
FFL: A Language and Live Runtime for Styling and Labeling
Typeset Math Formulas

Zhiyuan Wu Jiening Li Kevin Ma
wuzed@seas.upenn.edu jiening@seas.upenn.edu makev@seas.upenn.edu

University of Pennsylvania University of Pennsylvania University of Pennsylvania
Philadelphia, PA, USA Philadelphia, PA, USA Philadelphia, PA, USA

Hita Kambhamettu Andrew Head
hitakam@seas.upenn.edu head@seas.upenn.edu
University of Pennsylvania University of Pennsylvania

Philadelphia, PA, USA Philadelphia, PA, USA

Figure 1: Two augmented formulas and their accompanying augmentation specifcations written in FFL (“Formula Formatting
Language”). FFL is designed to be concise, writable, readable, and integrable into web-based document authoring environments. Augmenta-

tions are specifed using selectors (dark blue) that match classes of expressions, and properties (magenta) that apply augmentations like
color and labels to formulas. The language can be processed with its live runtime ofering rapid feedback to notation authors. The pictured
augmentations are adapted from those in documents by Hohman et al. [27] and Murad [52].

ABSTRACT
As interest grows in learning math concepts in felds like data sci-
ence and machine learning, it is becoming more important to help
broad audiences engage with math notation. In this paper, we ex-
plore how authoring tools can help authors better style and label
formulas to support their readability. We introduce a markup lan-
guage for augmenting formulas called FFL, or “Formula Formatting
Language,” which aims to lower the threshold to stylize and diagram
formulas. The language is designed to be concise, writable, readable,
and integrable into web-based document authoring environments.
It was developed with an accompanying runtime that supports live
application of augmentations to formulas. Our lab study shows that
FFL improves the speed and ease of editing augmentation markup,

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0132-0/23/10.
https://doi.org/10.1145/3586183.3606731

and the readability of augmentation markup compared to base-
line LATEX tools. These results clarify the role tooling can play in
supporting the explanation of math notation.

CCS CONCEPTS
• Human-centered computing → Interactive systems and tools.

KEYWORDS
formulas, interactive typesetting, liveness, labels, colors

ACM Reference Format:
Zhiyuan Wu, Jiening Li, Kevin Ma, Hita Kambhamettu, and Andrew Head.
2023. FFL: A Language and Live Runtime for Styling and Labeling Typeset
Math Formulas. In The 36th Annual ACM Symposium on User Interface
Software and Technology (UIST ’23), October 29–November 01, 2023, San
Francisco, CA, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/
10.1145/3586183.3606731

https://orcid.org/0009-0001-8016-5985
https://orcid.org/0009-0008-8077-4650
https://orcid.org/0000-0001-9620-1533
https://orcid.org/0000-0002-1523-3347
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3586183.3606731
https://doi.org/10.1145/3586183.3606731
https://doi.org/10.1145/3586183.3606731
mailto:head@seas.upenn.edu
mailto:hitakam@seas.upenn.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3586183.3606731&domain=pdf&date_stamp=2023-10-29

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Wu et al.

1 INTRODUCTION
Notation poses a barrier to understanding mathematical ideas.
Whether in the physics classroom, data science research papers [53],
or programming documentation [7], readers fnd important knowl-
edge locked behind the formalisms of formulas and symbols. Con-
sider a reader encountering this formula in a research
paper [27]:

This formula represents a linear regression model. If the reader
is not familiar with its idioms, they are likely to fnd it hard to
understand. For instance, what is “�” and how is it diferent from
“�”? �0 and �1 share a common base—how are they related? What
is the intuition of the formula as a whole?

Suppose the formula was instead shown as follows:

This alternative presentation helps a reader to unpack the mean-

ing of a formula. It helps the reader understand the purpose of
the formula as predicting a target value from a set of input fea-
tures. It clarifes that “�” terms correspond to features, and “�”
terms correspond to weights. And it brings the formula into a
realm of familiarity by relating “�0” and “�1” to the ideas of inter-
cept and slope terms that are taught in algebra class. Annotated
formulas like these help readers grasp their meaning at glance.
The annotations’ value becomes particularly pronounced when
applied to formulas of yet greater complexity and domain speci-
fcity.

In this paper, we seek to advance the state of the art in tooling
that allows authors to create augmented formulas like these. A
recent survey by Head et al. [26] reveals the challenges present in
building efective interactive tooling for this purpose. Conventional
formula typesetting tools often make it a “struggle” to augment
formulas. Formula markup gets too messy, and environments pro-
vide insufcient support for experimenting with cross-document
formula styling choices.

Our contribution is a reinvention of the process of augment-

ing formulas in typesetting tools. We envision formula augmenta-

tion as a process that involves a crisp markup language and live
incremental feedback. We reify this vision in FFL, or “Formula
Formatting Language,” a markup language for formula augmen-

tation. FFL is targeted for web-based math document authoring.
Its key innovations are a design that splits augmentation markup
from formula markup, a CSS-inspired familiar syntax, support for
cross-document styling, and an implementation that permits live
feedback.

We assess FFL’s impact on the authoring experience in a con-
trolled usability study where 28 participants used FFL and a La-
TeX baseline. In complex editing tasks, FFL increased efciency
and self-reported ease, and led to more readable augmentation

code versus the baseline. For tasks involving writing simple aug-
mentations from scratch, FFL and LaTeX showed no signifcant
diference. Reviewing the evidence in the framework of the cog-
nitive dimensions of notation [4], our study suggests FFL reduces
viscosity, hard mental operations, and error proneness, while bene-
fting from closeness of mapping and progressive evaluation. These
results suggest that FFL-like languages could make the formula
augmentation task better supported in contemporary authoring
tools.

In summary, this paper contributes:

• The design of FFL, a markup language for augmenting for-
mulas, designed for readability and efciency,

• A runtime supporting live application of augmentations to
formulas in web-based authoring environments, and

• Evidence from a usability study that FFL leads to faster and
easier edits to augmentation markup and results in more
readable markup.

2 BACKGROUND AND RELATED WORK
In this section, we discuss why authors might wish to augment
notation and then situate our system amid related work.

2.1 Notation and augmentation
Math notation is difcult to read. It has been described as a lan-
guage of its own, requiring practice to understand [1]. Over time,
the human perceptual system can become trained to recognize struc-
tures in formulas [44]. Readers learn idioms in formulas through
repeated exposure, such that experts can spot structures in for-
mulas novices miss [63]. For novices, notation poses a barrier
to understanding mathematical texts and is often cited as a chal-
lenge in self-teaching machine learning [7] and reading research
papers [53].

Subtle changes to the presentation of notation can afect its
readability. For instance, coloring and annotating formulas can
reduce cognitive load in solving algebra problems [77]. Readers
can be aided in understanding operator precedence by altering
which letters are used for variables and spacing between vari-
ables [21, 24]. The design space for augmented notation is large.
Dragunov and Herlocker [15] propose augmenting formulas with
symbols defnitions, annotations that show how variables are ma-

nipulated across stages of derivation, and controls that adjust the
level of detail in a derivation. Head et al. [26] and Hohman et
al. [28] expand this design space, with the former describing 16
classes of augmentations. In this paper, we explore how authoring
environments could be extended to equip authors with tools to
perform common some of the most common kinds of augmenta-

tions.

2.2 Tools for augmenting notation
Markup languages. One of the most common kinds of tools for

writing and augmenting notation is the markup language. Markup
languages, like TeX [33], allow authors to write formulas in plain
text and render them as cleanly typeset formulas. Some such tools
provide support for augmentation. LaTeX [57], for instance, sup-
ports the addition of color with the color [8] package, and labels
with macros from the mathtools [43] and annotate-equations [30]

FFL: Live Styling and Labeling of Typeset Math Formulas UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

packages. Recent research suggests that these tools could beneft
from cleaner markup design, better defaults, and better support for
cross-document style changes [26].

The popularity of TeX as a language for formula typesetting
has led to web-based TeX formula typesetters. One such tool is
KaTeX [16]. The context of the web provides new opportunities
for augmentation. KaTeX ofers authors the \htmlClass for as-
signing HTML classes to arbitrary expressions. CSS can then be
used to apply styles to those expressions. Our goal with FFL was
to support augmentation of TeX formulas in web-based authoring
environments using a language similar to CSS.

Notation augmentation is a feature of several recent markup
languages for math and science communication. Nota [11] and
Heartdown [38] let authors specify defnitions of symbols, reveal-
ing symbol defnitions in the margins of selected formulas when
clicked upon. Curvenote’s editor API [12] provides support for
parametric LaTeX formulas, where numeric values can be substi-
tuted into formulas as users interact with widgets. manim [67]
supports the creation of animations of math formulas with step-
by-step builds and incremental annotation. We share motivation
with these projects, aiming to create an extensible augmentation
language and runtime for static math texts [26].

Why focus on augmentation in markup editors rather than other
sorts of document editors? Markup, and in particular TeX, is used
pervasively within the sciences and academia. It is a preferred tool
for disseminating and archiving mathematical ideas [50]. One study
suggests writers can enter notation-dense passages more efciently
with TeX than with structured editors [32]. TeX is used widely
enough that WYSIWYG editors like Word have incorporated it
as a language for formula input [45]. We see the development of
efective markup-based augmentation tools as a natural springboard
for eforts to develop better augmentation tools generally.

Structured editors. WYSIWYG document editors like Word [48]
sometimes provide structured formula editors. These editors can
be used to augment formulas by selecting labels from menus, or
by applying their tools for formatting text. Toolkits like MathType
make such functionality available as a plugin to other editing appli-
cations [69]. One advantage of these tools is that their WYSIWYG
design makes augmentation afordances easier to discover.

Vector graphics editors. Formulas can be augmented using vector-
based graphics editing software; Head et al.’s study describes Google
Slides [22], Inkscape [65], Mathcha [54], and PowerPoint [47] as
several tools that authors are already using. Some of these tools
require authors to render formulas outside of the environment
(e.g., with CodeCogs [41]) and import the render as a bitmap or
vector graphics into the editor. These tools are often both famil-

iar to authors and fexible—authors can add augmentations using
the full complement of text formatting and shapes the tools pro-
vide. FFL and vector graphics editors occupy two complementary
areas of the augmentation design space, with FFL focusing on sup-
porting typesetting experience and transferable styles, and vec-
tor graphics editors ofering fexible augmentation through direct
manipulation.

