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Figure 1: The interface of Peanut for audio-visual data annotation. A and B: toolbars with editing and annotation assistance

functions; C: the annotation workspace; D: the information panel showing meta-information about the annotations on the

current frame
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ABSTRACT

Audio-visual learning seeks to enhance the computer’s multi-modal
perception leveraging the correlation between the auditory and vi-
sual modalities. Despite their many useful downstream tasks, such
as video retrieval, AR/VR, and accessibility, the performance and
adoption of existing audio-visual models have been impeded by
the availability of high-quality datasets. Annotating audio-visual
datasets is laborious, expensive, and time-consuming. To address
this challenge, we designed and developed an efficient audio-visual
annotation tool called Peanut. Peanut’s human-AI collaborative
pipeline separates the multi-modal task into two single-modal tasks,
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and utilizes state-of-the-art object detection and sound-tagging
models to reduce the annotators’ effort to process each frame and
the number of manually-annotated frames needed. Awithin-subject
user study with 20 participants found that Peanut can significantly
accelerate the audio-visual data annotation process while maintain-
ing high annotation accuracy.

CCS CONCEPTS

• Human-centered computing → Interactive systems and

tools; • Information systems→ Multimedia information systems.

KEYWORDS

human-AI collaboration, data annotation, data labeling, audio-visual
learning, interactive machine learning

ACM Reference Format:

Zheng Zhang, Zheng Ning, Chenliang Xu, Yapeng Tian, and Toby Jia-Jun
Li. 2023. PEANUT: A Human-AI Collaborative Tool for Annotating Audio-
Visual Data. In The 36th Annual ACM Symposium on User Interface Software

and Technology (UIST ’23), October 29-November 1, 2023, San Francisco, CA,

USA. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/3586183.
3606776

1 INTRODUCTION

Most of our real-world perceptual experiences are specified by mul-
tiple cooperating human senses with multi-sensory integration [78].
For example, we can perceive spoken language words and senti-
ments from lip movements, facial expressions, and speech sounds
of the other speakers. To mimic human perception capability, re-
searchers in Artificial Intelligence (AI) community have begun to
explore audio-visual machine learning (ML) approaches [7, 10, 48,
49, 85]. As an emerging research field, audio-visual learning has
attracted a lot of attention from both the academic community
and the industry because of its potential to solve many challenging
problems in real-world applications such as video retrieval [70, 122],
AR/VR [75, 93], and accessibility [86, 113].

A fundamental task in audio-visual learning is sounding object
localization, which identifies and localizes sounds to visual objects
in videos. This task associates audio data with the corresponding
visual data, which represents the critical step for many downstream
audio-visual tasks such as audio-visual scene-aware dialogs [2],
video sound separation [38, 104], audio spatialization [37, 75], audio-
visual captioning [89, 103], and multimodal embodied AI [20, 35].

However, the performance and wide adoption of audio-visual
learning have been impeded by the availability of high-quality
datasets. For example, commonly used “gold-standard” datasets
such as AVE [106] is only weakly supervised for this task (i.e., events
are annotated for video segments, but object-level ground-truth
labels are not available for frames). Therefore, previous works [7, 10,
48, 49, 85] focus on weakly-supervised or self-supervised methods.
These methods not only result in lower model accuracy [98, 106],
but also introduce biases in the models. In these methods, exist-
ing common label noises will be propagated into learned models,
leading to compromised results with ethical issues [105, 119] (e.g.,
introducing biases and stereotypes presented in datasets into anno-
tation results). Since there are various audible and inaudible visual
objects in video frames and even a single sound source can make

different sounds with different intensities, the sounding object local-
ization task is hungry for large-scale and high-quality training data
to capture the diverse audio-visual correspondences and mitigate
data variations.

The lack of high-quality datasets is a direct consequence of the
large effort required to create such datasets. Annotating audio-
visual data is laborious, expensive, and time-consuming. With the
current annotation tools of for audio-visual data (e.g., VIA [30]),
annotators need to watch each frame of the video, listen to the cor-
responding sound, identify the sounding object, draw a bounding
box, and indicate the type of sound. Considering that even a short
video would require the annotation of hundreds, if not thousands,
of frames, this process is highly repetitive and tedious.

Some prior intelligent tools (e.g., [9, 19, 27, 28, 32, 107] have been
introduced to provide AI-enabled assistance to users in the data
annotation process with promising outcomes to improve annota-
tion efficiency using strategies such as batching [9], rule synthe-
sis [32], and active learning [101]. However, these existing tools
are limited to the annotation of data in one modality (e.g., text cate-
gorization [9, 28], head post recognition [27], handwriting recog-
nition [107], image labeling [12, 19], and video segmentation [88])
while audio-visual data annotation requires the user and its AI as-
sistance to process data from two modalities and explicitly connect
them together.

In this paper, we present Peanut1, a new data annotation tool for
improving the efficiency of audio-visual data annotation. To tackle
the unique challenge in multi-modal data annotation, Peanut en-
capsulates a novel human-AI collaborative active learning pipeline
where the user validates, revises, and connects the output frommul-
tiple single-modal models through a mixed-initiative interface [47].

Instead of using a fixed ML model to pre-label data, Peanut uses
an active learning architecture [24, 99] that allows these partial-
automation models to incrementally learn from the user’s annota-
tions in real-time to improve model performance, learn about visual
and auditory data in new video topics, and adapt to the specific
domain of the current video. Several design features are presented
to ensure the user’s sense of agency and control [110, 111] and al-
leviate users’ overreliance on AI [9], both are notable issues found
in human-AI collaboration of data works from previous studies. A
within-subjects study with 20 participants showed that Peanut can
significantly accelerate the annotation of audio-visual data (anno-
tate almost 3 times the number of frames compared to the baseline
condition) while also achieving high data accuracy.

In summary, this paper presents the following three main con-
tributions:
• A set of interaction mechanisms for incorporating outcomes
of single-modal ML models into a new human-AI collabora-
tive annotation workflow of multi-modal audio-visual data
while improving model performance with user annotations
in real time using an active learning approach.
• Peanut, a human-AI collaborative annotation tool that im-
plements these strategies to reduce user efforts and improve
efficiency in annotating audio-visual data for sounding ob-
ject localization.

1The name Peanut is an acronym for Platform for Efficient Annotation with No
Unnecessary Tedium.
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• A within-subjects user study with 20 participants with di-
verse annotation and ML expertises showing that Peanut
can improve efficiency in the annotation of audio-visual data
while also achieving high data accuracy.

2 BACKGROUND AND RELATEDWORK

2.1 Audio-Visual Learning

Audio-visual learning aims to build a multi-sensory perception
system that learns from perceived auditory and visual scenes. Mim-
icking human perception capacity, it can enable a variety of novel
applications in many fields, such as multimedia [42, 70, 122], affec-
tive computing [72, 81], accessibility [86, 113], and AR/VR [86, 113].
Utilizing and learning from both auditory and visual modalities has
attracted significant attention in the AI community.

We have seen great progress in the development of new audio-
visual learning problems and applications, such as representation
learning [7, 10, 85], audio-visual sound separation [31, 36, 85, 125],
sounding object localization [49, 85, 98, 106], audio-visual event
localization [67, 106, 118], audio-visual captioning [89, 103], and
multimodal embodied AI [20, 35].

2.1.1 Sounding Object Localization. Among audio-visual learning
tasks, one important task is the localization of sounding objects. For
example, in a symphony concert scenario, the model should identify
which instrument is making a particular sound andwhere the instru-
ment is located in the video. Early work in this area utilized mutual
information [45] and canonical correlation analysis (CCA) [55] to
localize the sounding visual regions. Recently, deep audio-visual net-
works have been developed to spatially locate sound sources based
on cross-modal embedding similarity [8, 48, 85], audio-guided vi-
sual attention [98, 106], audio-visual class activation mapping [87],
class-aware object localization map [49], and sounding object visual
grounding [104].

These approaches take advantage of the natural synchroniza-
tion between audio and visual contents and are trained using self-
supervised or weakly-supervised methods (i.e., using no or limited
annotated training data). Due to the lack of ground truth annotation
for training, they tend to make inaccurate predictions. A relevant
audio-visual ML task is active speaker detection which focuses
on detecting the active speaker from speech, due to the narrower
task domain (human speech only) and the availability of datasets
such as [56], the state-of-the-art active speaker detection models
generally perform better than the domain-general sounding object
localization ones [3, 49, 49, 56]. Our work seeks to address this
problem by making it easier to annotate large audio-visual datasets.

2.2 Data Annotation for Machine Learning

High-quality data is the foundation of most ML models. The lack
of high-quality data has been a long-time bottleneck for many ML
tasks [16, 41]. While the undervaluing of data work compared to the
lionized work of building novel models and algorithms is common
in AI development [95], “data excellence” played a crucial role in
the quality of AI systems [95].

Despite that many unsupervised, self-supervised, and weakly-
supervisedmodels have been found useful inmany task domains [29,
126], supervised learning (i.e., models learning from annotated

example input-output pairs) still shows important advantages in
model performances and robustness. However, collecting annotated
ground truth data is usually a costly and time-consuming process
that requires extensive human labor.

There are two types of data annotation—(1) Explicit data anno-
tation, where human annotators use their perceptive and cognitive
abilities to categorize and label data for the purpose of creating
annotated datasets [9]. This is often a repetitive and tedious process
especially because datasets need to be large in order to be effective;
(2) Implicit data annotation, where users of a computing system
generate useful datasets as a side product of interacting with the
system (e.g., users of a recommender system generate useful data
when interacting with recommended items). While this approach
does not incur additional user efforts, it requires the system to be
deployed at a large scale in order to collect sufficient data, which
requires significant effort and is not always feasible in all task do-
mains and at all stages of the project. Implicit annotation also faces
the “cold start” problem [96]—it still needs a dataset for training the
initial model to provide acceptable performance at the beginning
before implicitly-annotated data from user interactions come in.

Peanut is designed to reduce the human effort required in ex-

plicit data annotation, making the process more efficient while
maintaining data accuracy. Meanwhile, Peanut also uses implicit

data annotation strategies to improve the performance of its own
object detection model in real-time while the user is in the process
of explicit interactive data annotation (detail in Section 3.3.4).

2.2.1 Assistance for Explicit Data Annotation. Explicit data anno-
tation is traditionally a fully manual process—a human annotator
examines the input data and determines the output result that
the ML model should produce using their human knowledge and
cognitive abilities [18] (e.g., the commonly used VIA tool [30] for
manual audio-visual annotation). Recently, several interactive tools
have been developed to assist human annotators with the pro-
cess [32, 91, 94, 100, 123]. Notably, Ruler [32] is an interactive
system that synthesizes labeling rules while the human annotator
manually assigns labels in textual data (known as the data program-

ming process [91]). Like Peanut, Ruler uses a partial-automation
approach where an intelligent system helps the human annotator
by automating some parts, but not the full end-to-end annotation
task. The two systems also share the “explicit+implicit” approach
as Ruler learns to synthesize new labeling rules while the user
manually labels the data. Desmond et al. introduced an AI labeling
assistant that uses a semi-supervised learning algorithm to predict
the most probable labels for each example in the labeling intents of
user natural language inquiries [28]. Peanut’s interfaces for users
to verify labels predicted by a model and correct model-generated
bounding boxes are similar to prior work in improving object de-
tection models in computer vision [53, 68].

Some ML-enabled annotation assistance tools use off-the-shelf
models to pre-label data as suggestions for users. For example,
CVAT2 uses a deep learning model to pre-label the images. Sim-
ilarly, Ilastik [12] provides pre-labels to support semi-automatic
image segmentation using edge detection and watershed models.
Although pre-labeling is effective for accelerating the annotation,
it risks annotating data with model biases, especially when the
2https://github.com/opencv/cvat
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data is in a new domain previously unseen in the model’s training
process [120]. The approach used in Peanut has significant differ-
ences from these pre-labeling approaches. Instead of performing
pre-labeling independent of human annotation, Peanut grounds
its annotation suggestions on human-labeled key frames in real-
time to balance model performance and human effort for achieving
high-quality annotations and ensuring user control of the annota-
tion process at the same time. The key frames are determined in
real-time according to video contents and intermediate annotation
results (Section 3.4.2). This approach also allows Peanut to learn
new topics from the user’s few shot annotations.

The problem domain in Peanut is also more complex than the
domain in existing AI-enabled annotation support tools for single-
modal data (e.g., images [12, 19], text [28, 34, 94, 101]). Peanut
works in a task domain with data in multiple modalities (audio
and visual). The task explicitly addresses the explicit and implicit
relations between data in different frames.

Another type of assistance for explicit data annotation uses the
strategy of batching (e.g., [9, 27, 107]). The system first puts “sim-
ilar” data into batches using unsupervised clustering models or
pre-trained models (e.g., semantic similarity for NLP tasks) and
then asks the human annotator to annotate data by batch. The
underlying assumption is that it would be easier and faster to an-
notate similar data together than to annotate them individually
because they are likely to be assigned with the same or similar
labels. The batching strategy has been shown to be effective in
accelerating the data annotation process [9]. A potential concern
with batching is users’ overreliance on AI—the human annotator
might assign the same label to a batch without carefully examining
each data point because “the AI model thought that they were all
similar” [9]. Peanut also uses batching—but it was not achieved
using an unsupervised clustering model. Instead, Peanut leverages
the characteristics of videos so that adjacent frames are often sim-
ilar to each other. The auditory and visual models used in Peanut
detect changes in the scene or sudden movements, which are used
to batch frames so that the human annotator only annotates key
frames. A guided workflow for human annotation (Section 3.3.2),
video playback, and thumbnail preview features (Section 3.3.3) in
Peanut alleviate the overreliance issue.

