
HRTF Estimation in the Wild 
Vivek Jayaram Ira Kemelmacher-Shlizerman Steven M. Seitz 

vjayaram@cs.washington.edu kemelmi@cs.washington.edu seitz@cs.washington.edu 
University of Washington University of Washington University of Washington 

Seattle, WA, USA Seattle, WA, USA Seattle, WA, USA 

Noise sources In-Ear Microphones
+

Head Movements

Personalized HRTF

Figure 1: Our method uses binaural recordings of everyday noises along with head tracking information 
to create a personalized HRTF for the listener. 

ABSTRACT 
Head Related Transfer Functions (HRTFs) play a crucial role in 
creating immersive spatial audio experiences. However, HRTFs dif-
fer signifcantly from person to person, and traditional methods 
for estimating personalized HRTFs are expensive, time-consuming, 
and require specialized equipment. We imagine a world where your 
personalized HRTF can be determined by capturing data through 
earbuds in everyday environments. In this paper, we propose a 
novel approach for deriving personalized HRTFs that only relies 
on in-the-wild binaural recordings and head tracking data. By ana-
lyzing how sounds change as the user rotates their head through 
diferent environments with diferent noise sources, we can accu-
rately estimate their personalized HRTF. Our results show that our 
predicted HRTFs closely match ground-truth HRTFs measured in 
an anechoic chamber. Furthermore, listening studies demonstrate 
that our personalized HRTFs signifcantly improve sound local-
ization and reduce front-back confusion in virtual environments. 
Our approach ofers an efcient and accessible method for deriving 
personalized HRTFs and has the potential to greatly improve spatial 
audio experiences. 
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1 INTRO 
Spatial audio is an important aspect of many audio applications, 
including virtual and augmented reality, gaming, music, and au-
dio for flm and television. The fundamental challenge of spatial 
audio is to create the perception that sound is coming from any 
location in space, even though the sound is played back through 
headphones. Humans are remarkably good at perceiving the loca-
tion of incoming sounds in the real world, with as little as 3.5◦ error 
even in noisy environments [24]. This ability is achieved through 
the Head Related Transfer Function (HRTF), which is the direction-
dependent fltering of sound by the head, ears, and torso. By using 
a listener’s HRTF to render virtual sounds, it is possible to create an 
immersive audio experience that simulates sound coming from any 
position in 3D space. The HRTF is comprised of two components: 
interaural time diferences (ITD) and interaural level diferences 
(ILD). While both components are important for accurate spatial 
localization, this paper focuses on the frequency dependent ILDs, 
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also called spectral features which describe the diferent frequen-
cies arriving at each ear. These are more easily obtainable from 
in-the-wild recordings and have been shown to be more important 
for HRTF personalization compared to ITDs [45]. 

A key problem is that HRTFs vary signifcantly from person to 
person, and using a personalized HRTF is necessary to create high 
fdelity spatial audio. This is because using someone else’s HRTF or 
a generic HRTF will lead to localization errors and an unpleasant 
listening experience [27, 45]. Despite its importance, accurately 
measuring an individual HRTF is a difcult task. This is due to the 
fact that HRTF is a complex, dynamic phenomenon that is afected 
by a variety of factors, including an individual’s ear shape, head 
size, and general anatomy. Traditional methods require the listener 
to sit in an anechoic chamber while sine-sweeps are played from all 
possible angles. Other methods involve taking complex 3D scans 
of the head and ears along with anatomical measurements. This 
problem of personalized spatial audio has also received increasing 
attention from companies, such as Apple, Sony, and Logitech, which 
have recently developed methods to create personalized HRTFs 
through head scans, imaging, and user feedback [2, 22, 39]. Despite 
these advances, achieving high-fdelity spatial audio remains an 
ongoing challenge and an active area of research and development. 