Sketch and gesture. Formulas can also be written and augmented
as sketches [35, 36, 60, 78]. In sketching tools, augmentations are

naturally supported when authors are given the ability to change
ink color and draw free-form shapes. Some sketching tools support
unique augmentations, like linking expressions to sketched physical
objects [35, 60], or manipulating expressions with gestures [46,
72, 78]. Some of these afordances could be adapted as advanced
augmentations for languages like FFL in the future.

Automation. As text understanding techniques improve, it may
be possible to automatically augment notation. Myriad projects
have explored the ability to detect the positions of symbols [25]
and parse formulas [2, 42] from arbitrary input documents. Should
it become possible to reliably detect expressions and their meaning
automatically, augmentations could be added to documents with
reduced input from authors.

2.3 Tools for augmenting texts
Our work draws inspiration from HCI research that develops pow-
erful text authoring afordances generally.

Repetitive text editing. One challenge in editing longer texts is
making repetitive edits when revising repeated phrases and ideas.
HCI research has proposed numerous techniques to do so, including
linked editing [68], detection and propagation of edits [49, 55], and
editable macros [23]. FFL’s approach is to allow authors to use CSS-
style selectors to indicate which expressions to augment. These
selectors allow authors to apply and edit augmentations for many
related expressions at once.

Diagrams. One of the facilities of FFL is to support the creation
of simple formula diagrams where descriptive labels are linked to
expressions. Researchers have developed powerful domain-specifc
languages supporting for diagramming like Penrose [76] and Blue-
fsh [56]. In comparison to these prior toolkits, the aim of FFL’s
labeling system is to support ease and conciseness in supporting a
common, simple sort of labeling, among other augmentations.

Live feedback. FFL supports third-level or “edit-triggered” live-
ness, according to Tanimoto’s taxonomy of liveness [66]. Liveness
has been a central feature of dozens of research systems [58]. Its use
in LaTeX tooling (e.g., [14, 20]) may arise from the fact that LaTeX
documents require time-consuming compilation to view the efect
of a change. FFL incorporates liveness to equip authors with more
rapid feedback as they are experimenting with augmentations.

3 DEMO
FFL is designed to help authors augment formulas with a light-
weight syntax and live feedback. Here, we illustrate the envisioned
user experience of FFL with a scenario.

Imagine Auggie, a researcher writing an article in a web-based
scientifc authoring environment, where text is written in Mark-

down, HTML, or an HTML-compatible dialect. They are writing a
passage where they introduce the idea of linear regression.1

They
wish to help readers understand the gist of this formula, despite
the dense appearance of the formula and the accompanying prose:

(continued on next page)

1
This example is adapted from an excerpt from Hohman et al. [27].

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Wu et al.

Auggie desires to augment the formula using colors and labels
to expose the formula’s meaning. Their editor has been extended
with support for FFL, which allows them to experiment with these
augmentations. Auggie frst explores how they could use of color
to help readers correlate expressions in the formulas with their
descriptions in the text.

To start, Auggie colors the target variable �. To do this, they
write the following FFL selector and style in a text editor adjacent
to their document markup. This helps ensure that the augmentation
markup does not clutter the formula or document markup.

This markup represents a request to fnd all instances of symbols
described by the LaTeX literal “y” and color them red. The efect is
instantaneous: as soon as Auggie fnishes typing “red,” the symbol
� is colored red everywhere it appears in the document:

The next step is to use color to help readers fnd the description
of � in the text. As Auggie is writing in a web-based environment,
they can mix in some CSS to format the text. The CSS can be written
alongside the FFL. To style the text, Auggie surrounds the defnition
phrase with a span tag and gives it the class “target.” Then they
give the defnition the same color by adding a selector for the span,
“*.target”, next to the FFL selector.

Auggie is not content with the augmentation, wishing to try
out other, less harsh colors. As they experiment with other colors
from DarkRed to Crimson, they see the visual efect live, receiving
the rapid feedback common to online Markdown editors, but less
common to LaTeX document editors that require recompilation.

Now that Auggie is content with the colors they chose, they no-
tice that they wish for the subscripts of � expressions to be colored
as well. To augment all � expressions with subscripts, Auggie only
needs to make a small edit. They add “y_*” to the list of selectors,
and see the crimson color applied to the intended expressions.

FFL: Live Styling and Labeling of Typeset Math Formulas UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

The next step is to help readers understand the other major
expressions in the formula, namely the � ’s (blue) and �’s (purple).
Auggie decides to assign each a distinct color that will help a reader
look up the respective defnitions in the text. To do so, they create a
similar style block for each group of variables they wish to augment:

After inspecting the augmented passage, Auggie wishes that
�0 was not given the same color as the other � terms, because it
is better described as an intercept rather than a slope term. They
revert the style for just �0 by adding an additional one-line rule,
setting the color of �0 to inherit, as one might do in CSS, rather
than accept the color of the other � terms.

Auggie is satisfed with this result. Throughout their exploration,
FFL provided a lightweight syntax for making cross-cutting nota-
tion augmentations with live feedback.

Further design space exploration. There is more than one way to
augment a formula to expose its meaning. Auggie considers another
strategy that they think will make their article more skimmable
which relies less on the textual description (omitted below) and

instead exposes descriptions of expressions in labels. FFL helps
them experiment with this style of augmentation as well.

Auggie starts from a fresh FFL style sheet, this time adding
augmentations in the form of labels. They frst add a label for �,
describing it as the “target” of prediction.

They then add labels for the remaining expressions. This is a
matter of adding one style block per annotated expression.

The labels render live as Auggie does so. The labels are automat-

ically laid out to reduce overlap and maximize adjacency of labels
to expressions. In this way, Auggie can think about augmentations
at a high level, avoiding the work of manually arranging labels.
Notably, the labels are tolerant to future changes to the formula:
should Auggie add additional � and � terms to the formula, the
labels will move as the formula adjusts its position.

When they are fnished with this document, Auggie could save
their style sheet for use in other documents with notation that
deserved to be described in similar ways.

4 SYSTEM
In this section, we describe FFL, a language and live runtime for
augmenting typeset math formulas in web documents. FFL was de-
signed and developed following an iterative approach. Fine-grained
decisions about syntax design were informed by pilot usability
studies with early versions of the tool.

Acknowledging the challenges of writing augmentation markup
revealed in prior work [26], the goals of FFL were as follows:

• Basic augmentations should be easy to read and write;
• Authors should receive rapid feedback on their designs;
• Augmentations should be aesthetically pleasing;
• Authors should be supported to experiment with cross-cutting
augmentation choices.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Wu et al.

Below, we describe the two main components of the FFL toolkit:
the language, and the supporting live runtime.

4.1 Language design
The FFL language is a CSS-like language for specifying augmen-

tations for formulas. FFL was designed to resemble CSS due to
the latter’s use as a separable styling language in web authoring
environments. We envisioned authoring environments where even-
tually authors write FFL and CSS side-by-side.

Like CSS, FFL in essence consists of dec-
x_i, . . . {

larations of style rules. Each style rule block
color: red;

consists of a selector indicating what expres-
. . .

sions the augmentation applies to, and a set
}

of property declarations describing augmen-

tations to apply, resembling the inset fgure.
One advantage of this format is that FFL can be easily transpiled

to CSS for a myriad of simple styles (e.g., color, font weight). Below
demonstrates the current expressive potential of FFL’s syntax. A
visual summary of language constructs appears in Figure 2. Our
focus is to describe the language primitives, and the augmentations
we have built into the language to date. We intend the language to
be further extended to support additional augmentations.

4.1.1 Selections. An author conveys which math expressions to
augment by writing selectors. FFL provides a fexible selector syn-
tax, allowing for literal matches to LaTeX substrings, wildcards,
predefned classes, and combinators.

Literal Selectors. The simplest way to select an expression is to
write the LaTeX for the expression one wishes to augment. Writing
a literal selector entails writing a LaTeX string, with its typical ($)
delimiters on either side. Literal selectors are resilient to some sim-

ple variations in how an expression might be written in LaTeX: for
instance, the selector “x_i” matches the expression �� regardless
of whether it is written “x_i” and “x_{i}”.

Wildcards. Authors can select syntactically related expressions
using wildcards. Two kinds of wildcards are provided, inspired
by the glob [34] wildcard syntax used in Unix command lines.
Character wildcards match single characters, and are written “?”.
For instance, “$x_?$” selects all symbols that have � as a base and
a single character as subscripts. Sequence wildcards match strings
of unbounded length, and are written “*”. For instance, “$f(*)$”
selects � (), � (0), � (�), and � (� + 1), among other expressions.
Authors can match the literal characters “?” and “*” by escaping
them with a backslash (i.e., as “\?” and “*”).

Expression classes. FFL
provides classes for com-

mon categories of ex-
pressions, such as super-
scripts, subscripts, and
constants. All classes are
preceded by dots (“.”),
like typical CSS classes.

Class Matches
.constant 0, 1, · · ·

, ��� .superscript �0 , · · ·
.subscript �0, �� , · · ·

1 � .numerator
2
, � , · · ·

1 � .denominator
2
, � , · · ·

Supported classes are shown in the inset fgure. These classes be-
come particularly powerful when used within combinators, permit-

ting an author to select, for instance, squares as the appearance of
the literal “2” within superscripts.

Indexed groups. To disambiguate between selections, we ofer
another special class named “.group”, referring to portions of the
formula markup surrounded by double braces (e.g. {{. . . }}). The
modifer “:nth(�)” can be appended to any selector to select the
�-th matching expression. Authors select a specifc group by using
the modifer in conjunction with the “.group” selector.

Combinators. Selectors can be composed to make them more gen-
eral or more precise. Selections can be made more precise with the
intersection combinator, “intersection(selector1, selector2, ...),”
which selects expressions matching all selectors provided as ar-
guments. A shorthand for intersection is provided as “selector1
selector2 ...,” which is reminiscent of CSS’s compound selec-
tors; with this shorthand authors can express intersections as if
they were selecting selector2 from within selector1. The union
combinator, as with CSS, uses a comma (“,”) to separate selectors,
matching any expression that matches one of the selectors.

