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1. Introduction 

An abstraction is a simplified de- 
scription of a system that emphasizes 
the system's important characteris- 
tics and ignores those details imma- 
terial to an understanding of the sys- 
tem at a given level. We refer to the 
abstract description of such systems 
as their specification and to the sup- 
pressed details as their implementa- 
tion [12]. 

The principle of  abstraction has 
played a major role in the evolution 
of high-level programming lan- 
guages. Three kinds of abstraction 
mechanisms are generally recog- 
nized. 

In control abstraction, the imple- 
mentation of a control statement is 
suppressed and the specification of 
its effect presented abstractly--for 
example, by a flowchart. An example 
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SUMMARY: Data abstraction has been an important consid- 
eration since the mid-1970s, with most research effort di- 
rected toward the development of experimental languages, 
formal specification techniques, and program verification 
schemes. The role of data abstraction in programming meth- 
odology, on the other hand, has received considerably less 
attention. In particular, the potential benefits of the application 
of data abstraction principles to conventional programming 
environments have been all but ignored. A programming meth- 
odology based on data abstraction and designed especially 
for the Fortran programming environment is presented here. 

of control abstraction in Fortran is 
the I F . . .  T H E N . . .  ELSE. . .  
ENDIF construct. (All references to 
Fortran assume the 1977 ANSI stan- 
dard [ 1 ] unless otherwise noted.) 

In procedural abstraction, proce- 
dural detail is suppressed by naming 
a group of statements, giving rise to 
procedures (Fortran subroutines and 
functions) and macros (Fortran 
statement functions). When a pro- 
gram requests SIN(X), it is confident 
of obtaining the sine of X (this is 
SIN's specification) without know- 
ing or caring about the procedure 
used to compute it. 

In data abstraction, both proce- 
dural and representational detail are 
suppressed so far as they relate to the 
behavior of a particular class of ab- 
stract objects. Formally, a data ab- 
straction is defined as a collection of 
objects and a collection of operations 
such that the behavior of the objects 
can be specified completely in terms 
of the operations [8]. The definition 
precludes any mention of the under- 
lying data representation of the ob- 
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jects or the implementation of the 
operations in characterizing object 
behavior. 

The pnnciple of data abstraction 
is illustrated by Fortran's built-in 
data type LOGICAL. LOGICAL 
values (the set of objects) have an 
associated set of operations (assign- 
ment plus the five operators .NOT., 
.AND., .OR., .EQV., and .NEQV.), 
and their behavior can be specified 
in terms of the operations by means 
of five truth tables. The truth tables 
do not reveal how truth values are 
represented (ones? zeros?) or how the 
operations are implemented. The be- 
havior of LOGICAL values can be 
completely specified in this way only 
as long as language features which 
allow a programmer to defeat the 
built-in type system (such as 
EQUIVALENCEing) are avoided. 

Built-in data types enable us to 
express our programs in the same 
high-level terms we use in reasoning 
about abstract objects like logicals, 
integers, and reals. They free us from 
a concern with machine-dependent 
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details which are immaterial to un- 
derstanding the behavior of those ob- 
jects. Herein lies the primary impor- 
tance of data abstraction in program- 
ming methodology: It elevates our 
concerns from the level of implemen- 
tation to the level of specifiable ob- 
ject behavior, thereby helping us to 
manage larger and intellectually 
more complex problems. 

The role of data abstraction need 
not be limited to the built-in types. 
An example of a data abstraction 
that is not provided as a built-in type 
by any major high-level language is 
the stack. The stack abstraction con- 
sists of a set of objects (stacks) and a 
set of operations (empty stack crea- 
tion, PUSH, POP, TOP, and 
EMPTY). The behavior of stacks is 
completely specificable in terms of 
stack operations, as the following 
specification (following Guttag [3]) 
demonstrates for stacks of integers. 
Let S be a stack and 1 an integer. 
Then, 

EMPTY(CREATE) = true 
EMPTY(PUSH(S, 1)) = false 
TOP(CREATE) = undefined 
TOP(PUSH(S, I)) = I 
POP(PUSH(S, I)) = S 
POP(CREATE) = CREATE 

This specification makes no mention 
of an underlying stack representation 
(linked storage? contiguous storage?) 
or the implementation of the stack 
operations (linked list operations? 
array operations?). 

The lack of a stack data type is 
not generally thought of as a disad- 
vantage by most Fortran program- 
mers. After all, the argument goes, 
Fortran provides a basic set of built- 
in types from which "data struc- 
tures" representing abstract objects 
like stacks can easily be built. For 
obvious reasons, however, data 
structures and data abstractions are 
not the same. Failure to appreciate 
the distinction has led to the produc- 
tion of untold quantities of low-qual- 
ity, high-cost software. This brings 
us to the second reason for the meth- 
odological importance of data ab- 
straction, first recognized by D. L. 
Parnas [10]. Parnas argued that the 
cost of developing and maintaining 
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a system depends on how well 
"design decisions" are localized, or 
hidden, from the rest of the system. 
In a system with distributed design 
decisions, knowledge of the impor- 
tant data structures is shared among 
the system's procedures. Such sys- 
tems are characterized by global data 
structures and a lack of uniformity 
in the way those data structures are 
accessed. As an alternative, Parnas 
proposed information hiding as the 
criterion for decomposing systems 
into modules. Applied to data ab- 
straction, this criterion would dicate 
that any data structures representing 
objects like stacks be packaged to- 
gether with the operations which ac- 
cess them. It is interesting to note 
that design methodologies based on 
purely procedural criteria produce 
exactly the opposite result. By re- 
quiring each of the operations to be 
realized as a distinct procedure, they 
actually distribute design decisions 
and necessitate the use of global data 
structures. 

This article proposes a program- 
ming methodology based on data ab- 
straction designed especially for the 
Fortran programming environment. 
In the proposed methodology, a sys- 
tem is developed in three stages: 

(1) The design stage produces the 
system decomposition. It follows the 
classic stepwise refinement model for 
the procedural aspect of the problem 
but provides for data abstractions. 
The product of the design stage is a 
set of informal specifications--one 
for each procedure or data abstrac- 
tion identified in the decomposition. 

(2) The specification stage is 
needed to refine our understanding 
of object behavior to a degree nec- 
essary for implementation of the data 
abstractions. Its product is a formal 
specification for each data abstrac- 
tion identified in the design stage. 