We are particularly motivated by the rapid proliferation of ear-
buds systems, with 100 million AirPods sold in 2020 alone [30]. 
These systems typically contain a microphone in each ear as well 
as a head tracking IMU, making them ideal for capturing personal-
ized HRTFs. As more and more people use earbuds, we envision a 
future where collecting data for personalized HRTFs is as simple 
as wearing earbuds and moving around in diferent environments. 
By analyzing the changes in sound arriving at the listener’s ears 
over time, we can infer their personalized HRTF and use it across 
a wide range of spatial audio applications. This approach has the 
potential to be more efcient and less burdensome than traditional 
methods that require 3D scans or anthropometric measurements. 

As a step towards that, in this paper we present a method for mea-
suring individualized HRTFs that leverages environmental sounds 
recorded by the listener in everyday settings. Our approach is de-
signed for scenarios where there is a single stationary noise source, 
and we demonstrate its efectiveness using a wide range of noise 
sources such as music, home appliances, and outdoor sounds. By 
analyzing the recorded sounds, we can extract features that are spe-
cifc to the listener’s HRTF and use them to construct a personalized 
HRTF. Our method utilizes machine learning along with synthetic 
and real training data in order to predict the frequency-dependent 
fltering of a subject from natural recordings. 

Because binaural microphone data and head tracking informa-
tion is not available through the public APIs of current earbud 
systems, we built our own physical system to resemble the data 
available from these earbuds. There have already been some com-
mercial headphones that enable binaural recordings for developers 
[7, 37] so we expect to see this data becoming more accessible to 
developers over time. 

To validate our approach, we conducted user studies with real 
listeners and show three key experimental results. First, our pre-
dicted HRTFs closely match the ground truth HRTF recorded in an 
anechoic chamber. Second, our HRTFs signifcantly improve the 
sound localization accuracy of users in a virtual auditory display 

when compared to a generic HRTF. Third, our HRTFs greatly re-
duce front-back confusion when used to render sounds. Overall, 
our proposed method of measuring individualized HRTFs in-the-
wild has the potential to ofer a more efcient and less burdensome 
alternative to traditional methods, and we hope that it will inspire 
further research and development in this feld. 

2 RELATED WORKS 
Traditional methods of measuring an individual’s HRTF involve 
dense acoustic measurement in an anechoic chamber [1, 29, 40, 42, 
44]. The listener is positioned in the center of the chamber and 
provided with in-ear microphones, while a series of loudspeakers 
are arranged in a spherical array to cover all possible azimuth and 
elevation angles. A reference signal, such as an exponential sine 
sweep, is played one at a time from each speaker location, and 
the resulting sound wave that reaches the ear is compared to the 
reference signal to determine the HRTF. In some cases, the speakers 
are placed on an arc and rotated around the subject to reduce the 
number of required speakers. While these approaches are accurate 
and provide high fdelity HRTFs, they are time-consuming and 
resource-intensive and require the listener to come to a specialized 
lab for measurement. 

In order to speed up this process, other methods have been pro-
posed that only use a single loud speaker [21, 32, 33]. In these works, 
a reference signal is played from a stationary loudspeaker while the 
subject rotates their head through diferent directions under the 
measurement of an IMU or other head tracking device. This has the 
possibility to greatly simplify the HRTF measurement process, and 
our method builds on this idea of measuring the listener’s motion 
relative to the noise source. 

Acoustic simulations on 3D scans of individuals represent an-
other broad category of HRTF estimation methods. For example, the 
algorithms described in [16, 17, 25, 26, 53] use 3D mesh data with 
boundary-element methods to simulate the difraction of sound 
waves through the head and ear. It has also been shown that HRTFs 
can be calculated directly from a point cloud of the head, which is 
slightly easier to obtain than a 3D mesh [41]. Although not pub-
lished, the method released by Apple [2] uses the depth sensor to 
create a 3D scan of the head. 3D scan based methods are more acces-
sible than traditional acoustic methods, but still sufer from several 
drawbacks. For one, they rely on an accurate 3D mesh which can 
be hard to obtain, either requiring a depth sensor or many images. 
In addition, 3D scans and imaging raise more privacy concerns for 
users compared to audio only methods. 