2.2.2 Implicit Data Annotation. Systems that use implicit data an-
notation strategy include (1) those that collect data from their in-
teractions with users for the purpose of a different data task, such
as reCAPTCHA [108] that collects user-annotated data for training
computer vision models through its interactive process of distin-
guishing human users from bots for authentication purposes and
the Foldit game [25] that collects user-annotated protein struc-
tures through an online game; (2) those that collect data from their
interactions with users for the purpose of improving the same inter-
action, such as recommender systems that learn about user personal
preferences as the user interacts with the recommended items [90]
and intelligent agents that learn about tasks while helping users
with task automation [61, 63].

Peanut’s use of implicit data annotation falls into the latter
category. As discussed in Section 3.3.4, the human annotation result
for each keyframe is used to fine-tune the visual-sound grounding
model, which reduces human effort in annotating the rest of the

frames. This strategy is also an example of active learning [24, 99],
where the system chooses which data the visual-sound grounding
model should learn from by querying the user through Peanut’s
selection of keyframes (Section 3.4.2).

2.3 Human-AI Collaboration in Data Science

Peanut belongs to a fast-growing list of AI-powered interactive
tools that assist and augment human capabilities in different sub-
tasks in the data science workflow [44, 80, 110, 112]. Besides data
annotation, human-AI collaborative tools have also been developed
for data wrangling (i.e., cleaning and formatting data to make it
suitable for analysis [52]) (e.g., [40]), exploratory data analysis and
sensemaking (e.g., [114]), selection of ML models (e.g., [43]), gener-
ating new data features (e.g., [33]), testing and debugging ML mod-
els (e.g., [115]), and fine-tuning parameters in ML models (e.g., [69]).

The design of Peanut is informed by empirical studies on how
data science workers work with data [76, 77] and data workers’ per-
ceptions and mental models of human-AI collaborative data science
tools [112]. For example, studies [76, 77] reported that the difficulty
with finding reliable labels for ground truth is a common problem
that data science practitioners encounter. In industry settings, ex-
ternal domain experts often need to be hired [77]. Spreadsheet is
commonly used as a tool for labeling—while specialized tools such
as CrowdFlower3 have also been used, they are used to facilitate
group collaboration on data annotation [77] with no intelligent
automation feature that reduces the workload of the annotation.

More broadly, facilitating effective collaboration between human
and intelligent systems has been a long-standing topic since the
origin of HCI research in the seminal paper on man-computer sym-
biosis [64] where computers can “do the routinizable work that must
be done to prepare the way for insights” meanwhile human users
can leverage their domain expertise to make decisions that comput-
ers cannot. The design of Peanut follows this pattern where the
system marks potential object candidates and identifies keyframes
for users to annotate using single-modal partial-automation models
while the user ”connects the final dots” with their annotations that
finish the end-to-end multi-modal process using human perceptive
and cognitive capabilities that ML models do not yet possess.

Later work such as the principles in mixed-initiative interac-
tions [47] identified strategies such as considering uncertainties
in user intents, assessing the added-value of automation, provid-
ing mechanisms for refining automation results, and maintaining
user working memory of interactions. More recently, guidelines
in human-AI interaction [4] have been proposed to address chal-
lenges that camewith the popularity of “black-box-like” data-driven
AI models in interaction systems (as opposed to the “traditional”
planning-based techniques). These guidelines, principles, and theo-
retical frameworks have been widely used in the design of human-
AI collaborative systems in domains like healthcare [17], creativity
support [71], and error repairs in chatbots [62]. Two key human-AI
collaboration challenges we specifically address in the design of
Peanut are to accommodate the imperfection of AI models and
to enable the continuous learning of partial-automation models,
which we discuss in Section 3.2.

3https://appen.com/
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3 THE PEANUT SYSTEM

3.1 Task: Sounding Object Localization

Peanut focuses on annotating data for the sounding object lo-
calization task. As defined in [50], given a video, sounding object
localization aims to semantically correlate each sound to the visual
regions containing the sounding source and recognize the category
of the sound in each frame. Therefore, in the annotation task, the
annotator should first identify all the sounds in the current frame,
and for each sound, provide a semantic label (e.g., church bell, dog
bark) and associate it to its sounding object (represented as a bound-
ing box) for each and every frame in a video. A frame may contain
multiple sounding objects at the same time as well as silent objects
that are physically capable of making sounds.

3.2 Design Goals

Informed by results from prior studies on data annotation [9, 73, 91],
status quo of relevant ML models, and our experience with data
annotation and human-AI collaborative tools, we summarized the
following four design goals in our design of an AI-assisted audio-
visual data annotation tool to address potential human and AI
challenges in sounding object localization task:

DG1: Improving annotation efficiency without compromising accu-

racy with imperfect AI models. The ultimate goal of the annotation
is to collect data to train an end-to-end ML model for the sounding
object localization task. Although there are some end-to-end mod-
els for this task [49, 85, 98, 106], their performance is limited due to
the lack of annotated data, which our work seeks to address. While
some off-the-shelf models (e.g., object detectors, audio tagging mod-
els) can contribute to the annotation process of audio-visual data,
they are often limited in several ways: (1) they often process in-
put data in only one modality; (2) they have limited accuracy (as
they are not specifically trained for our domain); and (3) they only
assist with a part of the annotation process. In contrast, our annota-
tion task requires: (1) processing multi-modal audio-visual data; (2)
achieving high accuracy in annotation; and (3) providing an end-
to-end annotation from raw videos to annotated sounding objects
in each frame of the video.

However, the limitations of AI models do not preclude their po-
tential to function as assistant to human annotators. Prior works
[12, 23, 54] have demonstrated that using AI models to automate
parts of data annotation tasks could significantly improve annota-
tion efficiency. Nonetheless, previous research [73] also suggested
that without effective human intervention strategy, imperfect AI
could result in lower quality in annotations despite the higher
efficiency. Therefore, our main motivation is: how can we make
annotating audio-visual data more efficient by introducing AI as-
sistance that reduces human effort and cognitive load? Meantime,
it is also crucial that improved efficiency does not come at the cost
of compromising accuracy. As discussed in [95], data quality issues
can cause significant compounding negative effects on downstream
tasks, resulting in “data cascades” that harm users and communities.

DG2: Supporting users’ agency and mitigating their overreliance

on AI models. Prior work [58] find that users tend to give premature
cognitive commitment to automation if the assisted task is routine,
repetitive, and demanding. In particular, Ashktorab et al. [9] showed

that AI-assisted data labeling tasks conform to these characteristics
in which users are inclined to overrely on AI: despite the inaccura-
cies of the models, human users sometimes perceive higher qualities
and higher capabilities of the models than what they actually are
when they observe their high performance in common situations.
However, when uncommon situations arise, human users may over-
rely on AI automation which could threat human discernment and
agency in annotation [9]. This poses a challenge in our task given
that the frame-wise annotation is highly repetitive and demanding,
which may make users less wary of the cross-modal mismatches
and inaccurate annotations by the AI. Therefore, our system should
make it easy for users to identify potential errors in AI results and
ensure that users fulfill their duties of reviewing and validating AI
results in the annotation workflow. Furthermore, our system should
support user agency in the annotation process, providing the flex-
ibility to control the degree of human involvement based on their
perception of AI’s accuracy change over the annotation process.

DG3: Minimizing the learning barrier. Data annotation tasks are
often conducted by people without significant AI/ML expertise—
many users of data annotation tools are either domain experts
(e.g., physicians and radiologists who annotate medical imaging
data [79]) or laypeople who only annotate data either as a one-
off task or only occasionally (e.g., Mechanic Turk workers [73]).
Therefore, it would be prohibitive if the tool has a high learning
barrier or requires extensive expertise from the users. Ideally, the
system should not require users to learn new skills beyond what
they would already need if they labeled the data manually.

DG4: Supporting annotation for diverse video topics. Audio-visual
scenarios are intrinsically diverse in terms of the object, sound,
and event type involved in videos [7]. Therefore, our annotation
tool should be able to provide users with effective AI assistance
regardless of the topics in the videos being labeled. To meet this
need, models used in the pipeline should be generalizable and not
limited to specific domains. While some of these models might be
pre-trained to bootstrap the system’s performance in cold-start
situations for common topics, they should also be able to learn
about new object and audio types quickly from the user’s few-shot
example data in real time.

3.3 System Design

To address the aforementioned design challenges and design goals,
we designed and implemented Peanut, a human-AI collaborative
audio-visual annotation tool that seeks to make annotation more
efficient using novel interaction strategies, features, and algorithms.
Figure 1 shows the main annotation workspace of Peanut, which
consists of three components: (1) a canvas that displays the video
frame and its current annotation state (C); (2) top and side toolbars
that allow the annotator to perform different operations (A, B); (3)
an information panel that summarizes the meta-information about
the current object types and displays the operation history (D). The
system architecture of Peanut is shown in Figure 2.

3.3.1 Human annotation. For each frame, Peanut lowers the user’s
effort and cognitive load to annotate it by: (1) facilitating the user’s
access to both global and local audio-visual contexts; (2) inferring
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Figure 2: The system architecture of Peanut. The video frames and the audio clips are processed separately by single-

modal partial-automation models before they are presented to the human annotator for the end-to-end result that leverages

the annotator’s multi-modal perceptive and cognitive capabilities. Both the object detector and the audio tagging model

incrementally improve their own performances using an active learning approach.

bounding boxes for potential candidates of sounding objects; and
(3) predicting the audio tags for sounds.

When the user moves to a frame that corresponds to the i-th
millisecond (ms) of the video, Peanut will auto-play a one-second-
long audio clip that contains the soundtrack from i-500 to i+500 ms,
which gives the annotator a sense of the local audio context. The
annotator can replay the local soundtrack by clicking the “Audio”
button. In addition, Peanut allows the annotator to watch the
entire video at any time during the annotation process, which helps
the annotator disambiguate between the identities of local sound
sources with the information of the global context.

Peanut helps the annotator locate and tag the sounding ob-
ject. When using Peanut to annotate a frame, instead of manually
recognizing the audio type and drawing the bounding box for its
sounding object, the user, in most cases, selects a sound type from
a list of predictions made by an audio-tagging model and matches
it to one of the visual objects detected by an object detector (red
boxes shown in Figure 1). This process can reduce the annotator’s
cognitive load for locating and labeling the sounding objects (DG1)
and demand no domain knowledge from annotators (DG3). If none
of the predicted sound types or visual objects is correct, the anno-
tator can manually enter a sound type and draw a new bounding
box by clicking the / button.

3.3.2 Automatic annotation. Besides reducing the efforts required
for the user to annotate each frame, Peanut allows the user to
annotate fewer frames. Instead of asking the annotator to label every

frame in the video, Peanut uses two complementary strategies to
automatically infer the annotation result of the remaining frames
based on the human annotation of “key frames”. The combination
of two strategies provides the annotator with the flexibility to adjust
the granularity of automatic annotation.

For the first strategy, Peanut dynamically navigates the anno-
tator to the next keyframe that requires human annotation, from
which Peanut can infer the annotation results of the frames be-
tween two human-annotated ones. The annotator can go to the
next recommended keyframe by clicking the� button. Under the
hood, Peanut uses an audio-visual-sensitive binary search algo-
rithm (see Section 3.4.1) to identify the next keyframe that needs
human annotation. Note that the recommended key frames may not
be in sequential order. For example, after an annotator annotates
the 10th and 20th frame consecutively, Peanut may roll back to
the 15th frame if there was a significant visual or auditory change
between the 10th frame and the 20th frame according to the human
annotation results. When the annotator finishes the annotation
of two adjacent recommended keyframes, if both are determined
to be continuous in both auditory and visual spaces, Peanut will
automatically interpolate the annotation results of the in-between
frames by tracking the movement of known sounding objects, as
explained in Section 3.4.1.

In the second strategy, the annotator can choose to automate the
annotation of each frame by clicking on the � button. Peanut will
preempt the annotation of the immediate next frame for the anno-
tator to review and confirm. In this way, the annotator can closely
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Figure 3: Peanut provides two interfaces for users to review the annotation result: the frame-by-frame thumbnail review and

the annotated video playback preview.

inspect the automatic annotation result to ensure its correctness.
The second strategy is especially useful when the auditory or visual
context changes quickly in the video.

It’s important to note that PEANUT provides users with the
choice to select their preferred strategy at any moment during the
video annotation, thus allowing dynamic control over the level of
human engagement in the annotation process (DG2).

