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ABSTRACT 
Wearable devices like smartwatches and smart wristbands have 
gained substantial popularity in recent years. However, their small 
interfaces create inconvenience and limit computing functionality. 
To fll this gap, we propose ViWatch, which enables robust fnger 
interactions under deployment variations, and relies on a single 
IMU sensor that is ubiquitous in COTS smartwatches. To this end, 
we design an unsupervised Siamese adversarial learning method. 
We built a real-time system on commodity smartwatches and tested 
it with over one hundred volunteers. Results show that the system 
accuracy is about 97% over a week. In addition, it is resistant to 
deployment variations such as diferent hand shapes, fnger activity 
strengths, and smartwatch positions on the wrist. We also devel-
oped a number of mobile applications using our interactive system 
and conducted a user study where all participants preferred our un-
supervised approach to supervised calibration. The demonstration 
of ViWatch is shown at https://youtu.be/N5-ggvy2qfI. 

CCS CONCEPTS 
• Computer systems organization → Embedded systems; on-
body sensors; • Wearable sensing → On-body Interaction. 

KEYWORDS 
Gesture Recognition, Finger Interaction, Vibration Sensing, Unsu-
pervised Adversarial Training 
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1 INTRODUCTION 
Recently, wearable devices have gained momentum and witnessed 
phenomenal growth in popularity. They have become pervasive 
in the technology industry and are promising computing plat-
forms [77]. Smartwatches and smart wristbands represent the dom-
inant force in the wearable ecosystem, bearing importance among 
consumers owing to their diverse applications in the industrial sec-
tor, healthcare, and consumer electronics, among others. However, 
by necessity, smartwatches are relatively small compared to tradi-
tional computing devices (e.g., laptops and smartphones), on which 
input technologies cannot be easily replicated due to their size dif-
ferences. For example, "fat-fnger" errors on smartphone screens 
may not be a signifcant issue. However, this problem is greatly ex-
aggerated on a smartwatch screen. Inconvenient interaction limits 
wearable devices’ computing functionality: many applications (e.g., 
SMS messages, manual selecting, and video games) barely usable 
on smartwatches. 

Currently, to overcome the limitations of a small screen, speech 
recognition is one of the methods but is sensitive to noise levels in 
the surrounding environments. Moreover, speech input is insecure 
for sensitive information (e.g., password input) because it is suscep-
tible to eavesdropping. For the same reason, it is also intrusive to 
the people surrounding the user. Recent works by FingerIO [47] and 
LLAP [65] achieved millimeter-scale localization accuracy for fn-
gertip tracking, which enables users to write letters on ubiquitous 
surfaces instead of touch screens. However, both of these papers 
were implemented for smartphones. Also, writing letters is signif-
icantly slower than typing them and still has limited interactions 
for small devices. [15] 
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Figure 1: Three keyboard designs for fne-grained fnger in-
teractions. (a) dial keyboard, (b) direction keyboard, (c) one-
hand control 

In this paper, we present a novel system termed ViWatch (see Fig. 
1), which enables a user to interact with a smartwatch using fnger 
tapping/movement instead of a tiny touch screen. The key premise 
behind the system is that the user’s fnger tapping/movement rep-
resents a consistent vibration feature, which can be snifed by the 
wristband’s inertial measurement unit (IMU). The IMU is a stan-
dard sensor in all Commercial-Of-The-Shelf (COTS) smartwatches 
and has low power consumption compared to other sensors in a 
smartwatch, which are all run by a tiny battery with limited energy. 
Moreover, the extended fnger interface allows users to control 
the small smartwatch more conveniently. This may unlock a wide 
variety of upcoming wearable applications previously restricted by 
a lack of interactive input. 

Motivated by this, we design three fnger interaction scenarios: 
dial keyboard, direction keyboard, and one-hand control: Figure 1 
(a) maps natural “landmarks” on hands (12 knuckles) into a dial 
keyboard. Users can use this keyboard to dial numbers and type 
sentences. Figure 1 (b) has four direction "buttons" on the back of 
the hand and two "buttons" on the arm. This direction keyboard 
can control a wide variety of applications, such as playing games or 
switching menus. Figure 1 (c) shows six one-hand gestures. Users 
can open the palm or make a fst to zoom in and zoom out a car 
GPS map; swing the palm to the left/right to switch TV channels, 
music, or slides; pinch three fngers to take a photo and snap the 
fngers to take a video. 

It is nontrivial to embrace the above vision, as the fnger inter-
action system has some subtle deployment variations. For instance, 
users have diferent hand shapes. Although these person-to-person 
variations are relatively small, they may afect the fne-grained 
fnger-level system performance. Even if the classifcation model 
can be fne-tuned to a specifc user by asking him/her to do some 
fnger tapping and labeling, a user may, however, change the tap-
ping strengths from day to day, and the smartwatch may slip to 
a diferent location on the wrist. If we require a user to calibrate 
the system frequently to meet the variations, it is exhausting and 
impractical [11]. Can we fne-tune the classifcation model using 
unlabelled data generated while users are using the system? By 
doing so, we eliminate the need to ask users to collect and label data 
on purpose, but calibrate the system without their involvement. 

To this end, we frst conducted a preliminary study to understand 
how variations afect fnger interaction. To make the system work 
under variations, we designed a deep learning model to train a gen-
eral model with adequate regularization to mitigate over-ftting. We 
have taken measures to prevent over-ftting, but the accuracy for 
completely new users (not seen) may still sufer because the train-
ing data collected from volunteers is insufcient and does not cover 

all the data characteristics of every user on earth. Inspired by online 
learning and domain adaptation, we then utilized an unsupervised 
domain adversarial neural network to match the embeddings of 
the unlabeled data with the embeddings of the labeled data from 
volunteers. Furthermore, we optimized its domain discriminator 
with Siamese contrastive training so it works for hundreds of do-
mains. Note that some research recently investigated variation 
problems in IMU signal recognition of large-scale movements such 
as coarse-grained human activities [7]. However, to the best of our 
knowledge, there is no work that studies deployment variations 
for fne-grained fnger-level activities, which have a much more 
subtle diference between activities, thus making it more challeng-
ing to adapt to variations. Our studies show that the solutions used 
for coarse-grained human activity recognition does not work for 
fne-grained fnger interactions. 

We built ViWatch as a prototype system for the Android smart-
watches. Our implementation achieves real-time fnger interaction 
input with no noticeable latency. We have posted an anonymous 
demo video on YouTube (https://youtu.be/N5-ggvy2qfI). In this 
video, we developed several representative exemplar applications 
using ViWatch as the input surface. ViWatch is also an always-
available remote for smart glasses, smart TVs, and many other IoT 
devices. We performed a three-step evaluation to test the perfor-
mance of ViWatch with 134 volunteers: an ofine ablation study, 
a real-time system evaluation, and a user experience study. The 
ofine study shows that ViWatch outperforms existing methods 
and improves the model performance signifcantly on unseen users. 
A real-time system also demonstrate that ViWatch is resistant to 
deployment variations, such as diferent hand shapes, fnger activ-
ity strengths, and smartwatch positions on the wrist. The results 
in the user study indicate that ViWatch’s unsupervised method is 
more convenient and user-friendly than supervised adaptation. 

To summarize, our main contributions are: 

• To the best of our knowledge, ViWatch is the frst system en-
abling robust fnger interactions under deployment variations 
using unsupervised adaptation through a single IMU sensor in 
smartwatches. 