It is also possible to estimate the HRTF directly from anthropo-
metric measurements, given the availability of large HRTF datasets 
with associated head and ear measurements [1, 44]. The works in 
[54, 55] show positive results when selecting the HRTF with the 
closest anthropometric measurements to a new user. Other works, 
[8, 9, 15, 51], use regression methods or deep learning to predict 
HRTF features from these anthropometric measurements, includ-
ing works like [28, 51, 52] that use images of the ears along with 
anthropometric measurements. Anthropometric methods face the 
same challenges as 3D scan-based methods, as obtaining accurate 
measurements is difcult and can be time-consuming. 
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Figure 2: An overview of our method. We use binaural recordings of in-the-wild sounds to predict the fltering from the HRTF 
at each time step. We then use the head tracking data to map this predicted fltering to the user’s location dependent HRTF. 

Recently, methods have been proposed to measure HRTFs acous-
tically in less controlled environments. The method in [10] proposed 
measuring the HRTF from everyday recordings, but uses a third 
microphone in the room as a way to record the clean reference 
signal. Another method [50] allows the user to play sine sweeps 
from their smartphone, but requires capturing this signal from at 
least 60 unique locations around the head. Similarly the method in 
[49] asks the user to play predefned sounds from their smartphone 
while they move the phone around their head. Finally, the method 
in [48] allows users to answer pairwise comparison questions in a 
listening study to determine the best HRTF. 

In contrast to these methods, our method has a few key advan-
tages. First, we don’t require an anechoic chamber or specialized 
speakers. Second, we don’t require any 3D scans or imaging of the 
head. Finally, the recordings are collected passively from sound 
sources in the environment. In our method, the user is in an every-
day environment and we capture their natural head movements 
after an initial calibration step. This is meant to be less cumbersome 
than existing methods that involve answering questions, moving a 
smartphone around, or take detailed head measurements and scans. 

3 METHOD 
Suppose that a listener is wearing earbuds which contain a micro-
phone in each ear as well as a head tracking IMU. The listener may 
be in the presence of a sound source � , and the microphones at each 
ear will pick up the binaural recording given by �� and �� for left 
and right respectively. We also use the 3DoF head rotation: �ℎ (�)
which describes the head rotation at any given moment in time � 
This data is available from recent airpod devices [3], or could be 
captured through the webcam. Our goal is to learn the HRTF solely 
from �� , �� , and �ℎ (�). We use the uppercase notation � , �� , and 
�� to refer to the time-frequency representation of the audio, and 
the lowercase to refer to the waveform representation. Similarly 
we use � to denote the fltering function imposed by the listener 
during a recording, and the time domain version, the head related 
impulse response (HRIR) is written as ℎ. In this work, we limit the 

method to scenarios with a single stationary sound source, and its 
position relative to the head is written as �� (�), and �� (�). 

Under the simplest assumptions, the captured audio is a convo-
lution between the HRIR and the original source. For example, the 
recorded audio � can be written as 

� = ℎ ∗ � (1) 

In the frequency domain, this is 

� = � · � (2) 

or equivalently 
� = �/� (3) 

Furthermore, the recording may include multi-path signals and 
other ambient noise, denoted as � , which add ambiguity to the 
scenario. Breaking this down by left and right separately we get 

�� = (�� − �� )/� (4) 
�� = (�� − �� )/� (5) 

As we can see, this is a highly underdetermined problem, since 
we do not have access to the original sound source � or multipath 
contributions � , only the captured recordings �� and �� . Therefore, 
at any given moment, we would not know whether a given fre-
quency was modifed by the listener’s HRTF or by the emitting 
sound source. 