(3) In the implementation stage, 
the procedures and data abstractions 
are implemented. For the data ab- 
stractions, implementation may be 
regarded as a completely new and 
independent problem, calling for a 
reapplication of the entire method- 
ology. 
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2. The Design Stage 

In pure stepwise refinement [13], 
or the top-down approach, one be- 
gins by writing a short, high-level 
procedure which solves the given 
problem and then recursively elabo- 
rates each of its steps in terms of still 
lower level procedures. The resulting 
system decomposition is a collection 
of procedures. 

As an alternative, we will begin 
by considering the given problem 
and asking "What data abstractions 
would be useful in solving this prob- 
lem?" The kind of abstractions we 
would seek are not usually provided 
as built-in types; nor are they famil- 
iar abstractions like stacks. Typi- 
cally, they are highly specialized ab- 
stractions that may be unlike any- 
thing we have previously encoun- 
tered. Because they are so unfamil- 
iar, our notion of object behavior is 
at first extremely ill-defined. The 
first step toward clarifying these con- 
cepts is to attach a name to each 
abstraction identified. 

Having identified and named the 
primary abstractions, we next write 
a short procedure which solves the 
stated problem by operating on ab- 
stract objects. Operations are freely 
devised as needed and each new op- 
eration is named and added to the 
set of operations of the respective 
abstraction. As an abstraction ac- 
quires operations, we gain a clearer 
notion of object behavior in terms of 
the operations without giving any 
consideration to possible data repre- 
sentations for the objects or imple- 
mentation of the operations. Step- 
wise refinement is applied to the pro- 
cedure, yielding more and more pro- 
cedural detail, but it is not applied to 
the abstract operations nor is refine- 
ment applied to the objects them- 
selves. In the end, each type of object 
together with its collection of opera- 
tions constitutes the preliminary de- 
sign for a single data abstraction. 

The remainder of this section is 
devoted to an example of the design 
process. The example is chosen from 
electrical engineering, a discipline in 
which Fortran is widely used. No 
prior knowledge of electrical circuit 
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theory is necessary to understand the 
example. 

2.1 Example 
The ABC company is a "low- 

technology" company, manufactur- 
ing devices based on pure resistant 
circuits. Our job is to provide ABC's 
engineering staff with software for 
computer-aided circuit design. The 
software must allow an arbitrary 
number of circuits to be described, 
modified, and analyzed concur- 
rently. Finally, it must permit a user 
to work on the same circuit during 
several interactive sessions. 

We begin by identifying the prin- 
cipal data abstractions. The follow- 
ing paragraphs attempt to describe 
and rationalize our choice of one 
particular abstraction, the circuit dia- 
gram. 

ABC's engineers usually work 
with circuit diagrams such as the one 
shown in Figure 1. A circuit diagram 
consists of  a set of  nodes and a set of 
circuit elements joining the nodes. 
There are two types of  circuit ele- 
ments: the battery and the resistor. 
The characteristics of  a circuit ele- 
ment are its electromotive force (its 
ability to impart energy to electrons, 
measured in volts), and its resistance, 
measured in ohms. A resistor has an 
electromotive force of  zero. In the 
circuit represented by Figure l, the 
battery's electromotive force imparts 
energy to electrons, causing a current 
of them to flow in the direction in- 
dicated by the arrow. The current 
divides among the circuit elements 
in a ratio determined by their resist- 
ance values (the higher the resist- 
ance, the more resistant an element 
is to a flow of  current through it). 
When current I flows through a re- 
sistor with resistance R, the resistor 
consumes energy in an amount given 
by I ,R ,  also measured in volts. In a 
real circuit, a voltmeter can be used 
to measure the energy (or voltage) 
difference between any two nodes of  
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Fig. 1. A Circuit  Diagram. 

a circuit. It is precisely such voltage 
values that the ABC engineers need 
in order to perform their analyses. 

Circuit diagrams like the one in 
Figure 1 are useful in circuit analysis 
because they emphasize the impor- 
tant characteristics of  a circuit--  
namely, its topology and the ideal 
characteristics of  each of its ele- 
m e n t s - a n d  ignore those details of  
real circuits which are irrelevant to 
understanding circuit behavior at a 
certain level. By definition, then, a 
circuit diagram is an abstraction. Our 
knowledge of  circuit diagrams and 
their usefulness in circuit analysis 
provides a conceptual starting point 
for developing a specialized data ab- 
straction for the ABC problem. Our 
first step toward making the abstrac- 
tion more concrete will be to name 
it; we choose the name "Circuit Dia- 
gram data abstraction" (hereafter 
abbreviated as the "CD abstraction" 
or, simply, "CD").  

Having identified and named the 
principal data abstraction, we pro- 
ceed with the design by sketching a 
very high-level procedure to solve 
the stated problem in terms of  oper- 
ations on CD objects. As this proce- 
dure is refined, our understanding of  
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CD object behavior will improve as 
new operations are invented and 
added to the CD operation set. Ad- 
ditional data abstractions will un- 
doubtedly be discovered along the 
way. 

Space does not permit a full de- 
velopment of the ABC design. In- 
stead, we focus on the CD abstrac- 
tion and summarize the thinking that 
led to a particular choice of  CD op- 
erations. 

(1) For  describing circuits, oper- 
ations for circuit construction and 
modification are needed. Because the 
CD abstraction is to be incorporated 
in an interactive process, these op- 
erations should be incremental in na- 
ture. That  is, there should be an op- 
eration for creating an initial circuit, 
an operation for adding a single cir- 
cuit element, and an operation for 
removing a single circuit element. 

(2) A "readout" operation is 
needed to obtain voltage differences. 

(3) Because voltage readings 
may be taken across any pair of  
nodes, the abstraction must incor- 
porate a node numbering scheme. 

(4) An element numbering 
scheme is also needed to distinguish 
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X := NEWCD(N) 
Creates a new CD object X with N nodes. The nodes are initially unconnected and implicitly 
numbered I through N. 

E := ADDELT(X, I, J, R, V) 
Inserts an element with characteristics (R, V) between nodes I and J of  CD object X (a 
positive V is a voltage rise from I toward J ) .  Assigns element number E to the element. 

REMELT(X, E) 
Removes the element with element number E from CD object X. 

V := VOLTS(X, I, J) 
Measures the algebraic voltage difference between nodes I and J of  CD object X (a net 
voltage rise from I toward J gives a positive reading). 

