styling and Labeling of Typeset Math Formulas UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA 

packages. Recent research suggests that these tools could beneft 
from cleaner markup design, better defaults, and better support for 
cross-document style changes [26]. 

The popularity of TeX as a language for formula typesetting 
has led to web-based TeX formula typesetters. One such tool is 
KaTeX [16]. The context of the web provides new opportunities 
for augmentation. KaTeX ofers authors the \htmlClass for as-
signing HTML classes to arbitrary expressions. CSS can then be 
used to apply styles to those expressions. Our goal with FFL was 
to support augmentation of TeX formulas in web-based authoring 
environments using a language similar to CSS. 

Notation augmentation is a feature of several recent markup 
languages for math and science communication. Nota [11] and 
Heartdown [38] let authors specify defnitions of symbols, reveal-
ing symbol defnitions in the margins of selected formulas when 
clicked upon. Curvenote’s editor API [12] provides support for 
parametric LaTeX formulas, where numeric values can be substi-
tuted into formulas as users interact with widgets. manim [67] 
supports the creation of animations of math formulas with step-
by-step builds and incremental annotation. We share motivation 
with these projects, aiming to create an extensible augmentation 
language and runtime for static math texts [26]. 

Why focus on augmentation in markup editors rather than other 
sorts of document editors? Markup, and in particular TeX, is used 
pervasively within the sciences and academia. It is a preferred tool 
for disseminating and archiving mathematical ideas [50]. One study 
suggests writers can enter notation-dense passages more efciently 
with TeX than with structured editors [32]. TeX is used widely 
enough that WYSIWYG editors like Word have incorporated it 
as a language for formula input [45]. We see the development of 
efective markup-based augmentation tools as a natural springboard 
for eforts to develop better augmentation tools generally. 

Structured editors. WYSIWYG document editors like Word [48] 
sometimes provide structured formula editors. These editors can 
be used to augment formulas by selecting labels from menus, or 
by applying their tools for formatting text. Toolkits like MathType 
make such functionality available as a plugin to other editing appli-
cations [69]. One advantage of these tools is that their WYSIWYG 
design makes augmentation afordances easier to discover. 

Vector graphics editors. Formulas can be augmented using vector-
based graphics editing software; Head et al.’s study describes Google 
Slides [22], Inkscape [65], Mathcha [54], and PowerPoint [47] as 
several tools that authors are already using. Some of these tools 
require authors to render formulas outside of the environment 
(e.g., with CodeCogs [41]) and import the render as a bitmap or 
vector graphics into the editor. These tools are often both famil-

iar to authors and fexible—authors can add augmentations using 
the full complement of text formatting and shapes the tools pro-
vide. FFL and vector graphics editors occupy two complementary 
areas of the augmentation design space, with FFL focusing on sup-
porting typesetting experience and transferable styles, and vec-
tor graphics editors ofering fexible augmentation through direct 
manipulation. 

Sketch and gesture. Formulas can also be written and augmented 
as sketches [35, 36, 60, 78]. In sketching tools, augmentations are 

naturally supported when authors are given the ability to change 
ink color and draw free-form shapes. Some sketching tools support 
unique augmentations, like linking expressions to sketched physical 
objects [35, 60], or manipulating expressions with gestures [46, 
72, 78]. Some of these afordances could be adapted as advanced 
augmentations for languages like FFL in the future. 

Automation. As text understanding techniques improve, it may 
be possible to automatically augment notation. Myriad projects 
have explored the ability to detect the positions of symbols [25] 
and parse formulas [2, 42] from arbitrary input documents. Should 
it become possible to reliably detect expressions and their meaning 
automatically, augmentations could be added to documents with 
reduced input from authors. 

2.3 Tools for augmenting texts 
Our work draws inspiration from HCI research that develops pow-
erful text authoring afordances generally. 

Repetitive text editing. One challenge in editing longer texts is 
making repetitive edits when revising repeated phrases and ideas. 
HCI research has proposed numerous techniques to do so, including 
linked editing [68], detection and propagation of edits [49, 55], and 
editable macros [23]. FFL’s approach is to allow authors to use CSS-
style selectors to indicate which expressions to augment. These 
selectors allow authors to apply and edit augmentations for many 
related expressions at once. 

Diagrams. One of the facilities of FFL is to support the creation 
of simple formula diagrams where descriptive labels are linked to 
expressions. Researchers have developed powerful domain-specifc 
languages supporting for diagramming like Penrose [76] and Blue-
fsh [56]. In comparison to these prior toolkits, the aim of FFL’s 
labeling system is to support ease and conciseness in supporting a 
common, simple sort of labeling, among other augmentations. 

Live feedback. FFL supports third-level or “edit-triggered” live-
ness, according to Tanimoto’s taxonomy of liveness [66]. Liveness 
has been a central feature of dozens of research systems [58]. Its use 
in LaTeX tooling (e.g., [14, 20]) may arise from the fact that LaTeX 
documents require time-consuming compilation to view the efect 
of a change. FFL incorporates liveness to equip authors with more 
rapid feedback as they are experimenting with augmentations. 

3 DEMO 
FFL is designed to help authors augment formulas with a light-
weight syntax and live feedback. Here, we illustrate the envisioned 
user experience of FFL with a scenario. 

Imagine Auggie, a researcher writing an article in a web-based 
scientifc authoring environment, where text is written in Mark-

down, HTML, or an HTML-compatible dialect. They are writing a 
passage where they introduce the idea of linear regression.1 

They 
wish to help readers understand the gist of this formula, despite 
the dense appearance of the formula and the accompanying prose: 

(continued on next page) 

1
This example is adapted from an excerpt from Hohman et al. [27]. 
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Auggie desires to augment the formula using colors and labels 
to expose the formula’s meaning. Their editor has been extended 
with support for FFL, which allows them to experiment with these 
augmentations. Auggie frst explores how they could use of color 
to help readers correlate expressions in the formulas with their 
descriptions in the text. 

To start, Auggie colors the target variable �. To do this, they 
write the following FFL selector and style in a text editor adjacent 
to their document markup. This helps ensure that the augmentation 
markup does not clutter the formula or document markup. 

This markup represents a request to fnd all instances of symbols 
described by the LaTeX literal “$y$” and color them red. The efect is 
instantaneous: as soon as Auggie fnishes typing “red,” the symbol 
� is colored red everywhere it appears in the document: 

The next step is to use color to help readers fnd the description 
of � in the text. As Auggie is writing in a web-based environment, 
they can mix in some CSS to format the text. The CSS can be written 
alongside the FFL. To style the text, Auggie surrounds the defnition 
phrase with a span tag and gives it the class “target.” Then they 
give the defnition the same color by adding a selector for the span, 
“*.target”, next to the FFL selector. 

Auggie is not content with the augmentation, wishing to try 
out other, less harsh colors. As they experiment with other colors 
from DarkRed to Crimson, they see the visual efect live, receiving 
the rapid feedback common to online Markdown editors, but less 
common to LaTeX document editors that require recompilation. 