• We have designed a novel unsupervised Siamese adversarial deep 
learning algorithm and built an end-to-end system using com-
mercial smartwatches to achieve real-time fnger input without 
noticeable latency. We have implemented various representative 
applications using this system. 

• We performed a user study with 134 volunteers and conducted 
thorough evaluations under various types of interference. Evalu-
ation results show signifcant performance improvement com-
pared to previous systems. 

2 RELATED WORK 
In this section, we frst introduce existing fnger interaction systems. 
Second, we explain state-of-the-art algorithms to overcome domain-
shift variation problems in diferent application tasks. The table 1 
shows that ViWatch is the frst robust fnger interaction in COTS 
smartwatches using only a single IMU sensor under deployment 
variations using unsupervised adaptation. 

https://youtu.be/N5-ggvy2qfI
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Methods ViWatch [15, 31] [11] [74, 77] [40, 70] 
COTS Smartwatches ! # ! ! ! 
Single IMU Sensor ! # ! # ! 

Finger Level ! ! ! ! # 
Unsupervised Adaptation 

to Variations ! # # # # 

Table 1: Related work of ViWatch. 

2.1 Finger Interactions 
Finger interaction is essential for wearable devices. A variety of 
approaches allow fnger interaction by designing new skin-worn 
hardware [26, 31, 32, 34, 38, 48, 60, 66, 69, 75, 75]. There are many 
diferent techniques , e.g., electronic signatures [44, 51, 78], vibra-
tions and sounds [9, 10, 13, 14, 16–21, 25, 31, 35, 37, 46, 68], and 
even optical projections [30, 41]. SkinButtons [41] proposes using 
several tiny projectors embedded into the smartwatch to render 
icons on the skin. iSkin [66] proposes a thin sensor overlay with 
biocompatible materials for touch input on the body. SkinTrack 
[78] leverages a ring to emit RF signals and measures the phase 
diferences of received signals to track the fnger. SkinMarks [67] 
designs conformal on-skin sensors for precisely localized input and 
output on fne body landmarks. WatchSense [59] utilizes a depth 
sensor for on-skin input, which is usually not available on the com-
modity smartwatch. Some research [15, 31] classifes the tapping 
with machine learning algorithms using tapping-induced vibra-
tions. For example, Skinput [31] appropriates the human body for 
bio-acoustic transmission, enabling the skin to be an input surface 
with an arm-worn sensor-array. ViType [15] customizes a single 
vibration sensor and employs a fully connected neural network to 
distinguish diferent fnger tapping induced vibrations. The afore-
mentioned approaches, however, require dedicated hardware and 
have limited deployment capability. 

There are some works using smartwatches for human activ-
ity [6, 8], hand location [27, 49], gesture [5, 40, 42, 43, 53, 55, 76] 
or fnger [45] classifcation. Most recently, some research [74, 77] 
achieved fnger-tapping interaction with commercial smartwatches. 
For example, iDial [77] and Tapskin [74] use microphones and the 
IMU in a smartwatch to classify diferent fnger tapping induced 
sound with a Support Vector Machine (SVM) as the classifer. How-
ever, the microphone is sensitive to acoustic noise. AcouDigits [81] 
used ultrasonic sensors to track fngers on the skin, but it was 
energy-intensive. The most related recent works are Taprint [11] 
and [70]. [70] enabled users to customize hand gestures through 
supervised learning. Taprint [11] mainly focus on security and au-
thentication using fnger activities. While Taprint [11] also ofers 
keyboard input, it requires users to collect and label more data ev-
ery time they change their tapping behaviors. In contrast, ViWatch 
utilizes unsupervised siamese adversarial training and does not 
necessitate users to label any additional data. 

Overall, ViWatch only uses a single IMU sensor in COTS smart-
watches to classify fnger interactions without instrumenting any 
dedicated sensors, thus being more efcient and accessible. Most 
importantly, this is the frst work making a novel contribution to 
robust fnger interaction systems under deployment variations via 
unsupervised Siamese learning. 

2.2 Battling Variations 
As methods to overcome the problem of data in diferent domains, 
siamese networks, generative networks, transfer learning, and do-
main adversarial training have been applied. TouchPass [71] has 
used siamese networks to achieve behavior-irrelevant on-touch 
user authentication. Generative adversarial networks (GANs [56]) 
have been successfully introduced to sensor-based human activity 
recognition [72]. Additionally, GANs have been used to augment 
biosignals [28] and in IoT [72]. Extending the conventional GAN ap-
proach, in [52], a data augmentation technique for time series data 
with irregular sampling is proposed utilizing conditional GANs. 
Transfer learning has been demonstrated to be useful in activities 
recognition [22], localization [50], crowdsourced mobile activity 
learning [80], and human activity recognition (HAR) [64]. Previous 
studies use transfer learning to translate training data, features, or 
fne-tuning models for mobile sensor data. Rey et al. [54] discussed 
the case that the new domain just happened to contain the old 
one. Hu et al. [33] developed a bridge between the activities in 
two domains by learning a similarity function via Web search for 
HAR. ViFin [12] fne-tuned fnger writing data of target users from 
source users. However, it requires target users to provide labeled 
data, thus it is exhaustive and user unfriendly. In contrast, ViWatch 
uses unlabelled data in the target domain from users’ daily usage. 

Our work is related to domain adversarial training approaches [62, 
63, 79]. [23] is the frst domain adversarial training approach pro-
posed to tackle the unsupervised domain adaptation problem. Zhao 
et al. [79] propose a conditional adversarial architecture to retain 
the information relevant to the predictive task when removing 
the domain-specifc information. Although this architecture is ef-
fective, it does not consider suppressing the domain shift further 
with unlabeled data. Besides, most of the domain adversarial learn-
ing solutions have only been used in image classifcation [24, 57] 
or large-scale movements such as coarse-grained human activi-
ties [7, 29]. 

However, there is no work that studies deployment variations for 
fne-grained fnger interactions. Fine-grained fnger interactions 
have a much more subtle diference between activities, thus making 
it more challenging to adapt to variations. Our studies show that 
the solutions used for coarse-grained human activity recognition 
do not work for fne-grained fnger interactions. To the best of 
our knowledge, no work so far has designed a novel unsupervised 
Siamese adversarial learning for fnger interaction and this work is 
the frst to do so. 

3 PRELIMINARY STUDY 
In this section, we frst explain why tapping on diferent locations 
on the hand is distinguishable and discuss the physical phenomenon 
and insights of vibration-based fnger tapping systems. (Section 3.1) 
Then, in Section 3.2, we build a mathematical model to analyze how 
variations (tapping strengths, sensor positions, and hand shapes) 
afect the recognition performance. Then we conduct experiments 
to further prove that deployment variations lead to corruption of 
fnger interaction system performance in section 3.3. The exper-
iments show that it is vital to achieve a robust fnger interaction 
under deployment variations. 



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Wenqiang Chen et al. 

Figure 2: Physical modeling of deployment variations. 

3.1 Vibration Dispersion 
The pivotal physical phenomenon for IMU-based on-body tapping 
recognition is vibration dispersion. When the back of the hand is 
tapped (Figure 2), it results in vibrations of diverse frequencies, 
traveling through multiple paths to the IMU sensor in the smart-
watch. Owing to vibration dispersion, the arrival time discrepancy 
between distinct frequency components expands with increasing 
propagation distance. Moreover, higher frequencies preferentially 
propagate through bone over soft tissue, enabling energy trans-
mission over greater distances [15]. The intricate hand structure 
further amplifes vibration dispersion. These frequency compo-
nents, post multi-path propagation, interfere to generate unique 
vibration profles at various hand locations. 

