
COMPUTING
PRACTICES

A Fortran Programming Methodology Based
on Data Abstraction

John F. Isner
National Geodetic Survey

1. Introduction

An abstraction is a simplified de-
scription of a system that emphasizes
the system's important characteris-
tics and ignores those details imma-
terial to an understanding of the sys-
tem at a given level. We refer to the
abstract description of such systems
as their specification and to the sup-
pressed details as their implementa-
tion [12].

The principle of abstraction has
played a major role in the evolution
of high-level programming lan-
guages. Three kinds of abstraction
mechanisms are generally recog-
nized.

In control abstraction, the imple-
mentation of a control statement is
suppressed and the specification of
its effect presented abstractly--for
example, by a flowchart. An example

CR Categories and Subject Descriptors: D.2.2
[Software Engineering]: Tools and Tech-
niques-modules and interfaces, structured pro-
gramming; D.3.2 [Language Classification]:
Fortran; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reason-
ing About Programs-specification techniques.
General Terms: Design. Additional Key
Words and Phrases: Programming methodol-
ogy, data abstraction, state-machine specifi-
cation technique, Parnas modules, informa-
tion hiding.
Author's present address: J.F. Isner, National
Geodetic Survey C 16, National Ocean Survey,
NOAA, 6001 Executive Boulevard, Rockville,
MD 20852.
Permission to copy without fee all or part of
this material is granted provided that the cop-
ies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to
republish, requires a fee and/or specific per-
mission.
© 1982 ACM 0001--0782/82/1000-0686 75¢.

SUMMARY: Data abstraction has been an important consid-
eration since the mid-1970s, with most research effort di-
rected toward the development of experimental languages,
formal specification techniques, and program verification
schemes. The role of data abstraction in programming meth-
odology, on the other hand, has received considerably less
attention. In particular, the potential benefits of the application
of data abstraction principles to conventional programming
environments have been all but ignored. A programming meth-
odology based on data abstraction and designed especially
for the Fortran programming environment is presented here.

of control abstraction in Fortran is
the I F . . . T H E N . . . ELSE. . .
ENDIF construct. (All references to
Fortran assume the 1977 ANSI stan-
dard [1] unless otherwise noted.)

In procedural abstraction, proce-
dural detail is suppressed by naming
a group of statements, giving rise to
procedures (Fortran subroutines and
functions) and macros (Fortran
statement functions). When a pro-
gram requests SIN(X), it is confident
of obtaining the sine of X (this is
SIN's specification) without know-
ing or caring about the procedure
used to compute it.

In data abstraction, both proce-
dural and representational detail are
suppressed so far as they relate to the
behavior of a particular class of ab-
stract objects. Formally, a data ab-
straction is defined as a collection of
objects and a collection of operations
such that the behavior of the objects
can be specified completely in terms
of the operations [8]. The definition
precludes any mention of the under-
lying data representation of the ob-

Communications
of
the ACM

jects or the implementation of the
operations in characterizing object
behavior.

The pnnciple of data abstraction
is illustrated by Fortran's built-in
data type LOGICAL. LOGICAL
values (the set of objects) have an
associated set of operations (assign-
ment plus the five operators .NOT.,
.AND., .OR., .EQV., and .NEQV.),
and their behavior can be specified
in terms of the operations by means
of five truth tables. The truth tables
do not reveal how truth values are
represented (ones? zeros?) or how the
operations are implemented. The be-
havior of LOGICAL values can be
completely specified in this way only
as long as language features which
allow a programmer to defeat the
built-in type system (such as
EQUIVALENCEing) are avoided.

Built-in data types enable us to
express our programs in the same
high-level terms we use in reasoning
about abstract objects like logicals,
integers, and reals. They free us from
a concern with machine-dependent

October 1982
Volume 25
Number 10

http://crossmark.crossref.org/dialog/?doi=10.1145%2F358656.358659&domain=pdf&date_stamp=1982-10-01

details which are immaterial to un-
derstanding the behavior of those ob-
jects. Herein lies the primary impor-
tance of data abstraction in program-
ming methodology: It elevates our
concerns from the level of implemen-
tation to the level of specifiable ob-
ject behavior, thereby helping us to
manage larger and intellectually
more complex problems.

The role of data abstraction need
not be limited to the built-in types.
An example of a data abstraction
that is not provided as a built-in type
by any major high-level language is
the stack. The stack abstraction con-
sists of a set of objects (stacks) and a
set of operations (empty stack crea-
tion, PUSH, POP, TOP, and
EMPTY). The behavior of stacks is
completely specificable in terms of
stack operations, as the following
specification (following Guttag [3])
demonstrates for stacks of integers.
Let S be a stack and 1 an integer.
Then,

EMPTY(CREATE) = true
EMPTY(PUSH(S, 1)) = false
TOP(CREATE) = undefined
TOP(PUSH(S, I)) = I
POP(PUSH(S, I)) = S
POP(CREATE) = CREATE

This specification makes no mention
of an underlying stack representation
(linked storage? contiguous storage?)
or the implementation of the stack
operations (linked list operations?
array operations?).