Now that Auggie is content with the colors they chose, they no-
tice that they wish for the subscripts of � expressions to be colored 
as well. To augment all � expressions with subscripts, Auggie only 
needs to make a small edit. They add “$y_*$” to the list of selectors, 
and see the crimson color applied to the intended expressions. 
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The next step is to help readers understand the other major 
expressions in the formula, namely the � ’s (blue) and �’s (purple). 
Auggie decides to assign each a distinct color that will help a reader 
look up the respective defnitions in the text. To do so, they create a 
similar style block for each group of variables they wish to augment: 

After inspecting the augmented passage, Auggie wishes that 
�0 was not given the same color as the other � terms, because it 
is better described as an intercept rather than a slope term. They 
revert the style for just �0 by adding an additional one-line rule, 
setting the color of �0 to inherit, as one might do in CSS, rather 
than accept the color of the other � terms. 

Auggie is satisfed with this result. Throughout their exploration, 
FFL provided a lightweight syntax for making cross-cutting nota-
tion augmentations with live feedback. 

Further design space exploration. There is more than one way to 
augment a formula to expose its meaning. Auggie considers another 
strategy that they think will make their article more skimmable 
which relies less on the textual description (omitted below) and 

instead exposes descriptions of expressions in labels. FFL helps 
them experiment with this style of augmentation as well. 

Auggie starts from a fresh FFL style sheet, this time adding 
augmentations in the form of labels. They frst add a label for �, 
describing it as the “target” of prediction. 

They then add labels for the remaining expressions. This is a 
matter of adding one style block per annotated expression. 

The labels render live as Auggie does so. The labels are automat-

ically laid out to reduce overlap and maximize adjacency of labels 
to expressions. In this way, Auggie can think about augmentations 
at a high level, avoiding the work of manually arranging labels. 
Notably, the labels are tolerant to future changes to the formula: 
should Auggie add additional � and � terms to the formula, the 
labels will move as the formula adjusts its position. 

When they are fnished with this document, Auggie could save 
their style sheet for use in other documents with notation that 
deserved to be described in similar ways. 

4 SYSTEM 
In this section, we describe FFL, a language and live runtime for 
augmenting typeset math formulas in web documents. FFL was de-
signed and developed following an iterative approach. Fine-grained 
decisions about syntax design were informed by pilot usability 
studies with early versions of the tool. 

Acknowledging the challenges of writing augmentation markup 
revealed in prior work [26], the goals of FFL were as follows: 

• Basic augmentations should be easy to read and write; 
• Authors should receive rapid feedback on their designs; 
• Augmentations should be aesthetically pleasing; 
• Authors should be supported to experiment with cross-cutting 
augmentation choices. 
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Below, we describe the two main components of the FFL toolkit: 
the language, and the supporting live runtime. 

4.1 Language design 
The FFL language is a CSS-like language for specifying augmen-

tations for formulas. FFL was designed to resemble CSS due to 
the latter’s use as a separable styling language in web authoring 
environments. We envisioned authoring environments where even-
tually authors write FFL and CSS side-by-side. 

Like CSS, FFL in essence consists of dec-
$x_i$, . . . { 

larations of style rules. Each style rule block 
color: red; 

consists of a selector indicating what expres-
. . . 

sions the augmentation applies to, and a set 
} 

of property declarations describing augmen-

tations to apply, resembling the inset fgure. 
One advantage of this format is that FFL can be easily transpiled 

to CSS for a myriad of simple styles (e.g., color, font weight). Below 
demonstrates the current expressive potential of FFL’s syntax. A 
visual summary of language constructs appears in Figure 2. Our 
focus is to describe the language primitives, and the augmentations 
we have built into the language to date. We intend the language to 
be further extended to support additional augmentations. 

4.1.1 Selections. An author conveys which math expressions to 
augment by writing selectors. FFL provides a fexible selector syn-
tax, allowing for literal matches to LaTeX substrings, wildcards, 
predefned classes, and combinators. 

Literal Selectors. The simplest way to select an expression is to 
write the LaTeX for the expression one wishes to augment. Writing 
a literal selector entails writing a LaTeX string, with its typical ($) 
delimiters on either side. Literal selectors are resilient to some sim-

ple variations in how an expression might be written in LaTeX: for 
instance, the selector “$x_i$” matches the expression �� regardless 
of whether it is written “$x_i$” and “$x_{i}$”. 

Wildcards. Authors can select syntactically related expressions 
using wildcards. Two kinds of wildcards are provided, inspired 
by the glob [34] wildcard syntax used in Unix command lines. 
Character wildcards match single characters, and are written “?”. 
For instance, “$x_?$” selects all symbols that have � as a base and 
a single character as subscripts. Sequence wildcards match strings 
of unbounded length, and are written “*”. For instance, “$f(*)$” 
selects � (), � (0), � (�), and � (� + 1), among other expressions. 
Authors can match the literal characters “?” and “*” by escaping 
them with a backslash (i.e., as “\?” and “\*”). 

Expression classes. FFL 
provides classes for com-

mon categories of ex-
pressions, such as super-
scripts, subscripts, and 
constants. All classes are 
preceded by dots (“.”), 
like typical CSS classes. 

Class Matches 
.constant 0, 1, · · · 

, ��� .superscript �0 , · · · 
.subscript �0, �� , · · ·

1 � .numerator 
2
, � , · · · 

1 � .denominator 
2
, � , · · · 

Supported classes are shown in the inset fgure. These classes be-
come particularly powerful when used within combinators, permit-

ting an author to select, for instance, squares as the appearance of 
the literal “2” within superscripts. 

Indexed groups. To disambiguate between selections, we ofer 
another special class named “.group”, referring to portions of the 
formula markup surrounded by double braces (e.g. {{. . . }}). The 
modifer “:nth(�)” can be appended to any selector to select the 
�-th matching expression. Authors select a specifc group by using 
the modifer in conjunction with the “.group” selector. 

Combinators. Selectors can be composed to make them more gen-
eral or more precise. Selections can be made more precise with the 
intersection combinator, “intersection(selector1, selector2, ...),” 
which selects expressions matching all selectors provided as ar-
guments. A shorthand for intersection is provided as “selector1 
selector2 ...,” which is reminiscent of CSS’s compound selec-
tors; with this shorthand authors can express intersections as if 
they were selecting selector2 from within selector1. The union 
combinator, as with CSS, uses a comma (“,”) to separate selectors, 
matching any expression that matches one of the selectors. 

CSS Selectors. To select HTML elements from within an FFL style 
specifcation, an author can prepend an asterisk (“*”) to the name 
of a class (e.g., “*.cls0”). 

4.1.2 Augmentations. The FFL language supports specifcation of 
two kinds of augmentations: styles and labels. Permitted augmenta-

tions include color and labels, the two most commonly used kinds 
of augmentations according to a recent survey [26].2 

Style. Styles are alterations to the expression elements, like color, 
font weight, and background. They correspond roughly to CSS prop-
erties, and share the same names (e.g., “color,” “font-weight”). 
Because these properties are transpiled into CSS, they accept all of 
the same property values as CSS (e.g., colors can be specifed using 
HTML color codes, hex codes, “rgba(. . . )” values). As described 
in Section 5.4, some styles require additional processing on the 
backend to provide the expected styling behavior in the unique 
setting of HTML typeset math formulas. 