3.3.3 Annotation result review. Peanut uses two interfaces for the
annotator to review the annotation result: frame-by-frame thumb-

nail and annotated video playback preview (Figure 3). The frame-by-

frame thumbnail interface displays the annotation result of each
frame in a grid view, enabling the annotator to quickly detect frames
with inappropriate annotations. The annotated video playback pre-
view interface allows the annotator to examine how the entire video
looks after the annotation process is finished. The sound types are
also displayed in semi-transparent white boxes above the bounding
boxes. The annotator can also go to a specific frame to review and
modify the annotation result by clicking the Move To button. These
two features are designed to assist humans in spotting potential
inaccuracies in AI annotations by employing supplementary review
strategies, in order to mitigate possible overreliance (DG2).

3.3.4 Active learning. Human-in-the-loop audio-visual data anno-
tation may face two predominant challenges. First, the pre-trained
object detector and sound taggingmodel could only be able to tackle
certain objects or sound types and provide little support in those un-
familiar data. Plus, the detection accuracy of object and sound type
may be contingent to event scenarios, while audio-visual scenarios
are often highly diverse. It is possible that the model has trouble
in recognizing a learned type from an unseen scenario. To address
these challenges, as shown in Figure 2, Peanut adopts an active
learning strategy to optimize the visual sound grounding network
model, object detector and audio tagging model incrementally in
real time as the users annotate more data. Because video frames
and sounding objects in the same video are usually similar to each
other, this active learning strategy allows the model to learn from
ground truth data that likely closely resemble input data that it will

process in the future, effectively adapting the model to the domain
of the video. In this way, when encountering data type or event
scenario unknown to AI model, human annotators can provide the
model with a few ground truth annotations to enable it to classify
data in the current specific scenario. This strategy also eliminates
the need of granting a model with a generalized ability to handle
a wide range of diverse scenarios in a single training (DG4), which
is formidable for current audio-visual models.

3.4 Algorithmic Methods

3.4.1 Recommending the next frame for human annotation. We
developed an audio-visual sensitive binary search algorithm for
Peanut to decide the next “keyframe” that needs human anno-
tation (illustrated in Figure 4). The details of the algorithm are
shown in Algorithm 1. The index of the next key frame is decided
by the similarity of the annotation between the left bound frame
(lb), the current human annotation frame (cur), and a stack of right
bound frames (rbs). The left-bound frame refers to the preceding
human-annotated frame that is the closest to the current frame on
the timeline. On the contrary, the right-bound frames are those
after the current frame, while the annotation similarity between the
current frame and the right-bound frames needs to be confirmed.
The calculation of the annotation similarity uses a "predict-select-
compare" strategy. Given the current frame, Peanut first predicts
the sounding objects in the current frame by inheriting the hu-
man annotation of lb. Then Peanut compares the user-selected
sounding objects and the predicted sounding objects. If these two
sets of objects are not the same, this indicates that there is a visual
discontinuity between lb and cur that is not captured by Peanut.
To locate the first frame of this “discontinuity” efficiently, Peanut
adopts binary search and asks the human annotator to label the
frame ⌊ 𝑙𝑏+𝑐𝑢𝑟2 ⌋, meanwhile Peanut pushes cur into rbs. On the
other hand, if the predicted sounding objects are the same as the
user-selected one, Peanut will further examine whether a right-
bound frame exists. If rbs is not empty, Peanut will calculate the
similarity between cur and tf, where tf is the frame at the top of
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Figure 4: The illustration of the visual-audio sensitive binary search algorithm (Algorithm 1). Blue rectangles represent the

frames that have already been annotated by a human annotator, grey rectangles represent the frames that have not been

annotated, pink rectangles represent the frames that the human annotator is working on, and green rectangles represent the

frames automatically annotated by Peanut.

rbs. Peanut will remove tf from rbs if the similarity holds and au-
tomatically interpolate the annotation results for the intermediate
frames in between (Algorithm 2). After that, Peanut continues to
compare cur and the new frame at the top of rbs until rbs becomes
empty. If the similarity does not hold, Peanut will ask the human
annotator to annotate the frame ⌊ 𝑐𝑢𝑟+𝑡 𝑓2 ⌋.

Otherwise, if the predicted sounding objects are the same as the
user-selected ones and no right bound frame exists, Peanut will
move to the first frame that follows the farthest human-annotated
frame hf and has a significant auditory or visual change compared
to hf (Algorithm 3). If there is no significant auditory or visual
change in the next 𝑘 frames (we used 𝑘 = 10 in our implementation
of Peanut), Peanut will ask the human annotator to annotate the
frame ℎ𝑓 + 𝑘 .

3.4.2 Detecting visual and auditory changes. When a frame has a
significant visual or auditory change compared to the last human-
annotated frame denoted src, Peanut needs a human annotator
to annotate it. A frame denoted target is considered to have a
significant visual change relative to src if (1) the number of detected
objects varies between these two frames or (2) a bounding box in src
does not have a correspondence in target, where the correspondence
establishes if, given a bounding box i on left, there is a bounding
box in target that overlaps i and the overlapping area satisfies the
Condition 1, where overlapping parameters 𝛼 is 0.8 and 𝛽 is 0.05.
The overlapping threshold decreases as the time difference between
the target and source frames increases.

𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝐴𝑟𝑒𝑎(𝐵ℎ𝑖𝑔ℎ𝑒𝑠𝑡 , 𝐴𝑖 ) >
[𝛼 − (𝐼𝑛𝑑𝑒𝑥𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐼𝑛𝑑𝑒𝑥𝑠𝑟𝑐 ) × 𝛽] ×𝐴𝑟𝑒𝑎(𝐴𝑖 )

(1)

The detection of significant auditory changes is based on an
audio tagging model. Peanut uses a state-of-the-art pre-trained
Audio Neural Networks [57] to predict the audio tags for each frame.
An audio tag describes the possible type (e.g., train horn, race car,
truck, as shown in Figure 2) of the sound corresponding to that
frame.

3.4.3 Tackling complex audio-visual scenarios. Audio-visual data
often inherently possess various complexities. For example, there
might be situations where multiple sound-producing objects are
active at the same time, making it challenging to discern the spe-
cific source of a sound. Besides, some sounds may start at different
times and overlap with each other. Additionally, the video may
lack a visual indicator of the sounding object, which could com-
plicate the correlation between two modalities. To tackle those
complexities, our algorithm focuses on identifying discrepancies or
ambiguity in the auditory or visual modality, and asks humans to
annotate keyframes. For example, in cases of simultaneous sounds
from multiple objects, Peanut requests human assistance when
the audio-tagging model’s confidence score is low, indicating au-
ditory uncertainty. Also, the detection of sound changes prompts
annotation at the frames with new sound sources. When sounding
objects are not visible, Peanut invokes human intervention at the
initial sound frame, predicting the same annotation for subsequent
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Name: AudioVisualSensitiveBinarySearch

Input: 𝐿𝑒 𝑓 𝑡𝐵𝑜𝑢𝑛𝑑𝐹𝑟𝑎𝑚𝑒,𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐻𝑢𝑚𝑎𝑛𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑𝐹𝑟𝑎𝑚𝑒,

𝐺𝑙𝑜𝑏𝑎𝑙𝑅𝑖𝑔ℎ𝑡𝐵𝑜𝑢𝑛𝑑𝑆𝑡𝑎𝑐𝑘

Output: 𝑁𝑒𝑥𝑡𝐻𝑢𝑚𝑎𝑛𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑𝐹𝑟𝑎𝑚𝑒

𝑙𝑒 𝑓 𝑡 ← 𝐿𝑒 𝑓 𝑡𝐵𝑜𝑢𝑛𝑑𝐹𝑟𝑎𝑚𝑒 ;
𝑟𝑖𝑔ℎ𝑡 ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐻𝑢𝑚𝑎𝑛𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑𝐹𝑟𝑎𝑚𝑒 ;
𝑔𝑟𝑠 ← 𝐺𝑙𝑜𝑏𝑎𝑙𝑅𝑖𝑔ℎ𝑡𝐵𝑜𝑢𝑛𝑑𝐹𝑟𝑎𝑚𝑒𝑆𝑡𝑎𝑐𝑘 ;
𝑝𝑟𝑒𝑑𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 ←
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑆𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑂𝑏 𝑗𝑒𝑐𝑡𝐹𝑟𝑜𝑚𝑃𝑟𝑖𝑜𝑟𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡);

if 𝑟𝑖𝑔ℎ𝑡 ==0 or (𝑝𝑟𝑒𝑑𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 == 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 [𝑟𝑖𝑔ℎ𝑡]
and 𝑔𝑟𝑠.𝑙𝑒𝑛𝑔𝑡ℎ == 0) then

return FarthestFrameNeedHumanAnnotation();
else if 𝑝𝑟𝑒𝑑𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 == 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 [𝑟𝑖𝑔ℎ𝑡] and
𝑔𝑟𝑠.𝑙𝑒𝑛𝑔𝑡ℎ > 0) then

𝑐𝑢𝑟 ← 𝑟𝑖𝑔ℎ𝑡 ;
𝑟𝑖𝑔ℎ𝑡 ← 𝑔𝑟𝑠.𝑝𝑜𝑝 ();
while right != Null do

𝑝𝑟𝑒𝑑𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 ←
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑆𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑂𝑏 𝑗𝑒𝑐𝑡𝐹𝑟𝑜𝑚𝑃𝑟𝑖𝑜𝑟𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑐𝑢𝑟, 𝑟𝑖𝑔ℎ𝑡);

if pred_objects == SelectedObjects[right] then

PopulateFrameAnnotation(𝑐𝑢𝑟 , 𝑟𝑖𝑔ℎ𝑡 );
𝑐𝑢𝑟 ← 𝑟𝑖𝑔ℎ𝑡 ;
𝑟𝑖𝑔ℎ𝑡 ← 𝑔𝑟𝑠.𝑝𝑜𝑝 ();

else

𝑛𝑒𝑥𝑡 ← ⌊ 𝑐𝑢𝑟+𝑟𝑖𝑔ℎ𝑡2 ⌋;
return 𝑛𝑒𝑥𝑡 ;

end

end

return FarthestFrameNeedHumanAnnotation();
else

𝑔𝑟𝑠.𝑝𝑢𝑠ℎ(𝑟𝑖𝑔ℎ𝑡);
𝑛𝑒𝑥𝑡 ← ⌊ 𝑙𝑒 𝑓 𝑡+𝑟𝑖𝑔ℎ𝑡2 ⌋;
return 𝑛𝑒𝑥𝑡 ;

end

Algorithm 1: The audio-visual-sensitive binary search algo-
rithm

Name: PopulateFrameAnnotation

Input: 𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡

Output: 𝑁𝑜𝑛𝑒

for 𝑖 ← 𝑙𝑒 𝑓 𝑡 + 1 to 𝑟𝑖𝑔ℎ𝑡 do
𝑝𝑟𝑒𝑑𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ←
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑆𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑂𝑏 𝑗𝑒𝑐𝑡𝐹𝑟𝑜𝑚𝑃𝑟𝑖𝑜𝑟𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑙𝑒 𝑓 𝑡, 𝑖);

if AduioTags[i].contains(videoTag) then

𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒 (𝑖, 𝑝𝑟𝑒𝑑𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛);
end

end

Algorithm 2: Automatically interpolate the annotation results
for the frames between two human-annotated frames

Name: FarthestFrameNeedHumanAnnotation

Input: 𝑁𝑜𝑛𝑒

Output: 𝑛𝑒𝑥𝑡

𝑓 𝑟𝑎𝑚𝑒𝐼𝑛𝑑𝑒𝑥 ← 𝑔𝑒𝑡𝐹𝑎𝑟𝑡ℎ𝑒𝑠𝑡𝐻𝑢𝑚𝑎𝑛𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑𝐹𝑟𝑎𝑚𝑒 ();
for 𝑖 ← 1 to k do

if DetectAudioVisualChange(frameIndex, frameIndex+i)

== false then

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

end

else

return 𝑓 𝑟𝑎𝑚𝑒𝐼𝑛𝑑𝑒𝑥 + 𝑖;
end

end

Algorithm 3: Return the farthest frame that needs human
annotation

frames until significant changes occur (sound cessation or the in-
troduction of a new sound). The “jumpback” (Algorithm 1) solicits
human input at the midpoint when successive key frames have
inconsistent annotations due to sounding object changing with no
visual cue.

Our approach echos prior research [15, 39, 51, 124] in human-AI
collaboration for the completion of complex tasks where machine
learning models primarily target the automation of repetitive and
mundane tasks, resorting to human assistance when the uncertainty
score surpasses a threshold.

3.5 Implementation

3.5.1 Web app. The front-end web application of Peanut is imple-
mented in React based on react-image-annotate

4, an open-source
framework for the development of image annotation tools and
hosted using Python’s built-in HTTP server. The back-end server
is developed using the Flask framework with a MongoDB database
that stores user annotations and log data.

3.5.2 Object detector. Peanut uses the off-the-shelf Detectron2
[116] library for implementing its object detector. The object detec-
tor is built using the Faster R-CNN [92] neural network architecture
with R101-FPN feature pyramid networks [65] and is pre-trained
on the domain-general MS-COCO dataset [66]. The object detector
does not need to be retrained when using Peanut on videos from
a new topic domain. From the input of a video frame in bitmap
format, the object detector can identify objects of 80 different types
(e.g., “train”, “violin”, “dog”, etc.) and return the corresponding co-
ordinates of the bounding box and the type of each object.