N := NODES(X) 
Gives the number of  nodes in CD object X. 

(I, J, R, V) := ELT(X, E) 
Gives the characteristics and location of  element number E in CD object X. 

N:= MAXNUM(X)  
Gives the maximum element number assigned in CD object X. 

Fig. 2. Informal Specification of CD Operations. 

among several elements connected 
between the same two nodes, as are 
the battery and the 75-ohm resistor 
in Figure I. 

(5) Operations for extracting in- 
formation about previously defined 
circuit elements and their arrange- 
ment are needed for the graphic dis- 
play. 

(6) Because the same program 
execution may operate concurrently 
on several CD objects, each opera- 
tion must have an argument identify- 
ing the object being referenced. 

(7) To enable the user to inter- 
rupt work on a circuit and resume 
work in a later session, an interface 
to the file system and a means of 
storing and retrieving CD objects 
must be provided. 

An informal specification of the 
CD operations is given in Figure 2. 
Each entry indicates how the opera- 
tion might be invoked (a non-For- 
tran syntax is used for value-return- 
ing operations to distinguish argu- 
ments which are read-only from 
function results). The figure omits 
the input/output operations. These 
will be discussed in a later section. 

Actual circuits obey a current law, 
which requires that the algebraic 
sum of currents leaving each node be 
zero at equilibrium. When a circuit 
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is modified (by the addition of a 
resistor, for example), currents 
change everywhere in the circuit to 
attain their new equilibrium values. 
This change is observable in the form 
of a new set of voltmeter readings. In 
the CD abstraction, the VOLTS op- 
eration may be requested at any 
time. Clearly, if it is "called" before 
an ADDELT operation and then again 
afterward, its value is likely to 
change. More generally, each of the 
circuit modification operations may 
have an effect on the result of the 
VOLTS operation. The nature of this 
cause-effect relationship is not cap- 
tured by the informal specification 
of Figure 2. 

Figure 2 gives a sense of 
"normal" CD behavior but fails to 
convey any feeling for how a CD 
object behaves under an exceptional 
sequence of operations. This is nat- 
ural because the specification was 
developed with the normal case in 
mind. What happens when a circuit 
element with zero resistance is added 
to the circuit? What reading is ob- 
tained by VOLTS when a circuit 
contains no battery? What if a circuit 
consists of two or more unconnected 
parts? If  the CD abstraction were 
implemented directly from Figure 2, 
the answers to these and similar 
questions would be found one by 
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one, as the special cases were en- 
countered. Often, the answers given 
by the implementation would clash 
with physical reality, requiring pro- 
gram "fixes" which degrade program 
quality. 

In contrast, formal specifications 
of data abstractions clearly show the 
interactions among operations. Fur- 
thermore, the discipline involved in 
writing formal specifications refines 
our understanding of object behavior 
to a degree necessary for implemen- 
tation by forcing us to consider both 
normal and exceptional cases. A for- 
mal specification may be used to an- 
swer any pertinent questions about 
object behavior before the abstrac- 
tion is implemented, but should re- 
veal or suggest nothing about imple- 
mentation, leaving the implementor 
wide latitude in the choice of imple- 
mentation data structures and algo- 
rithms. For these reasons, formal 
specifications must always be writ- 
ten. A specification technique is de- 
scribed in Section 4. 

3. Implementation Issues 
Both the language of implemen- 

tation and the method of implemen- 
tation within that language dictate 
the semantics of the abstract opera- 
tions to some extent. Furthermore, 
the adequacy of the mechanisms 
used to protect objects from unau- 
thorized access ultimately deter- 
mines the validity of the formal spec- 
ification. We cannot therefore for- 
mally specify the operations without 
first examining the implementation 
issues which affect their definition. 
In this section we consider how 
"objects" can be created, referenced, 
destroyed, and protected in a lan- 
guage with no built-in mechanisms 
for this purpose. We also consider 
the basic principles involved in in- 
put/output. Actual implementation 
techniques are given in Section 5. 

3.1 Object Referencing 
In Section 1, Fortran's built-in 

data type LOGICAL was briefly 
considered as an example of an ab- 
stract data type. From this viewpoint, 
two LOGICAL "objects" are created 
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(a) 

LI: 
by declaring two logical variables 
and assigning values to them, as fol- 
lows: 

LOGICAL L1, L2 

LI = .TRUE. (1) 
L2 = .FALSE. 

The objects exist from the moment 
program execution begins (Fortran 
variables are static), and therefore 
require no explicit create operation. 
L1 and L2 may be thought of as 
containing their objects. The assign- 
ment L1 = L2 transfers a copy of 
L2's object into L1, destroying Ll ' s  
object. 

In contrast to (1), we propose the 
following Fortran statements to cre- 
ate two objects of the programmer- 
defined CD abstraction: 

INTEGER CD 1, CD2, NEWCD 

CDI = NEWCD(50) (2) 
CD2 = NEWCD(75) 

In (2), CD 1 and CD2 are INTEGER 
variables which receive their values 
from the INTEGER function 
NEWCD. Creation of the CD ob- 
jects is performed explicitly at the 
time of the calls to NEWCD. Fur- 
thermore, CD 1 and CD2 do not con- 
tain CD objects; they contain un- 
specified, yet unique, values which 
refer to CD objects. The assignment 
CD2=CDI therefore causes CD2 to 
refer to the same object as CDI,  and 
destroys the object reference previ- 
ously contained by CD2 (but not the 
object itself). Subsequent operations 
on either CD 1 or CD2 will therefore 
affect the same object. The program- 
mer must be aware of the semantics 
of object reference and exercise cau- 
tion in handling variables like CD 1 
and CD2. The differences between 
(1) and (2) are illustrated in Figure 
3. 

We will adopt the word 
"capability" to describe the kind of 
value returned by object-creating 
functions like NEWCD. In computer 

(b) 

CDI: E~, ~ PRACTICES 
COMPUTING 

Fig. 3. Differences in the Semantics of Object Reference. (a) LOGICAL variable (b) CD 
object reference variable, 

operating systems theory, the view of 
a system as a collection of objects 
may be facilitated through "cap- 
ability-based addressing" [2]. In such 
systems, each object has a unique 
value associated with it, called a 
"capability." A capability is created 
by the system at the time an object 
is created. To reference an object, a 
program must be able to supply a 
copy of the object's capability. Ca- 
pabilities must be protected from 
destruction or alteration (this is 
often done in hardware). By anal- 
ogy to such systems, we will refer to 
the contents of variables like CD1 
and CD2 as "capabilities" only 
when those values have been as- 
signed by object-creating functions 
like NEWCD. The idea of using a 
capability-based referencing scheme 
for objects of an abstract data type 
was first proposed by Jones and Lis- 
kov [5]. 