Labels. FFL provides language primitives for creating and cus-
tomizing labels that describe expressions. The “label” property 
allows an author to defne and show a label for an expression: upon 
specifying this property, a label will appear next to the frst appear-
ance of that expression in a formula, connected to that expression 
with a leader line. The “label-marker” property allows the author 
to specify what kind of marker should connect the label to the 
expression. The marker can be either a leader line or an extent 
marker, i.e., a bracket shown in the margin; extent markers are 
particularly useful for labeling long expressions. 

Label placement is automatic, and is designed to avoid over-
lapping labels and to place labels as close to their corresponding 
expressions as possible. A label is applied only once to any given for-
mula; it is anchored to the frst appearance of the labeled expression. 
Should an author wish to customize the placement of labels, they 

2
An analysis of the spreadsheet in Head et al.’s [26] supplemental material shows 69% 
of augmented formulas in their sample made use of either font color or labels. 
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SELECTORS
LaTeX literal

character wildcard

sequence wildcard

union

intersection

font color

weight

background color

f(x1 ,x2 )

f(x1 ,x2 )

f(x1  ,x2  )

f(x1 ,x2 )

f(x1 ,x2 )

STYLES

point

x

point

x

point

x

LABELS

point

x

f(x1  ,x2  )

f(x1  ,x2  )

f(x1  ,x2  )

$x$

$x_?$

$f(*)$

$x_1$, $x_2$

intersect($x_?$, .constant)

color: red

font-weight: bold

background-color: gold

basic label

... { label: point }

extent marker

... { ... label-marker: extent }

position

... { ... label-position: above }

label styles

*.ffl-label { font-size: 8pt }

Figure 2: A visual specifcation of the FFL language, including its constructs for selecting expressions, styling, and labeling 
formulas. Each row names a language feature, provides an example snippet of FFL, and shows the result of its application to one of the 
example formulas � (�1, �2) or � . 

may do so by defning the “label-position” property to place 
the label either “above” or “below” the formula. To support further 
label customization, all labels allow values of “html(. . . )” (sani-
tized for security by default), or are generated as HTML text spans 
with the class “ffl-label” class. In this way, their appearance (e.g., 
font size, font family, color) can be confgured with normal CSS 
properties by using the CSS selector “*.ffl-label.” 

4.2 Live runtime 
FFL was designed to be incorporated into arbitrary web-based text 
editing tools as a live styling utility, and for integration into articles 
generated from these editors. In this section, we describe how the 
runtime supports integration as a live styling tool. 

4.2.1 FFL library. To ease the work involved in integration, FFL is 
implemented as a light wrapper around widely-used KaTeX [16] 
tool. KaTeX is a tool that typesets LaTeX formulas on web pages. It 
is used in a variety of web-based authoring tools, including Dropbox 
Paper, Observable, Gatsby, Messenger, and Quill. It is also one of 
the supported formula rendering engines in Jupyter Lab [31]. 

To integrate FFL into a web authoring environment, a developer 
would do the following. First, they would create editor widgets 
(like text areas) for authors to write FFL in. Second, they would 
replace calls to KaTeX’s formula typesetter with a call to a nearly 
equivalent API on FFL. That method has the signature: 

ffl.render(latex: string, ffl: string, 
renderTo: HTMLElement, options?: KatexOptions): void 

where “latex” is the LaTeX markup for the formula, the “ffl” 
parameter takes in the FFL style specifcation, “renderTo” is a ref-
erence to the HTML element into which to render the augmented 
formula, and “options” is an object of KaTeX options for typeset-
ting the formula. If called without a “renderTo” target, the method 
returns the HTML string for the rendered formula. 

4.2.2 Supporting live evaluation. To support live evaluation of an 
FFL style specifcation in an editing environment, the one necessity 
is to trigger a new call to “ffl.render” whenever the LaTeX or the 
FFL specifcation changes. To demonstrate the feasibility of such 
an integration, we implemented a Markdown editing environment 
with live FFL integrated. To develop this environment, we frst 
created a document editor as a simple text area. When authors 
write Markdown in the text area, the Markdown is passed to the 
markdown-it [64] open source Markdown parser and then rendered 
into a document view next to the Markdown editor. 

We created a pluggable markdown-it extension to call the FFL 
API, rather than the KaTeX API, to render math formulas; the FFL 
API is called with an FFL style specifcation that authors write in 
another text box adjacent to the Markdown text box. Live evaluation 
is supported by triggering a parse of the Markdown when either 
the Markdown or the FFL specifcation is edited. A demo of the 
authoring environment appears in the accompanying video. 

5 IMPLEMENTATION 
The FFL runtime required an implementation that would trans-
late specifcations of augmentations to rendered HTML formulas. 
Figure 3 summarizes the translation process and the intermediate 
representations involved. Here, we briefy describe our implemen-

tation of augmentations in the FFL runtime in terms of each time 
the API is triggered.3 

5.1 Parsing the FFL specifcation 
FFL markup is parsed using a custom parser for the FFL grammar. 
The parser was generated by Peggy [13], a PEG parser generator, 
from an FFL grammar that resembles a subset of CSS grammar. 

3
Our implementation is hosted at penn-hci.github.io/ffl. 

https://penn-hci.github.io/ffl
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Figure 3: The generation of an augmented formula from 
LaTeX and an FFL style specifcation. FFL wraps the KaTeX 
library [16], shimming itself into KaTeX’s token parsing to detect 
and annotate expressions of interest. KaTeX generates an annotated 
HTML formula, which can be styled with CSS that FFL generates 
from its specifcation. FFL augments the generated HTML with 
labels by post-processing the generated HTML. 

5.2 Matching LaTeX token sequences 
Next, the selectors are used to identify ranges of formula LaTeX 
that need to be augmented. To do this, we use KaTeX to lex both 
the selectors and the formula LaTeX into token sequences, with a 
small amount of parsing to normalize implicit groups. Then, we 
scan the LaTeX formula token stream for sub-sequences matching 
the selector, similarly tokenized by KaTeX. A segment and selector 
are considered matching if they contain a sequence of matching 
tokens. Literal tokens are considered matching if they are the same. 
The wildcards “?” and “*” match either a single or a sequence of 
tokens respectively. The current implementation of sub-sequence 
search permits matching overlapping sub-sequences, and wildcard 
matches for the character and sequence wildcards. 

Once a matching sub-sequence is found, KaTeX must be told to 
augment the characters in that sub-sequence. To do this, we insert 
special tokens before and after the sub-sequence. These special to-
kens instruct KaTeX to insert temporary span tags with a generated 
class name around the expression in the rendered formula HTML. 
While it inserts these special tokens, FFL creates a map from FFL 
selectors to the selector-specifc class names, from which it builds 

a CSS style sheet that applies FFL styles (e.g., color, font weight) to 
the expression in the rendered HTML formula. 