CSS Selectors. To select HTML elements from within an FFL style
specifcation, an author can prepend an asterisk (“*”) to the name
of a class (e.g., “*.cls0”).

4.1.2 Augmentations. The FFL language supports specifcation of
two kinds of augmentations: styles and labels. Permitted augmenta-

tions include color and labels, the two most commonly used kinds
of augmentations according to a recent survey [26].2

Style. Styles are alterations to the expression elements, like color,
font weight, and background. They correspond roughly to CSS prop-
erties, and share the same names (e.g., “color,” “font-weight”).
Because these properties are transpiled into CSS, they accept all of
the same property values as CSS (e.g., colors can be specifed using
HTML color codes, hex codes, “rgba(. . .)” values). As described
in Section 5.4, some styles require additional processing on the
backend to provide the expected styling behavior in the unique
setting of HTML typeset math formulas.

Labels. FFL provides language primitives for creating and cus-
tomizing labels that describe expressions. The “label” property
allows an author to defne and show a label for an expression: upon
specifying this property, a label will appear next to the frst appear-
ance of that expression in a formula, connected to that expression
with a leader line. The “label-marker” property allows the author
to specify what kind of marker should connect the label to the
expression. The marker can be either a leader line or an extent
marker, i.e., a bracket shown in the margin; extent markers are
particularly useful for labeling long expressions.

Label placement is automatic, and is designed to avoid over-
lapping labels and to place labels as close to their corresponding
expressions as possible. A label is applied only once to any given for-
mula; it is anchored to the frst appearance of the labeled expression.
Should an author wish to customize the placement of labels, they

2
An analysis of the spreadsheet in Head et al.’s [26] supplemental material shows 69%
of augmented formulas in their sample made use of either font color or labels.

FFL: Live Styling and Labeling of Typeset Math Formulas UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

SELECTORS
LaTeX literal

character wildcard

sequence wildcard

union

intersection

font color

weight

background color

f(x1 ,x2)

f(x1 ,x2)

f(x1 ,x2)

f(x1 ,x2)

f(x1 ,x2)

STYLES

point

x

point

x

point

x

LABELS

point

x

f(x1 ,x2)

f(x1 ,x2)

f(x1 ,x2)

x

$x_?$

$f(*)$

x_1, x_2

intersect($x_?$, .constant)

color: red

font-weight: bold

background-color: gold

basic label

... { label: point }

extent marker

... { ... label-marker: extent }

position

... { ... label-position: above }

label styles

*.ffl-label { font-size: 8pt }

Figure 2: A visual specifcation of the FFL language, including its constructs for selecting expressions, styling, and labeling
formulas. Each row names a language feature, provides an example snippet of FFL, and shows the result of its application to one of the
example formulas � (�1, �2) or � .

may do so by defning the “label-position” property to place
the label either “above” or “below” the formula. To support further
label customization, all labels allow values of “html(. . .)” (sani-
tized for security by default), or are generated as HTML text spans
with the class “ffl-label” class. In this way, their appearance (e.g.,
font size, font family, color) can be confgured with normal CSS
properties by using the CSS selector “*.ffl-label.”

4.2 Live runtime
FFL was designed to be incorporated into arbitrary web-based text
editing tools as a live styling utility, and for integration into articles
generated from these editors. In this section, we describe how the
runtime supports integration as a live styling tool.

4.2.1 FFL library. To ease the work involved in integration, FFL is
implemented as a light wrapper around widely-used KaTeX [16]
tool. KaTeX is a tool that typesets LaTeX formulas on web pages. It
is used in a variety of web-based authoring tools, including Dropbox
Paper, Observable, Gatsby, Messenger, and Quill. It is also one of
the supported formula rendering engines in Jupyter Lab [31].

To integrate FFL into a web authoring environment, a developer
would do the following. First, they would create editor widgets
(like text areas) for authors to write FFL in. Second, they would
replace calls to KaTeX’s formula typesetter with a call to a nearly
equivalent API on FFL. That method has the signature:

ffl.render(latex: string, ffl: string,
renderTo: HTMLElement, options?: KatexOptions): void

where “latex” is the LaTeX markup for the formula, the “ffl”
parameter takes in the FFL style specifcation, “renderTo” is a ref-
erence to the HTML element into which to render the augmented
formula, and “options” is an object of KaTeX options for typeset-
ting the formula. If called without a “renderTo” target, the method
returns the HTML string for the rendered formula.

4.2.2 Supporting live evaluation. To support live evaluation of an
FFL style specifcation in an editing environment, the one necessity
is to trigger a new call to “ffl.render” whenever the LaTeX or the
FFL specifcation changes. To demonstrate the feasibility of such
an integration, we implemented a Markdown editing environment
with live FFL integrated. To develop this environment, we frst
created a document editor as a simple text area. When authors
write Markdown in the text area, the Markdown is passed to the
markdown-it [64] open source Markdown parser and then rendered
into a document view next to the Markdown editor.

We created a pluggable markdown-it extension to call the FFL
API, rather than the KaTeX API, to render math formulas; the FFL
API is called with an FFL style specifcation that authors write in
another text box adjacent to the Markdown text box. Live evaluation
is supported by triggering a parse of the Markdown when either
the Markdown or the FFL specifcation is edited. A demo of the
authoring environment appears in the accompanying video.

5 IMPLEMENTATION
The FFL runtime required an implementation that would trans-
late specifcations of augmentations to rendered HTML formulas.
Figure 3 summarizes the translation process and the intermediate
representations involved. Here, we briefy describe our implemen-

tation of augmentations in the FFL runtime in terms of each time
the API is triggered.3

5.1 Parsing the FFL specifcation
FFL markup is parsed using a custom parser for the FFL grammar.
The parser was generated by Peggy [13], a PEG parser generator,
from an FFL grammar that resembles a subset of CSS grammar.

3
Our implementation is hosted at penn-hci.github.io/ffl.

https://penn-hci.github.io/ffl

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Wu et al.

Figure 3: The generation of an augmented formula from
LaTeX and an FFL style specifcation. FFL wraps the KaTeX
library [16], shimming itself into KaTeX’s token parsing to detect
and annotate expressions of interest. KaTeX generates an annotated
HTML formula, which can be styled with CSS that FFL generates
from its specifcation. FFL augments the generated HTML with
labels by post-processing the generated HTML.

5.2 Matching LaTeX token sequences
Next, the selectors are used to identify ranges of formula LaTeX
that need to be augmented. To do this, we use KaTeX to lex both
the selectors and the formula LaTeX into token sequences, with a
small amount of parsing to normalize implicit groups. Then, we
scan the LaTeX formula token stream for sub-sequences matching
the selector, similarly tokenized by KaTeX. A segment and selector
are considered matching if they contain a sequence of matching
tokens. Literal tokens are considered matching if they are the same.
The wildcards “?” and “*” match either a single or a sequence of
tokens respectively. The current implementation of sub-sequence
search permits matching overlapping sub-sequences, and wildcard
matches for the character and sequence wildcards.

Once a matching sub-sequence is found, KaTeX must be told to
augment the characters in that sub-sequence. To do this, we insert
special tokens before and after the sub-sequence. These special to-
kens instruct KaTeX to insert temporary span tags with a generated
class name around the expression in the rendered formula HTML.
While it inserts these special tokens, FFL creates a map from FFL
selectors to the selector-specifc class names, from which it builds

a CSS style sheet that applies FFL styles (e.g., color, font weight) to
the expression in the rendered HTML formula.

We implement the search for matching sub-sequences of tokens
in a way that does not require changing KaTeX’s implementation.
Our approach is to handle matching in a custom KaTeX macro that
we wrap around each formula. With KaTeX, macros are defned as
JavaScript functions. When KaTeX expands a macro, it does so by
calling the corresponding JavaScript function, passing the function
the sequence of tokens found in the macro’s arguments. We wrote
a custom macro that, when expanded by KaTeX, takes the tokens of
the formula, searches for matching sub-sequences, modifes those
sub-sequences as described in the paragraphs above, and returns
the modifed tokens to KaTeX for further processing.

5.3 Applying styles
Once KaTeX produces the HTML for a rendered formula, FFL tra-
verses the HTML to associate styles with matched expressions. FFL
searches for the previously inserted spans, removing them and ap-
plying generated CSS class names to the HTML elements between
them. Then, it appends the generated CSS (including color and font
weight) to a “style” element in the DOM, which has the efect of
styling the matched elements in the expression.

5.4 Drawing overlays and underlays
Finally, all remaining kinds of augmentations collected during the
HTML tree traversal are applied, including labels and background
colors. Labels are drawn as relatively positioned HTML elements
on the margins of the formula inside an SVG [71] element. Label po-
sitions are determined by locating the position and outer bounding
box of all tokens in its corresponding expression. Label positions are
adjusted to reduce overlap by Labella [74]. The formula is padded
with additional space so that labels do not occlude the surrounding
text. Background colors are implemented as relatively positioned
boxes placed behind the corresponding expression; this implemen-

tation is necessary to support background colors for selections
whose constituent elements have a joined area that difers from the
rectangular bounding box of the whole expression to ensure that
there is only one background box, rather than multiple overlapping
boxes for each character element in the expression.

5.5 Technical limitations
Our current technical approach sufces for reifying the ideas behind
FFL in a working tool. Here, we describe technical limitations that
should be addressed to increase FFL’s fexibility and robustness.

Behavior of sequence wildcard. One revelation from our develop-
ment was that the glob-style “*” wildcard is not well-defned for
strings with the inherent hierarchy of LaTeX formulas. The current
behavior of “*” is to match any terminal token or group at the same
group level as the “*” in the selector. This decision remains to be
more closely examined.