3 . 2  E n c a p s u l a t i o n  

By definition, the set of specified 
operations belonging to a data ab- 
straction must be the only means of 
affecting or observing the behavior 
of objects of the abstraction. I f  other 
means are available, the specification 
can no longer be depended upon to 
predict object behavior correctly. It 
is therefore essential that objects of 
a data abstraction be protected from 
unauthorized access, intentional or 
otherwise. 

One way of doing this is to incor- 
porate data abstraction facilities in a 
programming language and rely on 
the compiler to provide the necessary 

protection through compile-time 
type checking. This has been done in 
recent programming languages like 
Clu [8] and Ada [4]. In a methodo- 
logical (as opposed to language-de- 
sign) approach, we must identify 
constructs within existing languages 
which provide the necessary protec- 
tion. We seek language constructs 
that "encapsulate" (by means of 
scope rules) the variables making up 
the underlying object representation 
as well as the procedures implement- 
ing the operations that access the 
representation variables. The only 
Fortran construct providing absolute 
encapsulation is the procedure (ex- 
ternal subroutine or function) with 
multiple entry points. We will call 
such procedures "modules," as sug- 
gested by D. L. Parnas [10]. A single 
module implements a single data ab- 
straction. Each entry point of a mod- 
ule corresponds to a single operation 
of the abstraction. A module may 
also contain local declarations and 
local procedures (some versions of 
Fortran permit internal procedures, 
which are useful for this purpose). 
By Fortran's scope rules, these inter- 
nal elements are inaccessible from 
outside the module. 

Figure 4 schematically illustrates 
a module implementing the CD ab- 
straction. Corresponding to each op- 
eration is an entry point of the same 
name, at which some sequence of 
instructions, denoted Pi, is executed. 
Each of the Pi is free to access the 
private data structure used as the 
underlying representation of CD ob- 
jects (denoted "REP" in Figure 4) as 
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Fig. 4. Schematic View of CD Module. 

well as the internal procedures, de- 
noted IP1 and IP2. The IPi may 
access the REP, and they may call 
one another. There is, however, no 
access from outside the module to 
the Pi, the IPi, or the REP. Encap- 
sulation is therefore complete. 

Encapsulation provides only par- 
tial protection against unauthorized 
access. Suppose that a program re- 
quests an operation of  the CD ab- 
straction without first calling 
NEWCD. Using the terminology of 
Section 3.1, we would say that such 
a program does not possess a capa- 
bility for a CD object. The result of  
such an operation is undefined since 
any initialization performed by 
NEWCD will not have been done. 
This kind of misuse can be prevented 
by having each operation perform a 
run-time check as its first action. To 
allow an application program to per- 
form a similar check, we provide a 
new CD operation, CAPCD: 

L: =CAPCD(X) 
Returns.TRUE. if its argument is a 
capability for a CD object. 

69! 

3.3  I n p u t / O u t p u t  

The typical large Fortran-based 
system is a collection of programs 
which communicate by means of  in- 
formation stored in files. In systems 
designed using our methodology, 
programs communicate by means of 
abstract object representations stored 
in files. The third major implemen- 
tation issue concerns the external 
representation of  objects in files and 
the nature of  object movement be- 
tween main memory and files. 

If  an object is to be allowed to 
exist outside of  main memory, then 
protection must be extended to in- 
clude the file system: No access to an 
object stored in a file must be possi- 
ble except by means of  operations of  
the module providing the objects. 
This rule implies that G ET and PUT 
operations must be included in each 
data abstraction. If  this is done, the 
external representation of objects is 
no longer an issue; it is only neces- 
sary that G ET and PUT observe the 
same conventions with respect to the 
chosen representation. For example: 
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if PUT encrypts, then G E T  must 
decrypt; if PUT writes the REP var- 
iables in a certain order, then G E T  
must read them back in that order. 

Given this requirement, we may 
add the following input/output  op- 
erations to the informal specification 
of  Figure 2: 

PUTCD(X,U) 
Puts an external representation 
of CD object X into the next 
consecutive locations of the file 
with Fortran unit number U and 
leaves the file positioned at the 
end of file. 

X: =GETCD(U) 
Gets an external representation 
of a CD object beginning at the 
current position in the file with 
Fortran unit number U, recon- 
structs the object, and returns a 
capability for it. Leaves the file 
positioned at the end of the ex- 
ternal representation. 

We will return to the subject of  
input/output  in Section 5 in which a 
somewhat more versatile scheme is 
suggested. 

4. Formal Speci f icat ion 

A number of  techniques exist for 
specifying data abstractions. These 
differ in their degree of  constructa- 
bility, comprehensibility, range of  
applicability, extensibility, minimal- 
ity, and formality (see [7] for a survey 
of  techniques and a comparison 
based on these criteria). 

A formal specification employs a 
mathematical formalism, in contrast 
to an informal specification, which is 
communicated in natural language. 
Extremely formal techniques are 
necessary if automatic program ver- 
ification is the goal. This explains the 
current interest in such techniques. 
Unfortunately, for the practitioner, 
the more formal a technique, the less 
comprehensible and constructible it 
is. At the opposite extreme, informal 
specifications (such as Figure 2) may 
seem easy to construct and compre- 
hend but present all the pitfalls of  
natural language communication. 
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The so-called "state-machine" 
technique developed by D. L. Parnas 
[9] and extended by others [11] offers 
a moderate degree of formality with- 
out sacrificing constructibility, com- 
prehensibility, or minimality. It is 
therefore an ideal technique for the 
typical Fortran programming envi- 
ronment, where specifications serve 
mostly to communicate ideas among 
designers, programmers, and math- 
ematicians, and where the parties in- 
volved have at least a minimum de- 
gree of mathematical maturity. 

Parnas' idea was to separate the 
operations of a data abstraction into 
two groups and to regard the objects 
as machines capable of existing in a 
(not necessarily finite) number of 
states. Each operation in the "O" 
group causes a machine to undergo 
a state change. Each operation in the 
"V" group causes no state change 
but allows some aspect of the current 
state to be observed. The state of an 
object (or at least the externally vis- 
ible component of its state) is simply 
the collective results of all V-opera- 
tions. The specification, then, need 
only indicate the effect of each O- 
operation on the result of each V- 
operation. Such effects are stated as 
predicates in the first-order predicate 
calculus. 