3.2 Mathematical Modeling Analysis 
To comprehend how deployment variations infuence vibration-
based fnger tapping systems, we devise a mathematical model. 

Given the intractability of mathematically modelling complex 
vibration systems such as the human body, we initiate a single-
degree-of-freedom model depicted in Figure 2 to articulate basic 
principles. In this model, a tapping point incorporates a mass el-
ement (a rigid body with a constant mass �), a spring element 
(defned by constant �), and a damping element (denoted by a 
damper with damping coefcient �) [11]. 

The application of external force to the rigid body leads to vertical 
displacements. As per Newton’s second law of motion, we have, 

� (�) = ��(�) + �� (�) + �� (�), (1) 

where � (�) denotes the external force, � (�) the velocity, � (�)
the vertical displacement, � the damping coefcient, � the spring 
constant, and � the mass. This relation can be further expressed as, 

�2� (�) �� (�)
� (�) = � + �� (�) + � . (2)

��2 �� 
A fnger tapping vibration has two phases. The frst phase in-

volves quick contact between the fnger and the rigid body, viewed 
as forced vibration with a constant force � (0). Post the initial tran-
sient disturbance, we enter the second phase: free vibration, where 
the system vibrates independently after fnger-body contact ceases. 

In the forced vibration phase, applying the Fourier transform to 
both sides of (2), we get, 

� (0) (1 − �− ��Δ� ) = −� 2�� (�) + �� (� ) + ���� (� ), (3)
�� 

yielding, 

Figure 3: Difering tapping strengths, smartwatch positions, 
and hand shapes infuence system performance. 

Figure 4: (a) Vibrations from the same key are consistent. (b) 
Vibrations from the two keys are diferent (Up). Vibrations 
from the same key are diferent because of person-to-person 
variations. (Down). 

1 − �− ��Δ� 
� (�) = , (4) 

− �� � �� 
� 3 − � 2 + � 

� (0) � (0) � (0) 

where � (�) is the spectrum of the vertical vibration signal, and 
� the vibration frequency at the tapped position. 

Next, we examine the horizontal vibration during the free vibra-
tion phase. As vibration signals propagate horizontally from the 
tapping location to the smartwatch, they undergo attenuation. This 
attenuation, modeled as a constant �−�� in [15], where � is the 
propagation distance and � the attenuation coefcient, allows us to 
derive the vertical vibration signal at the smartwatch location as, 

(1 − �− � �Δ� )�−�� 
� (� ) = . (5) 

− �� � �� 
�3 − �2 + � 

� (0) � (0) � (0) 

Despite unique patterns generated by tapping at various loca-
tions due to vibration dispersion, equation (5) highlights several 
parameters (variations) impacting this phenomenon. For instance, 
varying hand shapes afect �, � , and � [58], tapping strength alters 
� (0), and smartwatch position changes � . This explains why fnger-
tapping vibration recognition performance is disrupted under these 
variations. 
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3.3 Investigative Experiments 
To ascertain the extent to which deployment variations impact 
system performance, we conducted experiments with fve partic-
ipants, comprising two females, each with difering hand shapes. 
The smartwatch was worn comfortably on the left wrist, and the 
hand was kept suspended in the air. Each participant was frst asked 
to randomly tap keys according to the keyboards in Figure 1, deliv-
ering 40 taps per key. The data collated in this step constitutes the 
"anchor dataset". Subsequently, the experiment was repeated with 
stronger tapping strength and after repositioning the smartwatch 
by a 2 cm displacement. 

To analyze model accuracy for the anchor dataset, we partitioned 
samples from each key/gesture into a 3:1:1 ratio for the training, val-
idation, and test sets, respectively. Individual fully connected neural 
network models were trained for each participant. As indicated in 
Figure 3(1), the average accuracy was a robust 95% across three 
keyboards. Yet, when models were trained on the anchor dataset 
and tested on the stronger tapping strength dataset, the average 
accuracy fell to 50%, as depicted in Figure 3(2). Analogously, models 
trained with the anchor dataset but tested with a dataset after a 
2 cm smartwatch displacement recorded an average accuracy of 
only 69% across the three keyboards, as shown in Figure 3(3). A 
general model trained across diferent users (hand shapes) yielded 
a leave-one-participant-out (LOO) accuracy of merely 45%, as in 
Figure 3(4). This poorer accuracy highlights the complexities added 
by varying hand shapes, tapping strengths, and smartwatch posi-
tions. In essence, variations in tapping strength, smartwatch 
placement, and hand shapes signifcantly afect system per-
formance. 

Examination of the signal profle in the time domain, via plotting 
the Z-axis accelerometer vibration signals from a typical smart-
watch (Figure 4), reveals consistency in vibration waveforms from 
the same key (Figure 4(a)). While two diferent keys from one per-
son produce distinct waveforms (Figure 4(b), upper part), waveform 
diferences arise between two users even for the same key (Figure 
4(b), lower part). This variability is observable between any samples 
with variations. 

These investigative experiments highlight that, despite consis-
tent vibrations from tapping the same key, person-to-person varia-
tions (hand shapes, tapping strengths, smartwatch positions) sig-
nifcantly degrade overall performance. Therefore, it is crucial to 
develop a classifcation model capable of distinguishing between 
fnger interactions while maintaining robustness against these vari-
ations. 

4 VIWATCH 
In the preliminary experiments described in Sec. 3, we observe that 
the deployment variations afect the system performance signif-
cantly. An ideal classifcation model should be able to discriminate 
the diference between fnger activities and be resistant (above 95% 
accuracy) to variations. In this section, we describe our design of 
the robust fnger interaction system under deployment variations. 

Our design is elaborated in the following steps as shown in Fig-
ure 5: We frst pre-processed the vibration signals. (Sec. 4.1) Then, 
we designed a CNN-based deep learning model to train a general 
model with adequate regularization to mitigate over-ftting. (Sec. 

Figure 5: ViWatch architecture. 

4.2) Although we have taken measures to combat overftting, the 
accuracy for completely new (unseen) users still sufers due to the 
fact that the training data from volunteers is insufcient and does 
not cover every user’s data characteristics on earth. Our idea is 
to improve the model continuously by using the data generated 
by users’ daily use in an unnoticeable way, based on online learn-
ing and domain adaptation. However, these daily generated data 
have no labels. Thus, we utilize an unsupervised domain adver-
sarial neural network (DANN) to match those variations (Sec. 4.3). 
Unfortunately, it is impractical to separate hundreds of domains 
with cross-entropy loss. To address this problem, we optimized its 
domain discriminator with Siamese contrastive training (Sec. 4.4). 
With these steps, we achieve a robust fnger interaction with COTS 
smartwatches under deployment variations. 