3.5.3 Active visual sound grounding. The Visual Sound Grounding
(VSG) networkmodel is trained to identify objects that make sounds
among the candidate objects in each video frame. The network is
built on top of [104]. The network is first pre-trained on the AVE
dataset [106]. Afterward, it is iteratively and incrementally fine-
tuned with newly annotated data during the active learning stage.
The network takes the feature of the current audio clip and objects
that are proposed by the object detector (Section 3.5.2) as inputs
and predicts the likelihood that each object is associated with the
sound, which allows the model to identify and remove bounding
4https://github.com/UniversalDataTool/react-image-annotate

https://github.com/UniversalDataTool/react-image-annotate
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boxes that correspond to likely-silent objects from the potential
candidates of bounding boxes.

4 USER EVALUATION

To evaluate Peanut, we conducted a user study5 with 20 users
to compare the efficiency and accuracy of audio-visual data anno-
tation using Peanut with those using a baseline system without
intelligent features. The results of the study suggest that Peanut
can help users annotate data for the sounding object localization
task at a faster speed than in the baseline condition, while also im-
proving the annotation accuracy at the same time. The user study
also validated the usability of Peanut and provided insight into
user reflections on their experiences using Peanut.

4.1 Participants

For this study, we recruited 20 participants through university mail-
ing lists. 7 were undergraduate students, 8 were Master’s students,
4 were doctoral students, and 1 was a high school student. Each
participant was compensated with $15 USD for their time.

Our participants had varied levels of prior data annotation expe-
riences and ML backgrounds. 8 participants had no prior experience
with data annotation and 12 had annotated data at least once. 5
participants had no ML background, 5 participants had at least a be-
ginner level of ML knowledge (have taken introductory ML courses
or had basic ML knowledge), 5 had an intermediate level of ML
expertise (have taken advanced ML courses or with equivalent ex-
pertise), and 5 identified themselves as experts in ML (experienced
researchers or practitioners of ML).

4.2 Study Design

Each user study session lasted around 70 minutes and was con-
ducted remotely on Zoom due to the impact of the COVID-19 global
pandemic. Before the beginning of each session, the participant
signed the consent form and completed a demographic question-
naire. Participants accessed Peanut using the browser on their
own computers and shared their screens with the experimenter.
After receiving a 5-minute tutorial on how to use Peanut’s inter-
face, each participant completed the annotation tasks under two
conditions in random order (see Section 4.2.2) and completed a post-
study questionnaire on their perceived usability and usefulness of
Peanut. The study session ended with a 10-minute semi-structured
interview with the participant in which they reflected on their ex-
perience interacting with Peanut. All user study sessions were
video recorded.

4.2.1 Dataset. In this study, we trained and evaluated Peanut
using the Audio-Visual Event (AVE) dataset [106], which is a widely
used benchmark dataset for the audio-visual localization task. The
full AVE dataset contains 4,143 video clips from a wide range of
topics and domains (e.g., “Church Bell”, “Male speech”, “Dog Bark”)
in 28 event categories. Each video clip in the AVE dataset is about
10 seconds long. We re-sampled each video at 8 FPS (a common
practice in audio-visual data annotation so there are fewer frames
to annotate in each video). For the user study, we used a sample

5The study protocol has been reviewed and approved by the IRB at our institution.

Average SoC ↓ # of Frames ↑ cIoU ↑
Full Automated N/A N/A 0.33
Full Manual 7.73 169.45 0.72
Peanut 5.12 488.85 0.93

Table 1: Statistics of participants’ performance in control

(Full Manual) and experiment (Peanut) conditions. SoC

means second of completion per frame, # of frames means

the total number of frames that a participant annotates in

the condition, cIoUmeans consensus intersection over union,

which is a well-accepted measure for the accuracy of bound-

ing box annotation. The cIoU accuracy of the fully automated

model is also provided as a reference.

of 30 video clips from the AVE dataset. The sampled dataset con-
tains 10 different event categories such as music play, car race,
male/female speech to investigate the effectiveness of Peanut on
videos with a variety of topics. Each of these 30 video clips was
manually annotated by two experts as ground truth data for eval-
uating the accuracy of user annotation. Two authors, who were
experts in audio-visual learning, annotated the ground truth data
independently using the baseline Full Manual version of Peanut.
We used cIoU (see Section 4.3.3) to measure the inter-annotator
agreement. The average cIoU score between the annotation results
by two experts is 0.96, suggesting a very high agreement between
the two expert annotators.

4.2.2 Conditions. The study used a within-subject design, where
each participant performed tasks under two conditions in random
order. In the experiment condition (Peanut), the participant used
the fully functional Peanut tool to label videos from a split of
our sample dataset in 25 minutes. In the control condition (Full
Manual), the participant used a baseline version of Peanut with all
“intelligent features” (object detector, active visual sound grounding,
and annotation interpolation) turned off to label the videos from
the other split of our sample dataset in 25 minutes. The control
condition reflected the essential practices of the current video or
image data annotation tools [30, 109, 121]. The split of the videos
between the two conditions and the order of the videos in each
condition were randomized in each study session. In Table 1, we
also include the accuracy score of a “Fully Automated” model using
the pre-trained VSG network as a baseline for annotation accuracy.

4.2.3 Procedure. In the study, participants were asked to annotate
audio-visual data for sounding object localization using Peanut and
the baseline tool. We randomized the order to control for learning
effects. The study procedure consisted of three parts: a 30-minute
session with the first interface, a 30-minute session with the second
interface, and a 10-minute session for the post-study interview
and a post-study questionnaire. In each 30-minute session, the
experimenter started with a 5-minute tutorial teaching participants
how to use the interface in the condition. Subsequently, participants
had 25 minutes to annotate as many video frames as possible using
the tool provided. After completing both sessions, each participant
filled out a post-study questionnaire. The study session ended with
a 10-minute semi-structured interview.
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4.3 Results on Annotation Performance

We expect Peanut to accelerate the annotation task for participants
in two ways: (H1) the user can annotate each frame faster because
of the model-suggested bounding boxes of detected visual objects
and the predicted audio tags; (H2) the user needs to manually an-
notate fewer frames due to the visual-audio-sensitive binary search
process.

As shown in Table 1, we report three statistics. The average sec-
ond of completion (SoC) validates H1, and the # of Frames validates
the combined effect of H1 and H2. cIoU measures the impact of us-
ing Peanut on the accuracy of the annotated data. When reporting
those statistics, we also report the standard deviation among all
users in the target condition. We will explain each statistics and its
results in this section.

4.3.1 Time to completion. We calculated the average seconds of
completion (Average SoC) on human-annotated frames. SoC mea-
sures the average time participants spent annotating each video
frame (not including those automatically annotated by the model).
The difference between the two conditions in SoC demonstrates
the effectiveness of Peanut in reducing the effort and cognitive
load in the annotation of individual frames, such as displaying
the potential candidates of objects and removing silent objects. As
shown in Table 1, the average SoC is 5.12 per frame (𝑆𝐷 = 1.87)
in the experiment condition and 7.73 per frame (𝑆𝐷 = 2.23) in the
control condition. The paired t-test showed that there is a signifi-
cant difference between the average SoC under the two conditions
(𝑝 < 0.01), indicating that participants can annotate a frame faster
with Peanut than with the baseline interface.

4.3.2 The number of annotated frames. We calculated the aver-
age number of frames that a participant annotated in a 25-minute
session (# of Frames). Note that the count includes the frames au-
tomatically annotated by Peanut in the experiment condition. In
addition to capturing the effect of Peanut features reflected in
average SoC, the difference in the average number of frames be-
tween two conditions also reflects the effectiveness of automatic
annotation in Peanut—instead of annotating all the video frames
as in the baseline condition, participants only need to annotate key
frames identified by Peanut and verify automatic annotation in
the experiment condition. As shown in Table 1, the average num-
ber of annotated frames is 488.85 (𝑆𝐷 = 167.93) in the experiment
condition, and 169.45 (𝑆𝐷 = 68.26) in the control condition. The
paired t-test showed that there is a significant difference between
the average number of frames annotated under the two conditions
(𝑝 < 0.001), indicating that participants can annotate more frames
with Peanut thanwith the baseline interface in a 25-minute session.

4.3.3 Annotation accuracy. We used consensus intersection over

union (cIoU) [98] to assess the participants’ annotation accuracy in
each condition. cIoU is a common metric for quantitatively evaluat-
ing the accuracy of bounding box annotations. Given a video frame,
cIoU assigns scores to each pixel according to the consensus of
multiple expert annotations. In specific, the ground-truth bounding
boxes annotated by experts are first converted into binary maps
{b𝑗 }𝑁𝑗=1, where N is the number of expert annotators. Then, we
calculate a representative score map g from {b𝑗 } considering the
consensus of experts:

g =𝑚𝑖𝑛(
𝑁∑︁
𝑗=1

b𝑗

#𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠
, 1) (2)

where #𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 is a parameter indicating the minimum number
of expert annotations to reach agreement. Since we have two expert
annotators, we set #𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠=1 by the majority rule in our study.
Given this weighted score map g and participant’s annotation 𝛼 ,
we define cIoU as:

𝑐𝐼𝑜𝑈 =

∑
𝑖∈𝐴 g𝑖∑

𝑖 g𝑖 +
∑
𝑖∈𝐴−𝐺 1

(3)

where i indicates the pixel index of the map, 𝐴 = {𝑖 |𝛼𝑖 = 1} means
the set of pixels that the participant annotates, 𝐺 = {𝑖 |𝑔𝑖 > 0}
means the set of pixels in the weighted ground truth annotation.

We calculate the cIoU score for each annotated frame of each
participant. The average cIoU score for all annotated frames (all
by human) in the control condition is 0.72 (𝑆𝐷 = 0.14), and is 0.93
(𝑆𝐷 = 0.09) for all annotated frames (by human or by the sys-
tem) in the experiment condition. A paired sample t-test showed a
significant difference between the average cIoU under the two con-
ditions (𝑝 < 0.001). For comparison, the cIoU of a fully-automated
VSG (off-the-shelf pre-trained without any human annotation) on
the same sample of videos is 0.33 (𝑆𝐷 = 0.08). The paired t-test
shows that the cIoU for the fully-automated model is significantly
lower (𝑝 < 0.001) than both human-annotated conditions (Full
Manual and Peanut). The result indicates that the use of Peanut
can achieve a high annotation accuracy (and even higher than the
full-manual control condition in our experiment).

We suspect two possible reasons for the observed improvement
in accuracy in the Peanut condition compared to the Full Manual
condition: (1) The use of object detectors may have improved con-
sistency in selecting the bounding boxes. The annotation of some
sounding objects can be inherently ambiguous—for example, when
a sounding object is a person playing the violin, should the annota-
tor draw a box for the person (that includes the violin) or only the
violin? The labeling of situations like this can be inconsistent in the
Full Manual condition (e.g., the violin is selected in some frames,
while the person is selected in other frames). In this example situ-
ation, the objector detector would consistently go with the person
because it prefers larger boxes when choosing from two overlapped
ones (which is often consistent with the common best practice of
sounding object localization), reducing the bounding box inconsis-
tency in data annotation. (2) Drawing accurate bounding boxes is a
challenging task on its own. The bounding boxes drawn manually
by users often do not align as accurately with the edges of the
object as the model-detected boxes. Moreover, because data anno-
tation with the baseline interface is a highly repetitive and tedious
process, the precision of participants’ manually created bounding
boxes could fluctuate due to fatigue (e.g., not modifying a box when
an object has moved “a little bit”, but still aligns mostly with the
box). We plan to further investigate the factors that contribute to
the improvement of accuracy as a future work direction.

4.3.4 The impact of user expertise. Comparing the annotation ex-
perience and efficiency, users without prior annotation experience
annotated faster than those with prior annotation experience in the
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Peanut condition. The average numbers of frames that participants
with and without data annotation experience annotated in the ex-
periment condition were 394.5 (𝑆𝐷 = 95.46) and 630.4 (𝑆𝐷 = 187.78)
respectively. An unpaired t-test shows that participants without
data annotation experience annotated significantly more frames
than those with annotation experience (𝑝 = 0.043 < 0.05). Partic-
ipants without annotation experience also on average spent less
time on each frame (𝐴𝑉𝐺 = 4.35𝑠, 𝑆𝐷 = 0.75) than those with
annotation experience (𝐴𝑉𝐺 = 6.26𝑠, 𝑆𝐷 = 0.58) (𝑝 = 0.031 < 0.05).
There was no significant difference between their average number
of frames in the Full Manual condition. The efficiency improvement
from using Peanut (comparing # of Frames between Peanut and
Full Manual conditions) is significant for both groups.

In terms of ML expertise, there was no significant difference in
all three metrics (Average SoC, number of Frames, cIoU) among
groups of participants with different levels of ML expertise in a
one-way ANOVA test. We found no significant difference in anno-
tation accuracy between participants who had no prior annotation
experience and those who had prior annotation experience, either.

For the observed difference in efficiency between groups with
and without prior annotation experiences, a possible explanation
is that users with prior data annotation experience may be more
skeptical to automated annotation and thus spent more time double-
checking the results. We plan to investigate this phenomenon more
closely in future studies.