In the CD abstraction, the V-op- 
erations are VOLTS, NODES, ELT, 
MAXNUM, and CAPCD. Unlike 
the other V-operations, CAPCD can 
be regarded as an inquiry directed at 
the "manager" of CD objects rather 
than as an aspect of the state of some 
particular object. 

The O-operations are NEWCD, 
ADDELT, and REMELT. The set 
of O-operations has been expanded 
by adding ZAPCD, an operation for 
disposing of CD objects which are 
no longer needed. 

A complete state-machine speci- 
fication of the CD data abstraction 
is given in the Appendix. We begin 
here with a description of the tech- 
nique and conclude with a discussion 

692 

of the specification itself. 
A specification consists of three 

sections. The OPERATIONS sec- 
tion is the heart of the specification 
and contains an entry for each op- 
eration. The DECLARATIONS sec- 
tion gives the Fortran data type of 
each of the variables appearing as a 
parameter or function result in the 
OPERATIONS section. The DEFI- 
NITIONS are macros whose sole 
purpose is to shorten and improve 
the readability of the OPERA- 
TIONS section. Identifiers for vari- 
ables and operations are composed 
of capital letters, as in Fortran. 
Macro names are written in italics. 

The entry for an individual op- 
eration begins with a heading which 
tells what kind of operation it is (O 
or V) and gives the semantics of its 
procedure call and return. 

A PURPOSE is given for reada- 
bility only and corresponds to the 
informal specifications of Figure 2. 

EFFECTS are given only for the 
O-operations. The EFFECTS of an 
operation consist of a single predi- 
cate in the first-order predicate cal- 
culus. To improve readability, a 
predicate may be split into several 
lines, which are then understood to 
be "anded" together. Such predicates 
express the effect of an O-operation 
on the results of the V-operations 
and are therefore the heart of a state- 
machine specification. 

The EXCEPTIONS of an oper- 
ation consist of a numbered sequence 
of predicates which are evaluated in 
the order listed. The first predicate 
evaluating to "true" causes the op- 
eration to terminate without return- 
ing a value (in the case of V-opera- 
tions) and without causing a state 
change (in the case of O-operations). 
If  all predicates in the sequence are 
false, the operation terminates nor- 
mally. 

The meaning of most of the sym- 
bols used in writing EFFECTS and 
EXCEPTIONS can be found in stan- 
dard logic textbooks such as [6]. A 
nonstandard symbol is the apos- 
trophe. When the name of a V-op- 
eration is prefixed by an apostrophe 
within a predicate in the EFFECTS 
or EXCEPTIONS section of an O- 
operation, its value refers to the old 
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state--that is, the state existing prior 
to the current set of effects. 

INITIAL VALUES are required 
only for the CAPCD operation to 
insure that prior to any calls to 
NEWCD, CAPCD is false for all 
arguments (since capabilities for CD 
objects are created only by 
NEWCD). 

Let us now examine the CD spec- 
ification in more detail. NEWCD 
will fail only if it is asked to create a 
CD object with a nonpositive num- 
ber of nodes. Otherwise, it returns a 
capability for a CD object in an ini- 
tial state characterized by the predi- 
cate 

CAPCD(X) 
NODES(X) = N 
(i)[ELT(X, i) = (0, 0, 0, 0)] 
MAXNUM(X) = 0 
equilibrium(X) 

That is to say: CAPCD is true for 
argument X; the NODES operation 
has the value N: the MAXNUM op- 
eration has the value zero; the ELT 
operation has the value (0, 0, 0, 0) 
for all values of  its second argument; 
and "equilibrium(X)." The identifier 
equilibrium is recognized as a macro 
name. Examining the DEFINI- 
TIONS section, the fully expanded 
equilibrium macro is seen to be a 
predicate expressing a complex rela- 
tionship among the results of the 
ELT and VOLTS operations. It is 
precisely this relationship which cap- 
tures, in purely symbolic terms, the 
additive properties of  voltages and 
the implications of the current law. 
In the initial state brought about by 
NEWCD, it is easy to verify that the 
equilibrium predicate gives 

VOLTS(X, i, j)  

= {0 i= j  
- V O L T S ( X , j ,  i) i ~ j 

Any of the V operations may be 
called in the initial state. VOLTS, 
however, is restricted (by its fourth 
exception) to measuring the voltage 
difference between any point and it- 
self. This is consistent with the equi- 
librium predicate evaluated in the in- 
itial state. 

To leave the initial state, an O- 
operation is needed. REMELT can- 
not be requested because the CD 
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object has no elements. This is stated 
by REMELT's second exception, 
which can be read "the value of 
ELT(X, E) in the old state is (0, 0, 
0, 0)." Since the initial state is char- 
acterized by NEWCD's effect, (i) 
[ELT(X, i) = (0, 0, 0, 0)], this excep- 
tion would be raised if REMELT 
were called. 

Instead, we leave the initial state 
by calling ADDELT. From the EF- 
FECTS of ADDELT, it is apparent 
that the state of CD object X after 
the operation is characterized by a 
value of MAXNUM that is one 
greater than its value in the old state, 
a value of (L J, R, V) for the opera- 
tion ELT(X, MAXNUM(X)), and 
equilibrium(X). The reader may ver- 
ify that ADDELT(X, 1, 2, 20, 5) 
(which adds the battery of Figure 1) 
causes the fourth term of the equilib- 
rium predicate to yield the new 
equality VOLTS(X, 1, 2) = 5, pre- 
cisely the effect desired. It would be 
instructive for the reader to instan- 
tiate equilibrium for the circuit dia- 
gram of Figure 1, assuming some 
particular sequence of ADDELT op- 
erations. 

To be perfectly correct, a speci- 
fication should state that V-opera- 
tion values not explicitly mentioned 
in an EFFECTS section do not 
change. The EFFECTS of AD- 
DELT should therefore be written 
as: 

M A X N U M ( X )  = ' M A X N U M ( X )  + 1 

ELT(X, MAXNUM(X)) = (/, J, R, V) 
(i)[i#MAXNUM(X) D ELT(X, i) 

-- 'ELT(X, i)] 
CAPCD(X) = 'CAPCD(X) 
NODES(X) = 'NODES(X) 
equilibrium(X) 

We will continue to use the shorter 
form for the sake of readability with 
the implicit understanding that V- 
operations whose results are not 
characterized by an EFFECTS pred- 
icate remain constant. 