Block styles. For some styles, FFL transpiles directly to CSS. For
others like background color, border, and padding, FFL requires
custom solutions. The default approach of FFL is to apply a style
to all tokens separately in an expression. Rather, block styling
augmentations—like padding—should apply to an expression in

FFL: Live Styling and Labeling of Typeset Math Formulas UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

whole. To overcome this brittleness for block styling, we believe
future versions of FFL should use KaTeX’s render to MathML [18]
instead of HTML; MathML contains structures that can be more
easily detected and augmented for these styles, and has become
mainstream into most major browsers earlier this year.

Performance. Preliminary tests on a commodity laptop show that
rendering a formula with FFL takes tens of milliseconds (i.e., 35ms
to augment “�” in the linear regression formula from Section 3).
This runtime is imperceptible for single augmentations applied
to single formulas. Our tests lead us to attribute latency to the
time it takes FFL to insert augmentation markers into KaTeX’s
token stream: latency increases as more matches are found in the
formula (e.g., it takes 50ms to augment expressions matching “$*$”
in the same demo formula). As the number of augmentations and
formulas grows, adjustments will be required (e.g., optimizations,
parallelization) for FFL to continue to deliver instant feedback.

6 EVALUATION
To evaluate FFL’s impact on the experience of authoring augmen-

tations, we conducted an in-lab usability study. The study was
designed to answer the following questions:

(1) How does FFL infuence authors’ ability to create and edit
augmentations?

(2) How could tools like FFL be improved to better support
formula augmentation?

The study consisted of a controlled comparison between FFL
and a LaTeX baseline for augmentation creation and editing tasks,
followed by an exploratory authoring task with FFL.

6.1 Participants
We sought participants with experience authoring math documents
with LaTeX. Participants were recruited from graduate student mail-

ing lists at a computer science program at a private university, with
the sole prerequisite of prior experience writing LaTeX formulas.

33 participants were recruited in total. The vast majority were
master’s students; 7 were students in a joint bachelor’s / master’s
program. 3 described themselves as software developers, 1 as an
academic researcher, and 1 as a teacher.

Participants’ prior experience with LaTeX was as follows: 24%
reported less than 1 year of experience; 48% 1–2 years, 21% 3–5
years, and 6% reported more than 5 years. 55% used LaTeX weekly,
18% monthly, and 24% less than monthly. Participants reported
their comfort with LaTeX as a median of 4 on a 5-point Likert scale
(� = 0.8, IQR = 1). They were considerably less comfortable with
CSS, with a median comfort level of 2 out of 5 (� = 1.0, IQR = 1).

6.2 Procedure
6.2.1 Setup. All study sessions were conducted in person in an HCI
usability study lab. Participants completed tasks using a computer
with a large external monitor, keyboard, and USB mouse. Progress
was managed by a custom web app we built to facilitate the study.
This app opened the user interfaces participants were expected
to use for tasks, and pre-loaded them with task stimuli. It also
opened questionnaires after each task. For FFL tasks, participants
used a custom live editing environment. For LaTeX tasks, they used

Overleaf [40]. Two participants needed to complete the tasks on
a personal laptop instead of the lab computer; these participants’
data were used in our qualitative analysis but omitted from the
quantitative analysis (Section 6.3).

6.2.2 Tutorial. Participants were given 10-minute tutorials of how
to augment formulas with both of the interfaces under study—FFL
and the LaTeX baseline. A member of the research team demon-

strated how to perform key augmentation actions, like selecting
expressions, coloring them, and labeling them with line and extent
labels, both above and below the formula. Tutorial materials were
designed to maximize parity in how the interfaces were introduced
while minimizing complexity of the learning material. Participants
were asked to practice each feature that was introduced on a sample
formula. They were provided with a cheat sheet for each interface
to use as a reference during the tasks.

6.2.3 Interfaces. The two interfaces participants used were a live
editor with FFL support, and a baseline LaTeX environment. The FFL
interface is the same as the environment described in Section 4.2.2.
The interface provides only basic support for error recovery: when
an author enters invalid FFL, the interface reports that an error was
found (without any character positions), while continuing to show
the render of the most recent valid FFL. In LaTeX, participants
were taught how to create augmentations using \textcolor to
color expressions, \overbrace or \underbrace to introduce labels
with extent markers, and annotate-equations [30] to introduce
labels with leader lines, including the optional argument yshift
for adjusting the vertical position of labels.

6.2.4 Tasks. Each participant completed four timed tasks and a
single exploratory task. After each task, participants completed a
questionnaire refecting on their experience.

Timed tasks. Participants completed four timed tasks, in two
pairs. The frst pair of tasks was C1 and C2, which were “creation”
tasks. In these tasks, participants created augmentations for an
unaugmented formula to match a provided screenshot. Each task
required participants to add 3 colors and 3 extent labels.

The second pair of tasks was E1 and E2, which were “editing”
tasks. In these tasks, participants were given a formula that was
already augmented and asked to modify 4 aspects of the augmenta-

tion to match a provided screenshot. This latter pair of tasks was
designed to refect the setting where authors need to interact with
augmentation markup when evolving their designs.

Within each pair of tasks, participants completed one task with
FFL and one task with the LaTeX baseline. Within pairs, tasks were
designed to be as similar to each other in difculty as possible. Par-
ticipants were randomly assigned interface and task order within
each group of tasks, with the following variations, counterbalancing
to reduce the efect of task or interface order:

Task 1 Task 2 Task 3 Task 4
C1 FFL C2 LaTeX E1 FFL E2 LaTeX
C2 FFL C1 LaTeX E2 FFL E1 LaTeX
C1 LaTeX C2 FFL E1 LaTeX E2 FFL
C2 LaTeX C1 FFL E2 LaTeX E1 FFL

All tasks were timed to compare the speed of completion. A task
concluded when a participant completed the task and reported they

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Wu et al.

were done, or when they reached an imposed time limit of 6 minutes
and 30 seconds. The facilitator verifed completion by comparing
the participant’s output to a reference result using a rubric that
permitted very small diferences in color and label position. The task
duration was chosen by observing that pilot participants completed
most tasks within 5 minutes; we then increased task duration to
the longest that could be accommodated in the hour-long study.
Over 80% of tasks were completed before reaching the time limit.

Exploratory task. Finally, participants were given 10 minutes
to augment a short document resembling the one from Section 3,
and asked to augment it in a way that made the formula easier to
understand. They were encouraged to explore the augmentation
features, and allowed to ask about how to use FFL to achieve their
goals. They were also asked to follow the think-aloud protocol [37],
as demonstrated by their facilitator.

6.2.5 Qestionnaire and interview instruments. After each timed
task, participants were asked to complete a brief questionnaire
reporting how difcult the task was, and to comment on how the
interface could have better supported them in their tasks. At the
conclusion of the study, participants completed a retrospective
questionnaire refecting on their experience with the interfaces
overall. Then, they were interviewed for several minutes as the
researcher asked follow-up on questions motivated by observations
or responses to the questionnaire.

6.3 Analysis
To examine the efect of interface on task timing and participants’
self-reported ease, we ft them with linear mixed-efects models [6].
These models take task, task order, and interface and their interac-
tions as fxed efects, and participant as a random efect. Signifcance
was assessed using an F-test using Satterthwaite’s estimate of ef-
fective degrees of freedom [61], with �-values corrected by the
Holm–Bonferroni method [29]. To compare participants’ responses
to Likert scale questions about the two interfaces, we performed
Wilcoxon signed-rank tests [73]. For these tests, only data from
the frst 28 of 33 participants was considered, omitting participants
who used a personal laptop, and considering a subset for which
there was complete balance across interface and task order.

Observation notes, open-ended questionnaire feedback, as well
as interview transcripts were analyzed following a thematic anal-
ysis approach [5]. Two authors performed an open coding pass,
each analyzing half of the observation and questionnaire data and
then merging the results. Another two authors reviewed the codes
comprehensively. The four authors worked together to revise and
organize themes, and to check the alignment between excerpts and
themes. One author then reviewed interview transcripts to identify
excerpts relating to central themes that emerged from the analysis
that had not yet been captured in the observation notes.

7 RESULTS
In this section, we describe our fndings. Participants are referred
to by pseudonyms P1–33. P1–28 were included in our quantitative
tests and results. P32–33 completed a variant of the study that in-
volved use of a personal laptop. To convey representativeness of the
fndings, observations are accompanied with numbers indicating

1 2 3 4 5 6

Task Completion Time (mins)

C1
FFL

LaTeX

C2
FFL

LaTeX

E1
FFL

LaTeX

E2
FFL

LaTeX

3.7

4.0

4.4

3.6

2.6

3.5

3.8

4.7

0

Figure 4: Task completion time. Participants completed tasks
E1 & 2 signifcantly faster with FFL than with LaTeX. Box-
and-whiskers depict median, quartiles, and extrema (within 1.5
IQR). An additional, taller vertical line annotates the average. Indi-
vidual times are rendered as dots in the background. Incompletes
are encoded as maximum time. Per-row mean time and standard
deviation appear in Table A.2.

how many participants an observation refects (e.g., “(5)” means 5
participants).

7.1 Efect of FFL on task success
Overall, there was signifcant improvement in task time, self-reported
ease, and readability when participants used FFL for editing tasks
(E1 & 2), and no perceived diference for creation tasks (C1 & 2).

7.1.1 Completion rate. Overall, participants completed tasks at
about the same rate when using FFL and LaTeX. Most participants
succeeded in most tasks: altogether, participants reached the time
limit on less than 20% of tasks, amounting to 6 failed FFL tasks and
12 failed LaTeX tasks. The most difcult task for LaTeX seemed to
be task E2 where 8 participants failed to complete in the LaTeX con-
dition (� = 0.025, Fisher’s Exact Test [17]). When asked to indicate
the extent to which they were able to do what they wanted on a
7-point Likert scale (Figure 5), there was no signifcant diference
between FFL and LaTeX (� = 0.792, � = 0.565). A complete listing
of per-task completion rates appears below in Table A.1.