4.4 Results on User Behaviors and Experiences

4.4.1 Usage statistics. We analyzed the interaction logs and screen
recordings of participants in the experiment (Peanut) condition
to understand how participants interacted with Peanut’s AI as-
sistance, especially on the ratio between manual vs. automated
annotation and how often they edit the automated annotation re-
sults. As we see in Table 1, each participant, on average, annotated
488.85 frames in a session. Among them, an average of 37.2 (7.6%)
frames are manually annotated by the participant, 421.7 (86.2%) are
automatically annotated without any user modification, 29.9 (6.1%)
are first automatically annotated by the model and then modified
by the user. In each session, a participant on average resized/moved
the model-predicted bounding boxes of visual objects in 12.6 frames
(2.6%), created new bounding boxes for visual objects in 14.2 frames
(2.9%), and edited the model-predicted audio tags in 3.1 frames
(0.6%).

Among the annotations made in the Peanut condition, the aver-
age cIoU of the 13.8% human annotated frames is 0.81 (𝑆𝐷 = 0.12)
and average cIoU of the 86.2% automated annotated frames is 0.96
(𝑆𝐷 = 0.07). This result indicates that with a small portion of user
annotation on mostly “key frames” identified by our algorithm,
the model can get very accurate at automated annotations (com-
pared to the average cIoU of 0.33 in the Full Automated condition),
indicating the effectiveness of Peanut’s active learning pipeline.

4.4.2 Post-study questionnaire. In a post-study questionnaire, we
asked each participant to rate seven statements about the usability,
usefulness, and user experience of Peanut on a 7-point Likert
scale from “strongly agree” to “strongly disagree”. The results are
shown in Figure 5. Specifically, Peanut scored on average 4.9 (𝑆𝐷 =

1.92) on “Peanut is easy-to-use”, 5.7 (𝑆𝐷 = 2.10) on “I can learn

to use Peanut easily”, 5.6 (𝑆𝐷 = 2.19) on “I found the feature of

recommending candidate boxes is useful”, 5.15 (𝑆𝐷 = 2.08) on “I
found the feature of navigating to next frame to label is useful”, 5.15
(𝑆𝐷 = 2.16) on “I found the features of reviewing annotation result

are useful”, 5.5 (𝑆𝐷 = 2.16) “I found the feature of playing audio

corresponding to a frame is useful”, and 4.8 (𝑆𝐷 = 2.11) on “I enjoy
using Peanut”. The results indicate that our participants generally
found Peanut easy to use, and the design features are useful for
their annotations.

When a participant rated a statement lower than “agree”, the
experimenter would take a note and ask the participant about the
specific issues they had encountered and solicit their suggestions
for addressing these issues in the interview. We will report on these
findings in Section 4.4.3 below.

4.4.3 User experiences, challenges, and feedback. In the interview,
we discussed with the participants about their post-study ques-
tionnaire responses, the difficulties they encountered when using
Peanut, the different user experiences of annotating data in two
conditions, and their suggestions for the design of Peanut. The
leading author first coded all the interview transcripts indepen-
dently and discussed the codebook with another author to reach a
consensus. The unified codebook was then used by the other author
to code all the interview transcripts independently again to validate
the result. The overall inter-rater reliability is 0.72.

Most of the reported difficulties originated from the default po-
sitions and sizes of the canvas and the annotation box. Due to an
implementation bug, the video frames would be shown in a smaller
window in the upper left corner and users “had to drag and resize
them every time” (P13). The panel for predicted bounding boxes may
also appear outside the frame sometimes, so the user has to drag it
back to the current view. Both of these implementation issues can
be easily fixed in new versions of Peanut. Besides, after carefully
watching the video multiple times, participants still sometimes had
trouble recognizing the sound type or locating the source due to
“the background noise, ambiguity of the sound, and existence of mul-

tiple objects of a similar type” (P15). Lastly, a few participants found
the difference between the Next button and Next Label confusing,
especially in videos that had rapid visual or auditory changes, for
which Peanut tends to conservatively recommend the immediate
next frame when participants clicked the Next Label button, which
could confuse the user (P13).

When asked to describe the pros and cons of the AI-assisted
Peanut system compared to the baseline, the 20 participants men-
tioned that Peanut significantly accelerated their annotation pro-
cess and reduced their workload. Participants thought “Peanut
saved their time from doing repetitive and tedious manual labeling,

especially when frames varied little once a time” (P6). With the assis-
tance of Peanut, they only need to “focus on a handful of key frames”
(P10) or “keep clicking the Next button to oversee the automatic anno-

tation frame-by-frame” (P12). In addition, some participants thought
that the systems recommended more accurate bounding boxes than
what they can manually create, thus they did not need to “strug-
gle with creating precise boxes manually” (P13). Compared to the
baseline tool, Peanut “makes the annotation process much less ex-

hausting” (P13). On the weakness of Peanut, participants thought
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Figure 5: Results of the post-study questionnaire

that with the Next Label button they may easily overtrust the sys-
tem from the beginning, and “merely realized the wrong or missing

annotation when reviewing back at the end” (P4).
With regard to human agency, participants thought the system

“allow them to jump in and take control back at any time when they

feel the AI model start going wrong” (P16). P9 suggested that “the
system should provide more information or clear warning to them

so that they can better notice the issue and decide when to get in”.
Moreover, as to their reliance on AI models, some participants said
they “tend to trust AI more when the sounding object was obvious in

the video and AI correctly labelled them for consecutive frames” (P10).
In contrast, they “would choose to do it on their own when sounding

object changes a lot” (P5).
For the design of Peanut. P4 suggested enabling keyboard short-

cuts for frequently used operations such as drawing, deletion, and
frame switch. Furthermore, some participants thought "the algo-
rithm behind the Next Label button should be more robust" (P15)
especially “when the scene contains complex objects or has a large

variation between the frames” (P12).

5 DISCUSSION AND IMPLICATIONS

In this section, we discuss several novel interaction strategies that
we used in the design of Peanut, the lessons we learned in the
user study, and their implications for human-AI collaboration.

5.1 Connecting and Unifying Different Data

Modalities

The design of Peanut introduces a strategy for human-AI collabora-
tion inmulti-modal tasks that demand high perceptive and cognitive
overhead to process and associate input from different modalities.
Peanut uses two single-modal models that can provide partial au-
tomation. The human user then contributes by (1) validating the par-
tial automation result; (2) associating the partial automation result
of one model from one input modality with that of a different model
from a different input modality to achieve the multi-modal end goal.
Many participants found this partial automation approach effective
for reducing cognitive load and fatigue when annotating a large
number of similar frames. For example, P8 said “I almost fell asleep

when using the first interface (baseline). In comparison, the second one

(Peanut) allowedme to focus on those (frames) worth my effort so that

I did not need to do a tedious, repeated annotation for every picture”.
This new interaction strategy represents the adoption and de-

velopment of classic theories in multi-modal interfaces [83, 84] in
a new domain. Instead of an interface that processes user input
data in multiple (usually complementary) modalities and tries to
better understand the input from one modality using the input from
another modality (mutual disambiguation [82]), Peanut works in
the reversed direction, utilizing humans’ perceptive and cognitive
capabilities of understanding inputs from one modality using in-
puts from another modality in order to ground auditory data to
visual data. The strategy discussed in this paper and design impli-
cations from the study could translate to other multi-modal data
annotation tasks like natural language visual grounding [5] visual
question answering [6]. Besides, we expect this interaction strategy
to be useful in other application domains beyond data annotation,
such as helping users with visual or hearing impairments better
understand videos as discussed in Section 6.

5.2 Minimizing the Overhead Cost of AI in

Human-AI Collaboration

When we design the user workflow of Peanut, an important goal
is that the use of Peanut should not introduce additional burdens
or learning barriers compared to what the user would experience
if they manually annotated the same data. The user does not need
to learn a new skill or make any configuration of Peanut before
starting to use it. Anything the user does in Peanut is either a
sub-process of what they would need to do in manual annotation
(e.g., choosing the sounding object from several candidate boxes
instead of identifying the sounding object in the video and drawing
a box for it) or the same process but less repetitive (e.g., annotating
for only the key frames instead of all the frames). This is different
from many other human-AI collaboration scenarios, where the use
of AI incurs significant overhead, requiring justifying the use of AI
by assessing whether the benefit exceeds the cost.

To achieve this goal, we used a strategy of keeping the user’s
original workflow as much as possible. For example, Peanut can
identify the next key frame that the user can label (Section 3.3.2).
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This intelligent feature does not require any additional input from
the user, as it relies on only the user’s annotation result for the
current frame and the current state of the frame sequence. The
user’s interaction with the system also remains the same as in a
manual labeling tool—they click on the “Next” button to work on a
different frame after finishing annotating the current one with the
only difference being that the “next” frame is no longer necessarily
the (𝑛+1)𝑡ℎ frame after the𝑛𝑡ℎ frame. The user retains the ability to
freely move along the sequence of frames, edit previously annotated
frames, or annotate frames out of the “recommended” order as they
wish. Peanutwill automatically track the next recommended frame
to be annotated without requiring user intervention, allowing users
to retain control and agency in the human-AI collaborative data
annotation process. The participants confirmed the effectiveness of
human-AI collaboration in the interview. For example, P5 said that
“I felt it is smooth to work with the algorithm behind Peanut. It takes

care of many simple annotations that had to be done by myself in the

previous fully manual version”.
Another common type of “cost” in human-AI collaboration that

we address in Peanut is the degraded accuracy due to users’ overre-
liance on AI, which has been identified as a key issue in AI-assisted
data annotation [9]. When the audio-visual sound grounding model
identifies candidate objects and removes likely silent objects from
the candidates, we still expect the user to maintain their attention
and edit the results if needed. To address this challenge, Peanut pro-
vides video playback and thumbnail preview features (Section 3.3.3)
that allow the user to quickly validate the result and identify an-
notation issues if there are any. In the user study, these features
indeed helped participants locate incorrect automatic annotations
and consequently calibrate their trust in AI automation. For exam-
ple, P14 said that “I totally trusted the system to label the frames at

the beginning. However, as I looked at the review of the annotation

result, I realized the system could make mistakes and I have to go

back to improve the annotation”.

5.3 The Role of Partial Automation in Pursuit

of Full Automation

The traditional workflow of data annotation for ML models rep-
resents an approach that goes from full manual efforts directly to
full automation—human users go through a fully manual process
to create a dataset, which is then used to train a fully-automated
ML model. In contrast, Peanut’s approach highlights the role of
incrementally-trained partial-automation models that can bridge
the two ends in pursuit of full automation.

In Peanut’s model, as the user is annotating the data in a manual
process, partial-automation models are incrementally trained with
the user’s incomplete annotation of each frame. Thank to the char-
acteristic of video data that frames in the same video are usually sim-
ilar to each other, domain-general partial-automation models can
quickly adapt to the specific domain of the video in a few-shot fash-
ion. The active learning process guided by the key frame selections
(Section 3.4.2) in Peanut incrementally improves the performance
of partial-automation models as the user annotates more frames,
reducing human efforts to reach the data size and data quality re-
quired for training an end-to-end fully-automated model. During
the interview, P4 commented: “One feature I can imagine is that, with

my annotation on a few frames at the beginning of a video, the sys-

tem can learn to label the following frames or even other videos with

similar content and do the remaining annotation on behalf of me”.
We expect that such an approach can be useful for a variety

of other human-in-the-loop ML applications. An example is the
human/ML hybrid sensing approach such as Zensor [59] where
sensors can switch between crowd intelligence and ML to adapt
to environmental changes. However, unlike Zensor which toggles
between either full automation or full manual for the primary sens-
ing task and uses human annotation results as a validation method,
Peanut’s approach allows for more flexible partial-automation
states in between, taking advantage of the partially annotated data
to accelerate the annotation before a fully automated model is ready.

5.4 Mitigating Biases in AI-Assisted Data

Annotation

While the issue of biases is less prominent in task domain of Peanut
since unlike many other domains vulnerable to subjective bias (e.g.,
hate speech detection [74]), the result of sounding object localiza-
tion does come with an objective truth, mitigating the biases of AI
and human annotators in this task is still an important considera-
tion. Presumably, the addition of AI assistance in data annotation
could introduce or amplify two kinds of biases in annotation.

First, AI models in Peanut may introduce intrinsic biases to
annotation results [14, 26, 60]. These biases originated from the
dataset on which these models are pre-trained on. To address them,
Peanut identifies key frames with previously unseen objects and
proactively requests human annotation in these key frames. On
those key frames, the role of AI is to assist with human annotation
by suggesting label candidates for user to use rather than attempt-
ing to fully automating their annotations using the pre-trained
model. The design allows users to take control and accountability
of annotations on keyframes and offsets AI biases with human
judgement.

In addition to introducing biases themselves, AI models may
also amplify human errors when performing automated annotation
based on previous human annotations [1, 13, 21]. For example,
when there are multiple guitars in a key frame in the scene, the
human annotator may have difficulty in identifying which guitar is
currently making the sound and select a wrong guitar as the sound
source. In this case, the object detector in Peanut will propagate
this wrong annotation to automated annotations in subsequent
frames. The playback reviews (Section 3.3.3) could be useful to
mitigate this issue by providing a global context that facilitates
users to identify errors in continuous scenes.