The lack of a stack data type is
not generally thought of as a disad-
vantage by most Fortran program-
mers. After all, the argument goes,
Fortran provides a basic set of built-
in types from which "data struc-
tures" representing abstract objects
like stacks can easily be built. For
obvious reasons, however, data
structures and data abstractions are
not the same. Failure to appreciate
the distinction has led to the produc-
tion of untold quantities of low-qual-
ity, high-cost software. This brings
us to the second reason for the meth-
odological importance of data ab-
straction, first recognized by D. L.
Parnas [10]. Parnas argued that the
cost of developing and maintaining

687/

a system depends on how well
"design decisions" are localized, or
hidden, from the rest of the system.
In a system with distributed design
decisions, knowledge of the impor-
tant data structures is shared among
the system's procedures. Such sys-
tems are characterized by global data
structures and a lack of uniformity
in the way those data structures are
accessed. As an alternative, Parnas
proposed information hiding as the
criterion for decomposing systems
into modules. Applied to data ab-
straction, this criterion would dicate
that any data structures representing
objects like stacks be packaged to-
gether with the operations which ac-
cess them. It is interesting to note
that design methodologies based on
purely procedural criteria produce
exactly the opposite result. By re-
quiring each of the operations to be
realized as a distinct procedure, they
actually distribute design decisions
and necessitate the use of global data
structures.

This article proposes a program-
ming methodology based on data ab-
straction designed especially for the
Fortran programming environment.
In the proposed methodology, a sys-
tem is developed in three stages:

(1) The design stage produces the
system decomposition. It follows the
classic stepwise refinement model for
the procedural aspect of the problem
but provides for data abstractions.
The product of the design stage is a
set of informal specifications--one
for each procedure or data abstrac-
tion identified in the decomposition.

(2) The specification stage is
needed to refine our understanding
of object behavior to a degree nec-
essary for implementation of the data
abstractions. Its product is a formal
specification for each data abstrac-
tion identified in the design stage.

(3) In the implementation stage,
the procedures and data abstractions
are implemented. For the data ab-
stractions, implementation may be
regarded as a completely new and
independent problem, calling for a
reapplication of the entire method-
ology.

Communications
of
the ACM

2. The Design Stage

In pure stepwise refinement [13],
or the top-down approach, one be-
gins by writing a short, high-level
procedure which solves the given
problem and then recursively elabo-
rates each of its steps in terms of still
lower level procedures. The resulting
system decomposition is a collection
of procedures.

As an alternative, we will begin
by considering the given problem
and asking "What data abstractions
would be useful in solving this prob-
lem?" The kind of abstractions we
would seek are not usually provided
as built-in types; nor are they famil-
iar abstractions like stacks. Typi-
cally, they are highly specialized ab-
stractions that may be unlike any-
thing we have previously encoun-
tered. Because they are so unfamil-
iar, our notion of object behavior is
at first extremely ill-defined. The
first step toward clarifying these con-
cepts is to attach a name to each
abstraction identified.

Having identified and named the
primary abstractions, we next write
a short procedure which solves the
stated problem by operating on ab-
stract objects. Operations are freely
devised as needed and each new op-
eration is named and added to the
set of operations of the respective
abstraction. As an abstraction ac-
quires operations, we gain a clearer
notion of object behavior in terms of
the operations without giving any
consideration to possible data repre-
sentations for the objects or imple-
mentation of the operations. Step-
wise refinement is applied to the pro-
cedure, yielding more and more pro-
cedural detail, but it is not applied to
the abstract operations nor is refine-
ment applied to the objects them-
selves. In the end, each type of object
together with its collection of opera-
tions constitutes the preliminary de-
sign for a single data abstraction.

The remainder of this section is
devoted to an example of the design
process. The example is chosen from
electrical engineering, a discipline in
which Fortran is widely used. No
prior knowledge of electrical circuit

October 1982
Volume 25
Number 10

COMPUTING
PRACTICES

theory is necessary to understand the
example.

2.1 Example
The ABC company is a "low-

technology" company, manufactur-
ing devices based on pure resistant
circuits. Our job is to provide ABC's
engineering staff with software for
computer-aided circuit design. The
software must allow an arbitrary
number of circuits to be described,
modified, and analyzed concur-
rently. Finally, it must permit a user
to work on the same circuit during
several interactive sessions.

We begin by identifying the prin-
cipal data abstractions. The follow-
ing paragraphs attempt to describe
and rationalize our choice of one
particular abstraction, the circuit dia-
gram.

ABC's engineers usually work
with circuit diagrams such as the one
shown in Figure 1. A circuit diagram
consists of a set of nodes and a set of
circuit elements joining the nodes.
There are two types of circuit ele-
ments: the battery and the resistor.
The characteristics of a circuit ele-
ment are its electromotive force (its
ability to impart energy to electrons,
measured in volts), and its resistance,
measured in ohms. A resistor has an
electromotive force of zero. In the
circuit represented by Figure l, the
battery's electromotive force imparts
energy to electrons, causing a current
of them to flow in the direction in-
dicated by the arrow. The current
divides among the circuit elements
in a ratio determined by their resist-
ance values (the higher the resist-
ance, the more resistant an element
is to a flow of current through it).
When current I flows through a re-
sistor with resistance R, the resistor
consumes energy in an amount given
by I ,R , also measured in volts. In a
real circuit, a voltmeter can be used
to measure the energy (or voltage)
difference between any two nodes of

688

2O

400-~.%~N~O~4 200

R V

R-ohm, V-volt battery

R
R-ohm resistor

O Node

75

Fig. 1. A Circuit Diagram.

a circuit. It is precisely such voltage
values that the ABC engineers need
in order to perform their analyses.