Our goal is then to predict �� and �� from �� and �� without 
access to the actual ground truth source S. We can then use �� 
and �� along with the head tracking information to create a lis-
tener specifc HRTF, which is a function of the source location and 
frequency: ��� � (�� , �� , � ) 

3.1 Deep Network 
To solve this problem, we can use the fact that most sound sources 
have a repeated or predictable frequency distribution over time 
which can be learned. Furthermore, the recording from both ears 
together provide clues towards the relative fltering at each ear. 
We frame this problem as a supervised learning problem and use a 



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Vivek Jayaram, Ira Kemelmacher-Shlizerman, and Steven M. Seitz 

deep network for this prediction task. Deep networks can learn the 
underlying structure of sounds such as speech and various noise 
sources, solving one of the ambiguities. Secondly, these networks 
can use the temporal information of the source along with the 
data captured at both ears to predict which frequencies are being 
modifed by the HRTF instead of by the sound source or multipaths. 

Our network is a modifcation of the Unet Convolutional Neural 
Network [35] with an initial convolutional block comprising 32 
features, and composed of of 4 downsampling and 4 upsampling 
convolutional blocks. �� and �� are produced using the magni-
tude of a short-time Fourier transform of the captured audio. They 
are concatenated channel wise, and feed through the network to 
produce 2 channels of output of the same dimension. The output 
represents the predicted level change at a certain frequency due 
to the HRTF as a scalar factor. We found that learning the fltering 
function as multiplicative gain was easier than dB due to the fact 
that cutting out a frequency would require learning a dB gain of 
−∞. Training details are described in Section 4. 

3.2 Source Localization and Head Tracking 
Head tracking through an IMU or camera can provide the 3DoF 
rotation angle of the head. However, because the sound source may 
not be located directly in front of the user, it is also necessary to 
know the location of the signal relative to the user. In our system, 
we require an initial localization input from the user. They are asked 
to point their head directly towards the sound source (or directly 
away for sounds coming from behind). They then press a button 
which allows the system to record the initial location of the sound 
source, �� (0) and �� (0). During the rest of the recording process, 
the rotation matrix of the head orientation can be applied to the 
initial source location to give the relative position of the sound 
source at that time, �� (�) and �� (�). 

It may also be possible to infer the initial source location using 
localization algorithms, but we leave that as future work as the 
manual localization by the user is quick and very accurate. 

3.3 HRTF Estimation from Aggregated Results 
By aggregating predictions across many recordings with diferent 
sound sources and head rotations, we can obtain a more accurate 
and full representation of the listener’s HRTF. Let � be the number 
of frequency bins in the spectrogram representation. For each bin-
aural recording � ∈ R2×� ×� , we use a deep network to predict the 
fltering function �̂ ∈ R2×� ×� = UNet(�). 

To build a model of the listener’s HRTF, we frst initialize an 
empty HRTF for all source locations and frequencies. Then, we 
use the UNet to predict how the listener’s HRTF fltered the sound 
source for each recording. If the entirety of a recording contains 
minimal energy at a given frequency, we assume that this frequency 
was absent from the source signal and do not use it. Finally, we 
use the known relative location of the source over time to create 
a HRTF prediction for each location-frequency bin. Our method 
does not explicitly solve for directions with no data, but in such 
scenarios, we could use HRTF extrapolation/interpolation methods 
which have shown good results when we only have a sparse HRTF 
[6, 18] 

Algorithm 1 Create HRTF, HRIRs from Binaural Recordings 

1: for ∀�, ∀�, ∀� do 
ˆ2: ��� � (�, �, � ) ← [] ⊲ Initialize empty HRTF 

3: end for 
4: for � ∈ Recordings do 

ˆ5: � ← UNet(�) ⊲ Network inference 
6: for � ∈ 0..� , � ∈ 0..� do 
7: if �(� ) .mean() > � then 
8: ��� � (�� (�), �� (�), � ) .append( ˆˆ � (�, � )) 
9: end if 
10: end for 
11: end for 
12: for ∀�, ∀�, ∀� do ⊲ Use phase from generic HRTF 

ˆ ˆ13: |��� � (�, �, � ) | ← ��� � (�, �, � ) .mean()
ˆ14: ∠��� � (�, �, � ) ← ∠��� �generic (�, �, � )

15: end for 
16: ����(�, �) = iFFT(��� � (�, �)) 

Across time steps, the predicted fltering function for the same 
location-frequency bin may vary due to the changes in the under-
lying sound source, reverb, or other efects not modeled such as 
doppler efects. Because of this, we average the predicted HRTF 
values at each location-frequency bin to obtain the listener’s HRTF 
magnitude at each location and frequency. One of the advantages 
of our method is that over time, we can collect more and more infor-
mation about the HRTF and use that to produce a better estimate. 
We explored both the mean and median and found that the mean 
worked better. 