A reader planning to use the 
state-machine specification tech- 
nique should be warned that the Ap- 
pendix does not illustrate several of 
its fine points. In particular, hidden 
and derived V-operations are not il- 
lustrated. Examples using both kinds 
of operation can be found in [11]. 

5. Implementation Techniques 

5.1 Single, Multiple, and 
Dynamic Object Implementations 

The Fortran implementor must 
decide whether a module will pro- 
vide more than one object. In the 
ABC application, multiple objects 
are clearly required. Had the prob- 
lem been to "perform a series of 
circuit analyses," a single-object im- 
plementation would have sufficed; 

the single object could be effectively 
reused by calling ZAPCD and then 
NEWCD. 

When only a single object is 
needed, a simple solution is to de- 
clare as ordinary program variables 
the data structure to be used as the 
underlying object representation (the 
REP of Figure 4). Figure 5 presents 
the skeleton of a Fortran function 
implementing a single-object version 
of the CD abstraction. For illustra- 

INTEGER FUNCTION NEWCD(N) 
INTEGER N, X, 1, J, E, U, TCODE, NODES, MAXNUM, ADDELT, MAXOBJ, 

* N U M O B J / 0 /  
REAL R, V, VOLTS 
LOGICAL CAPCD 
PARAMETER (TCODE= 12345,MAXOBJ= 1) 
• other declarations 

C THE REP 
INTEGER A, B, TYPE 
REAL C(100) 

IF(NUMOBJ.EQ.MAXOBJ)STOP 1 
IF(N.LE.0.OR.N.GT. 10)STOP 2 
NUMOBJ = NUMOBJ + 1 
A = N  
B = 0  
TYPE = TCODE 
NEWCD = TCODE 
RETURN 

ENTRY CAPCD(X) 
CAPCD = X.EQ.TYPE 
RETURN 

ENTRY ZAPCD(X) 
IF(X.NE.TYPE)STOP 3 
NUMOBJ = NUMOBJ - 1 
X = 0  
RETURN 

ENTRY NODES(X) 
IF(X.NE.TYPE)STOP 4 
NODES = A 
RETURN 

ENTRY MAXNUM(X) 
IF(X.NE.TYPE)STOP 5 
MAXNUM = B 
RETURN 

ENTRY VOLTS(X, I, J) 

ENTRY ELT(X, I, J, R, V, E) 

ENTRY ADDELT(X, I, J, R, V) 

ENTRY REMELT(X, E) 

ENTRY PUTCD(X, U) 

ENTRY GETCD(U) 

END 

Fig. 5. CD Module (Single Object Implementation). 
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tive purposes only, the CD REP is 
assumed to consist of the variables 
A, B, and C. 

Although a single-object imple- 
mentation is simple, it has several 
disadvantages. For one, the REP 
variable dimensions are fixed by the 
storage requirements of the largest 
problem anticipated. Suppose that 
array C requires n 2 reals, where n is 
the number of nodes in a CD object. 
Then, the CD implementation of 
Figure 5 can create CD objects with 
ten nodes or less. This limitation 
must be documented as an exception 
in the specification of NEWCD, add- 
ing complexity to the specification• 
If  occasional CD objects with 100 
nodes must be created, the dimen- 
sion of C will have to be increased to 
10,000 even though most of this 
space will go unused most of the 
time. For the sake of the specification 
and lower system overhead, we 
would prefer an implementation 
which provided dynamic objects; that 
is, objects whose REP takes up no 
more storage space than actually re- 
quired for a given problem. 

Modules offering both multiple 
objects and dynamic objects can be 
implemented in any of the extended 
versions of Fortran which provide 
dynamic storage allocation together 
with an address function. Dynamic 
storage allocation of precisely the 
amount needed can be requested 
each time a new object is created by 
NEWCD. References to the ac- 
quired storage must be made by 
means of base-offset addressing (us- 
ing the address function), but the 
clarity of the code can be preserved 
by declaring statement functions that 
map individual components of the 
REP onto the acquired storage. This 
technique is illustrated for the CD 
module in Figure 6. In the figure, A, 
B, and C have become statement 
functions which can be used to ref- 
erence locations within a dynami- 
cally acquired storage block. AL- 
LOC and ADDR are the two non- 

I N T E G E R  F U N C T O N  N E W C D ( N )  
I N T E G E R  N, X, I, J, E, U, TCODE,  NODES,  M A X N U M ,  ADDELT,  MAXOBJ,  

* N U M O B J / O / ,  GETCD,  GETSE 
REAL R, V, VOLTS 
L O G I C A L  CAPCD 
P A R A M E T E R  ( T C O D E =  12345, MAXOBJ=  1) 

• other declarations 

C T HE REP 
I N T E G E R  A, B, SE, TYPE 
REAL C(100) 

• other entry points 

E N T R Y  PUTCD(X,  U) 
IF(X.NE.TYPE)STOP 6 

• transfer the variables A, B, C, and TYPE to unit  U 

CALL PUTSE(SE,  U) 
R E T U R N  

E N T R Y  GETCD(U)  
IF (NUMOBJ.EQ.MAXOBJ)STOP 7 

• transfer the variables .4, B, C, and TYPE from unit  U 

IF(TYPE.NE.TCODE)STOP 8 
SE = GETSE(U)  
G E T C D  = T C O D E  
N U M O B J  = N U M O B J  + 1 
R E T U R N  

END 

Fig. 6. CD Module (Multiple Dynamic Object Implementation)• 

standard functions referred to above; 
ALLOC(M) returns the address of a 
storage block containing M words, 
and ADDR returns the address of its 
argument. Figure 6 assumes word 
addressability, full-word integers, 
and full-word reals. (Note: The use 
of a statement function as the target 
of an assignment is also nonstand- 
ard.) 