Circuit diagrams like the one in
Figure 1 are useful in circuit analysis
because they emphasize the impor-
tant characteristics of a circuit--
namely, its topology and the ideal
characteristics of each of its ele-
m e n t s - a n d ignore those details of
real circuits which are irrelevant to
understanding circuit behavior at a
certain level. By definition, then, a
circuit diagram is an abstraction. Our
knowledge of circuit diagrams and
their usefulness in circuit analysis
provides a conceptual starting point
for developing a specialized data ab-
straction for the ABC problem. Our
first step toward making the abstrac-
tion more concrete will be to name
it; we choose the name "Circuit Dia-
gram data abstraction" (hereafter
abbreviated as the "CD abstraction"
or, simply, "CD").

Having identified and named the
principal data abstraction, we pro-
ceed with the design by sketching a
very high-level procedure to solve
the stated problem in terms of oper-
ations on CD objects. As this proce-
dure is refined, our understanding of

Communications
of
the ACM

CD object behavior will improve as
new operations are invented and
added to the CD operation set. Ad-
ditional data abstractions will un-
doubtedly be discovered along the
way.

Space does not permit a full de-
velopment of the ABC design. In-
stead, we focus on the CD abstrac-
tion and summarize the thinking that
led to a particular choice of CD op-
erations.

(1) For describing circuits, oper-
ations for circuit construction and
modification are needed. Because the
CD abstraction is to be incorporated
in an interactive process, these op-
erations should be incremental in na-
ture. That is, there should be an op-
eration for creating an initial circuit,
an operation for adding a single cir-
cuit element, and an operation for
removing a single circuit element.

(2) A "readout" operation is
needed to obtain voltage differences.

(3) Because voltage readings
may be taken across any pair of
nodes, the abstraction must incor-
porate a node numbering scheme.

(4) An element numbering
scheme is also needed to distinguish

October 1982
Volume 25
Number 10

X := NEWCD(N)
Creates a new CD object X with N nodes. The nodes are initially unconnected and implicitly
numbered I through N.

E := ADDELT(X, I, J, R, V)
Inserts an element with characteristics (R, V) between nodes I and J of CD object X (a
positive V is a voltage rise from I toward J) . Assigns element number E to the element.

REMELT(X, E)
Removes the element with element number E from CD object X.

V := VOLTS(X, I, J)
Measures the algebraic voltage difference between nodes I and J of CD object X (a net
voltage rise from I toward J gives a positive reading).

N := NODES(X)
Gives the number of nodes in CD object X.

(I, J, R, V) := ELT(X, E)
Gives the characteristics and location of element number E in CD object X.

N:= MAXNUM(X)
Gives the maximum element number assigned in CD object X.

Fig. 2. Informal Specification of CD Operations.

among several elements connected
between the same two nodes, as are
the battery and the 75-ohm resistor
in Figure I.

(5) Operations for extracting in-
formation about previously defined
circuit elements and their arrange-
ment are needed for the graphic dis-
play.

(6) Because the same program
execution may operate concurrently
on several CD objects, each opera-
tion must have an argument identify-
ing the object being referenced.

(7) To enable the user to inter-
rupt work on a circuit and resume
work in a later session, an interface
to the file system and a means of
storing and retrieving CD objects
must be provided.

An informal specification of the
CD operations is given in Figure 2.
Each entry indicates how the opera-
tion might be invoked (a non-For-
tran syntax is used for value-return-
ing operations to distinguish argu-
ments which are read-only from
function results). The figure omits
the input/output operations. These
will be discussed in a later section.

Actual circuits obey a current law,
which requires that the algebraic
sum of currents leaving each node be
zero at equilibrium. When a circuit

689

is modified (by the addition of a
resistor, for example), currents
change everywhere in the circuit to
attain their new equilibrium values.
This change is observable in the form
of a new set of voltmeter readings. In
the CD abstraction, the VOLTS op-
eration may be requested at any
time. Clearly, if it is "called" before
an ADDELT operation and then again
afterward, its value is likely to
change. More generally, each of the
circuit modification operations may
have an effect on the result of the
VOLTS operation. The nature of this
cause-effect relationship is not cap-
tured by the informal specification
of Figure 2.

Figure 2 gives a sense of
"normal" CD behavior but fails to
convey any feeling for how a CD
object behaves under an exceptional
sequence of operations. This is nat-
ural because the specification was
developed with the normal case in
mind. What happens when a circuit
element with zero resistance is added
to the circuit? What reading is ob-
tained by VOLTS when a circuit
contains no battery? What if a circuit
consists of two or more unconnected
parts? If the CD abstraction were
implemented directly from Figure 2,
the answers to these and similar
questions would be found one by

Communications
of
the ACM

one, as the special cases were en-
countered. Often, the answers given
by the implementation would clash
with physical reality, requiring pro-
gram "fixes" which degrade program
quality.