We implement the search for matching sub-sequences of tokens 
in a way that does not require changing KaTeX’s implementation. 
Our approach is to handle matching in a custom KaTeX macro that 
we wrap around each formula. With KaTeX, macros are defned as 
JavaScript functions. When KaTeX expands a macro, it does so by 
calling the corresponding JavaScript function, passing the function 
the sequence of tokens found in the macro’s arguments. We wrote 
a custom macro that, when expanded by KaTeX, takes the tokens of 
the formula, searches for matching sub-sequences, modifes those 
sub-sequences as described in the paragraphs above, and returns 
the modifed tokens to KaTeX for further processing. 

5.3 Applying styles 
Once KaTeX produces the HTML for a rendered formula, FFL tra-
verses the HTML to associate styles with matched expressions. FFL 
searches for the previously inserted spans, removing them and ap-
plying generated CSS class names to the HTML elements between 
them. Then, it appends the generated CSS (including color and font 
weight) to a “style” element in the DOM, which has the efect of 
styling the matched elements in the expression. 

5.4 Drawing overlays and underlays 
Finally, all remaining kinds of augmentations collected during the 
HTML tree traversal are applied, including labels and background 
colors. Labels are drawn as relatively positioned HTML elements 
on the margins of the formula inside an SVG [71] element. Label po-
sitions are determined by locating the position and outer bounding 
box of all tokens in its corresponding expression. Label positions are 
adjusted to reduce overlap by Labella [74]. The formula is padded 
with additional space so that labels do not occlude the surrounding 
text. Background colors are implemented as relatively positioned 
boxes placed behind the corresponding expression; this implemen-

tation is necessary to support background colors for selections 
whose constituent elements have a joined area that difers from the 
rectangular bounding box of the whole expression to ensure that 
there is only one background box, rather than multiple overlapping 
boxes for each character element in the expression. 

5.5 Technical limitations 
Our current technical approach sufces for reifying the ideas behind 
FFL in a working tool. Here, we describe technical limitations that 
should be addressed to increase FFL’s fexibility and robustness. 

Behavior of sequence wildcard. One revelation from our develop-
ment was that the glob-style “*” wildcard is not well-defned for 
strings with the inherent hierarchy of LaTeX formulas. The current 
behavior of “*” is to match any terminal token or group at the same 
group level as the “*” in the selector. This decision remains to be 
more closely examined. 

Block styles. For some styles, FFL transpiles directly to CSS. For 
others like background color, border, and padding, FFL requires 
custom solutions. The default approach of FFL is to apply a style 
to all tokens separately in an expression. Rather, block styling 
augmentations—like padding—should apply to an expression in 
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whole. To overcome this brittleness for block styling, we believe 
future versions of FFL should use KaTeX’s render to MathML [18] 
instead of HTML; MathML contains structures that can be more 
easily detected and augmented for these styles, and has become 
mainstream into most major browsers earlier this year. 

Performance. Preliminary tests on a commodity laptop show that 
rendering a formula with FFL takes tens of milliseconds (i.e., 35ms 
to augment “�” in the linear regression formula from Section 3). 
This runtime is imperceptible for single augmentations applied 
to single formulas. Our tests lead us to attribute latency to the 
time it takes FFL to insert augmentation markers into KaTeX’s 
token stream: latency increases as more matches are found in the 
formula (e.g., it takes 50ms to augment expressions matching “$*$” 
in the same demo formula). As the number of augmentations and 
formulas grows, adjustments will be required (e.g., optimizations, 
parallelization) for FFL to continue to deliver instant feedback. 

6 EVALUATION 
To evaluate FFL’s impact on the experience of authoring augmen-

tations, we conducted an in-lab usability study. The study was 
designed to answer the following questions: 

(1) How does FFL infuence authors’ ability to create and edit 
augmentations? 

(2) How could tools like FFL be improved to better support 
formula augmentation? 

The study consisted of a controlled comparison between FFL 
and a LaTeX baseline for augmentation creation and editing tasks, 
followed by an exploratory authoring task with FFL. 

6.1 Participants 
We sought participants with experience authoring math documents 
with LaTeX. Participants were recruited from graduate student mail-

ing lists at a computer science program at a private university, with 
the sole prerequisite of prior experience writing LaTeX formulas. 

33 participants were recruited in total. The vast majority were 
master’s students; 7 were students in a joint bachelor’s / master’s 
program. 3 described themselves as software developers, 1 as an 
academic researcher, and 1 as a teacher. 

Participants’ prior experience with LaTeX was as follows: 24% 
reported less than 1 year of experience; 48% 1–2 years, 21% 3–5 
years, and 6% reported more than 5 years. 55% used LaTeX weekly, 
18% monthly, and 24% less than monthly. Participants reported 
their comfort with LaTeX as a median of 4 on a 5-point Likert scale 
(� = 0.8, IQR = 1). They were considerably less comfortable with 
CSS, with a median comfort level of 2 out of 5 (� = 1.0, IQR = 1). 

6.2 Procedure 
6.2.1 Setup. All study sessions were conducted in person in an HCI 
usability study lab. Participants completed tasks using a computer 
with a large external monitor, keyboard, and USB mouse. Progress 
was managed by a custom web app we built to facilitate the study. 
This app opened the user interfaces participants were expected 
to use for tasks, and pre-loaded them with task stimuli. It also 
opened questionnaires after each task. For FFL tasks, participants 
used a custom live editing environment. For LaTeX tasks, they used 

Overleaf [40]. Two participants needed to complete the tasks on 
a personal laptop instead of the lab computer; these participants’ 
data were used in our qualitative analysis but omitted from the 
quantitative analysis (Section 6.3). 

6.2.2 Tutorial. Participants were given 10-minute tutorials of how 
to augment formulas with both of the interfaces under study—FFL 
and the LaTeX baseline. A member of the research team demon-

strated how to perform key augmentation actions, like selecting 
expressions, coloring them, and labeling them with line and extent 
labels, both above and below the formula. Tutorial materials were 
designed to maximize parity in how the interfaces were introduced 
while minimizing complexity of the learning material. Participants 
were asked to practice each feature that was introduced on a sample 
formula. They were provided with a cheat sheet for each interface 
to use as a reference during the tasks. 

6.2.3 Interfaces. The two interfaces participants used were a live 
editor with FFL support, and a baseline LaTeX environment. The FFL 
interface is the same as the environment described in Section 4.2.2. 
The interface provides only basic support for error recovery: when 
an author enters invalid FFL, the interface reports that an error was 
found (without any character positions), while continuing to show 
the render of the most recent valid FFL. In LaTeX, participants 
were taught how to create augmentations using \textcolor to 
color expressions, \overbrace or \underbrace to introduce labels 
with extent markers, and annotate-equations [30] to introduce 
labels with leader lines, including the optional argument yshift 
for adjusting the vertical position of labels. 

6.2.4 Tasks. Each participant completed four timed tasks and a 
single exploratory task. After each task, participants completed a 
questionnaire refecting on their experience. 

Timed tasks. Participants completed four timed tasks, in two 
pairs. The frst pair of tasks was C1 and C2, which were “creation” 
tasks. In these tasks, participants created augmentations for an 
unaugmented formula to match a provided screenshot. Each task 
required participants to add 3 colors and 3 extent labels. 