To obtain the head-related impulse response (HRIR) for use in 
spatial audio applications, we also need the phase information 
which describes the interaural time diferences (ITDs). We use ITDs 
from a generic HRTF and apply inverse fast Fourier transform 
(IFFT) to obtain the HRIR. Although some previous works in similar 
domains [34, 43] predict the phase as well as the magnitude of the 
impulse response, we found that phase was much harder to predict 
in a reverberant environment due to multipath efects. At many 
frequencies, the captured phase was completely diferent from the 
actual ITD phase due to multipath interference. Our user studies 
also showed that generic ITDs still produced a strong ability to 
localize sounds. The full algorithm is described in Algorithm 1. 

3.4 System Implementation 
Our method is general and designed to work with any device that 
supports binaural recordings and head tracking. This could include 
earbuds, VR headsets, or smart glasses. However, with the excep-
tion of certain headsets paired with certain phones [4, 37], these 
devices do not currently expose the required functionality to third-
party developers. We therefore built our own physical system with 
commercially available hardware. 

For the binaural recordings, we used the Sound Professionals SP-
TFB-2 in-ear Binaural Microphones [31]. These wired headphones 
are capable of capturing frequencies up to 20kHz. It’s noteworthy 
that our microphones, unlike those used in numerous previous 
studies such as [1, 41, 42], are positioned at the entrance of the ear 
canal rather than fully blocking it. Our research demonstrates that 



HRTF Estimation in the Wild UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA 

it is feasible to generate an accurate HRTF even without perfect 
microphone placement. Extending this methodology to commercial 
earbuds would require re-training with data captured using those 
specifc headphones to learn their unique transfer function. 

For head tracking, we used the face pose detector provided by 
the Google MediaPipe Library [13]. This algorithm uses a forward 
facing webcam to detect the 3DoF head position, and is based on 
BlazeFace [5] and AttentionMesh [14]. The head tracking runs in 
less than 10ms on a Macbook pro, and we use a HRTF with bin 
size � = 5◦ and � = 5◦. This means that as long as the user is not 
rotating their head faster than ∼ 300◦/� , the head tracking will 
assign the sound to the correct HRTF bin. 

Figure 3: Left: Our head tracking implementation uses the 
webcam to determine the 3DoF head rotation during record-
ing. The normal vector is drawn in blue to help visualize 
the direction the head is pointing. Right: An image of the 
binaural microphone used in our implementation. The mi-
crophone sits near the ear canal. 

4 DATA AND TRAINING 
To train our network, we adopt an approach that combines syn-
thetic and real data. We begin with large amounts of synthetically 
rendered data, which enables us to learn from a wide range of noise 
types and simulated environments, including multi-path scenarios. 
However, such data does not capture all nuances of real-world audio 
and fails to generalize completely to actual recordings. To address 
this, we incorporate real data, which is more time-consuming to 
collect but provides more efective training for the network. By 
leveraging both sources of data, we are able to beneft from the 
strengths of each approach. This mix of synthetic and real training 
data has been explored in previous works as well [7, 19, 38]. Below, 
we describe the two data sources in more detail. 

4.1 Synthetic Training Data 
We frst train the network on synthetically rendered spatial data. 
For HRTFs, we use the RIEC dataset [23], which contains 109 HRTFs 
measured in an anechoic chamber for diferent individuals. This 
was split into a training set of 64 and a test set of 45 HRTFs. To 
render sounds, we use the Steam Audio C++ API which allows 
realistic sound rendering for moving sources with custom HRTFs 
and multi-path environments. 