In contrast, formal specifications
of data abstractions clearly show the
interactions among operations. Fur-
thermore, the discipline involved in
writing formal specifications refines
our understanding of object behavior
to a degree necessary for implemen-
tation by forcing us to consider both
normal and exceptional cases. A for-
mal specification may be used to an-
swer any pertinent questions about
object behavior before the abstrac-
tion is implemented, but should re-
veal or suggest nothing about imple-
mentation, leaving the implementor
wide latitude in the choice of imple-
mentation data structures and algo-
rithms. For these reasons, formal
specifications must always be writ-
ten. A specification technique is de-
scribed in Section 4.

3. Implementation Issues
Both the language of implemen-

tation and the method of implemen-
tation within that language dictate
the semantics of the abstract opera-
tions to some extent. Furthermore,
the adequacy of the mechanisms
used to protect objects from unau-
thorized access ultimately deter-
mines the validity of the formal spec-
ification. We cannot therefore for-
mally specify the operations without
first examining the implementation
issues which affect their definition.
In this section we consider how
"objects" can be created, referenced,
destroyed, and protected in a lan-
guage with no built-in mechanisms
for this purpose. We also consider
the basic principles involved in in-
put/output. Actual implementation
techniques are given in Section 5.

3.1 Object Referencing
In Section 1, Fortran's built-in

data type LOGICAL was briefly
considered as an example of an ab-
stract data type. From this viewpoint,
two LOGICAL "objects" are created

October 1982
Volume 25
Number l0

(a)

LI:
by declaring two logical variables
and assigning values to them, as fol-
lows:

LOGICAL L1, L2

LI = .TRUE. (1)
L2 = .FALSE.

The objects exist from the moment
program execution begins (Fortran
variables are static), and therefore
require no explicit create operation.
L1 and L2 may be thought of as
containing their objects. The assign-
ment L1 = L2 transfers a copy of
L2's object into L1, destroying Ll ' s
object.

In contrast to (1), we propose the
following Fortran statements to cre-
ate two objects of the programmer-
defined CD abstraction:

INTEGER CD 1, CD2, NEWCD

CDI = NEWCD(50) (2)
CD2 = NEWCD(75)

In (2), CD 1 and CD2 are INTEGER
variables which receive their values
from the INTEGER function
NEWCD. Creation of the CD ob-
jects is performed explicitly at the
time of the calls to NEWCD. Fur-
thermore, CD 1 and CD2 do not con-
tain CD objects; they contain un-
specified, yet unique, values which
refer to CD objects. The assignment
CD2=CDI therefore causes CD2 to
refer to the same object as CDI, and
destroys the object reference previ-
ously contained by CD2 (but not the
object itself). Subsequent operations
on either CD 1 or CD2 will therefore
affect the same object. The program-
mer must be aware of the semantics
of object reference and exercise cau-
tion in handling variables like CD 1
and CD2. The differences between
(1) and (2) are illustrated in Figure
3.

We will adopt the word
"capability" to describe the kind of
value returned by object-creating
functions like NEWCD. In computer

(b)

CDI: E~, ~ PRACTICES
COMPUTING

Fig. 3. Differences in the Semantics of Object Reference. (a) LOGICAL variable (b) CD
object reference variable,

operating systems theory, the view of
a system as a collection of objects
may be facilitated through "cap-
ability-based addressing" [2]. In such
systems, each object has a unique
value associated with it, called a
"capability." A capability is created
by the system at the time an object
is created. To reference an object, a
program must be able to supply a
copy of the object's capability. Ca-
pabilities must be protected from
destruction or alteration (this is
often done in hardware). By anal-
ogy to such systems, we will refer to
the contents of variables like CD1
and CD2 as "capabilities" only
when those values have been as-
signed by object-creating functions
like NEWCD. The idea of using a
capability-based referencing scheme
for objects of an abstract data type
was first proposed by Jones and Lis-
kov [5].

3 . 2 E n c a p s u l a t i o n

By definition, the set of specified
operations belonging to a data ab-
straction must be the only means of
affecting or observing the behavior
of objects of the abstraction. I f other
means are available, the specification
can no longer be depended upon to
predict object behavior correctly. It
is therefore essential that objects of
a data abstraction be protected from
unauthorized access, intentional or
otherwise.

One way of doing this is to incor-
porate data abstraction facilities in a
programming language and rely on
the compiler to provide the necessary

protection through compile-time
type checking. This has been done in
recent programming languages like
Clu [8] and Ada [4]. In a methodo-
logical (as opposed to language-de-
sign) approach, we must identify
constructs within existing languages
which provide the necessary protec-
tion. We seek language constructs
that "encapsulate" (by means of
scope rules) the variables making up
the underlying object representation
as well as the procedures implement-
ing the operations that access the
representation variables. The only
Fortran construct providing absolute
encapsulation is the procedure (ex-
ternal subroutine or function) with
multiple entry points. We will call
such procedures "modules," as sug-
gested by D. L. Parnas [10]. A single
module implements a single data ab-
straction. Each entry point of a mod-
ule corresponds to a single operation
of the abstraction. A module may
also contain local declarations and
local procedures (some versions of
Fortran permit internal procedures,
which are useful for this purpose).
By Fortran's scope rules, these inter-
nal elements are inaccessible from
outside the module.