The second pair of tasks was E1 and E2, which were “editing” 
tasks. In these tasks, participants were given a formula that was 
already augmented and asked to modify 4 aspects of the augmenta-

tion to match a provided screenshot. This latter pair of tasks was 
designed to refect the setting where authors need to interact with 
augmentation markup when evolving their designs. 

Within each pair of tasks, participants completed one task with 
FFL and one task with the LaTeX baseline. Within pairs, tasks were 
designed to be as similar to each other in difculty as possible. Par-
ticipants were randomly assigned interface and task order within 
each group of tasks, with the following variations, counterbalancing 
to reduce the efect of task or interface order: 

Task 1 Task 2 Task 3 Task 4 
C1 FFL C2 LaTeX E1 FFL E2 LaTeX 
C2 FFL C1 LaTeX E2 FFL E1 LaTeX 
C1 LaTeX C2 FFL E1 LaTeX E2 FFL 
C2 LaTeX C1 FFL E2 LaTeX E1 FFL 

All tasks were timed to compare the speed of completion. A task 
concluded when a participant completed the task and reported they 



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Wu et al. 

were done, or when they reached an imposed time limit of 6 minutes 
and 30 seconds. The facilitator verifed completion by comparing 
the participant’s output to a reference result using a rubric that 
permitted very small diferences in color and label position. The task 
duration was chosen by observing that pilot participants completed 
most tasks within 5 minutes; we then increased task duration to 
the longest that could be accommodated in the hour-long study. 
Over 80% of tasks were completed before reaching the time limit. 

Exploratory task. Finally, participants were given 10 minutes 
to augment a short document resembling the one from Section 3, 
and asked to augment it in a way that made the formula easier to 
understand. They were encouraged to explore the augmentation 
features, and allowed to ask about how to use FFL to achieve their 
goals. They were also asked to follow the think-aloud protocol [37], 
as demonstrated by their facilitator. 

6.2.5 Qestionnaire and interview instruments. After each timed 
task, participants were asked to complete a brief questionnaire 
reporting how difcult the task was, and to comment on how the 
interface could have better supported them in their tasks. At the 
conclusion of the study, participants completed a retrospective 
questionnaire refecting on their experience with the interfaces 
overall. Then, they were interviewed for several minutes as the 
researcher asked follow-up on questions motivated by observations 
or responses to the questionnaire. 

6.3 Analysis 
To examine the efect of interface on task timing and participants’ 
self-reported ease, we ft them with linear mixed-efects models [6]. 
These models take task, task order, and interface and their interac-
tions as fxed efects, and participant as a random efect. Signifcance 
was assessed using an F-test using Satterthwaite’s estimate of ef-
fective degrees of freedom [61], with �-values corrected by the 
Holm–Bonferroni method [29]. To compare participants’ responses 
to Likert scale questions about the two interfaces, we performed 
Wilcoxon signed-rank tests [73]. For these tests, only data from 
the frst 28 of 33 participants was considered, omitting participants 
who used a personal laptop, and considering a subset for which 
there was complete balance across interface and task order. 

Observation notes, open-ended questionnaire feedback, as well 
as interview transcripts were analyzed following a thematic anal-
ysis approach [5]. Two authors performed an open coding pass, 
each analyzing half of the observation and questionnaire data and 
then merging the results. Another two authors reviewed the codes 
comprehensively. The four authors worked together to revise and 
organize themes, and to check the alignment between excerpts and 
themes. One author then reviewed interview transcripts to identify 
excerpts relating to central themes that emerged from the analysis 
that had not yet been captured in the observation notes. 

7 RESULTS 
In this section, we describe our fndings. Participants are referred 
to by pseudonyms P1–33. P1–28 were included in our quantitative 
tests and results. P32–33 completed a variant of the study that in-
volved use of a personal laptop. To convey representativeness of the 
fndings, observations are accompanied with numbers indicating 
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Figure 4: Task completion time. Participants completed tasks 
E1 & 2 signifcantly faster with FFL than with LaTeX. Box-
and-whiskers depict median, quartiles, and extrema (within 1.5 
IQR). An additional, taller vertical line annotates the average. Indi-
vidual times are rendered as dots in the background. Incompletes 
are encoded as maximum time. Per-row mean time and standard 
deviation appear in Table A.2. 

how many participants an observation refects (e.g., “(5)” means 5 
participants). 

7.1 Efect of FFL on task success 
Overall, there was signifcant improvement in task time, self-reported 
ease, and readability when participants used FFL for editing tasks 
(E1 & 2), and no perceived diference for creation tasks (C1 & 2). 

7.1.1 Completion rate. Overall, participants completed tasks at 
about the same rate when using FFL and LaTeX. Most participants 
succeeded in most tasks: altogether, participants reached the time 
limit on less than 20% of tasks, amounting to 6 failed FFL tasks and 
12 failed LaTeX tasks. The most difcult task for LaTeX seemed to 
be task E2 where 8 participants failed to complete in the LaTeX con-
dition (� = 0.025, Fisher’s Exact Test [17]). When asked to indicate 
the extent to which they were able to do what they wanted on a 
7-point Likert scale (Figure 5), there was no signifcant diference 
between FFL and LaTeX (� = 0.792, � = 0.565). A complete listing 
of per-task completion rates appears below in Table A.1. 

7.1.2 Speed. As depicted in Figure 4, participants completed the 
complex editing tasks (E1 & E2) more quickly with FFL than with 
LaTeX. A linear mixed-efects model found the interface to have 
a signifcant efect (� = 6.7, � = 0.02). Other signifcant efects 
include task (� = 11, � = 2 × 10−5) and task-interface interaction 
(� = 6.8, � = 0.001); task order was not signifcant. As implied by 
the task-interface interaction efect, the efect of FFL was stronger 
for some tasks than others. Fitting the same model to the pairs of 
creation (C1 & 2) and editing (E1 & 2) tasks separately, the efect of 
FFL was signifcant for editing tasks (� = 27, � = 7 × 10−5), but not 
for the creation tasks (� ≈ 1). While we note that the test statistics 
are infuenced by our choice to cut of participants at 6.5 minutes, 
a visual inspection suggests the above trends hold for participants 
who were not cut of: FFL decreased task time for the 0th–75th 
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Figure 5: Self-reported ease for timed tasks. On the whole, 
participants reported greater ease with FFL than with LaTeX. 
Data comes from responses when participants were asked to indi-
cate agreement (from "strongly disagree" (1) to "strongly agree" (7)) 
with the statement in the left column of the bar chart. Numbers 
indicate percentages of total responses relative to the row. Per-row 
medians and arithmetic means appear in Tables A.3–A.5. 

quartile participants, none of whom were cut of before completing 
the task (see Figure 4). Our observations during the study revealed 
no clear signs that participants were further from completion when 
cut of in the FFL condition than in the baseline condition. 

7.1.3 Ease. Participants reported signifcantly higher ease in com-

pleting tasks with FFL than with LaTeX (� = 16, � = 6 × 10−4). 
On a 7-point Likert scale, participants reported a median score of 
7, versus 6 with LaTeX (Figure 5). Models ft on subsets of tasks 
showed the diference in ease to be signifcant for editing tasks E1 
& 2 (� = 19, � = 2 × 10−4), but not tasks C1 & 2 (� ≈ 1). 