The noise sources come from the WHAM! dataset [46] and Au-
dioSet dataset [12]. These datasets contain a wide variety of noise 
sources such as music, speech, appliances, and machinery. Sound 

sources without sufcient frequency ranges (requiring a minimal 
energy up to at least 5khz) and without sufcient regularity (e.g. 
impact only sounds) were fltered out. Some example of sound cat-
egories that were removed included chewing, clapping, snapping, 
and whistling. Some of the most efective noise sources included 
water, kitchen appliances, pop music, and machinery. For both 
datasets, a 80/20 train/test split was maintained. None of the audio 
samples used for training the network were used during any of the 
synthetic or real evaluations 

Each generated recording was 3s long and created by placing 
the sound source at a random azimuth and random elevation 1.5m 
away from the listener while the listener moved their head in a 
random direction at a random speed. Multipaths were simulated by 
create walls at distances between 2 and 10 meters from the listener 
with RT60 values from 0.4 to 0.9 seconds. For each recording we 
also obtained the ground truth fltering at the source locations to 
use as a training label, �̃ . The train set contains 10,000 generated 
examples, and the test set contains 1,000 examples. 

4.2 Real Training Data and Anechoic HRTFs 
Although large amounts of synthetic data can be easily collected, a 
network solely trained on synthetic data does not perform well in 
real-world scenarios. To address this issue, we augment the training 
data with in-the-wild recordings that more closely resemble the 
acoustic environments and sounds that would be encountered by 
users during inference. The main challenge is that the ground-truth 
fltering function is required as a training supervised label for the 
model. In order to generate these labels, we measure the ground-
truth HRTFs of the subjects in an anechoic chamber. These HRTFs 
can also be used as a baseline to evaluate the in-the-wild inferred 
HRTFs. 

Our anechoic HRTF measurement procedure is most similar to 
the method described in [33]. Subjects are seated in an anechoic 
chamber while a single loudspeaker emits a reference signal. They 
are instructed to move their head slowly to cover a broad range of 
azimuth and elevation angles. Unlike [33], we place the speaker at 
3 diferent elevation angles when capturing the ground-truth HRTF. 
This better captures the fltering efects of the torso at diferent 
sound elevations which are not captured by simply rotating the head 
up and down with respect to a single speaker location. Furthermore, 
we use a broadband Gaussian noise signal instead of a sine sweep, 
as we only care about the frequency-dependent level diferences 
and not the ITDs. This allows us to capture the fltering across 
all frequencies at each time step. The speaker used is the KRK 
Classic 5 Studio Monitor which contains 2 drivers. To account for 
an imperfect speaker response, a reference signal �̃ is frst recorded. 
The ground truth fltering function is then obtained by dividing 
the recording � by �̃ . This also has the efect of cancelling out any 
frequency response imposed by the microphones as both � and �̃ 

contain the same microphone response. A full discussion of speaker 
and microphone compensation is provided in [20]. 

After collecting the anechoic HRTFs, we generated real training 
data for the neural network by having 2 subjects listen to 1 hour 
of noise sources, from the training partition of our audio datasets, 
played back through the loudspeaker in regular environments. The 
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Figure 4: The process for training the network. We use create binaural renderings of a sound source with simulated multi-path 
environments. We then use the ground truth fltering of the HRTF to train the network with an L1 loss between the predicted 
fltering, �̂ an the ground truth fltering �̃ . The real training data is used in an identical way except � is a binaural recording, 
not a binaural rendering, and we don’t have access to the original sound source � . 

speaker location was known, and the training label �̃ could be 
generated from the anechoic HRTFs. 

4.3 Training Details 
All recordings were captured at 48kHz sample rate. Each training 
example contained 3s of binaural audio, and mini-batch size 32 was 
used. The STFT was conducted with a window size of 2048. Training 
occured on a Nvidia Titan Xp GPU and took approximately 10 hours 
for 100 epochs of training. Data augmentation techniques included 
random left-right fip, random volume changes, and the addition 
of random noise. Samples from the real and synthetic dataset were 
randomly sampled with equal probability 

5 RESULTS 
We evaluate the efectiveness of our method through a user study, 
and present three key results to show the strength of the method. 
First, we show that our predicted HRTFs closely match the ground-
truth HRTFs. Second, we demonstrate that our HRTFs improve 
localization by listeners in a virtual environment. Finally, we show 
that our HRTFs signifcantly reduce front-back confusion with 
rendered sounds. 