Figure 4 schematically illustrates
a module implementing the CD ab-
straction. Corresponding to each op-
eration is an entry point of the same
name, at which some sequence of
instructions, denoted Pi, is executed.
Each of the Pi is free to access the
private data structure used as the
underlying representation of CD ob-
jects (denoted "REP" in Figure 4) as

690 Communications
of
the ACM

October 1982
Volume 25
Number 10

NEWCD

ADDELT

REMELT

VOLTS

NODES

ELT

MAXNUM

Fig. 4. Schematic View of CD Module.

well as the internal procedures, de-
noted IP1 and IP2. The IPi may
access the REP, and they may call
one another. There is, however, no
access from outside the module to
the Pi, the IPi, or the REP. Encap-
sulation is therefore complete.

Encapsulation provides only par-
tial protection against unauthorized
access. Suppose that a program re-
quests an operation of the CD ab-
straction without first calling
NEWCD. Using the terminology of
Section 3.1, we would say that such
a program does not possess a capa-
bility for a CD object. The result of
such an operation is undefined since
any initialization performed by
NEWCD will not have been done.
This kind of misuse can be prevented
by having each operation perform a
run-time check as its first action. To
allow an application program to per-
form a similar check, we provide a
new CD operation, CAPCD:

L: =CAPCD(X)
Returns.TRUE. if its argument is a
capability for a CD object.

69!

3.3 I n p u t / O u t p u t

The typical large Fortran-based
system is a collection of programs
which communicate by means of in-
formation stored in files. In systems
designed using our methodology,
programs communicate by means of
abstract object representations stored
in files. The third major implemen-
tation issue concerns the external
representation of objects in files and
the nature of object movement be-
tween main memory and files.

If an object is to be allowed to
exist outside of main memory, then
protection must be extended to in-
clude the file system: No access to an
object stored in a file must be possi-
ble except by means of operations of
the module providing the objects.
This rule implies that G ET and PUT
operations must be included in each
data abstraction. If this is done, the
external representation of objects is
no longer an issue; it is only neces-
sary that G ET and PUT observe the
same conventions with respect to the
chosen representation. For example:

Communications
of
the ACM

if PUT encrypts, then G E T must
decrypt; if PUT writes the REP var-
iables in a certain order, then G E T
must read them back in that order.

Given this requirement, we may
add the following input/output op-
erations to the informal specification
of Figure 2:

PUTCD(X,U)
Puts an external representation
of CD object X into the next
consecutive locations of the file
with Fortran unit number U and
leaves the file positioned at the
end of file.

X: =GETCD(U)
Gets an external representation
of a CD object beginning at the
current position in the file with
Fortran unit number U, recon-
structs the object, and returns a
capability for it. Leaves the file
positioned at the end of the ex-
ternal representation.

We will return to the subject of
input/output in Section 5 in which a
somewhat more versatile scheme is
suggested.

4. Formal Speci f icat ion

A number of techniques exist for
specifying data abstractions. These
differ in their degree of constructa-
bility, comprehensibility, range of
applicability, extensibility, minimal-
ity, and formality (see [7] for a survey
of techniques and a comparison
based on these criteria).

A formal specification employs a
mathematical formalism, in contrast
to an informal specification, which is
communicated in natural language.
Extremely formal techniques are
necessary if automatic program ver-
ification is the goal. This explains the
current interest in such techniques.
Unfortunately, for the practitioner,
the more formal a technique, the less
comprehensible and constructible it
is. At the opposite extreme, informal
specifications (such as Figure 2) may
seem easy to construct and compre-
hend but present all the pitfalls of
natural language communication.

October 1982
Volume 25
Number 10

COMPUTING
PRACTICES

The so-called "state-machine"
technique developed by D. L. Parnas
[9] and extended by others [11] offers
a moderate degree of formality with-
out sacrificing constructibility, com-
prehensibility, or minimality. It is
therefore an ideal technique for the
typical Fortran programming envi-
ronment, where specifications serve
mostly to communicate ideas among
designers, programmers, and math-
ematicians, and where the parties in-
volved have at least a minimum de-
gree of mathematical maturity.

Parnas' idea was to separate the
operations of a data abstraction into
two groups and to regard the objects
as machines capable of existing in a
(not necessarily finite) number of
states. Each operation in the "O"
group causes a machine to undergo
a state change. Each operation in the
"V" group causes no state change
but allows some aspect of the current
state to be observed. The state of an
object (or at least the externally vis-
ible component of its state) is simply
the collective results of all V-opera-
tions. The specification, then, need
only indicate the effect of each O-
operation on the result of each V-
operation. Such effects are stated as
predicates in the first-order predicate
calculus.

In the CD abstraction, the V-op-
erations are VOLTS, NODES, ELT,
MAXNUM, and CAPCD. Unlike
the other V-operations, CAPCD can
be regarded as an inquiry directed at
the "manager" of CD objects rather
than as an aspect of the state of some
particular object.

The O-operations are NEWCD,
ADDELT, and REMELT. The set
of O-operations has been expanded
by adding ZAPCD, an operation for
disposing of CD objects which are
no longer needed.