7.1.2 Speed. As depicted in Figure 4, participants completed the
complex editing tasks (E1 & E2) more quickly with FFL than with
LaTeX. A linear mixed-efects model found the interface to have
a signifcant efect (� = 6.7, � = 0.02). Other signifcant efects
include task (� = 11, � = 2 × 10−5) and task-interface interaction
(� = 6.8, � = 0.001); task order was not signifcant. As implied by
the task-interface interaction efect, the efect of FFL was stronger
for some tasks than others. Fitting the same model to the pairs of
creation (C1 & 2) and editing (E1 & 2) tasks separately, the efect of
FFL was signifcant for editing tasks (� = 27, � = 7 × 10−5), but not
for the creation tasks (� ≈ 1). While we note that the test statistics
are infuenced by our choice to cut of participants at 6.5 minutes,
a visual inspection suggests the above trends hold for participants
who were not cut of: FFL decreased task time for the 0th–75th

FFL: Live Styling and Labeling of Typeset Math Formulas UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

0 20 100%

easy to complete
FFL

LaTeX

able to do as wanted
FFL

LaTeX

easy to read
FFL

LaTeX

3231

28

18

28101510 7

963

52

37

18

28

14

1510

59

6

47

15

28

12

22

18211521

3

Strongly agree (7)Strongly disagree (1)

6040

% of Responses

80

Figure 5: Self-reported ease for timed tasks. On the whole,
participants reported greater ease with FFL than with LaTeX.
Data comes from responses when participants were asked to indi-
cate agreement (from "strongly disagree" (1) to "strongly agree" (7))
with the statement in the left column of the bar chart. Numbers
indicate percentages of total responses relative to the row. Per-row
medians and arithmetic means appear in Tables A.3–A.5.

quartile participants, none of whom were cut of before completing
the task (see Figure 4). Our observations during the study revealed
no clear signs that participants were further from completion when
cut of in the FFL condition than in the baseline condition.

7.1.3 Ease. Participants reported signifcantly higher ease in com-

pleting tasks with FFL than with LaTeX (� = 16, � = 6 × 10−4).
On a 7-point Likert scale, participants reported a median score of
7, versus 6 with LaTeX (Figure 5). Models ft on subsets of tasks
showed the diference in ease to be signifcant for editing tasks E1
& 2 (� = 19, � = 2 × 10−4), but not tasks C1 & 2 (� ≈ 1).

Additional questions on the questionnaire indicate aspects of
FFL that might have led to greater ease. Following the editing tasks
E1 & 2, participants reported signifcantly greater ease in reading
augmentation code (Figure 5) in FFL than with LaTeX (� = 23,
� = 6 × 10−5). In the retrospective questionnaire, participants
compared the ease of using FFL to LaTeX for a variety of primitive
augmentation operations (Figure 6), reporting greater ease with
FFL for coloring parts of formulas (� = 7, � < 0.002, mdn. 5 vs.
4), labeling parts of formulas (� = 0, � < 0.002, mdn. 5 vs. 4),
and applying the style to multiple parts of the formulas (� = 24,
� < 0.002, mdn. 5 vs. 2), on a 1–5 scale.

7.1.4 Diferences in success. While on the whole participants re-
ported high levels of comfort with LaTeX in the introductory ques-
tionnaire, there was still considerable individual variation in com-

fort with both LaTeX and CSS. When we ft our model to take
background factors into account,4

we observed years of experi-
ence of LaTeX as a signifcant predictor of task speed (� = 10,
� = 5 × 10−5), with interface becoming insignifcant (� = 5.4,
� = .1). For the creation tasks alone, years of experience with
LaTeX is not signifcant (� = .3). For the editing tasks, years of ex-
perience is signifcant (� = 10, � = 3 × 10−4), and interface remains
a signifcant efect (� = 27, � = 6 × 10−5). Other background factors

4
When ftting a model with background factors as fxed efects, we remove the random
efect of participant ID.

% of Participants

I found it easy to apply the
same style to multiple
parts of the formula.

FFL

LaTeX

I found it easy to color a
part of the formula.

FFL

LaTeX

I found it easy to label a
part of the formula.

FFL

LaTeX

18

2

7

5

1

6

2

78

23

13 5

5

622

21

10 5

7

364

25 75 100%0

Strongly agree (5)Strongly disagree (1)

50

Figure 6: Ease-of-use ratings in retrospective questionnaire.
Ease was reported on three dimensions for both FFL and LaTeX
(shown in the leftmost labels on the bar chart).

such as self-reported comfort with LaTeX or CSS were not signif-
cant predictors. Overall, additional years of experience of LaTeX
reduced task completion times, though the trends vary considerably
when broken down by task and interface pair.

7.1.5 Interpretation. In summary, participants completed tasks
about as often with FFL and LaTeX. FFL led to quicker completion,
with less difculty. Post-hoc tests showed the efect to be signifcant
for editing tasks E1 & 2, but not creation tasks C1 & 2. We explain
this discrepancy with two observations.

First, E1 & 2 were performed after C1 & 2. Some participants
reported an initial learning curve with FFL, or encountered gaps or
misconceptions regarding FFL during the frst pair of tasks. These
gaps and misconceptions were sometimes resolved by the time
they began the second pair of tasks. Learning efects may provide
a partial explanation: among 33 participants, our observation notes
showed 23 participants making 35 critical mistakes (i.e., writing a
spec that yielded compilation errors or incorrect outputs) in C1 &
2, reduced to 18 participants making 23 mistakes in E1 & 2. Gaps
and misconceptions may have also been reduced when participants
were given access to starter code in editing tasks E1&2.

Second, E1 & 2 required participants to work with considerably
more complex and denser markup along with some augmentation
already integrated to begin with. E1 & 2 refect a setting where a
formula has been augmented and the authors wish to experiment
with alternative designs. We interpret this efect to indicate that FFL
manifests more value as augmentation markup becomes larger; in
the LaTeX baseline, this results in the markup languages becoming
increasingly tangled and difcult to evolve, as discussed in greater
detail in the next section.

7.2 Efect of FFL on authoring experience
In this section, we review observations, interviews, and question-
naire data to arrive at a comprehensive understanding of how FFL
supports, and in some cases works against, the experience of for-
mula augmentation. Overall, participants found FFL’s “core” fea-
tures useful (Figure 7). This section introduces strengths and short-
comings of FFL in terms of the cognitive dimensions of notation [4],
a framework used in programming language design to examine and
discuss the efect of language design choices.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Wu et al.

0 25 75

I did not use it Not useful Somewhat useful Very useful

50

% of Participants

100%

14914

161011

2521

235

2341

CSS-like syntax

automatic positioning of labels

instant feedback when styling

separation of annotation code
from formula code
ability to apply the same style to
multiple expressions

Figure 7: Usefulness of features. Shown are participants’ re-
sponses to the question “How useful was [feature] when you used
FFL to augment math formulae?”

7.2.1 Strengths. FFL improved the authoring experience as follows:

Viscosity. FFL reduced the number of actions required to accom-

plish some goals. This was most clear when participants edited
augmentations for multiple expressions at once. Participants fre-
quently expressed appreciation for the ability to make cross-cutting
changes with a single style specifcation (5), and wished for a sim-

ilar capability for LaTeX (4). Making cross-cutting changes was
described as more “efcient” (P4) and “easier” (P12, P24) with FFL.
All but one participant described the ability to apply one style to
multiple expressions as very useful (Figure 7).

Hard mental operations. FFL made it easier for participants to
orient themselves to augmentation markup. LaTeX was the less pre-
ferred choice for reading markup (Figure 5). LaTeX was described as
difcult to read (16) and used complex or unintuitive syntax (6). The
association of augmentations with expressions is difcult to under-
stand due to the dependence on copious numbers of nested braces
to associate them (14). Reading LaTeX was therefore described as
“holding a lot of moving pieces in my mind” (P18), where “it is a
nightmare to look for what I am editing” (P13). Reading challenges
arose when participants had difculty identifying expressions to
which LaTeX commands applied (2), mapping from parts of the ren-
dered formula to the corresponding LaTeX (5), reading and editing
the markup (3), and pinpointing sources of errors (2).

In comparison, FFL seemed easier to read—we rarely heard sim-

ilar criticisms levied against FFL. 16 participants explicitly men-

tioned their appreciation for the separation of formula markup from
augmentation markup; this division was called a “big advantage”
and “very powerful” (P13). The separation of annotation code from
formula code was reported as “very useful” by the vast majority of
participants in the retrospective questionnaire, and “somewhat use-
ful” by all remaining participants. Participants rated the readability
of FFL signifcantly higher than LaTeX (Section 7.1.3).

Error proneness. FFL removed a class of errors with its approach
to associating expressions with augmentations. As mentioned in
prior work [26], one challenge of using LaTeX to augment formulas
is to use braces correctly to associate augmentations with expres-
sions. Participants described braces as “annoying” (P28), fnding it
difcult to fnd matching pairs of braces (6), and desiring the ability

to fnd out which braces are redundant or missing (2). Braces were
the most common kind of error we observed: at least some partic-
ipants made a bracing error for each task (8 participants for task
C1; 2 for C2; 6 for E1; and 8 for E2). Participants also encountered
issues with using \def correctly, writing arguments to commands
in the right order, and other LaTeX compilation errors. As noted by
participants, FFL did not see these difculties due to its approach
to associating augmentations with expressions (2).

Closeness of mapping. In several situations, FFL provided a close
mapping to the ways participants could envision expressing aug-
mentations. Two participants described that the metaphor of CSS,
including its use of selectors and attributes, was “intuitive.” The
design of selectors allowed participants to indicate which expres-
sions they wished to augment by selecting, and then copying and
pasting, those expressions from the formula into their FFL speci-
fcation (2). When asked to indicate the degree to which FFL “did
what I expected to,” all but 2 participants agreed, and over half of
the participants strongly agreed.

On the whole, participants developed comfort with a large num-

ber of primitives in a short amount of time. By the time they per-
formed the exploratory authoring task, participants had developed
enough comfort with the language that they frequently made use
of color (24), labels with leader lines (19), and labels with extent
markers (11). These augmentations made use of myriad language
features, including single-character wildcards (15), sequence wild-
cards (15), unions (11), and the adjustment of label positions (9).
See Appendix Section B for examples.

Progressive evaluation. The favorite feature of FFL was the in-
stant feedback supported by the FFL runtime. More participants
described this feature as “very useful” than any other feature. 7
participants explicitly indicated their appreciation for instant feed-
back. In contrast, the LaTeX toolset required slower compilation of
the document to see the efect of one’s changes to the markup (2),
which was described as “not very convenient” (P21).