5.2 Capabilities and Object 
Protection 

Figures 5 and 6 suggest how the 
CAPCD exception might be en- 
forced and also offer two interpreta- 
tions of capabilities. In Figure 5, a 
capability is the "secret" type code 
12345. The CAPCD exception is en- 
forced by comparing the value in X 
with this value at the beginning of 
each operation. In Figure 6, a capa- 
bility is a displacement between a 
variable (DUMI or DUMR) and the 
beginning of a dynamically acquired 
storage block. Since DUMI and 
DUMR are local to the CD module, 

the capability cannot be used by the 
calling program to gain access to the 
REP. Enforcement of the CAPCD 
exception has been accomplished by 
having the NEWCD operation store 
a type code in a fixed location in 
REP storage and each subsequent 
operation compare the contents of 
the location referenced by the capa- 
bility to this code. This technique is 
illustrated using code 12345 in Fig- 
ure 6. 

5.3 Subsidiary Abstractions 
As stated in Section 3, the CD 

abstraction is implemented by re- 
garding the formal CD specification 
as the precise statement of a totally 
new and independent problem. This 
time, the problem is to provide the 
specified operations. Again, the 
problem is attacked in three stages: 

(1) Propose a set of 
"subsidiary" data abstractions 
deemed useful in implementing the 
operations. Develop a collection of 
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INTEGER FUNCTION NEWCD(N) 
INTEGER N, X, I, J, E, TCODE, NODES, MAXNUM, ADDELT, 

* DUMI(1), ALLOC, ADDR 
REAL R, V, VOLTS, 

* DUMR(I) 
LOGICAL CAPCD 
PARAMETER (TCODE= 12345) 
EQUIVALENCE (DUMI, DUMR) 

• other declarations 

C THE REP 
INTEGER A, B, TYPE 
REAL C 
TYPE(X) = DUMI(X+ 1) 
A(X) = DUMI(X+2) 
B(X) = DUMI(X+3) 
C(X, I) = DUMR(X+3+I) 

IF(N.LE.O)STOP 1 
NEWCD = ALLOC(N**2+3) - ADDR(DUM1) 
A(NEWCD) = N 
B(NEWCD) = O 
TYPE(NEWCD) = TCODE 
RETURN 

ENTRY CAPCD(X) 
CAPCD = TYPE(X).EQ.TCODE 
RETURN 

ENTRY NODES(X) 
IF(TYPE(X).NE.TCODE)STOP 2 
NODES = A(X) 
RETURN 

ENTRY MAXNUM(X) 
IF(TYPE(X).NE.TCODE)STOP 3 
MAXNUM = B(X) 
RETURN 

END 

Fig. 7. Implementation of GETCD and PUTCD Operations. 

procedures which implement the op- 
erations by manipulating the objects• 

(2) Formally specify the subsid- 
iary abstractions identified in (1). 

(3) Implement the procedures; 
implement the subsidiary abstrac- 
tions not already provided by For- 
tran as built-in types. 

The procedures written in stage 3 
must, of  course, be made internal to 
the module being implemented, but 
the subsidiary abstractions must be 
implemented as separate, external 
modules. The function of  the new 
modules is to provide objects for the 
REP of the CD abstraction. Encap- 
sulation is not violated by making 
the subsidiary abstraction modules 
external since encapsulation must 
protect objects, not types, 

Consider the CD abstraction. 
Surely, the most difficult part of  im- 
plementation will be guaranteeing 
the equilibrium predicate. The pred- 

icate does not suggest an implemen- 
tation (indeed, it should not), but 
merely gives a property that any im- 
plementation must satisfy. Many dif- 
ferent methods of  solving circuit 
problems yield solutions satisfying 
equilibrium; the choice of a method 
is up to the implementor. In the no- 
dal method, a circuit problem is par- 
ametefized in terms of  node potential 
unknowns, giving rise to a system of  
simultaneous linear equations. If  the 
solution to these equations is the set 
of node potentials el, e2 . . . .  en 
(where n is the number of  nodes), 
then the value returned by 
VOLTS(X, I, J) is simply ej  - el. If  
a procedure employing the nodal 
method were used in implementing 
the CD module, it might occur to the 
implementor to propose a "systems 
of  linear equations" data abstraction 
with an operation for creating new 
systems, an operation for defining 
equation coefficients, and an opera- 

tion for solving. Each CD object 
would then have a subsidiary 
"systems of  equations" object. In 
Fortran terms, the CD REP would 
have an additional integer variable 
SE containing a capability for a 
"systems of  equations" object. 

5.4 Inpu t /Ou tpu t  

An implementation of  the input/  
output operations G ET C D and 
PUTCD described in Section 3.3 is 
illustrated in Figure 7. The figure 
assumes that each CD object con- 
tains a single "systems of equations" 
object. It also assumes a single-object 
implementation. 

The scheme employed in Figure 
7 works correctly for any number of  
levels of subsidiary abstraction and 
any number of calls to G ETC D and 
PUTCD as long as the application 
program requesting these operations 
observes strict sequentiality. That is, 
if  a program requests a sequence of 
PUT operations for objects of  the 
type T,, T2 . . . . .  Tn, respectively, 
then the only way to retrieve the n th 
object is by first requesting n - 1 
G ET operations of  type T1, T2 . . . . .  
T,~-1, respectively. This scheme is not 
well-suited to the ABC application 
in which access to any one of  the 
previously saved CD objects may be 
required at any time. 

One way of  removing this diffi- 
culty is to introduce a new abstrac- 
tion called the rep library. A rep li- 
brary is associated with a file, but 
abstracts from the file by suppressing 
details associated with keeping track 
of  external REP locations and file 
positions. In a rep library, each ex- 
ternal REP has an associated num- 
ber by which it is known to both the 
library and the library user. 

5 .5  Except ion Handl ing 

In Section 4, no method of  han- 
dling exceptions was suggested. We 
now give Fortran implementations 
for two alternate methods: precon- 
ditions and signalling. 

A precondition is a condition 
which must be satisfied at the time 
an operation is requested. Failure to 
satisfy a precondition results in pro- 
gram termination, preferably pre- 
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ceded by an error message. All ex- 
ceptions are handled as precondi- 
tions in Figures 5-7, making use of 
the STOP i statement for program 
termination. 

A more sophisticated scheme al- 
lows the calling program to be noti- 
fied or signalled when the exception 
is raised. Signalling can be imple- 
mented by using label constants in 
the manner of Figure 8, where RE- 
MELT's second exception has been 
implemented by signalling. 

Once a choice of methods for 
handling each exception has been 
made, the formal specification 
should be revised in the manner of 
Figure 9. 