5.1 User Study and In-the-Wild HRTF 
8 individuals with regular hearing abilities (4 male, 4 female, mean 
age 28) participated in the user study. First, we measured their 
ground-truth HRTF in an anechoic chamber as described in Section 
4.2. Next, we used our in-the-wild method to measure their HRTF 
in a regular environment. The subjects were in a normal sized 
reverberant room, that was not particularly quiet. The background 
noise in the room was measured to be around 50dB due to electric 
hum and other noises. Next, a variety of noise types were played 
from a loud speaker in the room. This included music, running 
water, kitchen appliances, and other sounds from the test partition 
of the WHAM! and AudioSet datasets. The speaker was placed at 3 

Method LSD (dB) 

Random RIEC Subject 8.23 
Generic HRTF 7.32 
Zandi et. al [50] 4.5 

Ours 4.38 
Hu et. al [15] 3.5 

Table 1: Log-spectral distortion between ground-truth HRTF 
and the output HRTF for several methods. We note that the 
method in [15] requires additional physical measurements 
and the method in [50] requires signifcantly more active 
input from the user. 

elevations and a variety of azimuth angles relative to the listener 
at distances that varied from 1 − 3m. The listener was instructed to 
rotate their head through a normal range of angles as they listened 
to the audio sounds. In total, roughly 15 minutes of audio were 
captured per user across all the locations. 

5.2 Comparison with Ground-Truth HRTF 
The frst metric we use to evaluate the correctness of our HRTFs is 
the agreement with the ground-truth HRTF. A visual comparison 
between the two is shown in Figure 5 which plots the results for a 
given subject at four consecutive elevations and � = 0◦. To evaluate 
the similarity quantitatively, at every azimuth and elevation, we 
compute the Log-Spectral Distortion (LSD) in dB which is given by vuut � �21 

��� (�,ˆ �̃ ) 
� =1 

� (�)
20 log10 (6)

�̂ (� 
= 

� 

We then report the median value across all azimuth and eleva-
tions in table 1. Our method is compared with several other methods 
as well. For the random method, we average the LSD when com-
paring the ground-truth HRTF with all other HRTFs in the RIEC 
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Figure 5: We plot the ground-truth HRTF and predicted HRTF for a given test subject for � = 0◦ and 4 elevations. The HRTF 
that we create for the user closely matches the ground truth, even though the magnitude of some notches and peaks may not 
be exactly correct. 

database. For a generic HRTF, we used the KEMAR HRTF [11] 
which contains measurements for a dummy head commonly used 
as a generic HRTF model. We also share the results reported in [15] 
and [50]. It’s important to note that the method in [50] achieves 
it’s reported results when the HRTF is measured at 1138 unique 
locations done actively by the user, and the method in [15] requires 
detailed anthropometric measurements of the ear, head, and torso. 

5.3 Localization in a Virtual Auditory Display 
To evaluate the efectiveness of our HRTFs in spatial audio appli-
cations, we created a virtual auditory display where sounds could 
be rendered spatially with dynamic head tracking. Our method 
aimed to replicate the experimental method described in [6]. A 
sound reproduction system was implemented in Unity and Steam 
Audio where a virtual sound was placed at an arbitrary location 
and played back to the listener through headphones. The listener 
could then move their head, with the sound location adjusting ac-
cordingly based on head tracking information sent to Unity via a 
UDP connection. Overall the system’s latency from the head move-
ment to the sound update was less than 30ms which is below the 
perceptual lag for binaural listening [36, 47]. Listeners were placed 
in a room with a grid of angular markings on 3 sides of them at 10◦ 

intervals for both azimuth and elevation. A white noise stimulus 
was played for a maximum of 5 seconds during which the listeners 
could make exploratory head movements within a maximum of 
30◦ of the forward facing angle. They were then asked to indicate 
their perceived source location by pointing at the best grid location. 
Experiments were conducted for sources in the front hemisphere 
and back hemisphere separately with sources coming from random 
locations in � ∈ [−70◦ , 70◦] and � ∈ [−30◦ , 40◦]. A brief calibra-
tion period was used where the listener could see the ground truth 
location for the frst 4 examples while making the exploratory head 
movements. Each subject then evaluated 20 random locations for 
each candidate HRTF. 