7.2.2 Shortcomings. While FFL improved the experience of author-
ing formulas in numerous ways, it also introduced new challenges
meriting new solutions to design and training:

Closeness of mapping. FFL was not without a learning curve.
Some participants found aspects of the CSS-like syntax challeng-
ing (8); this is in part because participants generally had low self-
reported comfort with CSS (Section 6.1). Participants also expressed
discomfort with the glob syntax [34] for wildcards (1), and other
aspects of LaTeX’s math mode (5). These experiences serve as a
reminder that FFL expects familiarity with CSS, glob, and LaTeX.
We expect many authors seeking to use FFL in web documents
would have this experience; though FFL still imposes a threshold to
entry. An additional indicator of a learning curve is that 8 partici-
pants reviewed the cheat sheet before beginning their frst task with
FFL, suggesting that the tutorial was not enough to internalize the
syntax. Similar challenges were observed for the LaTeX baseline,
with participants forgetting commands taught in the tutorial (3) or
failing to properly use commands from the cheat sheet (3).

While participants largely succeeded in selecting expressions
with the selector syntax, several participants desired support for
direct selection through mouse interaction with the formula (3).

FFL: Live Styling and Labeling of Typeset Math Formulas UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Similarly, participants desired the ability to highlight expressions
corresponding to a selector (3). Participants also desired code gen-
eration (1) and no-code features (2), where style code could be
partially or completely generated for the author. Direct selection
features are beyond the scope of a language design, though they
might serve as useful additions to an editing environment.

Error proneness. FFL removed some classes of errors, though they
introduced friction for others. The current runtime provides only
very limited support for error tolerance, reporting, and recovery. 6
participants introduced typos and had difculty understanding why
their augmentation markup was not working as intended when they
failed to notice those typos. Some of these typos arose from chal-
lenges related to “closeness of mapping”—several participants used
incorrect delimiters that perhaps best refected a lack of familiarity
with the base CSS syntax. 3 participants wished that FFL continued
to render live even when errors were present in the markup. For
these reasons, participants desired numerous standard editor afor-
dances that assist in reducing errors, including autocomplete (7),
syntax highlighting (2), and templates (3).

Visibility. Any sufciently complex language contains constructs
users are unaware of. We observed several such constructs for FFL
that were either undiscoverable or poorly suited once discovered.

First, participants expressed confusion around scoping augmen-

tations. The default behavior of the FFL runtime is to apply selec-
tors globally across an entire document. What should an author
do when they wish for their augmentation rules to apply to only a
single expression, formula, or single passage? Several authors had
this specifc question (8). The current solutions in FFL are (1) the
intersect command; (2) an :nth selector that selects an indexed
occurrence; (3) creating an indexable group in the formula markup
by adding brackets around it; (4) using style overriding (i.e., using
one rule to style all expressions, and a second rule to revert it for
some subset of those expressions). These features were largely un-
used, perhaps due to issues of discoverability or learnability. At
least 2 participants expressed some confusion with overriding.

Second, participants desired more infuence over the appearance
of labels, including label size (4), color (3), and font-weight (3). While
the .ffl-label class is applied to all labels for just this purpose,
participants were not often aware of it. These undiscovered features
represent opportunities to either increase visibility or redesign
constructs to be easier to guess.

Expressiveness. Expressiveness is not a cognitive dimension of
notation, though we discuss it here as a catchall for controls partic-
ipants desired that FFL did not provide. One often-desired feature
was the ability to assign a single label to multiple expressions simul-

taneously. For example, in the exploratory task, participants often
wanted to create one label for “slope” and connect it via leader lines
to all four � terms in the formula (9). The default behavior of FFL is
to assign a label to only the frst matched expression in a formula.
As one participant noted, this made the behavior of FFL inconsis-
tent, because style rules applied to all matching expressions, while
labels applied to only the frst matched expression (P23). Several
participants wished for diferent behavior from the automatic label
layout algorithm (4), and desired the ability to fne-tune label layout
beyond FFL’s current capabilities (3).

8 DISCUSSION
Our study showed greater speed, ease, and readability of markup
code with FFL for the second pair of tasks, which were complex
editing tasks. Evidence from the study suggests FFL reduces viscos-
ity, hard mental operations, and error proneness, while providing
afordances promoting closeness of mapping and progressive eval-
uation. These fndings suggest the promise of the ideas behind FFL,
namely the separation of formula and augmentation markup, live
feedback, and its approach to syntax. In this section, we examine
the generalizability of the fndings and opportunities for advancing
the research agenda of which FFL is a part.

8.1 Limitations
The generalizability of our fndings is necessarily limited to tasks
and the sample of participants we studied. When interpreting the
results, it is useful to take stock of how authors of web-based math
documents would difer from participants in the study.

First, we anticipate that real-world authors would have greater
motivation to use the tools. If an author chose to use FFL, it would
refect a desire to make notation more approachable. We expect a
real-world author might therefore experiment more ambitiously
with the tools compared to study participants who may not have
had prior experience explaining formulas in their writing.

Second, they would likely be familiar with the formula markup,
having written it themselves: for both the LaTeX and FFL conditions,
this would likely lead to faster task completion times.

Third, users “in the wild” would not have the luxury of having
the tools demonstrated over a 10-minute tutorial, and therefore
may have more difculty in a walk-up-and-use experience.

And fnally, their FFL markup would have likely gotten longer if
they were augmenting a full-length document. Our lab study only
assigned single-formula tasks because it made it possible for us to
select pairs of real-world augmentations where each member of
the pair was of approximately equal complexity. Some tasks did
require making cross-cutting changes. That said, participants in
our study did not get a chance to encounter complexities that might
arise with longer style specifcations, and we did not observe all
the difculties to be seen with scoping augmentation.

Of these limitations, the fourth and ffth are indicators that our
lab study reveals only a subset of challenges using FFL; the remain-

ing limitations suggest that task performance could improve for
FFL, or both FFL and LaTeX, in more realistic settings. Challenges
to using FFL should be further documented by refning the FFL
toolkit and evaluating its use in real authoring settings.

8.2 Future work
A frst line of future research should address opportunities in ex-
tending FFL, some already revealed in the study (Section 7.2.2).

Scoping. Authors necessarily wish to restrict augmentations to
particular expressions, formulas, and passages. While the FFL lan-
guage provides such capabilities, these were either not discovered
or used inefectively by participants. A future solution could be to
let authors specify local “scopes” of application in the document
markup (e.g., labeling individual passages or formulas) in order to
refer to them in selectors.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Wu et al.

Resilient expression matching. FFL’s current approach to match-

ing token sequences leads to some brittleness in matching expres-
sions that are rendered the same way, but have diferent LaTeX
markup (e.g., in the current implementation, a_0^1 matches
“a_0^1” but not “a^1_0,” even though they are rendered identi-
cally). This was largely not a problem for participants in the study,
though we fnd this undesirable in our own use. FFL provides some
fexibility to address cases like these, but we believe a more robust
implementation of FFL may beneft from matching patterns with
abstract syntax trees, rather than concrete token sequences.

Further improvements. As noted in Section 7.2.2, FFL should be
extended with the ability to apply one label to multiple expressions,
more precisely adjust the positions of labels, and better recognize
and recover from syntax errors.

This research also points the way to follow-up research on math
augmentation that extends into new sorts of tooling.

Direct augmentation. Some participants desired assistance in
writing selectors, understanding selections, and expressing styles.
They proposed the ability to directly select them, highlight rendered
expressions that are matched by selectors, and generate styles (Sec-
tion 7.2.2). We see FFL as a stepping stone to interactive authoring
tools involving direct augmentation like those described by partici-
pants, where FFL is used as a substrate, similarly to how backend
visualization grammars like Vega-Lite [62] enables visualization
exploration interfaces like Voyager [75].

Animated formulas. FFL was designed to augment static texts,
like blog articles or online textbooks. What would an augmenta-

tion language look like for dynamic presentations of notation, like
animations on the popular 3Blue1Brown [59] YouTube channel for
explaining math, where formulas are built up step-by-step and an-
notated gradually with color and labels? We see FFL as a starting
point for developing grammars of animated notation. However, new
primitives would have to be designed, as they have in other areas
with generalized visualization annotation DSLs for animation [19].

Making texts interactive. One pattern of augmentation is creating
interactive formulas, where readers can tinker with the values of
expressions and see how it infuences downstream computations
in the formula [26]. Prior tools like Idyll [10], Tangle.js [70], and
Potluck [39] envision the creation of parametric documents where
values update reactively as users interact with controls. Extensions
to FFL could unify such afordances with its syntax, perhaps even
taking advantage of the computation a formula represents to auto-
matically map values in one part of a formula to values elsewhere.

Accessibility. Augmentations specifed in a language like FFL
encode additional meaning about a formula, such as what sym-

bols make up meaningful expressions, and what those expressions
mean. This information should ideally be surfaced in a way that is
accessible to blind and low-vision readers. FFL could be extended
to provide cues to screen readers to read a formula aloud in ways
that improve upon the default reading order.

9 CONCLUSION
Our controlled lab study yielded two results. First, in complex edit-
ing tasks, FFL led to faster and easier editing of augmentation
markup compared to a LaTeX baseline, while yielding more read-
able markup. Second, for simpler tasks where authors wrote simple
augmentations from scratch, we observed no signifcant diferences
between FFL and the baseline. Our study ofers signs that FFL re-
duces viscosity, hard mental operations, and error proneness, while
supporting closeness of mapping and progressive evaluation. This
paper demonstrates the potential of tools like FFL that extend au-
thoring environments to support the practice of augmenting nota-
tion. We hope tools like FFL bring about more pervasive authoring
of approachable explanations of math notation.

ACKNOWLEDGMENTS
We thank the authors of augmented formulas that inspired examples
used in this paper and in our study materials, including Azad [3],
Cockett et al. [9], Mohammed et al. [51], Murad [52], and Hohman
et al. [27]. We thank Dr. Rowan Cockett for his feedback on tool
design and implementation. We thank members and friends of Penn
HCI for their frequent feedback on early prototypes and study
designs, as well as creators of open source tools like KaTeX for
making the construction of FFL possible.