We also expect to introduce other bias-reducing strategies in the
future version of Peanut. For example, we may implement assis-
tance functions to support human decision-making of the sound
source at key frames when the human annotator is unsure. For
example, Peanut may leverage the model-inferred depth and di-
rection information of the sound to indicate the likelihood of each
visual region in the frame containing the sound source object.
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6 LIMITATIONS & FUTUREWORK

6.1 Incorporating Speech and Natural Language

Models

The current version of Peanut only supports the use of auditory
and visual models, but not natural language understanding (NLU)
models that process the content of speech in videos. Speech is one of
the most ubiquitous sound sources in videos. Human speech usually
contains important semantic information relevant to the surround-
ing audio and visual scenes in physical environments. Moreover,
unlike other sounds (e.g., traffic, rain, dog barking), speech can be
transcribed into text using automatic speech recognition [46]. Bene-
fitting from advances in NLU [11, 22, 97, 102], we can automatically
extract structured and abstracted semantic content from transcribed
text. This could provide opportunities for us to incorporate NLU
models with Peanut to facilitate more powerful multimodal data
collection to support multidisciplinary research across audio, visual,
and language.

6.2 Expanding to Audio-Visual Tasks beyond

Sounding Object Localization

We implemented and evaluated the current version of Peanut in
the context of the sounding object localization task.With its support
for user interaction with both audio and visual modalities, Peanut
can be easily expanded to a range of multi-modal audio-visual tasks,
such as audio-visual event localization [106, 118], audio-visual video
parsing [105, 117], and audio-visual video captioning [89, 103].

Audio-visual event localization aims to temporally localize audio-
visual events6 and recognize the categories of events. Toward more
unified multi-sensory perception, audio-visual video parsing aims
to recognize event categories bind to sensory modalities and find
temporal boundaries of when such an event starts and ends. To
train models for addressing these two tasks, two datasets: AVE [106]
and LLP [105] have been collected, respectively. Due to the lack of
efficient annotation tools, only second-level temporal boundaries
with the corresponding categories are fully manually annotated in
these datasets.We believe that more precise frame-level annotations
will enable more accurate audio-visual ML models and facilitate
the development of future research.

In addition to facilitating existing tasks, our system has the po-
tential to help researchers investigate new problems. For example,
by collecting temporal boundary, object box, and category annota-
tions, we can formulate a new space-time audio-visual parsing task
that aims to perform spatio-temporal multi-modal analysis over
videos to predict temporal boundaries of audio, visual, and audio-
visual events, their associated semantic categories, and spatially
localized sounding objects.

6.3 Release and Deployment

We plan to release the Peanut tool for public use. We are also
currently planning a large-scale deployment to complete the anno-
tation of all 4,143 video clips in the AVE dataset [106] for sounding
object localization. The annotation result on the full AVE dataset

6Audio-visual events are synchronized video segments in which the sound sources are
visible and their sounds are audible.

will allow us to train a new supervised sounding object localiza-
tion model with the dataset, compare its performance with the
current state-of-art model, and illustrate Peanut’s effectiveness in
improving the performance of ML models by enabling the creation
of better-quality annotated datasets.

7 CONCLUSION

In this paper, we presented Peanut, a human-AI collaborative
audio-visual annotation tool for improving the data annotation ef-
ficiency of the sounding object localization task. A controlled user
study of Peanut demonstrated that a human-AI collaborative ap-
proach with several new mixed-initiative partial-automation strate-
gies can enable human annotators to perform the data annotation
task faster while maintaining high accuracy. Our findings provide
design implications for AI assistance in data annotation as well as
human-AI collaboration tools for working with multi-modal data.

ACKNOWLEDGMENTS

This work was supported in part by an AnalytiXIN Faculty Fel-
lowship, an NVIDIA Academic Hardware Grant, a Google Cloud
Research Credit Award, a Google Research Scholar Award, and the
NSF Grant 2211428. Yapeng Tian was supported by a gift from Cisco
systems. Any opinions, findings or recommendations expressed
here are those of the authors and do not necessarily reflect views
of the sponsors. We would like to thank Dakuo Wang, Yuwen Lu,
and Simret Araya Gebreegziabher for useful discussions.

REFERENCES

[1] Saad Bin Ahmed, Saif Ali Athyaab, and Shaik Abdul Muqtadeer. 2021. Attenua-
tion of Human Bias in Artificial Intelligence: An Exploratory Approach. 2021 6th
International Conference on Inventive Computation Technologies (ICICT) (2021),
557–563.

[2] Huda Alamri, Vincent Cartillier, Abhishek Das, Jue Wang, Anoop Cherian,
Irfan Essa, Dhruv Batra, Tim K Marks, Chiori Hori, Peter Anderson, et al. 2019.
Audio visual scene-aware dialog. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 7558–7567.
[3] Juan León Alcázar, Fabian Caba, Ali K Thabet, and Bernard Ghanem. 2021.

Maas: Multi-modal assignation for active speaker detection. In Proceedings of

the IEEE/CVF International Conference on Computer Vision. 265–274.
[4] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira

Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N. Bennett, Kori Inkpen,
Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. 2019. Guidelines for Human-
AI Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in

Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300233

[5] Hazan Anayurt, Sezai Artun Ozyegin, Ulfet Cetin, Utku Aktas, and Sinan Kalkan.
2019. Searching for Ambiguous Objects in Videos using Relational Referring
Expressions. In Proceedings of the British Machine Vision Conference (BMVC).

[6] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. 2015. VQA: Visual question answering. In
Proceedings of the IEEE international conference on computer vision. 2425–2433.

[7] Relja Arandjelovic and Andrew Zisserman. 2017. Look, listen and learn. In
Proceedings of the IEEE International Conference on Computer Vision. 609–617.

[8] Relja Arandjelovic and Andrew Zisserman. 2018. Objects that sound. In ECCV.
[9] Zahra Ashktorab, Michael Desmond, Josh Andres, Michael Muller, Naren-

dra Nath Joshi, Michelle Brachman, Aabhas Sharma, Kristina Brimijoin, Qian
Pan, Christine T. Wolf, Evelyn Duesterwald, Casey Dugan, Werner Geyer, and
Darrell Reimer. 2021. AI-Assisted Human Labeling: Batching for Efficiency
without Overreliance. Proc. ACM Hum.-Comput. Interact. 5, CSCW1, Article 89
(April 2021), 27 pages. https://doi.org/10.1145/3449163

[10] Yusuf Aytar, Carl Vondrick, and Antonio Torralba. 2016. Soundnet: Learning
sound representations from unlabeled video. Advances in neural information

processing systems 29 (2016), 892–900.
[11] Jonathan Berant and Percy Liang. 2014. Semantic parsing via paraphrasing.

In Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). 1415–1425.

https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/3449163


UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Zheng Zhang, Zheng Ning, Chenliang Xu, Yapeng Tian, and Toby Jia-Jun Li

[12] Stuart Berg, Dominik Kutra, Thorben Kroeger, Christoph N Straehle, Bernhard X
Kausler, Carsten Haubold, Martin Schiegg, Janez Ales, Thorsten Beier, Markus
Rudy, et al. 2019. Ilastik: interactive machine learning for (bio) image analysis.
Nature methods 16, 12 (2019), 1226–1232.

[13] Shruti Bhargava and David Forsyth. 2019. Exposing and Correcting the Gender
Bias in Image Captioning Datasets and Models. ArXiv abs/1912.00578 (2019).

[14] William Blanzeisky and Padraig Cunningham. 2021. Algorithmic Factors Influ-
encing Bias in Machine Learning. In PKDD/ECML Workshops.

[15] José Bobes-Bascarán, Eduardo Mosqueira-Rey, and David Alonso-Ríos. 2021.
Improving medical data annotation including humans in the machine learning
loop. Engineering Proceedings 7, 1 (2021), 39.

[16] Anthony Brew, Derek Greene, and Pádraig Cunningham. 2010. The interac-
tion between supervised learning and crowdsourcing. In NIPS workshop on

computational social science and the wisdom of crowds.
[17] Carrie J. Cai, Emily Reif, Narayan Hegde, Jason Hipp, Been Kim, Daniel Smilkov,

Martin Wattenberg, Fernanda Viegas, Greg S. Corrado, Martin C. Stumpe, and
Michael Terry. 2019. Human-Centered Tools for Coping with Imperfect Al-
gorithms During Medical Decision-Making. In Proceedings of the 2019 CHI

Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–14.
https://doi.org/10.1145/3290605.3300234

[18] Steve Cassidy and Thomas Schmidt. 2017. Tools for multimodal annotation.
Springer, Springer Nature, United States, 209–227. https://doi.org/10.1007/978-
94-024-0881-2_7

[19] Chia-Ming Chang, Chia-Hsien Lee, and Takeo Igarashi. 2021. Spatial Labeling:
Leveraging Spatial Layout for Improving Label Quality in Non-Expert Image
Annotation. In Proceedings of the 2021 CHI Conference on Human Factors in

Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing
Machinery, New York, NY, USA, Article 306, 12 pages. https://doi.org/10.1145/
3411764.3445165

[20] Changan Chen, Sagnik Majumder, Ziad Al-Halah, Ruohan Gao, Santhosh Kumar
Ramakrishnan, and Kristen Grauman. 2020. Learning to set waypoints for audio-
visual navigation. arXiv preprint arXiv:2008.09622 (2020).

[21] Yunliang Chen and Jungseock Joo. 2021. Understanding and Mitigating An-
notation Bias in Facial Expression Recognition. 2021 IEEE/CVF International
Conference on Computer Vision (ICCV) (2021), 14960–14971.

[22] Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. 2015. Event
extraction via dynamic multi-pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association for Computational Linguistics

and the 7th International Joint Conference on Natural Language Processing (Vol-

ume 1: Long Papers). 167–176.
[23] Youngwon Choi, Marlena Garcia, Steven S Raman, Dieter R Enzmann, and

Matthew S Brown. 2022. AI-human interactive pipeline with feedback to ac-
celerate medical image annotation. In Medical Imaging 2022: Computer-Aided

Diagnosis, Vol. 12033. SPIE, 741–747.
[24] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. 1996. Active learning

with statistical models. Journal of artificial intelligence research 4 (1996), 129–
145.

[25] Seth Cooper, Firas Khatib, Adrien Treuille, Janos Barbero, Jeehyung Lee, Michael
Beenen, Andrew Leaver-Fay, David Baker, Zoran Popović, et al. 2010. Predicting
protein structures with a multiplayer online game. Nature 466, 7307 (2010),
756–760.

[26] Yehuda Dar, Vidya Muthukumar, and Richard Baraniuk. 2021. A Farewell to
the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized
Machine Learning. ArXiv abs/2109.02355 (2021).

[27] Meltem Demirkus, James J Clark, and Tal Arbel. 2014. Robust semi-automatic
head pose labeling for real-world face video sequences. Multimedia Tools and

Applications 70, 1 (2014), 495–523.
[28] Michael Desmond, Michael Muller, Zahra Ashktorab, Casey Dugan, Evelyn

Duesterwald, Kristina Brimijoin, Catherine Finegan-Dollak, Michelle Brachman,
Aabhas Sharma, Narendra Nath Joshi, and Qian Pan. 2021. Increasing the Speed
and Accuracy of Data Labeling Through an AI Assisted Interface. Association for
Computing Machinery, New York, NY, USA, 392–401. https://doi.org/10.1145/
3397481.3450698

[29] Carl Doersch, Abhinav Gupta, and Alexei A Efros. 2015. Unsupervised vi-
sual representation learning by context prediction. In Proceedings of the IEEE

international conference on computer vision. 1422–1430.
[30] Abhishek Dutta and Andrew Zisserman. 2019. The VIA Annotation Software for

Images, Audio and Video. In Proceedings of the 27th ACM International Conference

on Multimedia (Nice, France) (MM ’19). Association for Computing Machinery,
New York, NY, USA, 2276–2279. https://doi.org/10.1145/3343031.3350535

[31] Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, Kevin Wilson, Avinatan
Hassidim, William T Freeman, and Michael Rubinstein. 2018. Looking to listen
at the cocktail party: A speaker-independent audio-visual model for speech
separation. TOG (2018).

[32] Sara Evensen, Chang Ge, and Cagatay Demiralp. 2020. Ruler: Data Programming
by Demonstration for Document Labeling. In Findings of the Association for Com-

putational Linguistics: EMNLP 2020. Association for Computational Linguistics,

Online, 1996–2005. https://doi.org/10.18653/v1/2020.findings-emnlp.181
[33] SainyamGalhotra, Udayan Khurana, Oktie Hassanzadeh, Kavitha Srinivas, Horst

Samulowitz, and Miao Qi. 2019. Automated Feature Enhancement for Predictive
Modeling using External Knowledge. In 2019 International Conference on Data

Mining Workshops (ICDMW). 1094–1097. https://doi.org/10.1109/ICDMW.2019.
00161

[34] Jie Gao, Yuchen Guo, Gionnieve Lim, Tianqin Zhan, Zheng Zhang, Toby Jia-Jun
Li, and Simon Tangi Perrault. 2023. CollabCoder: A GPT-Powered Workflow
for Collaborative Qualitative Analysis. arXiv preprint arXiv:2304.07366 (2023).