4.1 Signal Pre-Processing 
ViWatch uses energy-based double thresholds segmentation [15] to 
capture the tapping-induced vibrations. When the signal energy is 
higher than the thresholds, the time is defned as the point at which 
the tapping vibration starts. In terms of the segment ending point, 
we set it to 0.5s after the starting point. This is because the duration 
of signals in this application is usually around this value based on 
our observations. Human mobility such as walking often causes 
body vibration, which needs to be denoised. Based on the short time 
Fourier analysis, we observe that the vibration caused by human 
mobility is mostly less than 10 Hz. Therefore, a 20 Hz Butterworth 
high pass flter is sufcient to remove noise from the captured 
vibration signal. Through this flter, the direct current component 
such as gravity can also be removed. In the fnger movement input 
process, the users need to turn on the touchscreen frst and start 
the fnger interaction input with an activate gesture [12]. When 
a user types on a laptop keyboard or washes dishes, he/she may 
not turn on the touchscreen of the smartwatch. However, in the 
text input process, some actions when typing on the back of one’s 
hand (e.g., scratching hands or picking up objects) may trigger false 
positives. We used SNR based threshold [11] to remove the noise. 
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Afterwards, ViWatch normalizes the magnitude of signals using 
the Z-score normalization technique, and aligns signals by fnding 
the TDOA (Time Diference of Arrival) with the GCC (Generalized 
Cross-Correlation) algorithm [39]. Last but not the least, ViWatch 
extracts weighted features based on position-related points with 
Fisher score selection. [11] 

4.2 Backbone Model 
A few pioneer works have explored the problem of classifying fn-
ger tapping. They have proposed using Support Vector Machines 
(SVM) [74, 77], k-Nearest Neighbour (kNN) [11], and fully con-
nected neural networks (ANN) [15] as classifers to distinguish 
diferent keys. While the aforementioned methods achieved suc-
cess in their application scenarios, those models are optimized for 
a single user under restricted conditions. For a broad-scale deploy-
ment, it is not practical to collect large amounts of labeled training 
data from a single user. Also, these models fail to meet expectations 
during real-world deployments: system performance signifcantly 
degrades due to deployment variations, such as hand shapes, tap-
ping forces, and device positions. 

Figure 6: ViWatch Backbone Convolutional Neural Network 
Architecture. 

With the collection of a larger dataset that contains large amount 
of data contributors, we propose using a Convolutional Neural Net-
work (CNN) as the backbone model of ViWatch, whose structure is 
shown in Figure 6. We name it "backbone" as the following model 
design will be built on top of it. Here we provide an intuition of the 
model structure design: While the model needs to be sufciently 
complicated in order to capture the dynamics of tapping behaviors 
of a large population, over parameterization could lead to signif-
cant over-ftting that downgrades the model’s testing performance. 
Guided by the trade-of mentioned above, the proposed backbone 
CNN consists of fve consecutive convolutional blocks and three 
fully connected blocks. We employ batch normalization within each 
block to speed up the training as well as to provide the regulariza-
tion that reduces over-ftting [36]. We determine that additional 
dropout layers are not necessary after some ablation studies. The 
input to this CNN structure has dimensions of � × 43 × 6, where � 
is the batch size, 43 are the timesteps, and 6 are the IMU data axes. 
The output is a multi-class one-hot prediction. 

4.3 Unsupervised Adaptation 
In the previous section, we discussed our eforts on training a back-
bone model, which aims to create an "average" model for all users. 
However, the model is only as good as its training data. If the la-
beled training dataset fails to cover a considerable diversity in the 
population, the model trained on it may encounter generalization 
difculties and have poor accuracy for a new (unseen) user. One of 

the most intuitive model adaptation methods is to collect a small la-
beled dataset from the end user and fne-tune the model parameters 
to cater to user habits. However, users need to frequently label more 
data every time they change the tapping behaviors. Unfortunately, 
this method increases the burden on the product users, and users 
are often reluctant to follow complicated instructions to collect 
their own label dataset [11]. However, we notice that the user’s 
daily usage of ViWatch will generate abundant unlabeled data. Can 
our model adaptation process beneft from unlabelled data of the 
target user? 

To address this question, we apply unsupervised domain adver-
sarial training of neural networks (DANN) [24]. The high-level 
intuition is that DANN has two neural networks. It has a discrim-
inator to identify diferent users and another classifer to classify 
diferent fnger activities. The two models are trained together in 
a zero-sum game, adversarial. Then it reverses the gradient of the 
discriminator so that DANN ONLY classifes diferent fnger activi-
ties but can NOT identify diferent users. In this way, the fnal layer 
only has fnger activity patterns while no variations. 

Figure 7: Architecture for user-dependent model adaptation. 
5We provide a more detailed description of our user-dependent 

model adaptation architecture in Figure 7. This architecture consists 
of three major components. The feature extractor � � and the key 
classifer �� are just the early and late layers of our backbone 
CNN model discussed in Section 4.2. The third component is a 
domain discriminator �� . The features extracted from � � are used 
by �� to classify the tapping keys. The features, along with the 
classifcation results, are also used by the domain discriminator �� 
to determine if a feature vector comes from the source domain or 
the target domain. The three components form a structure similar to 
a generative adversarial network (GAN), whose expected behavior 
is to maximize the tapping key classifcation accuracy and minimize 
the accuracy of domain classifcation. 

In Figure 7, direct arrows indicate the forward pass, and curved 
arrows indicate the back propagation pass. During the training 
time, we frst split the whole smartwatch tapping dataset into a 
training set ������ , a validation set ������ , and a left-out user. Here 
all the data in ������ form the source domain, and the data from 
the left-out user form the target domain. In the target domain, 
we select a part of the data and remove their labels to use them as 
the unlabeled training data ������ . The rest data of the left-out user 
is used to test the model performance, and we denote them with 
����� . 
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In the forward pass, all the data entries in ������ and ������ 
are input to the DANN network. For each data entry, we obtain 
a tapping key prediction �̂ and a domain prediction �̂ . The loss 
consists of three parts: the key classifcation loss ������� 

� for ������ 
only (target domain data have no labels), the domain classifcation 
loss ������� ������ and � for ������ and ������ separately. Then the 

� �
three modules are trained jointly using back propagation as depicted 
in Figure 7. When the gradient is passed from �� to � � , a gradient 
reverse layer is applied to change the symbol of the gradients. Here 
we provide some intuition about the gradient reverse layer: By 
design, � � should maximally support �� while deceiving �� . In 
other words, we want the extracted features to be domain-agnostic. 
Thus a bad performance of the domain discriminator should be 
desired for the feature extractor � � . Note that no gradient is passed 
from the domain discriminator �� to the key classifer �� . Finally, 
the optimization problem can be written as � � 

� = ������� ������� ������ min max − � + �� , (6)� � � � � ,�� �� 

where � � , �� , and �� are the parameters of the feature extractor, 
key classifer, and domain discriminator, respectively. We evaluate 
the adapted model (only � � + �� ) performance on target domain 
test data ����� . 

Using the domain adversarial training introduced in this sec-
tion, we provide a better user experience for the target user by 
adapting the backbone model to the target user’s habits. During 
real-world deployments, the ������ should be the unlabeled data 
generated from the daily usage of ViWatch. If the user allows, the 
daily unlabeled tapping data will be collected and uploaded. The 
backbone model parameter is then adapted and pushed back to 
the smartwatches as application updates once DANN training is 
fnished. 

4.4 Siamese Optimization of DANN 
The previous section introduced how we employ DANN to address 
variations of fnger interactions. In our experiments, we found 
that the proposed DANN performance gain is limited. First, we 
re-examine the intuition of applying DANN to solve the variation 
problem in sensor data classifcations: the DANN method aims to 
match the embeddings of the unlabeled new data (target domain) 
with the embeddings of the training data (source domain). This 
setting is optimal if the source data is collected from one environ-
ment and the target data is collected from another environment. 
However, in our settings, all the user data in the training set form 
the source domain, and the unlabeled data from one new user form 
the target domain. In other words, the target domain is the data 
distribution from a single user, while the source domain distribution 
is drawn from a mixture of hundreds of users. This skewness in 
domain defnition might make the domain matching problem more 
difcult. 