A complete state-machine speci-
fication of the CD data abstraction
is given in the Appendix. We begin
here with a description of the tech-
nique and conclude with a discussion

692

of the specification itself.
A specification consists of three

sections. The OPERATIONS sec-
tion is the heart of the specification
and contains an entry for each op-
eration. The DECLARATIONS sec-
tion gives the Fortran data type of
each of the variables appearing as a
parameter or function result in the
OPERATIONS section. The DEFI-
NITIONS are macros whose sole
purpose is to shorten and improve
the readability of the OPERA-
TIONS section. Identifiers for vari-
ables and operations are composed
of capital letters, as in Fortran.
Macro names are written in italics.

The entry for an individual op-
eration begins with a heading which
tells what kind of operation it is (O
or V) and gives the semantics of its
procedure call and return.

A PURPOSE is given for reada-
bility only and corresponds to the
informal specifications of Figure 2.

EFFECTS are given only for the
O-operations. The EFFECTS of an
operation consist of a single predi-
cate in the first-order predicate cal-
culus. To improve readability, a
predicate may be split into several
lines, which are then understood to
be "anded" together. Such predicates
express the effect of an O-operation
on the results of the V-operations
and are therefore the heart of a state-
machine specification.

The EXCEPTIONS of an oper-
ation consist of a numbered sequence
of predicates which are evaluated in
the order listed. The first predicate
evaluating to "true" causes the op-
eration to terminate without return-
ing a value (in the case of V-opera-
tions) and without causing a state
change (in the case of O-operations).
If all predicates in the sequence are
false, the operation terminates nor-
mally.

The meaning of most of the sym-
bols used in writing EFFECTS and
EXCEPTIONS can be found in stan-
dard logic textbooks such as [6]. A
nonstandard symbol is the apos-
trophe. When the name of a V-op-
eration is prefixed by an apostrophe
within a predicate in the EFFECTS
or EXCEPTIONS section of an O-
operation, its value refers to the old

Communications
of
the ACM

state--that is, the state existing prior
to the current set of effects.

INITIAL VALUES are required
only for the CAPCD operation to
insure that prior to any calls to
NEWCD, CAPCD is false for all
arguments (since capabilities for CD
objects are created only by
NEWCD).

Let us now examine the CD spec-
ification in more detail. NEWCD
will fail only if it is asked to create a
CD object with a nonpositive num-
ber of nodes. Otherwise, it returns a
capability for a CD object in an ini-
tial state characterized by the predi-
cate

CAPCD(X)
NODES(X) = N
(i)[ELT(X, i) = (0, 0, 0, 0)]
MAXNUM(X) = 0
equilibrium(X)

That is to say: CAPCD is true for
argument X; the NODES operation
has the value N: the MAXNUM op-
eration has the value zero; the ELT
operation has the value (0, 0, 0, 0)
for all values of its second argument;
and "equilibrium(X)." The identifier
equilibrium is recognized as a macro
name. Examining the DEFINI-
TIONS section, the fully expanded
equilibrium macro is seen to be a
predicate expressing a complex rela-
tionship among the results of the
ELT and VOLTS operations. It is
precisely this relationship which cap-
tures, in purely symbolic terms, the
additive properties of voltages and
the implications of the current law.
In the initial state brought about by
NEWCD, it is easy to verify that the
equilibrium predicate gives

VOLTS(X, i, j)

= {0 i= j
- V O L T S (X , j , i) i ~ j

Any of the V operations may be
called in the initial state. VOLTS,
however, is restricted (by its fourth
exception) to measuring the voltage
difference between any point and it-
self. This is consistent with the equi-
librium predicate evaluated in the in-
itial state.

To leave the initial state, an O-
operation is needed. REMELT can-
not be requested because the CD

October 1982
Volume 25
Number 10

object has no elements. This is stated
by REMELT's second exception,
which can be read "the value of
ELT(X, E) in the old state is (0, 0,
0, 0)." Since the initial state is char-
acterized by NEWCD's effect, (i)
[ELT(X, i) = (0, 0, 0, 0)], this excep-
tion would be raised if REMELT
were called.

Instead, we leave the initial state
by calling ADDELT. From the EF-
FECTS of ADDELT, it is apparent
that the state of CD object X after
the operation is characterized by a
value of MAXNUM that is one
greater than its value in the old state,
a value of (L J, R, V) for the opera-
tion ELT(X, MAXNUM(X)), and
equilibrium(X). The reader may ver-
ify that ADDELT(X, 1, 2, 20, 5)
(which adds the battery of Figure 1)
causes the fourth term of the equilib-
rium predicate to yield the new
equality VOLTS(X, 1, 2) = 5, pre-
cisely the effect desired. It would be
instructive for the reader to instan-
tiate equilibrium for the circuit dia-
gram of Figure 1, assuming some
particular sequence of ADDELT op-
erations.

To be perfectly correct, a speci-
fication should state that V-opera-
tion values not explicitly mentioned
in an EFFECTS section do not
change. The EFFECTS of AD-
DELT should therefore be written
as:

M A X N U M (X) = ' M A X N U M (X) + 1

ELT(X, MAXNUM(X)) = (/, J, R, V)
(i)[i#MAXNUM(X) D ELT(X, i)

-- 'ELT(X, i)]
CAPCD(X) = 'CAPCD(X)
NODES(X) = 'NODES(X)
equilibrium(X)

We will continue to use the shorter
form for the sake of readability with
the implicit understanding that V-
operations whose results are not
characterized by an EFFECTS pred-
icate remain constant.