Additional questions on the questionnaire indicate aspects of 
FFL that might have led to greater ease. Following the editing tasks 
E1 & 2, participants reported signifcantly greater ease in reading 
augmentation code (Figure 5) in FFL than with LaTeX (� = 23, 
� = 6 × 10−5). In the retrospective questionnaire, participants 
compared the ease of using FFL to LaTeX for a variety of primitive 
augmentation operations (Figure 6), reporting greater ease with 
FFL for coloring parts of formulas (� = 7, � < 0.002, mdn. 5 vs. 
4), labeling parts of formulas (� = 0, � < 0.002, mdn. 5 vs. 4), 
and applying the style to multiple parts of the formulas (� = 24, 
� < 0.002, mdn. 5 vs. 2), on a 1–5 scale. 

7.1.4 Diferences in success. While on the whole participants re-
ported high levels of comfort with LaTeX in the introductory ques-
tionnaire, there was still considerable individual variation in com-

fort with both LaTeX and CSS. When we ft our model to take 
background factors into account,4 

we observed years of experi-
ence of LaTeX as a signifcant predictor of task speed (� = 10, 
� = 5 × 10−5), with interface becoming insignifcant (� = 5.4, 
� = .1). For the creation tasks alone, years of experience with 
LaTeX is not signifcant (� = .3). For the editing tasks, years of ex-
perience is signifcant (� = 10, � = 3 × 10−4), and interface remains 
a signifcant efect (� = 27, � = 6 × 10−5). Other background factors 

4
When ftting a model with background factors as fxed efects, we remove the random 
efect of participant ID. 
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Figure 6: Ease-of-use ratings in retrospective questionnaire. 
Ease was reported on three dimensions for both FFL and LaTeX 
(shown in the leftmost labels on the bar chart). 

such as self-reported comfort with LaTeX or CSS were not signif-
cant predictors. Overall, additional years of experience of LaTeX 
reduced task completion times, though the trends vary considerably 
when broken down by task and interface pair. 

7.1.5 Interpretation. In summary, participants completed tasks 
about as often with FFL and LaTeX. FFL led to quicker completion, 
with less difculty. Post-hoc tests showed the efect to be signifcant 
for editing tasks E1 & 2, but not creation tasks C1 & 2. We explain 
this discrepancy with two observations. 

First, E1 & 2 were performed after C1 & 2. Some participants 
reported an initial learning curve with FFL, or encountered gaps or 
misconceptions regarding FFL during the frst pair of tasks. These 
gaps and misconceptions were sometimes resolved by the time 
they began the second pair of tasks. Learning efects may provide 
a partial explanation: among 33 participants, our observation notes 
showed 23 participants making 35 critical mistakes (i.e., writing a 
spec that yielded compilation errors or incorrect outputs) in C1 & 
2, reduced to 18 participants making 23 mistakes in E1 & 2. Gaps 
and misconceptions may have also been reduced when participants 
were given access to starter code in editing tasks E1&2. 

Second, E1 & 2 required participants to work with considerably 
more complex and denser markup along with some augmentation 
already integrated to begin with. E1 & 2 refect a setting where a 
formula has been augmented and the authors wish to experiment 
with alternative designs. We interpret this efect to indicate that FFL 
manifests more value as augmentation markup becomes larger; in 
the LaTeX baseline, this results in the markup languages becoming 
increasingly tangled and difcult to evolve, as discussed in greater 
detail in the next section. 

7.2 Efect of FFL on authoring experience 
In this section, we review observations, interviews, and question-
naire data to arrive at a comprehensive understanding of how FFL 
supports, and in some cases works against, the experience of for-
mula augmentation. Overall, participants found FFL’s “core” fea-
tures useful (Figure 7). This section introduces strengths and short-
comings of FFL in terms of the cognitive dimensions of notation [4], 
a framework used in programming language design to examine and 
discuss the efect of language design choices. 
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Figure 7: Usefulness of features. Shown are participants’ re-
sponses to the question “How useful was [feature] when you used 
FFL to augment math formulae?” 

7.2.1 Strengths. FFL improved the authoring experience as follows: 

Viscosity. FFL reduced the number of actions required to accom-

plish some goals. This was most clear when participants edited 
augmentations for multiple expressions at once. Participants fre-
quently expressed appreciation for the ability to make cross-cutting 
changes with a single style specifcation (5), and wished for a sim-

ilar capability for LaTeX (4). Making cross-cutting changes was 
described as more “efcient” (P4) and “easier” (P12, P24) with FFL. 
All but one participant described the ability to apply one style to 
multiple expressions as very useful (Figure 7). 

Hard mental operations. FFL made it easier for participants to 
orient themselves to augmentation markup. LaTeX was the less pre-
ferred choice for reading markup (Figure 5). LaTeX was described as 
difcult to read (16) and used complex or unintuitive syntax (6). The 
association of augmentations with expressions is difcult to under-
stand due to the dependence on copious numbers of nested braces 
to associate them (14). Reading LaTeX was therefore described as 
“holding a lot of moving pieces in my mind” (P18), where “it is a 
nightmare to look for what I am editing” (P13). Reading challenges 
arose when participants had difculty identifying expressions to 
which LaTeX commands applied (2), mapping from parts of the ren-
dered formula to the corresponding LaTeX (5), reading and editing 
the markup (3), and pinpointing sources of errors (2). 

In comparison, FFL seemed easier to read—we rarely heard sim-

ilar criticisms levied against FFL. 16 participants explicitly men-

tioned their appreciation for the separation of formula markup from 
augmentation markup; this division was called a “big advantage” 
and “very powerful” (P13). The separation of annotation code from 
formula code was reported as “very useful” by the vast majority of 
participants in the retrospective questionnaire, and “somewhat use-
ful” by all remaining participants. Participants rated the readability 
of FFL signifcantly higher than LaTeX (Section 7.1.3). 

Error proneness. FFL removed a class of errors with its approach 
to associating expressions with augmentations. As mentioned in 
prior work [26], one challenge of using LaTeX to augment formulas 
is to use braces correctly to associate augmentations with expres-
sions. Participants described braces as “annoying” (P28), fnding it 
difcult to fnd matching pairs of braces (6), and desiring the ability 

to fnd out which braces are redundant or missing (2). Braces were 
the most common kind of error we observed: at least some partic-
ipants made a bracing error for each task (8 participants for task 
C1; 2 for C2; 6 for E1; and 8 for E2). Participants also encountered 
issues with using \def correctly, writing arguments to commands 
in the right order, and other LaTeX compilation errors. As noted by 
participants, FFL did not see these difculties due to its approach 
to associating augmentations with expressions (2). 

Closeness of mapping. In several situations, FFL provided a close 
mapping to the ways participants could envision expressing aug-
mentations. Two participants described that the metaphor of CSS, 
including its use of selectors and attributes, was “intuitive.” The 
design of selectors allowed participants to indicate which expres-
sions they wished to augment by selecting, and then copying and 
pasting, those expressions from the formula into their FFL speci-
fcation (2). When asked to indicate the degree to which FFL “did 
what I expected to,” all but 2 participants agreed, and over half of 
the participants strongly agreed. 