An intuitive thought to solve this domain skewness problem will 
be to assign one domain to each user in the training set, which will 
convert the task of domain discriminator �� from binary classifca-
tion to multi-class classifcation. However, this task is too difcult 
for �� , since the number of classes (e.g. hundreds of users) grows 
linearly with the training dataset size, and the decision boundary is 
exceptionally complicated. Luckily, we realize that we do not need 

Figure 8: Architecture for optimizing DANN using Siamese 
method. 

to identify hundreds or thousands of users; in contrast, we only 
need to know if a sample is from the same user or from diferent 
users. Therefore, we modify the DANN and optimize its domain 
discriminator with Siamese contrastive training. 

The updated Siamese-DANN structure is shown in Figure 8. 
Specifcally, we change the fnal layer of the domain discrimina-
tor �� to a fxed embedding consists of 16 nodes and remove the 
softmax layer used for classifcation. During the DANN training, 
the tapping classifcation loss �� is calculated and back-propagated 
exactly the same as Sec 4.3 when the input data are labeled. The 
domain loss �� , on the other hand, is calculated as follows: frst, 
from each training batch, we randomly sample pairs of data from 
the union of the training set ������ and the target user data ������ . 
If the two tapping data come from the same user, the pair is labeled 
as a positive pair (� = 1). Meanwhile, a pair with samples from 
diferent users will be labeled as negative (� = 0). We make sure 
that the positive and negative pairs are balanced, and at least half 
of the ������ data (from the target user) is used once in this gen-
eration. Secondly, we feed the two time series in each pair to our 
model separately, and at the output of the domain discriminator �� 
we will get two 16-dimension embeddings. Intuitively, for a model 
that recognizes each user, if it is a positive pair (time series of the 
same user), we want to encourage their embeddings to be close to 
each other. Otherwise we want their distance to be farther than a 
threshold. The fnal resulting contrastive loss is given by 

�� = � · | | (� (�1) − � (�2)) | |2 + (7) 
(1 − �) · ��� (0, � − | | (� (�1) − � (�2)) | |2) , (8) 

where � () is the Feature Extractor � � , � = 1 for positive pairs, 
� is the threshold, and the embedding distance is measured with 
the L2 norm. The other parts like the gradient reverser layer and 
parameter updates are all the same as in Sec. 4.3. 

5 SYSTEM IMPLEMENTATION 
We have implemented ViWatch as a standalone application pro-
gram on a commodity Android smartwatch, the Huawei Watch 2 
(with a 1.2 GHz Quad-Core processor and a RAM with 512 MB). Vi-
Watch utilizes the built-in accelerometer and gyroscope (InvenSense 
MPU6515) and acquires the motion readings through existing An-
droid Wear APIs to detect the fnger tapping induced vibrations. 
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The sampling rate through the APIs is 100 Hz. We trained the neu-
ral network models using Pytorch 1.5.1 on a desktop computer 
which has AMD Ryzen 7 2700X Processors and an NVIDIA TITAN 
X Graphics Card. PyTorch supports an end-to-end workfow from 
Python model training to Android model deployment (via the Py-
Torch Android API [61]). After training the model, we implement 
all the components of our system including signal processing and 
neural network classifcation on a COTS smartwatch to classify 
the fnger interactions in real-time. To collect users’ unlabeled data 
during daily usage for updating models, we used network socket 
with IP addresses to send collected data from the smartwatch to 
the server and send back updated models to the smartwatch. And 
we also built some representative applications on the smartwatch 
using ViWatch (see section 7.3.1). 

In the training process, the feature extractor � � and the key 
classifer �� (CNN backbone) are pre-trained on ������ for 600 
epochs. The training is stopped early if the validation accuracy 
is greater than 50%. For each test user, the DANN training goes 
on for 33 epochs. Similar to the backbone model training, we use 
early stopping, where the model with the best performance on 
the source domain validation set ������ is saved. For the current 
implementation, the average end-to-end latency is 0.2 seconds from 
tapping to the output display. The initial backbone general model 
training process (100 participants’ data) in the server takes about 
109 seconds on average for each keyboard. The DANN model update 
process takes 44.5 seconds per user (with 30 unlabeled samples for 
each key). So the DANN adaptation is scalable with more users and 
more unlabeled data. 

We measure the power consumption of the smartwatch using 
"Battery Historian" from Google. Specifcally, We measured three 
states: (1) idle with the display on, (2) ViWatch with power on, 
but without tapping input, and (3) ViWatch with power on and 
continuous tapping. Since the platform can only measure the per-
centage of the battery consumption, we record the time duration 
for consuming 1% of the battery for each state. Each state’s average 
resulting time duration is 215 s, 190 s, 178 s, respectively. Given the 
battery capacity and the working voltage, we calculate the aver-
age resulting power consumption of each state, which is 247 mW, 
284 mW, 298 mW, respectively. Thus, ViWatch only consumes an 
additional 51 mW of power on top of the base power consumption. 
For comparison, we also conduct the measurement when running 
a pedometer application, resulting in the power consumption of 
288 mW. Thus, the power consumption of ViWatch is similar to the 
typical application running on a smartwatch. 

6 EXPERIMENTAL SETUP 
We conducted three primary experiments for evaluations. The 
smartwatch is worn on the left wrist in a comfortable manner with 
the hand in the air. Unless otherwise specifed, all the experiments 
are launched based on the default setting discussed as follows. The 
study was approved by the Institutional Review Board (IRB-SBS 
4166). 

1) Ofine dataset: We recruited 114 participants (46 of them are 
female) in the age range between [18, 51]. Their body mass indexes 
(BMIs) range from 19.12 (lean) to 29.58 (obese). To demonstrate the 
basic performance of ViWatch, all participants were asked to tap 

on three keyboards as shown in Figure 1 randomly to generate the 
basic ofine dataset (with 114 participants × 24 keys × 40 times 
= 109440 samples in total). (For easier explanation, we use "key" 
to refer to both "location" and "gesture"). Participants are allowed 
to tap casually with any posture and strength. The performance 
of this dataset is evaluated in the following Section 7.1 "Ofine 
Evaluations". 

2) Real-time test set: Then we recruited an additional 20 par-
ticipants to use these three keyboards in real time under diferent 
conditions (see section 7.2). These participants are in the age range 
between [18, 42]. Their body mass indexes (BMIs) range from 17.63 
(lean) to 28.12 (obese). Before using ViWatch, the user was given 
a 10-minute warm-up period to get familiar with the system. For 
each condition, participants were asked to tap 120 random keys 
we provided as a test set for three keyboards separately. The re-
sults of these experiments are presented in Section 7.2 "Real-time 
Evaluation". 

3) User study: We also asked these 20 participants to try various 
applications we developed using ViWatch (10 minutes for each 
application) and fll out questionnaires to present their user experi-
ences. (see Section 7.3) 

7 EVALUATION 
In this section, we frst study the performance of ViWatch com-
paring to State of the Art (SOTA) methods on the ofine dataset 
from 114 volunteers in Section 7.1. We further perform real-time 
experiments in which an additional 20 new volunteers produce un-
labeled data during daily usage in one week. In the real-time exper-
iments (Section 7.2), we investigate how Siamese adversarial learn-
ing improves accuracy over time and against diferent variations. 
Third, we evaluate ViWatch’s usability and workload based on the 
standard System Usability Scale (SUS) and NASA Task Load Index 
(NASA-TLX) to compare to the supervised calibration in Section 7.3. 