A reader planning to use the
state-machine specification tech-
nique should be warned that the Ap-
pendix does not illustrate several of
its fine points. In particular, hidden
and derived V-operations are not il-
lustrated. Examples using both kinds
of operation can be found in [11].

5. Implementation Techniques

5.1 Single, Multiple, and
Dynamic Object Implementations

The Fortran implementor must
decide whether a module will pro-
vide more than one object. In the
ABC application, multiple objects
are clearly required. Had the prob-
lem been to "perform a series of
circuit analyses," a single-object im-
plementation would have sufficed;

the single object could be effectively
reused by calling ZAPCD and then
NEWCD.

When only a single object is
needed, a simple solution is to de-
clare as ordinary program variables
the data structure to be used as the
underlying object representation (the
REP of Figure 4). Figure 5 presents
the skeleton of a Fortran function
implementing a single-object version
of the CD abstraction. For illustra-

INTEGER FUNCTION NEWCD(N)
INTEGER N, X, 1, J, E, U, TCODE, NODES, MAXNUM, ADDELT, MAXOBJ,

* N U M O B J / 0 /
REAL R, V, VOLTS
LOGICAL CAPCD
PARAMETER (TCODE= 12345,MAXOBJ= 1)
• other declarations

C THE REP
INTEGER A, B, TYPE
REAL C(100)

IF(NUMOBJ.EQ.MAXOBJ)STOP 1
IF(N.LE.0.OR.N.GT. 10)STOP 2
NUMOBJ = NUMOBJ + 1
A = N
B = 0
TYPE = TCODE
NEWCD = TCODE
RETURN

ENTRY CAPCD(X)
CAPCD = X.EQ.TYPE
RETURN

ENTRY ZAPCD(X)
IF(X.NE.TYPE)STOP 3
NUMOBJ = NUMOBJ - 1
X = 0
RETURN

ENTRY NODES(X)
IF(X.NE.TYPE)STOP 4
NODES = A
RETURN

ENTRY MAXNUM(X)
IF(X.NE.TYPE)STOP 5
MAXNUM = B
RETURN

ENTRY VOLTS(X, I, J)

ENTRY ELT(X, I, J, R, V, E)

ENTRY ADDELT(X, I, J, R, V)

ENTRY REMELT(X, E)

ENTRY PUTCD(X, U)

ENTRY GETCD(U)

END

Fig. 5. CD Module (Single Object Implementation).

693 Communications
of
the ACM

October 1982
Volume 25
Number 10

COMPUTING
PRACTICES

tive purposes only, the CD REP is
assumed to consist of the variables
A, B, and C.

Although a single-object imple-
mentation is simple, it has several
disadvantages. For one, the REP
variable dimensions are fixed by the
storage requirements of the largest
problem anticipated. Suppose that
array C requires n 2 reals, where n is
the number of nodes in a CD object.
Then, the CD implementation of
Figure 5 can create CD objects with
ten nodes or less. This limitation
must be documented as an exception
in the specification of NEWCD, add-
ing complexity to the specification•
If occasional CD objects with 100
nodes must be created, the dimen-
sion of C will have to be increased to
10,000 even though most of this
space will go unused most of the
time. For the sake of the specification
and lower system overhead, we
would prefer an implementation
which provided dynamic objects; that
is, objects whose REP takes up no
more storage space than actually re-
quired for a given problem.

Modules offering both multiple
objects and dynamic objects can be
implemented in any of the extended
versions of Fortran which provide
dynamic storage allocation together
with an address function. Dynamic
storage allocation of precisely the
amount needed can be requested
each time a new object is created by
NEWCD. References to the ac-
quired storage must be made by
means of base-offset addressing (us-
ing the address function), but the
clarity of the code can be preserved
by declaring statement functions that
map individual components of the
REP onto the acquired storage. This
technique is illustrated for the CD
module in Figure 6. In the figure, A,
B, and C have become statement
functions which can be used to ref-
erence locations within a dynami-
cally acquired storage block. AL-
LOC and ADDR are the two non-

I N T E G E R F U N C T O N N E W C D (N)
I N T E G E R N, X, I, J, E, U, TCODE, NODES, M A X N U M , ADDELT, MAXOBJ,

* N U M O B J / O / , GETCD, GETSE
REAL R, V, VOLTS
L O G I C A L CAPCD
P A R A M E T E R (T C O D E = 12345, MAXOBJ= 1)

• other declarations

C T HE REP
I N T E G E R A, B, SE, TYPE
REAL C(100)

• other entry points

E N T R Y PUTCD(X, U)
IF(X.NE.TYPE)STOP 6

• transfer the variables A, B, C, and TYPE to unit U

CALL PUTSE(SE, U)
R E T U R N

E N T R Y GETCD(U)
IF (NUMOBJ.EQ.MAXOBJ)STOP 7

• transfer the variables .4, B, C, and TYPE from unit U

IF(TYPE.NE.TCODE)STOP 8
SE = GETSE(U)
G E T C D = T C O D E
N U M O B J = N U M O B J + 1
R E T U R N

END

Fig. 6. CD Module (Multiple Dynamic Object Implementation)•

standard functions referred to above;
ALLOC(M) returns the address of a
storage block containing M words,
and ADDR returns the address of its
argument. Figure 6 assumes word
addressability, full-word integers,
and full-word reals. (Note: The use
of a statement function as the target
of an assignment is also nonstand-
ard.)