On the whole, participants developed comfort with a large num-

ber of primitives in a short amount of time. By the time they per-
formed the exploratory authoring task, participants had developed 
enough comfort with the language that they frequently made use 
of color (24), labels with leader lines (19), and labels with extent 
markers (11). These augmentations made use of myriad language 
features, including single-character wildcards (15), sequence wild-
cards (15), unions (11), and the adjustment of label positions (9). 
See Appendix Section B for examples. 

Progressive evaluation. The favorite feature of FFL was the in-
stant feedback supported by the FFL runtime. More participants 
described this feature as “very useful” than any other feature. 7 
participants explicitly indicated their appreciation for instant feed-
back. In contrast, the LaTeX toolset required slower compilation of 
the document to see the efect of one’s changes to the markup (2), 
which was described as “not very convenient” (P21). 

7.2.2 Shortcomings. While FFL improved the experience of author-
ing formulas in numerous ways, it also introduced new challenges 
meriting new solutions to design and training: 

Closeness of mapping. FFL was not without a learning curve. 
Some participants found aspects of the CSS-like syntax challeng-
ing (8); this is in part because participants generally had low self-
reported comfort with CSS (Section 6.1). Participants also expressed 
discomfort with the glob syntax [34] for wildcards (1), and other 
aspects of LaTeX’s math mode (5). These experiences serve as a 
reminder that FFL expects familiarity with CSS, glob, and LaTeX. 
We expect many authors seeking to use FFL in web documents 
would have this experience; though FFL still imposes a threshold to 
entry. An additional indicator of a learning curve is that 8 partici-
pants reviewed the cheat sheet before beginning their frst task with 
FFL, suggesting that the tutorial was not enough to internalize the 
syntax. Similar challenges were observed for the LaTeX baseline, 
with participants forgetting commands taught in the tutorial (3) or 
failing to properly use commands from the cheat sheet (3). 

While participants largely succeeded in selecting expressions 
with the selector syntax, several participants desired support for 
direct selection through mouse interaction with the formula (3). 
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Similarly, participants desired the ability to highlight expressions 
corresponding to a selector (3). Participants also desired code gen-
eration (1) and no-code features (2), where style code could be 
partially or completely generated for the author. Direct selection 
features are beyond the scope of a language design, though they 
might serve as useful additions to an editing environment. 

Error proneness. FFL removed some classes of errors, though they 
introduced friction for others. The current runtime provides only 
very limited support for error tolerance, reporting, and recovery. 6 
participants introduced typos and had difculty understanding why 
their augmentation markup was not working as intended when they 
failed to notice those typos. Some of these typos arose from chal-
lenges related to “closeness of mapping”—several participants used 
incorrect delimiters that perhaps best refected a lack of familiarity 
with the base CSS syntax. 3 participants wished that FFL continued 
to render live even when errors were present in the markup. For 
these reasons, participants desired numerous standard editor afor-
dances that assist in reducing errors, including autocomplete (7), 
syntax highlighting (2), and templates (3). 

Visibility. Any sufciently complex language contains constructs 
users are unaware of. We observed several such constructs for FFL 
that were either undiscoverable or poorly suited once discovered. 

First, participants expressed confusion around scoping augmen-

tations. The default behavior of the FFL runtime is to apply selec-
tors globally across an entire document. What should an author 
do when they wish for their augmentation rules to apply to only a 
single expression, formula, or single passage? Several authors had 
this specifc question (8). The current solutions in FFL are (1) the 
intersect command; (2) an :nth selector that selects an indexed 
occurrence; (3) creating an indexable group in the formula markup 
by adding brackets around it; (4) using style overriding (i.e., using 
one rule to style all expressions, and a second rule to revert it for 
some subset of those expressions). These features were largely un-
used, perhaps due to issues of discoverability or learnability. At 
least 2 participants expressed some confusion with overriding. 

Second, participants desired more infuence over the appearance 
of labels, including label size (4), color (3), and font-weight (3). While 
the .ffl-label class is applied to all labels for just this purpose, 
participants were not often aware of it. These undiscovered features 
represent opportunities to either increase visibility or redesign 
constructs to be easier to guess. 

Expressiveness. Expressiveness is not a cognitive dimension of 
notation, though we discuss it here as a catchall for controls partic-
ipants desired that FFL did not provide. One often-desired feature 
was the ability to assign a single label to multiple expressions simul-

taneously. For example, in the exploratory task, participants often 
wanted to create one label for “slope” and connect it via leader lines 
to all four � terms in the formula (9). The default behavior of FFL is 
to assign a label to only the frst matched expression in a formula. 
As one participant noted, this made the behavior of FFL inconsis-
tent, because style rules applied to all matching expressions, while 
labels applied to only the frst matched expression (P23). Several 
participants wished for diferent behavior from the automatic label 
layout algorithm (4), and desired the ability to fne-tune label layout 
beyond FFL’s current capabilities (3). 

8 DISCUSSION 
Our study showed greater speed, ease, and readability of markup 
code with FFL for the second pair of tasks, which were complex 
editing tasks. Evidence from the study suggests FFL reduces viscos-
ity, hard mental operations, and error proneness, while providing 
afordances promoting closeness of mapping and progressive eval-
uation. These fndings suggest the promise of the ideas behind FFL, 
namely the separation of formula and augmentation markup, live 
feedback, and its approach to syntax. In this section, we examine 
the generalizability of the fndings and opportunities for advancing 
the research agenda of which FFL is a part. 

8.1 Limitations 
The generalizability of our fndings is necessarily limited to tasks 
and the sample of participants we studied. When interpreting the 
results, it is useful to take stock of how authors of web-based math 
documents would difer from participants in the study. 

First, we anticipate that real-world authors would have greater 
motivation to use the tools. If an author chose to use FFL, it would 
refect a desire to make notation more approachable. We expect a 
real-world author might therefore experiment more ambitiously 
with the tools compared to study participants who may not have 
had prior experience explaining formulas in their writing. 

Second, they would likely be familiar with the formula markup, 
having written it themselves: for both the LaTeX and FFL conditions, 
this would likely lead to faster task completion times. 

Third, users “in the wild” would not have the luxury of having 
the tools demonstrated over a 10-minute tutorial, and therefore 
may have more difculty in a walk-up-and-use experience. 

And fnally, their FFL markup would have likely gotten longer if 
they were augmenting a full-length document. Our lab study only 
assigned single-formula tasks because it made it possible for us to 
select pairs of real-world augmentations where each member of 
the pair was of approximately equal complexity. Some tasks did 
require making cross-cutting changes. That said, participants in 
our study did not get a chance to encounter complexities that might 
arise with longer style specifcations, and we did not observe all 
the difculties to be seen with scoping augmentation. 