6. Conclusion 

In the experience of the author, 
large Fortran systems developed "us- 
ing our methodology tend to be more 
reliable than systems developed us- 
ing smaller conventional decompo- 
sition techniques. They also tend to 
be smaller 

By eliminating COMMON stor- 
age and localizing design decisions 
within modules, a low degree of 
module coupling is achieved. This 
means that program errors and pro- 
gram modifications have a small ra- 
dius of effect. The result is high sys- 
tem reliability and ease of mainte- 
nance. 

Smaller system size results from 
the phenomenon of sharing: Each 
operation is coded once rather than 
at the point of each reference. 
Smaller program library size results 
from sharing across applications, a 
phenomenon rarely observed nowa- 
days in spite of the proliferation of 
common procedure libraries. In 
practice, sharing of subsidiary ab- 
stractions like hash tables, rep librar- 
ies, and systems of equations will 
occur most frequently. 

Drawbacks of the methodology 
include decreased program effi- 
ciency (e.g., run-time type checks), 
the necessity of using a relatively 
dangerous construct to achieve en- 
capsulation (the Fortran multiple en- 
try point procedure), and the inevi- 
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In the calling program: 
DO 10 E = 1, MAXNUM(X) 

CALL REMELT(X, E, *10) 

10 CONTINUE 

In the CD Module: 
ENTRY REMELT(X, E, *) 

IF(element E does not exist)RETURN 1 

Fig. 8. Implementation of the Second REMELT Exception by Signalling. 
I 

O-OPERATION REMELT(X, E, *) 
PURPOSE: Removes the element with element number E 

from CD object X. 
EFFECTS: 

ELT(X, E) = (0,0,0,0) 
equilibrium (X) 

PRECONDITIONS: 
1. - 'CAPCD(X) 

SIGNALS: 
1. 'ELT(X,E) = (0,0,0,0) 

Fig. g. Modified REMELT Specification. 

table reliance on nonstandard lan- 
guage features to implement nontri- 
vial abstractions. 

It is our strong belief that in an 
era of rising software costs, the ad- 
vantages of a programming meth- 
odology based on data abstraction 
far outweigh its disadvantages. We 
further believe that the methodology 
proposed here is not only a viable 
alternative to traditional methodol- 
ogies in a conventional environment, 
but is one which brings us more 
closely into line with the direction of 
current developments in program- 
ming languages and systems. 
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Appendix. Formal Specification of CD Abstraction 
DECLARATIONS 

INTEGER X,N,E,I,J 
REAL R, V 
LOGICAL L 

OPERATIONS 
O-OPERATION X: =NEWCD(N) 

PURPOSE: Creates a new CD object Xwith N 
nodes. The nodes are initially un- 
connected and implicitly num- 
bered 1 through N. 

EFFECTS: 
CAPCD(X) 
NODES(X)=N 
(i)[ELT(x,i)= (0,0,0,0)] 
MAXNUM(X)=0 
equilibrium(X) 

EXCEPTIONS: 
1. N_<0 

V-OPERATION L: =CAPCD(X) 
PURPOSE: Indicates whether its argument is 

a capability for a CD object. 
INITIAL VALUES 

(i) I~CAPCD(i)] 

V-OPERATION V: =VOLTS(X,I,J) 
PURPOSE: Reads the algebraic voltage differ- 

ence between nodes I and .J of  CD 
object X (a net voltage rise from I 
to J gives a positive reading). 

EXCEPTIONS: 
1. -CAPCD(X)  
2. -node(I) 
3. -node(J) 
4. -path(I,J) 

V-OPERATION N: =NODES(X) 
PURPOSE: Gives the number of nodes ha CD 

object X. 
EXCEPTIONS: 

1. -CAPCD(X)  

V-OPERATION (1,J,R,V): =ELT(X, E) 
PURPOSE: Gives the characteristics and lo- 

cation of element number E in CD 
object X. 

EXCEPTIONS: 
1. -CAPCD(X)  

O-OPERATION E :=  ADDELT(X, I, J, R, V) 
PURPOSE: Inserts an element with character- 

istics (R, V) between nodes I and 
J of CD object X (a positive V is 
a voltage rise from I to J). Assigns 
element number E to the element. 

EFFECTS: 
MAXNUM(X)= 'MAXNUM(X)+ 1 
ELT(X,MAXNUM(X))=(I,J,R,V) 
equilibrium(X) 

RETURNS: 
MAXNUM(X) 

EXCEPTIONS: 
1. ~ 'CAPCD(X) 
2. rhode(I) 
3. ~node(J) 
4. R_<O 

V-OPERATION N: =MAXNUM(X) 
PURPOSE: Gives the maximum element num- 

ber assigned in CD object X. 
EXCEPTIONS: 

1. ~CAPCD(X) 

O-OPERATION REMELT(X, E) 
PURPOSE: Removes the element with element 

number E from CD object X. 
EFFECTS: 

ELT(X,E)=(0,0,0,0) 
equilibrium(X) 

EXCEPTIONS: 
1. ~ 'CAPCD(X) 
2. 'ELT(X,E)=(0,0,0,0) 

O-OPERATION ZAPCD(X) 
PURPOSE: Disposes of CD object X. 
EFFECTS: 

-CAPCD(X)  
EXCEPTIONS: 

1. ~ 'CAPCD(X) 

DEFINITIONS 
node(i) ~ i ~ 1 A i ~< NODES(X) 
connection(i, j) ~-~ Be[(ELT(X, e)=(i, j, r, v) V 

ELT(X, e)=(j, i, r, v)) A r # 0] 
path(i, j) ~ i=j V connection(i, j) V 3k[connection(i,k) 

path(k,j)] 
equilibrium(X) 

(i)[VOLTS(X,i,i)=0] A 
(i)fj)[VOLTS(X,i,j)= -VOLTS(X,j, i)]  A 
(i)(j)(k)[(connection(i,k) A path(k,j)) D 

VOLTS(X,i,j)=VOLTS(X,i,k)+ 
VOLTS(X,k,j)] A 

(i) 
~ - - ~  1F(ELT(X,e)=(i,j,r,-v) A r-~0) V 

(ELT(X,e)=(j,i,r,+v) A r-~0) 
0 = )  THEN 

/ (VOLTS(X,i,j)+v)/r 
/ i E ~  SE 

The attention of Computing Practices readers is called to this month's ACM Forum letter "On Programmer 
Involvement for Quality Assurance" by Martin Gorfmkel, which refers to the paper by Gustafson and Kerr 
in the January issue. 
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