REFERENCES
[1] Thomasenia Lott Adams. 2003. Reading mathematics: More than words can say.

The Reading Teacher 56, 8 (2003), 786–795.
[2] Lisa Anthony, Jie Yang, and Kenneth R. Koedinger. 2005. Evaluation of multimodal

input for entering mathematical equations on the computer. In Proceedings of the
CHI Conference on Human Factors in Computing Systems. ACM, 1184–1187.

[3] Kalid Azad. An Interactive Guide To The Fourier Transform. Retrieved July 25, 2023
from https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-

transform
[4] Alan Blackwell and Thomas Green. 2003. Notational Systems—The Cognitive

Dimensions of Notations Framework. In HCI Models, Theories, and Frameworks:
Toward a Multidisciplinary Science. Morgan Kaufmann, 103–134.

[5] Ann Blandford, Dominic Furniss, and Stephann Makri. 2016. Qualitative HCI
Research: Going Behind the Scenes. Morgan & Claypool Publishers.

[6] Violet A. Brown. 2021. An introduction to linear mixed-efects modeling in R.
Advances in Methods and Practices in Psychological Science 4, 1 (2021).

[7] Carrie J. Cai and Philip J. Guo. 2019. Software Developers Learning Machine
Learning: Motivations, Hurdles, and Desires. In Proceedings of the Symposium on
Visual Languages and Human-Centric Computing. 25–34.

[8] David P. Carlisle. 1997. The color package. CTAN-Archive.
[9] Rowan Cockett, Lindsey Heagy, and Doug Oldenburg. 2016. Pixels and their

neighbors: Finite volume. The Leading Edge 35, 8 (2016), 703–706.
[10] Matthew Conlen and Jefrey Heer. 2018. Idyll: A Markup Language for Authoring

and Publishing Interactive Articles on the Web. In Proceedings of the Symposium
on User Interface Software and Technology. ACM, 977–989.

[11] Will Crichton. 2022. A New Medium for Communicating Research on Program-

ming Languages. In Proceedings of the Workshop on Human Aspects of Types and
Reasoning Assistants. ACM.

[12] Curvenote. Equation. Retrieved July 12, 2023 from https://curvenote.dev/article/
equation

[13] Joe Hildebrand David Majda and open-source contributors. Peggy. Retrieved
July 22, 2023 from https://peggyjs.org/index.html

[14] Pierre Dragicevic, Stéphane Huot, and Fanny Chevalier. 2011. Gliimpse: Animat-

ing from Markup Code to Rendered Documents and Vice Versa. In Proceedings of
the Symposium on User Interface Software and Technology. ACM, 257–262.

[15] Anton N. Dragunov and Jonathan L. Herlocker. 2003. Designing intelligent
and dynamic interfaces for communicating mathematics. In Proceedings of the
International Conference on Intelligent User Interfaces. ACM, 236–238.

[16] Emily Eisenberg and Sophie Alpert. KaTeX. Retrieved September 16, 2020 from
https://katex.org

[17] Ronald A. Fisher. 1922. On the interpretation of �2 from contingency tables, and
the calculation of P. Journal of the royal statistical society 85, 1 (1922), 87–94.

[18] Max Froumentin. Mathematical Markup Language (MathML). Retrieved Septem-

ber 16, 2020 from https://www.w3.org/Math/whatIsMathML.html

https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform
https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform
https://curvenote.dev/article/equation
https://curvenote.dev/article/equation
https://peggyjs.org/index.html
https://katex.org
https://www.w3.org/Math/whatIsMathML.html
https://Tangle.js

FFL: Live Styling and Labeling of Typeset Math Formulas UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

[19] Tong Ge, Yue Zhao, Bongshin Lee, Donghao Ren, Baoquan Chen, and Yunhai
Wang. 2020. Canis: A High-Level Language for Data-Driven Chart Animations.
Computer Graphics Forum 39 (2020).

[20] Camille Gobert and Michel Beaudouin-Lafon. 2022. i-LaTeX: Manipulating Tran-
sitional Representations between LaTeX Code and Generated Documents. In
Proceedings of the CHI Conference on Human Factors in Computing Systems. ACM.
Paper 554.

[21] Robert L. Goldstone, Tyler Marghetis, Erik Weitnauer, Erin R. Ottmar, and David
Landy. 2017. Adapting perception, action, and technology for mathematical
reasoning. Current Directions in Psychological Science 26, 5 (2017), 434–441.

[22] Google. Retrieved July 7, 2023. Google Slides. https://slides.google.com
[23] Han L. Han, Miguel A. Renom, Wendy E. Mackay, and Michel Beaudouin-Lafon.

2020. Textlets: supporting constraints and consistency in text documents. In
Proceedings of the CHI Conference on Human Factors in Computing Systems. ACM.
Paper 675.

[24] Avery Harrison, Hannah Smith, Taylyn Hulse, and Erin R. Ottmar. 2020. Spacing
out! Manipulating spatial features in mathematical expressions afects perfor-
mance. Journal of Numerical Cognition 6, 2 (2020), 186–203.

[25] Andrew Head, Kyle Lo, Dongyeop Kang, Raymond Fok, Sam Skjonsberg, Daniel S.
Weld, and Marti A. Hearst. 2021. Augmenting Scientifc Papers with Just-in-Time,
Position-Sensitive Defnitions of Terms and Symbols. In Proceedings of the CHI
Conference on Human Factors in Computing Systems. ACM. Paper 413.

[26] Andrew Head, Amber Xie, and Marti A. Hearst. 2022. Math Augmentation:
How Authors Enhance the Readability of Formulas Using Novel Visual Design
Practices. In Proceedings of the CHI Conference on Human Factors in Computing
Systems. ACM. Paper 491.

[27] Fred Hohman, Andrew Head, Rich Caruana, Robert DeLine, and Steven M.
Drucker. 2019. Gamut: A Design Probe to Understand How Data Scientists
Understand Machine Learning Models. In Proceedings of the CHI Conference on
Human Factors in Computing Systems. ACM. Paper 579.

[28] Fred Hohman and other contributors. 2020. Awesome Mathematical Notation
Design. Retrieved July 22, 2023 from https://github.com/fredhohman/awesome-

mathematical-notation-design
[29] Sture Holm. 1979. A Simple Sequentially Rejective Multiple Test Procedure.

Scandinavian Journal of Statistics 6, 2 (1979), 65–70.
[30] ST John and other contributors. Annotate equations in LaTeX using TikZ. Re-

trieved July 6, 2023 from https://github.com/st--/annotate-equations
[31] Project Jupyter. Retrieved July 22, 2023. jupyter-renderers. https://github.com/

jupyterlab/jupyter-renderers
[32] Markus Knauf and Jelica Nejasmic. 2014. An efciency comparison of document

preparation systems used in academic research and development. PloS one 9, 12
(2014), e115069.

[33] Donald E. Knuth. 1986. TEX: The Program. Addison-Wesley.
[34] Bell Labs. Unix Programmer’s Manual. Retrieved July 22, 2023 from https://

www.bell-labs.com/usr/dmr/www/man71.pdf
[35] Joseph J. LaViola and Robert C. Zeleznik. 2004. MathPad

2
: A System for the Cre-

ation and Exploration of Mathematical Sketches. ACM Transactions on Graphics
(2004), 432–440.

[36] Jakob Leitner, Christian Rendl, Florian Perteneder, Adam Gokcezade, Thomas
Seifried, Michael Haller, Robert Zeleznik, and Andrew Bragdon. 2010. NiCE
Formula Editor. In ACM SIGGRAPH 2010 Talks. ACM.

[37] Clayton Lewis. 1982. Using the “thinking-aloud” method in cognitive interface
design. IBM TJ Watson Research Center Yorktown Heights, NY.

[38] Yong Li, Shoaib Kamil, Alec Jacobson, and Yotam Gingold. 2022. HrrtDown:
Document Processor for Executable Linear Algebra Papers. In SIGGRAPH Asia
2022 Conference Papers. Article 51.

[39] Geofrey Litt, Max Schoening, Paul Shen, and Paul Sonnentag. Potluck: Dynamic
documents as personal software. Retrieved July 12, 2023 from https://www.
inkandswitch.com/potluck/

[40] Digital Science UK Ltd. Overleaf. Retrieved July 22, 2023 from https://www.
overleaf.com/

[41] Zyba Ltd. Retrieved July 7, 2023. CodeCogs Equation Editor. https://editor.
codecogs.com/

[42] Suyu Ma, Chunyang Chen, Hourieh Khalajzadeh, and John Grundy. 2021. Latexify
Math: Mathematical Formula Markup Revision to Assist Collaborative Editing in
Math Q&A Sites. Proceedings of the Conference on Computer-Supported Cooperative
Work and Social Computing 5, CSCW2 (2021).

[43] Lars Madsen, Will Robertson, and Joseph Wright. 2014. The mathtools package.
CTAN-Archive, ctan.org.

[44] Tyler Marghetis, David Landy, and Robert L. Goldstone. 2016. Mastering alge-
bra retrains the visual system to perceive hierarchical structure in equations.
Cognitive research: principles and implications 1 (2016).

[45] David Matthews. 2019. Craft beautiful equations in Word with LaTeX. Nature
570, 7760 (2019), 263–264.

[46] Alexandra Mendes, Roland Backhouse, and João F. Ferreira. 2014. Structure
editing of handwritten mathematics: Improving the computer support for the
calculational method. In Proceedings of the ACM International Conference on

Interactive Tabletops and Surfaces. ACM, 139–148.
[47] Microsoft. Retrieved July 7, 2023. PowerPoint. https://microsoft.com/powerpoint
[48] Microsoft. Retrieved July 7, 2023. Write an equation or formula.

https://support.microsoft.com/en-au/ofce/write-an-equation-or-formula-

4f799df7-4ca4-4670-afd3-6135768b01d0
[49] Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo

Soares, Ashish Tiwari, and Abhishek Udupa. 2019. On the Fly Synthesis of Edit
Suggestions. In Proceedings of the SIGPLAN Conference on Systems, Programming,
Languages, and Applications: Software for Humanity. ACM, Article 143.