[35] Ruohan Gao, Yen-Yu Chang, Shivani Mall, Li Fei-Fei, and Jiajun Wu. 2021.
ObjectFolder: A Dataset of Objects with Implicit Visual, Auditory, and Tactile
Representations. arXiv preprint arXiv:2109.07991 (2021).

[36] Ruohan Gao, Rogerio Feris, and Kristen Grauman. 2018. Learning to separate
object sounds by watching unlabeled video. In Proceedings of the European

Conference on Computer Vision (ECCV). 35–53.
[37] Ruohan Gao and Kristen Grauman. 2019. 2.5D Visual Sound. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
[38] Ruohan Gao and Kristen Grauman. 2019. Co-separating sounds of visual objects.

In Proceedings of the IEEE/CVF International Conference on Computer Vision.
3879–3888.

[39] Simret Araya Gebreegziabher, Zheng Zhang, Xiaohang Tang, Yihao Meng,
Elena L Glassman, and Toby Jia-Jun Li. 2023. Patat: Human-ai collaborative
qualitative coding with explainable interactive rule synthesis. In Proceedings of

the 2023 CHI Conference on Human Factors in Computing Systems. 1–19.
[40] Philip J. Guo, Sean Kandel, Joseph M. Hellerstein, and Jeffrey Heer. 2011. Proac-

tive Wrangling: Mixed-Initiative End-User Programming of Data Transfor-
mation Scripts. In Proceedings of the 24th Annual ACM Symposium on User

Interface Software and Technology (Santa Barbara, California, USA) (UIST ’11).
Association for Computing Machinery, New York, NY, USA, 65–74. https:
//doi.org/10.1145/2047196.2047205

[41] Alon Halevy, Peter Norvig, and Fernando Pereira. 2009. The unreasonable
effectiveness of data. IEEE Intelligent Systems 24, 2 (2009), 8–12.

[42] Mohamed Hamroun, Karim Tamine, and Benoît Crespin. 2021. Multimodal
Video Indexing (MVI): A New Method Based on Machine Learning and Semi-
Automatic Annotation on Large Video Collections. International Journal of

Image and Graphics (2021), 2250022.
[43] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A Survey of the

State-of-the-Art. Knowledge-Based Systems 212 (2021), 106622.
[44] Jeffrey Heer. 2019. Agency plus automation: Designing artificial intelligence

into interactive systems. Proceedings of the National Academy of Sciences 116, 6
(2019), 1844–1850.

[45] John R Hershey and Javier R Movellan. 2000. Audio vision: Using audio-visual
synchrony to locate sounds. InAdvances in neural information processing systems.
813–819.

[46] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal processing

magazine 29, 6 (2012), 82–97.
[47] Eric Horvitz. 1999. Principles of Mixed-Initiative User Interfaces. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems (Pittsburgh,
Pennsylvania, USA) (CHI ’99). ACM, New York, NY, USA, 159–166. https:
//doi.org/10.1145/302979.303030

[48] Di Hu, Feiping Nie, and Xuelong Li. 2019. Deep Multimodal Clustering for
Unsupervised Audiovisual Learning. In CVPR.

[49] Di Hu, Rui Qian, Minyue Jiang, Xiao Tan, Shilei Wen, Errui Ding, Weiyao Lin,
and Dejing Dou. 2020. Discriminative Sounding Objects Localization via Self-
supervised Audiovisual Matching. In Advances in Neural Information Processing

Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.),
Vol. 33. Curran Associates, Inc., 10077–10087. https://proceedings.neurips.cc/
paper/2020/file/7288251b27c8f0e73f4d7f483b06a785-Paper.pdf

[50] Di Hu, Yake Wei, Rui Qian, Weiyao Lin, Ruihua Song, and Ji-Rong Wen. 2021.
Class-aware sounding objects localization via audiovisual correspondence. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2021).

[51] Mohammad Hossein Jarrahi. 2018. Artificial intelligence and the future of work:
Human-AI symbiosis in organizational decision making. Business horizons 61, 4
(2018), 577–586.

[52] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. 2012.
Enterprise Data Analysis and Visualization: An Interview Study. IEEE Transac-

tions on Visualization and Computer Graphics 18, 12 (2012), 2917–2926. https:
//doi.org/10.1109/TVCG.2012.219

[53] Prannay Kaul, Weidi Xie, and Andrew Zisserman. 2022. Label, verify, correct:
A simple few shot object detection method. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition. 14237–14247.
[54] Kenneth L Kehl, Wenxin Xu, Alexander Gusev, Ziad Bakouny, Toni K Choueiri,

Irbaz Bin Riaz, Haitham Elmarakeby, Eliezer M Van Allen, and Deborah Schrag.
2021. Artificial intelligence-aided clinical annotation of a large multi-cancer
genomic dataset. Nature communications 12, 1 (2021), 7304.

https://doi.org/10.1145/3290605.3300234
https://doi.org/10.1007/978-94-024-0881-2_7
https://doi.org/10.1007/978-94-024-0881-2_7
https://doi.org/10.1145/3411764.3445165
https://doi.org/10.1145/3411764.3445165
https://doi.org/10.1145/3397481.3450698
https://doi.org/10.1145/3397481.3450698
https://doi.org/10.1145/3343031.3350535
https://doi.org/10.18653/v1/2020.findings-emnlp.181
https://doi.org/10.1109/ICDMW.2019.00161
https://doi.org/10.1109/ICDMW.2019.00161
https://doi.org/10.1145/2047196.2047205
https://doi.org/10.1145/2047196.2047205
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://proceedings.neurips.cc/paper/2020/file/7288251b27c8f0e73f4d7f483b06a785-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/7288251b27c8f0e73f4d7f483b06a785-Paper.pdf
https://doi.org/10.1109/TVCG.2012.219
https://doi.org/10.1109/TVCG.2012.219


PEANUT: A Human-AI Collaborative Tool for Annotating Audio-Visual Data UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

[55] Einat Kidron, Yoav Y Schechner, and Michael Elad. 2005. Pixels that sound. In
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion (CVPR’05), Vol. 1. IEEE, 88–95.
[56] You Jin Kim, Hee-Soo Heo, Soyeon Choe, Soo-Whan Chung, Yoohwan Kwon,

Bong-Jin Lee, Youngki Kwon, and Joon Son Chung. 2021. Look Who’s Talking:
Active Speaker Detection in the Wild. In Proc. Interspeech 2021. 3675–3679.
https://doi.org/10.21437/Interspeech.2021-2041

[57] Qiuqiang Kong, Yin Cao, Turab Iqbal, YuxuanWang, WenwuWang, and Mark D.
Plumbley. 2020. PANNs: Large-Scale Pretrained Audio Neural Networks for Au-
dio Pattern Recognition. IEEE/ACM Transactions on Audio, Speech, and Language

Processing 28 (2020), 2880–2894.
[58] Ellen J Langer. 1989. Minding matters: The consequences of mindlessness–

mindfulness. In Advances in experimental social psychology. Vol. 22. Elsevier,
137–173.

[59] Gierad Laput, Walter S. Lasecki, Jason Wiese, Robert Xiao, Jeffrey P. Bigham,
and Chris Harrison. 2015. Zensors: Adaptive, Rapidly Deployable, Human-
Intelligent Sensor Feeds. In Proceedings of the 33rd Annual ACM Conference

on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15).
Association for Computing Machinery, New York, NY, USA, 1935–1944. https:
//doi.org/10.1145/2702123.2702416

[60] Susan Leavy, Gerardine Meaney, Karen Wade, and Derek Greene. 2020. Mit-
igating Gender Bias in Machine Learning Data Sets. ArXiv abs/2005.06898
(2020).

[61] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating
Multimodal Smartphone Automation by Demonstration. In Proceedings of the

2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM,
New York, NY, USA, 6038–6049. https://doi.org/10.1145/3025453.3025483

[62] Toby Jia-Jun Li, Jingya Chen, Haijun Xia, Tom M. Mitchell, and Brad A. Myers.
2020. Multi-Modal Repairs of Conversational Breakdowns in Task-Oriented
Dialogs. In Proceedings of the 33rd Annual ACM Symposium on User Interface

Software and Technology (UIST 2020). ACM. https://doi.org/10.1145/3379337.
3415820

[63] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, Tom M.
Mitchell, and Brad A. Myers. 2019. PUMICE: A Multi-Modal Agent that Learns
Concepts and Conditionals from Natural Language and Demonstrations. In
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and

Technology (UIST 2019). ACM. https://doi.org/10.1145/3332165.3347899
[64] Joseph CR Licklider. 1960. Man-computer symbiosis. IRE transactions on human

factors in electronics 1 (1960), 4–11.
[65] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan,

and Serge Belongie. 2017. Feature pyramid networks for object detection. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2117–2125.

[66] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[67] Yan-Bo Lin, Yu-Jhe Li, and Yu-Chiang FrankWang. 2019. Dual-modality seq2seq
network for audio-visual event localization. In ICASSP 2019-2019 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2002–2006.

[68] Minzhe Liu, Li Du, Yuan Du, Ruofan Guo, and Xiaoliang Chen. 2020. Faster
Human-Machine Collaboration Bounding Box Annotation Framework Based
on Active Learning. (2020).

[69] Sijia Liu, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory Bram-
ble, Horst Samulowitz, Dakuo Wang, Andrew Conn, and Alexander Gray. 2020.
An ADMM based framework for automl pipeline configuration. In Proceedings

of the AAAI Conference on Artificial Intelligence, Vol. 34. 4892–4899.
[70] Yang Liu, Samuel Albanie, Arsha Nagrani, and Andrew Zisserman. 2019. Use

what you have: Video retrieval using representations from collaborative experts.
arXiv preprint arXiv:1907.13487 (2019).

[71] Ryan Louie, Andy Coenen, Cheng Zhi Huang, Michael Terry, and Carrie J. Cai.
2020. Novice-AI Music Co-Creation via AI-Steering Tools for Deep Generative
Models. In Proceedings of the 2020 CHI Conference on Human Factors in Computing

Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376739

[72] Yaxiong Ma, Yixue Hao, Min Chen, Jincai Chen, Ping Lu, and Andrej Košir.
2019. Audio-visual emotion fusion (AVEF): A deep efficient weighted approach.
Information Fusion 46 (2019), 184–192.

[73] Tanushree Mitra, C.J. Hutto, and Eric Gilbert. 2015. Comparing Person- and
Process-Centric Strategies for Obtaining Quality Data on Amazon Mechanical
Turk. In Proceedings of the 33rd Annual ACM Conference on Human Factors

in Computing Systems (Seoul, Republic of Korea) (CHI ’15). Association for
Computing Machinery, New York, NY, USA, 1345–1354. https://doi.org/10.
1145/2702123.2702553

[74] Ioannis Mollas, Zoe Chrysopoulou, Stamatis Karlos, and Grigorios Tsoumakas.
2020. ETHOS: a multi-label hate speech detection dataset. Complex & Intelligent

Systems (2020), 1–16.

[75] Pedro Morgado, Nuno Vasconcelos, Timothy Langlois, and Oliver Wang. 2018.
Self-supervised generation of spatial audio for 360 video. arXiv preprint

arXiv:1809.02587 (2018).
[76] Michael Muller, Ingrid Lange, Dakuo Wang, David Piorkowski, Jason Tsay,

Q. Vera Liao, Casey Dugan, and Thomas Erickson. 2019. How Data Science
Workers Work with Data: Discovery, Capture, Curation, Design, Creation. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems

(Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New
York, NY, USA, 1–15. https://doi.org/10.1145/3290605.3300356

[77] Michael Muller, Christine T. Wolf, Josh Andres, Michael Desmond, Naren-
dra Nath Joshi, Zahra Ashktorab, Aabhas Sharma, Kristina Brimijoin, Qian
Pan, Evelyn Duesterwald, and Casey Dugan. 2021. Designing Ground Truth
and the Social Life of Labels. In Proceedings of the 2021 CHI Conference on

Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Associ-
ation for Computing Machinery, New York, NY, USA, Article 94, 16 pages.
https://doi.org/10.1145/3411764.3445402

[78] Micah M Murray and Mark T Wallace. 2011. The neural bases of multisensory
processes. (2011).

[79] Mariana Neves and Ulf Leser. 2014. A survey on annotation tools for the
biomedical literature. Briefings in bioinformatics 15, 2 (2014), 327–340.

[80] Zheng Ning, Zheng Zhang, Tianyi Sun, Yuan Tian, Tianyi Zhang, and Toby
Jia-Jun Li. 2023. An empirical study of model errors and user error discovery
and repair strategies in natural language database queries. In Proceedings of the

28th International Conference on Intelligent User Interfaces. 633–649.
[81] Fatemeh Noroozi, Marina Marjanovic, Angelina Njegus, Sergio Escalera, and

Gholamreza Anbarjafari. 2017. Audio-visual emotion recognition in video clips.
IEEE Transactions on Affective Computing 10, 1 (2017), 60–75.