7.1 Ofline Evaluations 
In this section, we evaluated ViWatch performance on an ofine 
dataset collected from 114 users. In order to understand the efective-
ness of diferent techniques and fairly compare diferent methods, 
we conduct a leave-one-out evaluation during all the experiments. 
One of the users is left out to be the new user (target domain). 
The target domain data is then split into ������ (label-removed, for 
DANN training) and ����� (for system performance evaluation). No 
matter which keyboard setting we are using, each user has 40 trials 
for each tapping key. By default, 30 of them will go to ������ , and 
10 will go to ����� unless otherwise specifed. The rest of the 113 
users form the training set ������ (100 users) and the validation 
subset ������ (13 users). This process is repeated for all 114 users, 
and the average accuracy is reported. To ensure a fair comparison 
and reproducibility, we repeat all the experiments with random 
seeds 0, 100, 200, 300, and 400 and take an average. 

7.1.1 Evaluation of ViWatch compared to SOTA. First, we evaluated 
the ViWatch model we proposed. Figure 9 shows the LOO accu-
racy of the confusion matrix for the three keyboards. The average 
accuracy of keyboards A, B and C are 93.89%, 93.99%, and 94.40%, 
respectively. We observed that the closer locations lead to lower 
accuracy (e.g., Key "0" and Key "#"). 
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Figure 9: Confusion matrix of three keyboards. 

We also compared ViWatch to existing fnger interaction meth-
ods proposed in previous works, including ViType (a fully con-
nected neural network) [15], iDial (SVM) [77], and Taprint (kNN) [11]. 
Laput, etc. [40] also used a fully connected neural network to clas-
sify fne-grained hand activities. 

As shown in Figure 10, the results show that ViWatch signif-
cantly outperforms the baselines of existing IMU sensing methods 
by a margin of more than 20% for all three keyboards. The average 
testing accuracy of ViWatch is around 94% while that of the base-
lines are all below 74%. We believe that the variations cause the 
performance reduction using the classifcation algorithms in exist-
ing works of IMU sensing. The Siamese adversarial deep learning 
with extra unlabelled data signifcantly improves model accuracy. 

We then do an ablation study for the cascaded optimization 
techniques we propose in Section 4. For Section 4.3, there are two 
approaches of performing the DANN training using Eqn. (6). First, 
we can treat the data from the target user as the target domain and 
all training data (������ ) as the source domain. We call this method 
DANN 2-Domain model, which is the default method introduced in 
Section 4.3. Alternatively, we can also treat each user as a separate 
domain for the domain discriminator. Since we have 100 users in 
the source domain and one user for testing in the target domain, 
we refer to it as DANN 101-Domain model. 

In this work, we also made other eforts to improve the generaliza-
tion ability of the backbone CNN model (in Sec 4.2) by implementing 
some existing algorithms for variability challenges proposed in the 
literature on human activity recognition. First, we employed Time-
series Generative Adversarial Networks (TimeGAN [73]) to gener-
ate synthetic data to enlarge the training dataset and create more 
diversity. Second, we used a model of a UCI Human Activity Recog-
nition dataset [4], and fne-tune with our fnger activity dataset by 
freezing the weights. Third, we fused the center loss directly (e.g. 
Siamese) [3, 71] in the backbone model to minimize the intra-class 
variations while keep the features of diferent classes separable. 

We compare the performance of the backbone CNN model, 
TimeGan, transferred model, Siamese NN, DANN 2-Domain model, 
DANN 101-Domain model, and the Siamese-DANN model (Sec 4.4). 
As shown in Figure 11, the accuracy of the backbone model we 
designed is 90%. TimeGAN did not improve the performance of 

the backbone model. It is likely that TimeGAN only learns the 
dynamics from the data of the known training user while it did 
not generate any information for unseen users. The transferred 
model failed to improve any accuracy due to the diference between 
the data sources: IMU data from the coarse-grained human activi-
ties and IMU data from the subtle, fne-grained on-body tapping 
vibrations can be very diferent. Siamese NN did not work either. 
We believe that it is because the data has signifcant intra-class 
variations across diferent users while diferent fne-grained tap-
ping locations/gestures only have subtle diferences. With extra 
unlabeled data, we observe that the DANN 2-Domain model only 
has a little improvement (1.5%) compared to the backbone model. 
This result shows that the skewed domain defnition counteracts 
the benefts of DANN training. The DANN 101-Domain model even 
has a lower accuracy than the DANN 2-Domain model. This re-
sult shows that it may be impractical for domain discriminators 
to separate hundreds of domains with cross-entropy loss due to 
over-complicated decision boundaries. If we collect a larger scale 
dataset (e.g., thousands of users’ data), this problem may be worse 
for DANN. On the other hand, the Siamese DANN we proposed 
(DANN optimized with the Siamese contrastive loss) has better 
accuracy (94%). Note that this accuracy can be further improved 
with more unlabeled data in the real world, which we provide as ad-
ditional evaluations in the rest of the paper. Thus, we can conclude 
that, our proposed Siamese-DANN algorithm is better customized 
than the baselines for the IMU classifcation problem and improves 
the accuracy with more unlabeled data collected from daily usage. 
Note that we compare other supervised domain adaptation 
algorithms in Section 7.3: Applications and User Study. 

7.1.2 Sizes of labeled training data. We alter the size of the back-
bone training data ������ when evaluating the efectiveness of 
Siamese DANN training. We start from a small training population 
of 1 user, and gradually increase the training users to 20 users, 
40 users, 60 users, 80 users, and 100 users, so that the backbone 
training sets cover a diferent proportion of the whole population. 

We plot the statistics of the above experiments in the box plot 
shown in Figure 12. The blue bars show the statistics of the testing 
accuracy of the backbone model, and the yellow bars show that 
of the Siamese adversarial training model. On each box, the cen-
tral mark indicates the median, and the bottom and top edges of 
the box indicate the 25th and 75th percentiles, respectively. From 
the results, we have the following observations. First, the model 
accuracy increases monotonically as more labeled training data is 
available, which is intuitive as more data leads to better machine 
learning models. Second, the Siamese adversarial training model 
outperforms the raw backbone CNN models in all cases – the yel-
low bars are always higher than the blue ones. This Siamese DANN 
adaption can provide a stable 4%~11% average performance gain. 

7.1.3 Sizes of unlabeled training data. We also further explored the 
amount of unlabeled target user data needed for Siamese adversar-
ial training to become efective. In other words, we evaluated the 
efect of the size of ������ on the performance of Siamese adversar-
ial adaptation. We fx the sizes of source domain training set ������ 
to be 50 users and 100 users, and we gradually increase the size of 
������ from 0, 5, 15, 25 to 35 samples for each key. The mean testing 
accuracies are shown in Figure 13: the testing accuracy gradually 
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Figure 10: Performance comparison of
ViWatch against previous methods. 

 Figure 11: Performance comparison of 
ViWatch against SOTA HAR methods. 

Figure 12: Performance of the backbone 
model and the Siamese DANN model. 