Results are reported in Figure 6. For both total angular error and 
elevation error, listeners performed signifcantly better with our 
method (p < 0.01) compared to a generic HRTF. In addition, the 
localization error with our method was close to that of the anechoic 

Figure 6: Localization results for the virtual auditory display 
experiment. Results are reported for 3 diferent experiments: 
a generic HRTF, the HRTF predicted using our method, and 
the ground-truth anechoic HRTF described in Section 4.2. 
For each experiment, we frst show the total angle diference 
between the source and prediction. We then show the pre-
diction error broken down by azimuth and elevation error. 
Results are averaged over all subjects and trials. Error bars 
shown are the frst standard error of the mean. 

ground-truth HRTF. We note that, although the mean azimuth error 
was better with our method and the ground-truth HRTF compared 
to a generic HRTF, it was not statistically signifcant (p > 0.05). We 
hypothesize that this is because ITDs are the primary method used 
by humans for azimuth inference, and both the ground-truth HRTF 
and our method contained generic ITDs with only personalized 
spectral features. Statistical signifcance was computed with an 
independent-samples t test between the two candidate distributions. 
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Method Front-back confusion rate 

Generic 29.0% ± 5.4 
Ours 14.8% ± 4.6 

GT HRTF 9.6% ± 4.2 

Table 2: Front-back confusion with rendered sounds. We re-
port the percent of times the listeners made an error, along 
with the frst standard deviation 

5.4 Front Back Confusion 
The last experiment conducted was a front-back confusion test 
using rendered sounds. A short white noise stimulus was rendered 
at a random location using a candidate HRTF and played back to 
the listener through headphones. The listener then had to predict 
whether the source was coming from the front or back hemisphere. 
The locations used were � ∈ [−70◦ , 70◦] in the front and back, 
and � ∈ [−30◦ , 40◦]. Like the previous experiment, the listener 
received the ground truth answer for the frst 4 locations. However, 
unlike the previous experiment, the listener was not allowed to 
make exploratory head movements and had to predict front or 
back based on the rendering alone. Each subject then evaluated 30 
random locations per HRTF before moving on to the next HRTF. The 
results are shown in table 2 which once again show a signifcant 
improvement (p < 0.01) when using our method compared to a 
generic HRTF. 

6 LIMITATIONS AND CONCLUSION 
Our method shows a strong ability to solve for a listener’s HRTF 
using only binaural recordings of in-the-wild sounds and relative 
head tracking information. However, there are several limitations 
that need to be acknowledged. 

First, our method was only demonstrated with a single station-
ary noise source. Such scenarios are limited in everyday settings, 
and solving for the HRTF with multiple sources or moving sources 
would present additional challenges. It would be necessary to local-
ize moving sources and separate the contributions to the recording 
from multiple sources. Second, the user still has to actively localize 
the sources at the beginning of each recording, which presents an 
additional burden compared to a fully passive HRTF estimation 
method. This could be resolved by using a binaural localization 
method, and erroneous localizations could be compensated through 
outlier detection methods. Finally, the microphones in commercial 
earbuds are often not exactly at the ear canal entrance. The efect 
of the earbud on the HRTF would need to be taken into account 
through careful measurements of the earbud system. Despite these 
limitations, our method for HRTF estimation has immense potential 
as wireless earbuds proliferate among everyday users. We show 
strong performance on a variety of real-world user studies, and we 
hope that our method can be incorporated into commercial earbud 
systems in the near future. 
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