[82] Sharon Oviatt. 1999. Mutual disambiguation of recognition errors in a multi-
modal architecture. In Proceedings of the SIGCHI conference on Human Factors in

Computing Systems. ACM, 576–583.
[83] Sharon Oviatt. 1999. Ten Myths of Multimodal Interaction. Commun. ACM 42,

11 (Nov. 1999), 74–81. https://doi.org/10.1145/319382.319398
[84] Sharon Oviatt and Philip Cohen. 2000. Perceptual User Interfaces: Multimodal

Interfaces That Process What Comes Naturally. Commun. ACM 43, 3 (March
2000), 45–53. https://doi.org/10.1145/330534.330538

[85] Andrew Owens and Alexei A Efros. 2018. Audio-visual scene analysis with
self-supervised multisensory features. In Proceedings of the European Conference

on Computer Vision (ECCV). 631–648.
[86] Amy Pavel, Gabriel Reyes, and Jeffrey P Bigham. 2020. Rescribe: Authoring and

Automatically Editing Audio Descriptions. In Proceedings of the 33rd Annual

ACM Symposium on User Interface Software and Technology. 747–759.
[87] Rui Qian, Di Hu, Heinrich Dinkel, Mengyue Wu, Ning Xu, and Weiyao Lin. 2020.

Multiple Sound Sources Localization from Coarse to Fine. In ECCV.
[88] Nan Qiao, Yuyin Sun, Chongyu Liu, Lu Xia, Jiajia Luo, K. Zhang, and Cheng-Hao

Kuo. 2022. Human-in-the-Loop Video Semantic SegmentationAuto-Annotation.
[89] Tanzila Rahman, Bicheng Xu, and Leonid Sigal. 2019. Watch, listen and tell:

Multi-modal weakly supervised dense event captioning. In Proceedings of the

IEEE/CVF International Conference on Computer Vision. 8908–8917.
[90] Al Mamunur Rashid, Istvan Albert, Dan Cosley, Shyong K. Lam, Sean M. McNee,

Joseph A. Konstan, and John Riedl. 2002. Getting to Know You: Learning New
User Preferences in Recommender Systems. In Proceedings of the 7th International
Conference on Intelligent User Interfaces (San Francisco, California, USA) (IUI ’02).
Association for Computing Machinery, New York, NY, USA, 127–134. https:
//doi.org/10.1145/502716.502737

[91] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu,
and Christopher Ré. 2017. Snorkel: Rapid training data creation with weak
supervision. In Proceedings of the VLDB Endowment. International Conference on

Very Large Data Bases, Vol. 11. 269.
[92] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:

Towards real-time object detection with region proposal networks. Advances in
neural information processing systems 28 (2015), 91–99.

[93] Alexander Richard, Colin Lea, Shugao Ma, Jurgen Gall, Fernando De la Torre,
and Yaser Sheikh. 2021. Audio-and gaze-driven facial animation of codec avatars.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer

Vision. 41–50.
[94] Tim Rietz and Alexander Maedche. 2021. Cody: An AI-based system to semi-

automate coding for qualitative research. In Proceedings of the 2021 CHI Confer-

ence on Human Factors in Computing Systems. 1–14.
[95] Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen

Paritosh, and Lora M Aroyo. 2021. “Everyone Wants to Do the Model Work,
Not the Data Work”: Data Cascades in High-Stakes AI. In Proceedings of the

2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan)
(CHI ’21). Association for Computing Machinery, New York, NY, USA, Article
39, 15 pages. https://doi.org/10.1145/3411764.3445518

[96] Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pennock.
2002. Methods and metrics for cold-start recommendations. In Proceedings of

the 25th annual international ACM SIGIR conference on Research and development

in information retrieval. 253–260.

https://doi.org/10.21437/Interspeech.2021-2041
https://doi.org/10.1145/2702123.2702416
https://doi.org/10.1145/2702123.2702416
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3379337.3415820
https://doi.org/10.1145/3379337.3415820
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3313831.3376739
https://doi.org/10.1145/2702123.2702553
https://doi.org/10.1145/2702123.2702553
https://doi.org/10.1145/3290605.3300356
https://doi.org/10.1145/3411764.3445402
https://doi.org/10.1145/319382.319398
https://doi.org/10.1145/330534.330538
https://doi.org/10.1145/502716.502737
https://doi.org/10.1145/502716.502737
https://doi.org/10.1145/3411764.3445518


UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Zheng Zhang, Zheng Ning, Chenliang Xu, Yapeng Tian, and Toby Jia-Jun Li

[97] Michael Schmitz, Stephen Soderland, Robert Bart, Oren Etzioni, et al. 2012. Open
language learning for information extraction. In Proceedings of the 2012 joint

conference on empirical methods in natural language processing and computational

natural language learning. 523–534.
[98] Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan Yang, and In So Kweon.

2018. Learning to localize sound source in visual scenes. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. 4358–4366.
[99] Burr Settles. 2012. Active Learning. Synthesis Lectures on

Artificial Intelligence and Machine Learning 6, 1 (2012), 1–
114. https://doi.org/10.2200/S00429ED1V01Y201207AIM018
arXiv:https://doi.org/10.2200/S00429ED1V01Y201207AIM018

[100] Eyal Shnarch, Alon Halfon, Ariel Gera, Marina Danilevsky, Yannis Katsis,
LeshemChoshen, Martin Santillan Cooper, Dina Epelboim, Zheng Zhang, Dakuo
Wang, et al. 2022. Label Sleuth: From Unlabeled Text to a Classifier in a Few
Hours. arXiv preprint arXiv:2208.01483 (2022).

[101] Eyal Shnarch, Alon Halfon, Ariel Gera, Marina Danilevsky, Yannis Katsis,
LeshemChoshen, Martin Santillan Cooper, Dina Epelboim, Zheng Zhang, Dakuo
Wang, Lucy Yip, Liat Ein-Dor, Lena Dankin, Ilya Shnayderman, Ranit Aharonov,
Yunyao Li, Naftali Liberman, Philip Levin Slesarev, Gwilym Newton, Shila Ofek-
Koifman, Noam Slonim, and Yoav Katz. 2022. Label Sleuth: From Unlabeled Text
to a Classifier in a Few Hours. In Proceedings of the 2022 Conference on Empirical

Methods in Natural Language Processing: System Demonstrations. Association
for Computational Linguistics. https://arxiv.org/abs/2208.01483

[102] Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel Gildea. 2018. A graph-to-
sequence model for AMR-to-text generation. arXiv preprint arXiv:1805.02473
(2018).

[103] Yapeng Tian, Chenxiao Guan, Justin Goodman, Marc Moore, and Chenliang Xu.
2018. An attempt towards interpretable audio-visual video captioning. arXiv
preprint arXiv:1812.02872 (2018).

[104] Yapeng Tian, Di Hu, and Chenliang Xu. 2021. Cyclic Co-Learning of Sounding
Object Visual Grounding and Sound Separation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2745–2754.
[105] Yapeng Tian, Dingzeyu Li, and Chenliang Xu. 2020. Unifiedmultisensory percep-

tion: Weakly-supervised audio-visual video parsing. In Computer Vision–ECCV

2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,

Part III 16. Springer, 436–454.
[106] Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chenliang Xu. 2018. Audio-

visual event localization in unconstrained videos. In Proceedings of the European

Conference on Computer Vision (ECCV). 247–263.
[107] Szilárd Vajda, Yves Rangoni, and Hubert Cecotti. 2015. Semi-Automatic Ground

Truth Generation Using Unsupervised Clustering and Limited Manual Labeling.
Pattern Recogn. Lett. 58, C (June 2015), 23–28. https://doi.org/10.1016/j.patrec.
2015.02.001

[108] Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel
Blum. 2008. recaptcha: Human-based character recognition via web security
measures. Science 321, 5895 (2008), 1465–1468.

[109] Kentaro Wada. 2016. labelme: Image Polygonal Annotation with Python. https:
//github.com/wkentaro/labelme.

[110] DakuoWang, Josh Andres, Justin D. Weisz, Erick Oduor, and Casey Dugan. 2021.
AutoDS: Towards Human-Centered Automation of Data Science. In Proceedings

of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama,

Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA,
Article 79, 12 pages. https://doi.org/10.1145/3411764.3445526

[111] Dakuo Wang, Pattie Maes, Xiangshi Ren, Ben Shneiderman, Yuanchun Shi, and
Qianying Wang. 2021. Designing AI to Work WITH or FOR People? ACM, New
York, NY, USA. https://doi.org/10.1145/3411763.3450394

[112] Dakuo Wang, Justin D. Weisz, Michael Muller, Parikshit Ram, Werner Geyer,
Casey Dugan, Yla Tausczik, Horst Samulowitz, and Alexander Gray. 2019.
Human-AI Collaboration in Data Science: Exploring Data Scientists’ Perceptions
of Automated AI. Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article 211 (Nov.
2019), 24 pages. https://doi.org/10.1145/3359313

[113] Yujia Wang, Wei Liang, Haikun Huang, Yongqi Zhang, Dingzeyu Li, and Lap-
Fai Yu. 2021. Toward Automatic Audio Description Generation for Accessible
Videos. In Proceedings of the 2021 CHI Conference on Human Factors in Computing

Systems. 1–12.
[114] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,

Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 2017. Voyager 2:
Augmenting Visual Analysis with Partial View Specifications. In Proceedings

of the 2017 CHI Conference on Human Factors in Computing Systems (Denver,
Colorado, USA) (CHI ’17). Association for Computing Machinery, New York,
NY, USA, 2648–2659. https://doi.org/10.1145/3025453.3025768

[115] Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel S Weld. 2021.
Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improv-
ing Models. In Proceedings of the 59th Annual Meeting of the Association for

Computational Linguistics.
[116] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick.

2019. Detectron2. https://github.com/facebookresearch/detectron2.
[117] Yu Wu and Yi Yang. 2021. Exploring Heterogeneous Clues for Weakly-

Supervised Audio-Visual Video Parsing. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition. 1326–1335.
[118] Yu Wu, Linchao Zhu, Yan Yan, and Yi Yang. 2019. Dual Attention Matching

for Audio-Visual Event Localization. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV).
[119] Dean Wyatte. 2019. De-biasing Weakly Supervised Learning by Regularizing

Prediction Entropy. (2019).
[120] Zhujun Xiao, Yanzi Zhu, Yuxin Chen, Ben Y. Zhao, Junchen Jiang, and Haitao

Zheng. 2018. Addressing Training Bias via Automated Image Annotation. arXiv:
Computer Vision and Pattern Recognition (2018).

[121] Xtract.io. 2020. Xtract.io video annotation tool. https://www.xtract.io/lp/image-
annotation-tool

[122] Donghuo Zeng, Yi Yu, and Keizo Oyama. 2018. Audio-visual embedding for
cross-modal music video retrieval through supervised deep CCA. In 2018 IEEE

International Symposium on Multimedia (ISM). IEEE, 143–150.
[123] Yu Zhang, Yun Wang, Haidong Zhang, Bin Zhu, Siming Chen, and Dongmei

Zhang. 2022. OneLabeler: A Flexible System for Building Data Labeling Tools.
In CHI Conference on Human Factors in Computing Systems. 1–22.

[124] Zheng Zhang, Jie Gao, Ranjodh SinghDhaliwal, and Toby Jia-Jun Li. 2023. VISAR:
A Human-AI Argumentative Writing Assistant with Visual Programming and
Rapid Draft Prototyping. arXiv preprint arXiv:2304.07810 (2023).

[125] Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Vondrick, Josh McDer-
mott, and Antonio Torralba. 2018. The sound of pixels. In ECCV.

[126] Zhi-Hua Zhou. 2018. A brief introduction to weakly supervised learning. Na-
tional science review 5, 1 (2018), 44–53.

https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://arxiv.org/abs/https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://arxiv.org/abs/2208.01483
https://doi.org/10.1016/j.patrec.2015.02.001
https://doi.org/10.1016/j.patrec.2015.02.001
https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme
https://doi.org/10.1145/3411764.3445526
https://doi.org/10.1145/3411763.3450394
https://doi.org/10.1145/3359313
https://doi.org/10.1145/3025453.3025768
https://github.com/facebookresearch/detectron2
https://www.xtract.io/lp/image-annotation-tool
https://www.xtract.io/lp/image-annotation-tool

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Audio-Visual Learning
	2.2 Data Annotation for Machine Learning
	2.3 Human-AI Collaboration in Data Science

	3 The Peanut System
	3.1 Task: Sounding Object Localization
	3.2 Design Goals
	3.3 System Design
	3.4 Algorithmic Methods
	3.5 Implementation

	4 User Evaluation
	4.1 Participants
	4.2 Study Design
	4.3 Results on Annotation Performance
	4.4 Results on User Behaviors and Experiences

	5 Discussion and Implications
	5.1 Connecting and Unifying Different Data Modalities
	5.2 Minimizing the Overhead Cost of AI in Human-AI Collaboration
	5.3 The Role of Partial Automation in Pursuit of Full Automation
	5.4 Mitigating Biases in AI-Assisted Data Annotation

	6 Limitations & Future work
	6.1 Incorporating Speech and Natural Language Models
	6.2 Expanding to Audio-Visual Tasks beyond Sounding Object Localization
	6.3 Release and Deployment

	7 Conclusion
	Acknowledgments
	References