Figure 13: Diferent ������ sizes. Figure 14: The accuracy of the backbon
model for 20 unseen users. 

e Figure 15: Siamese DANN accuracy over 
7 days. 

increases as more unlabeled training data (������ ) are used. This 
trend remains the same no matter whether the training set ������ 
contains 50 or 100 users. In general, the Siamese DANN benefts 
more when the amount of unlabeled target user data increases. 

7.2 Real-time Evaluations 
In this section, we evaluate ViWatch in a real-time manner under 
various disturbances. We recruited an additional 20 new partici-
pants. For each condition, participants were asked to tap 120 random 
keys we provided as a test set for three keyboards separately. This 
test set is repeated multiple times under varying conditions. For 
instance, the 120 samples are executed gently, then repeated with 
more force. Note that we do not empirically evaluate false positive 
of fnger tapping here because existing work [11] has well addressed 
this challenges by identifying fnger-tapping signals from noisy 
data, and we also only start detecting signals when users unlock the 
touchscreen to turn on the app and perform the activate gesture. 
As results from the three keyboards are similar, we only show their 
average accuracy in this section. 

7.2.1 Backbone Model. The additional 20 users we recruited have 
diferent hand shapes. We asked participants to input the test set 
by tapping on three keyboards using the same pre-trained model. 
As shown in Figure 14, the average accuracy for 20 users is 90% 
with 8.6% standard deviation. From Figure 14, we can see that the 
accuracy is not good enough without the adaptation. Especially, 
User 5 and User 7 have much lower accuracy. We believe this is 
because these two users have much fatter hands than the others. 
Note that diferent users (hand shapes) not only have diferent hand 
shapes, but also may have diferent tapping strengths, and smart-
watch worn positions. Although we have collected 114 participants’ 
data for the training model, the accuracy can still be poor for un-
seen users, such as User 5 and User 7. In the following sections, 
we used the Siamese adversarial deep learning algorithm based on 
the backbone model to improve the accuracy with unlabeled data 
generated from daily usage. 

7.2.2 Adaptation over Time. In this experiment, we verify whether 
ViWatch adapts to a specifc user’s typing pattern using the Siamese 
DANN training. We asked users to input the test set (120 random 
keys for three keyboards separately) one time every day for one 
week. To prevent noise of everyday activities from polluting the 
dataset, ViWatch only detects tapping vibrations when users unlock 
the smartwatch screen to turn on ViWatch and perform the activate 
gesture. After each day, we update the models using the unlabeled 
data generated by regular tapping. For example, the model update 
process can be executed when users are sleeping. As shown in 
Figure 15, the accuracies for seven days are 90.1%, 95.2%, 96.4%, 
96.8%, 96.7%, 97.2%, and 97.1%, respectively. We have noticed a 
big improvement in accuracy on the second day. This efectively 
demonstrates that DANN adapts the model to specifc users. The 
accuracy then showed slight improvements over the following week. 
Particularly for some previously unknown users, performance has 
improved signifcantly. (e.g., the accuracy of user #5 in Figure 14 
improves from 65% to 95%.) 

7.2.3 Diferent Tapping Strength. After adaptation over a week, 
We asked participants to input a test key sequence by tapping the 
three keyboards gently. Then, we asked them to input the test set 
again by tapping harder (for the one-hand control keyboard, and 
we asked them to perform the gestures with diferent strengths in-
stead of tapping). The recognition accuracies for diferent strengths 
are similar (97.2% and 97.4% respectively). Therefore, ViWatch is 
resistant to diferent tapping/acting strengths. 

7.2.4 Wearing positions of smartwatches. We further measured the 
smartwatch displacement, which might impact the reliability of Vi-
Watch. We asked participants to tap the test set with seven diferent 
smartwatch locations each. Location 0 means participants wear the 
smartwatch on the wrist closest to the fngers, with a comfortable 
tightness. We asked participants to input the test set with seven 
smartwatch locations each, which moved the smartwatch away 
from the fngers by 1 mm, 4 mm, 8 mm, 12 mm,20 mm, and 30 mm. 
We observe that users can not move the watch more than 30 mm 
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away from location 0 because the arm becomes thicker. On aver-
age, the classifcation accuracies are 97.1%, 97.4%, 96.9%, 97.2%, 
96.8%, in order. Thus, ViWatch is resistant to the displacement of 
smartwatches. 

7.2.5 Diferent Tapping Fingers. We also questioned whether using 
diferent fngers for tapping afects the system performance. We 
asked participants to tap the test set using the index fnger, middle 
fnger, and ring fnger, in order. The results are 97.3%, 97.1%, and 
96.9%, respectively. Therefore, ViWatch is reliable to diferent tapping 
fngers. 

7.2.6 Arm Orientations. In practice, users might maintain diferent 
gestures when they are tapping. To evaluate the impact of such 
variations, we evaluated the system under three diferent gestures 
of forearm rotation: (1) gesture 0 indicates that the plane of the 
back of the hand is parallel to the ground, (2) gesture 1 indicates 
the arm rotates 45 degrees outwards from gesture 0, (3) gesture 2 
indicates the arm rotates 45 degrees inwards from gesture 0. The 
accuracies are 96.9%, 97.1%, and 97.3%, respectively. The results 
show that diferent arm rotations do not compromise the accuracy. 

7.2.7 User States. To investigate how human mobility afects clas-
sifcation accuracy, we conducted an experiment to study the ac-
curacy of our system while walking and tapping simultaneously. 
The accuracy is 96.5% on average. Washing hands is also a typical 
activity that users complete many times a day. There is no impact 
on the performance (97.2%) of ViWatch when testing on wet hands. 

7.2.8 Diferent Smartwatches. Additionally, we asked participants 
to wear diferent smartwatches to perform the test set. In addition 
to the Huawei Watch2 that we have used to collect 100 participants’ 
data, we also use the ASUS Zenwatch 2, and the Madgaze Watch 
for testing. The IMU sampling rates of them are 200Hz and 500Hz, 
respectively. We match the sampling rate to the Huawei Watch 2. 
To our surprise, the accuracy for ASUS Zenwatch 2 and Madgaze 
Watch are 96.6% and 96.8%, respectively. We believe that diferent 
types of IMUs should not impact the model performances. 

7.3 Applications and User Study 
In this section, we have developed four applications using ViWatch. 
Then, by recruiting volunteers to experience these applications, 
we evaluate system usability (SUS based standard method) and 
workload (NASA-TLX). Regarding workfow index, we built and 
asked volunteers to compare another system we built using super-
vised fne-tuning, in which users are allowed to collect and label 
some data for the purpose of updating the model every time they 
encounter variation. 

7.3.1 Applications. To evaluate the user experience of ViWatch, 
we implemented four representative applications. These applica-
tions are chosen to demonstrate the broad and important utility 
of ViWatch. (1) smartwatch games: We developed a maze game 
in the smartwatch, where the goal for users is to guide a ball to 
move out of a maze. We use the four-direction keys in Figure 1 (b) 
direction keyboard: up, down, left, right. (2) Remote controls for 
smart headsets (can be extended to control many devices): Again, 
We use the direction keyboard: up, down, left, right, back, and con-
frm. With this keyboard, users can make selections for menus in 

Figure 16: SUS based standard user study result. 

smart headsets. (3) Shortcuts to activate apps that are usable in 
smart spaces: We built a shortcut system in the smartwatch that 
allows users to customize it. For example, when users tap on key 1 
on the dial keyboard as shown in Figure 1(a), the smartwatch turns 
on Google maps. When users tap on key 2 on the dial keyboard, the 
smartwatch turns on the music player, etc. (4) One-hand controls: 
We connected the smartwatch to Madgeze smart glasses and a lap-
top. We used one-hand controls to control smart glasses and play 
slides. Users frst used one-hand controls to zoom in and zoom out 
of a google map on the smart glasses. Then, they swung the palm 
to the left/right to switch menus in the smart glasses. Additionally, 
they used this keyboard to select and play YouTube videos. In the 
end, users swing the palm to the left/right to switch slides on the 
laptop. 