Of these limitations, the fourth and ffth are indicators that our 
lab study reveals only a subset of challenges using FFL; the remain-

ing limitations suggest that task performance could improve for 
FFL, or both FFL and LaTeX, in more realistic settings. Challenges 
to using FFL should be further documented by refning the FFL 
toolkit and evaluating its use in real authoring settings. 

8.2 Future work 
A frst line of future research should address opportunities in ex-
tending FFL, some already revealed in the study (Section 7.2.2). 

Scoping. Authors necessarily wish to restrict augmentations to 
particular expressions, formulas, and passages. While the FFL lan-
guage provides such capabilities, these were either not discovered 
or used inefectively by participants. A future solution could be to 
let authors specify local “scopes” of application in the document 
markup (e.g., labeling individual passages or formulas) in order to 
refer to them in selectors. 
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Resilient expression matching. FFL’s current approach to match-

ing token sequences leads to some brittleness in matching expres-
sions that are rendered the same way, but have diferent LaTeX 
markup (e.g., in the current implementation, $a_0^1$ matches 
“$a_0^1$” but not “$a^1_0$,” even though they are rendered identi-
cally). This was largely not a problem for participants in the study, 
though we fnd this undesirable in our own use. FFL provides some 
fexibility to address cases like these, but we believe a more robust 
implementation of FFL may beneft from matching patterns with 
abstract syntax trees, rather than concrete token sequences. 

Further improvements. As noted in Section 7.2.2, FFL should be 
extended with the ability to apply one label to multiple expressions, 
more precisely adjust the positions of labels, and better recognize 
and recover from syntax errors. 

This research also points the way to follow-up research on math 
augmentation that extends into new sorts of tooling. 

Direct augmentation. Some participants desired assistance in 
writing selectors, understanding selections, and expressing styles. 
They proposed the ability to directly select them, highlight rendered 
expressions that are matched by selectors, and generate styles (Sec-
tion 7.2.2). We see FFL as a stepping stone to interactive authoring 
tools involving direct augmentation like those described by partici-
pants, where FFL is used as a substrate, similarly to how backend 
visualization grammars like Vega-Lite [62] enables visualization 
exploration interfaces like Voyager [75]. 

Animated formulas. FFL was designed to augment static texts, 
like blog articles or online textbooks. What would an augmenta-

tion language look like for dynamic presentations of notation, like 
animations on the popular 3Blue1Brown [59] YouTube channel for 
explaining math, where formulas are built up step-by-step and an-
notated gradually with color and labels? We see FFL as a starting 
point for developing grammars of animated notation. However, new 
primitives would have to be designed, as they have in other areas 
with generalized visualization annotation DSLs for animation [19]. 

Making texts interactive. One pattern of augmentation is creating 
interactive formulas, where readers can tinker with the values of 
expressions and see how it infuences downstream computations 
in the formula [26]. Prior tools like Idyll [10], Tangle.js [70], and 
Potluck [39] envision the creation of parametric documents where 
values update reactively as users interact with controls. Extensions 
to FFL could unify such afordances with its syntax, perhaps even 
taking advantage of the computation a formula represents to auto-
matically map values in one part of a formula to values elsewhere. 

Accessibility. Augmentations specifed in a language like FFL 
encode additional meaning about a formula, such as what sym-

bols make up meaningful expressions, and what those expressions 
mean. This information should ideally be surfaced in a way that is 
accessible to blind and low-vision readers. FFL could be extended 
to provide cues to screen readers to read a formula aloud in ways 
that improve upon the default reading order. 

9 CONCLUSION 
Our controlled lab study yielded two results. First, in complex edit-
ing tasks, FFL led to faster and easier editing of augmentation 
markup compared to a LaTeX baseline, while yielding more read-
able markup. Second, for simpler tasks where authors wrote simple 
augmentations from scratch, we observed no signifcant diferences 
between FFL and the baseline. Our study ofers signs that FFL re-
duces viscosity, hard mental operations, and error proneness, while 
supporting closeness of mapping and progressive evaluation. This 
paper demonstrates the potential of tools like FFL that extend au-
thoring environments to support the practice of augmenting nota-
tion. We hope tools like FFL bring about more pervasive authoring 
of approachable explanations of math notation. 
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Avg./Mdn. Score (1-7) Task E1 Task E2 
FFL 6.25/6.0 6.00/6.5 
LATEX 5.06/5.0 3.61/3.0 

Avg./Mdn. Score (1-7) Task C1 Task C2 Task E1 Task E2 Exp. Task 
FFL 6.06/7.0 5.69/6.5 6.63/7.0 5.44/5.5 6.30/7.0 
LATEX 6.00/6.0 6.29/7.0 5.86/6.0 4.72/5.0 N/A

Avg./Mdn. Score (1-7) Task C1 Task C2 Task E1 Task E2 Exp. Task 
FFL 5.47/6.0 5.31/5.5 6.38/6.5 5.44/5.5 6.30/6.0 
LATEX 5.00/5.0 5.24/5.0 5.13/6.0 3.61/3.5 N/A 

Task C1 Task C2 Task E1 Task E2 
FFL 3 2 0 1 

2 1 1 8LATEX 
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and problem solving. In Proceedings of the Symposium on User Interface Software 
and Technology. ACM, 17–26. 

A DESCRIPTIVE STATISTICS 
Below, we show detailed tables and fgures of descriptive statistics 
collected from the usability study. 

Task completion 

Table A.1: Counts of participants who did not complete timed 
tasks (each count is out of 14 participants). 

Time Task C1 Task C2 Task E1 Task E2 
(s) FFL LATEX FFL LATEX FFL LATEX FFL LATEX 
�̄ 253.3 242.8 258.1 229.2 157.3 206.0 223.4 350.4 
� 97.65 101.1 98.6 95.8 66.4 81.3 87.5 68.1 

Table A.2: Task completion times, reported as arithmetic 
means and standard deviations, by task and interface. 

Self-reported ease 
In the tables below, cells show the mean and median rating across 
participants on a Likert scale of 1–7, where 1 corresponds to “strongly 
disagree” and 7 corresponds to “strongly agree” to a statement. 

Table A.3: Participants’ self-reported ease by task and inter-
face. Participants were asked to indicate their agreement with the 
statement “It was easy to complete the task.” 

Table A.4: Participant self-reported efcacy by task and in-
terface. Participants were asked to indicate their agreement with 
the statement “I was able to do what I wanted with the tool.” 

Table A.5: Participant self-reported sense of readability. Par-
ticipants were asked to indicate their agreement with the statement 
“I found it easy to read the styling code/specifcation.” 

Wu et al. 

B EXAMPLE AUGMENTATIONS 
Below, we show examples of augmentations authors performed in 
the open-ended authoring task on again Hohman et al. [27]. The 
following passage from P26 is representative of most participants’ 
fnished work. It makes use of color to relate expressions to descrip-
tions in the text, and labels to explain several expressions. 

Other participants took diferent approaches. For instance, P13 
used labels alone, believing them to be sufcient for a textbook-
style passage (and that color was better suited for personal notes): 

Some participants experimented more ambitiously with CSS, 
when they had sufcient prior knowledge. For instance, P17 exper-
imented with background-color, font-size, and font-weight 
and expressions, in addition to the other typical augmentations. 
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