[50] Morten Misfeldt. 2011. Computers as medium for mathematical writing. Semiotica
2011 (2011), 239.

[51] Haneen Mohammed, Ziyun Wei, Eugene Wu, and Ravi Netravali. 2020. Continu-
ous Prefetch for Interactive Data Applications. In Proceedings of the International
Conference on Very Large Data Bases, Vol. 13. VLDB Endowment.

[52] Jousef Murad. Derivation of the Navier-Stokes Equations. Retrieved July 22, 2023
from https://www.youtube.com/watch?v=zWdnf3Uh1RE

[53] Sheshera Mysore, Mahmood Jasim, Haoru Song, Sarah Akbar, Andre Ken-
neth Chase Randall, and Narges Mahyar. 2023. How Data Scientists Review
the Scholarly Literature. In Proceedings of the Conference on Human Information
Interaction and Retrieval. ACM, 137–152.

[54] Bui Duc Nha. Retrieved July 7, 2023. Mathcha. https://www.mathcha.io/
[55] Wode Ni, Joshua Sunshine, Vu Le, Sumit Gulwani, and Titus Barik. 2021. reCode:

A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code
by Example. In Proceedings of the Symposium on User Interface Software and
Technology. ACM, 258–269.

[56] Joshua Maxwell Pollock. 2022. Bluefsh: A Grammar of Discrete Diagrams.
Master’s thesis.

[57] The LATEX Project. Retrieved July 7, 2023. LATEX. https://www.latex-project.org
[58] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.

2018. Exploratory and Live, Programming and Coding. The Art, Science, and
Engineering of Programming 3, 1 (2018).

[59] Grant Sanderson. 3Blue1Brown. Retrieved September 8, 2021 from https://
www.youtube.com/c/3blue1brown

[60] Nazmus Saquib, Rubaiat Habib Kazi, Li-yi Wei, Gloria Mark, and Deb Roy. 2021.
Constructing Embodied Algebra by Sketching. In Proceedings of the CHI Confer-
ence on Human Factors in Computing Systems. ACM, Article 428.

[61] F. E. Satterthwaite. 1946. An Approximate Distribution of Estimates of Variance
Components. Biometrics Bulletin 2, 6 (1946), 110–114.

[62] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jefrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions of
Visualization and Computer Graphics 23, 341–350.

[63] Mary D. Shepherd and Carla C. van de Sande. 2014. Reading mathematics for
understanding—From novice to expert. The Journal of Mathematical Behavior 35
(September 2014), 74–86.

[64] Open source contributors. Retrieved July 22, 2023. markdown-it. https://github.
com/markdown-it/markdown-it

[65] Open source contributors. Retrieved July 7, 2023. Inkscape. https://inkscape.org/
[66] Steven L. Tanimoto. 1990. VIVA: A Visual Language for Image Processing. Journal

of Visual Languages and Computing 1, 2 (1990), 127–139.
[67] The Manim Community Developers. 2023. Manim – Mathematical Animation

Framework. https://www.manim.community/
[68] Michael Toomim, Andrew Begel, and Susan L. Graham. 2004. Managing Du-

plicated Code with Linked Editing. In Proceedings of the Symposium on Visual
Languages and Human-Centric Computing. IEEE, 173–180.

[69] Paul Topping. 1999. Using MathType to create TeX and MathML equations. In
Proceedings of the 1999 TEX Annual Meeting, TUGBoat, Vol. 20.

[70] Bret Victor. Tangle: a JavaScript library for reactive documents. Retrieved August
15, 2021 from http://worrydream.com/Tangle/

[71] W3C. SVG. Retrieved July 22, 2023 from https://www.w3.org/TR/SVG2/
[72] Erik Weitnauer, David Landy, and Erin Ottmar. 2016. Graspable Math: Towards

dynamic algebra notations that support learners better than paper. In Proceedings
of the Future Technologies Conference. IEEE, 406–414.

[73] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80–83.

[74] Krist Wongsuphasawat. Labella.js. Retrieved September 16, 2020 from https://
twitter.github.io/labella.js/

[75] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jefrey Heer. 2015. Voyager: Exploratory analysis via faceted brows-
ing of visualization recommendations. IEEE Transactions of Visualization and
Computer Graphics 22, 649–658.

[76] Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich,
Joshua Sunshine, and Keenan Crane. 2020. Penrose: from mathematical notation
to beautiful diagrams. ACM Transactions on Graphics 39, Article 144 (2020).

[77] Hsin I. Yung and Fred Paas. 2015. Efects of Computer-Based Visual Representa-
tion on Mathematics Learning and Cognitive Load. Educational Technology and
Society 18 (2015), 70–77.

[78] Robert Zeleznik, Andrew Bragdon, Ferdi Adeputra, and Hsu-Sheng Ko. 2010.
Hands-On Math: A page-based multi-touch and pen desktop for technical work

https://slides.google.com
https://github.com/fredhohman/awesome-mathematical-notation-design
https://github.com/fredhohman/awesome-mathematical-notation-design
https://github.com/st--/annotate-equations
https://github.com/jupyterlab/jupyter-renderers
https://github.com/jupyterlab/jupyter-renderers
https://www.bell-labs.com/usr/dmr/www/man71.pdf
https://www.bell-labs.com/usr/dmr/www/man71.pdf
https://www.inkandswitch.com/potluck/
https://www.inkandswitch.com/potluck/
https://www.overleaf.com/
https://www.overleaf.com/
https://editor.codecogs.com/
https://editor.codecogs.com/
https://microsoft.com/powerpoint
https://support.microsoft.com/en-au/office/write-an-equation-or-formula-4f799df7-4ca4-4670-afd3-6135768b01d0
https://support.microsoft.com/en-au/office/write-an-equation-or-formula-4f799df7-4ca4-4670-afd3-6135768b01d0
https://www.youtube.com/watch?v=zWdnf3Uh1RE
https://www.mathcha.io/
https://www.latex-project.org
https://www.youtube.com/c/3blue1brown
https://www.youtube.com/c/3blue1brown
https://github.com/markdown-it/markdown-it
https://github.com/markdown-it/markdown-it
https://inkscape.org/
https://www.manim.community/
http://worrydream.com/Tangle/
https://www.w3.org/TR/SVG2/
https://twitter.github.io/labella.js/
https://twitter.github.io/labella.js/
https://ctan.org

Avg./Mdn. Score (1-7) Task E1 Task E2
FFL 6.25/6.0 6.00/6.5
LATEX 5.06/5.0 3.61/3.0

Avg./Mdn. Score (1-7) Task C1 Task C2 Task E1 Task E2 Exp. Task
FFL 6.06/7.0 5.69/6.5 6.63/7.0 5.44/5.5 6.30/7.0
LATEX 6.00/6.0 6.29/7.0 5.86/6.0 4.72/5.0 N/A

Avg./Mdn. Score (1-7) Task C1 Task C2 Task E1 Task E2 Exp. Task
FFL 5.47/6.0 5.31/5.5 6.38/6.5 5.44/5.5 6.30/6.0
LATEX 5.00/5.0 5.24/5.0 5.13/6.0 3.61/3.5 N/A

Task C1 Task C2 Task E1 Task E2
FFL 3 2 0 1

2 1 1 8LATEX

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

and problem solving. In Proceedings of the Symposium on User Interface Software
and Technology. ACM, 17–26.

A DESCRIPTIVE STATISTICS
Below, we show detailed tables and fgures of descriptive statistics
collected from the usability study.

Task completion

Table A.1: Counts of participants who did not complete timed
tasks (each count is out of 14 participants).

Time Task C1 Task C2 Task E1 Task E2
(s) FFL LATEX FFL LATEX FFL LATEX FFL LATEX
�̄ 253.3 242.8 258.1 229.2 157.3 206.0 223.4 350.4
� 97.65 101.1 98.6 95.8 66.4 81.3 87.5 68.1

Table A.2: Task completion times, reported as arithmetic
means and standard deviations, by task and interface.

Self-reported ease
In the tables below, cells show the mean and median rating across
participants on a Likert scale of 1–7, where 1 corresponds to “strongly
disagree” and 7 corresponds to “strongly agree” to a statement.

Table A.3: Participants’ self-reported ease by task and inter-
face. Participants were asked to indicate their agreement with the
statement “It was easy to complete the task.”

Table A.4: Participant self-reported efcacy by task and in-
terface. Participants were asked to indicate their agreement with
the statement “I was able to do what I wanted with the tool.”

Table A.5: Participant self-reported sense of readability. Par-
ticipants were asked to indicate their agreement with the statement
“I found it easy to read the styling code/specifcation.”

Wu et al.

B EXAMPLE AUGMENTATIONS
Below, we show examples of augmentations authors performed in
the open-ended authoring task on again Hohman et al. [27]. The
following passage from P26 is representative of most participants’
fnished work. It makes use of color to relate expressions to descrip-
tions in the text, and labels to explain several expressions.

Other participants took diferent approaches. For instance, P13
used labels alone, believing them to be sufcient for a textbook-
style passage (and that color was better suited for personal notes):

Some participants experimented more ambitiously with CSS,
when they had sufcient prior knowledge. For instance, P17 exper-
imented with background-color, font-size, and font-weight
and expressions, in addition to the other typical augmentations.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Notation and augmentation
	2.2 Tools for augmenting notation
	2.3 Tools for augmenting texts

	3 Demo
	4 System
	4.1 Language design
	4.2 Live runtime

	5 Implementation
	5.1 Parsing the FFL specification
	5.2 Matching LaTeX token sequences
	5.3 Applying styles
	5.4 Drawing overlays and underlays
	5.5 Technical limitations

	6 Evaluation
	6.1 Participants
	6.2 Procedure
	6.3 Analysis

	7 Results
	7.1 Effect of FFL on task success
	7.2 Effect of FFL on authoring experience

	8 Discussion
	8.1 Limitations
	8.2 Future work

	9 Conclusion
	Acknowledgments
	References
	A Descriptive statistics
	B Example Augmentations