ViWatch control is helpful for these applications. For example, 
when users play video games on the watch, the small size touch 
screen is fully covered by game videos and has no space for an 
on-screen keyboard. For another example, users’ eyes are blocked 
wearing a smart headset. Therefore, they can not see and control 
the smartwatch touchscreen. However, tapping on the skin and per-
forming gestures are eyes-free. One-hand Controls are also helpful, 
especially when a user’s hand is busy and not available. Most im-
portantly, there are more and more wearable devices with no touch 
screen, such as some sport wristbands. ViWatch can be used to con-
trol these no-touch screen wearable devices, as well as controlling 
smart IoT devices remotely. 

7.3.2 User Experience. In this section, we study the system usabil-
ity and workload. We invited 20 participants to use each application 
for 10 minutes per day for one week. We updated the model every 
day by collecting users’ unlabelled data without users’ notice using 
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the Siamese adversarial neural network we proposed. After expe-
riencing these four applications for a week, we adopted the System 
Usability Scale (SUS) [2] based standard method to study the user 
experience. There are ten questions in the SUS [2]. Additionally, 
we added another question related to smartwatch wearing: I do 
not need to wear the smartwatch very tightly in order to use this 
system. Figure 16 shows the scores and the results support that 
ViWatch is comfortable, user-friendly, and easy to use.To be spe-
cifc, the questionnaire asked questions with fve response options 
for respondents, from Strongly Agree to Strongly Disagree. The 
questions and the results are as follows: (1) I think that I would 
like to use this system frequently. (2 Not Sure, 8 Agree, 10 Strongly 
agree) (2) I found the system unnecessarily complex. (15 Strongly 
disagree, 4 Disagree, 1 Not Sure) (3) I thought the system was easy 
to use. (4 Agree, 16 Strongly agree) (4) I think that I would need 
the support of a technical person to be able to use this system. (3 
Strongly disagree, 13 Disagree, 3 Not Sure, 1 Agree) (5) I found the 
various functions in this system were well integrated. (5 Agree, 15 
Strongly agree) (6) I thought there was too much inconsistency in 
this system. (16 Strongly disagree, 4 Disagree) (7) I would imagine 
that most people would learn to use this system very quickly. (1 
Not Sure, 5 Agree, 14 Strongly Agree) (8) I found the system very 
cumbersome to use. (18 Strongly disagree, 2 Disagree) (9) I felt very 
confdent using the system. (2 Not Sure, 7 Agree, 11 Strongly agree) 
(10) I needed to learn a lot of things before I could get going with 
this system. (14 Strongly disagree, 5 Disagree, 1 Not Sure) (11)I do 
not need to wear the smartwatch very tightly in order to use this 
system. (3 Agree, 17 Strongly agree) 

As for the workload index, we built another system using su-
pervised fne-tuning, in which users collect and label some data 
(10 taps for each key) to update the model every time when they 
encounter variation. After experiencing both supervised and un-
supervised systems, we asked all participants to fll out the NASA 
task load index (NASA-TLX) [1]. 

For the mental, physical, and temporal demand, both ViWatch 
and supervised fne-tuning method have the same low scores (1 
or 2), as shown in Figure 17. However, ViWatch has much better 
performance than the comparison system (18 VS 10). Furthermore, 
supervised fne-tuning caused much higher efort and frustration 
scores than ViWatchEight participants reported that the compari-
son system accuracy was very low when they re-wore the watch on 
another day, so they had to collect and label data again every day 
for the supervised fne-tuning method, which was time-consuming 
and frustrating. Twelve participants said they had to re-collect and 
label data for the comparison system every two or three days. In 
contrast, no participants needed to label and collect data using 
ViWatch. The efort and frustration scores of ViWatch are very low 
(2 and 3, respectively). ViWatch performance score is 18. Only one 
participant said that the accuracy of ViWatch is low on the frst 
day usage. 19 participants said that although about 1 out of 10 taps 
might be wrong on the frst day, it is reluctantly acceptable. All 
participants were surprised on the second day that the accuracy 
of ViWatch became much better while another system’s accuracy 
dropped a lot. Overall, all participants preferred our unsupervised 
approach to supervised calibration. 

Figure 17: NASA Task Load Index. 

8 DISCUSSION 
We believe using Unsupervised Siamese Adaptation could be ap-
plied to diferent gestures and sensors in the future. Siamese net-
works can learn from unlabeled data, which makes them suitable 
for a wide range of gestures and adaptable to diferent types of 
sensors. The unsupervised nature of the network may allow it to 
adapt to new contexts and expand its recognition capabilities. We 
will study this in the future. 

While we have made our best eforts to recruit volunteers and 
collect a multi-user dataset, the size of our dataset is still limited. 
In Section 7.1, the number of training users is capped at 100. While 
the model accuracy shows a continuing increasing trend with more 
training data, we are limited by the amount and the diversity of 
the data. In the future, it would be interesting to explore the train-
ing dynamics and performance of our model with more extensive 
and diversifed datasets. For example, we can create multiple large 
datasets, each containing numbers of users from diferent ethnic 
groups, and explore how the model trained on one set will gen-
eralize on another as well as how Siamese-DANN will help this 
transition. 

However, keeping each user’s model up to date and managing 
version control can be complex. We may use microservices archi-
tecture and automated deployment pipelines to manage models 
efciently. Also, training deep learning models requires signifcant 
computational resources (GPU/CPU power, memory, storage) and 
time. When scaled to millions of users, this could become unfeasible. 
We believe it is important to study an efcient model for on-device 
training in the future. 

Furthermore, unsupervised learning is also afected by the qual-
ity of input data. If the data is noisy, incomplete, or inconsistent, 
the model can produce less reliable results. Note that we do not 
empirically evaluate false positive of fnger tapping here because 
existing work [11] has well addressed this challenges by identify-
ing fnger-tapping signals from noisy data, and we also only start 
detecting signals when users unlock the touchscreen to turn on the 
app and perform the activate gesture. 

There are several situations that ViWatch will fail the expecta-
tions. For example, when users grab an object on the hand which 
wears the smartwatch. These touched objects signifcantly change 
the hand vibrations and afect the system performance. For now, 
users are instructed to use ViWatch without holding objects. We 
will study this limitation in the future. 

9 CONCLUSION 
In this paper, we present ViWatch, the frst robust fne-grained fn-
ger interactions with COTS smartwatches under deployment vari-
ations using unsupervised adaptation. During the development of 
ViWatch, we explore the possibility of resistance to variations using 
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unlabeled data from the users. Therefore, we designed a novel unsu-
pervised Siamese adversarial training, which optimizes the domain 
discriminator in a Siamese manner. Our approach is potentially 
helpful for other time-series datasets on which deep learning model 
performance sufers from variations. With this method, our fnal 
online system achieves 97% accuracy under diferent deployment 
variations, such as diferent hand shapes, fnger activity strengths, 
and smartwatch positions on the wrist. When compared with su-
pervised methods, ViWatch receives more favorable feedback. 
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