5.2 Capabilities and Object
Protection

Figures 5 and 6 suggest how the
CAPCD exception might be en-
forced and also offer two interpreta-
tions of capabilities. In Figure 5, a
capability is the "secret" type code
12345. The CAPCD exception is en-
forced by comparing the value in X
with this value at the beginning of
each operation. In Figure 6, a capa-
bility is a displacement between a
variable (DUMI or DUMR) and the
beginning of a dynamically acquired
storage block. Since DUMI and
DUMR are local to the CD module,

the capability cannot be used by the
calling program to gain access to the
REP. Enforcement of the CAPCD
exception has been accomplished by
having the NEWCD operation store
a type code in a fixed location in
REP storage and each subsequent
operation compare the contents of
the location referenced by the capa-
bility to this code. This technique is
illustrated using code 12345 in Fig-
ure 6.

5.3 Subsidiary Abstractions
As stated in Section 3, the CD

abstraction is implemented by re-
garding the formal CD specification
as the precise statement of a totally
new and independent problem. This
time, the problem is to provide the
specified operations. Again, the
problem is attacked in three stages:

(1) Propose a set of
"subsidiary" data abstractions
deemed useful in implementing the
operations. Develop a collection of

694 Communicat ions
of
the A C M

October 1982
Volume 25
Number 10

INTEGER FUNCTION NEWCD(N)
INTEGER N, X, I, J, E, TCODE, NODES, MAXNUM, ADDELT,

* DUMI(1), ALLOC, ADDR
REAL R, V, VOLTS,

* DUMR(I)
LOGICAL CAPCD
PARAMETER (TCODE= 12345)
EQUIVALENCE (DUMI, DUMR)

• other declarations

C THE REP
INTEGER A, B, TYPE
REAL C
TYPE(X) = DUMI(X+ 1)
A(X) = DUMI(X+2)
B(X) = DUMI(X+3)
C(X, I) = DUMR(X+3+I)

IF(N.LE.O)STOP 1
NEWCD = ALLOC(N**2+3) - ADDR(DUM1)
A(NEWCD) = N
B(NEWCD) = O
TYPE(NEWCD) = TCODE
RETURN

ENTRY CAPCD(X)
CAPCD = TYPE(X).EQ.TCODE
RETURN

ENTRY NODES(X)
IF(TYPE(X).NE.TCODE)STOP 2
NODES = A(X)
RETURN

ENTRY MAXNUM(X)
IF(TYPE(X).NE.TCODE)STOP 3
MAXNUM = B(X)
RETURN

END

Fig. 7. Implementation of GETCD and PUTCD Operations.

procedures which implement the op-
erations by manipulating the objects•

(2) Formally specify the subsid-
iary abstractions identified in (1).

(3) Implement the procedures;
implement the subsidiary abstrac-
tions not already provided by For-
tran as built-in types.

The procedures written in stage 3
must, of course, be made internal to
the module being implemented, but
the subsidiary abstractions must be
implemented as separate, external
modules. The function of the new
modules is to provide objects for the
REP of the CD abstraction. Encap-
sulation is not violated by making
the subsidiary abstraction modules
external since encapsulation must
protect objects, not types,

Consider the CD abstraction.
Surely, the most difficult part of im-
plementation will be guaranteeing
the equilibrium predicate. The pred-

icate does not suggest an implemen-
tation (indeed, it should not), but
merely gives a property that any im-
plementation must satisfy. Many dif-
ferent methods of solving circuit
problems yield solutions satisfying
equilibrium; the choice of a method
is up to the implementor. In the no-
dal method, a circuit problem is par-
ametefized in terms of node potential
unknowns, giving rise to a system of
simultaneous linear equations. If the
solution to these equations is the set
of node potentials el, e2 en
(where n is the number of nodes),
then the value returned by
VOLTS(X, I, J) is simply ej - el. If
a procedure employing the nodal
method were used in implementing
the CD module, it might occur to the
implementor to propose a "systems
of linear equations" data abstraction
with an operation for creating new
systems, an operation for defining
equation coefficients, and an opera-

tion for solving. Each CD object
would then have a subsidiary
"systems of equations" object. In
Fortran terms, the CD REP would
have an additional integer variable
SE containing a capability for a
"systems of equations" object.

5.4 Inpu t /Ou tpu t

An implementation of the input/
output operations G ET C D and
PUTCD described in Section 3.3 is
illustrated in Figure 7. The figure
assumes that each CD object con-
tains a single "systems of equations"
object. It also assumes a single-object
implementation.

The scheme employed in Figure
7 works correctly for any number of
levels of subsidiary abstraction and
any number of calls to G ETC D and
PUTCD as long as the application
program requesting these operations
observes strict sequentiality. That is,
if a program requests a sequence of
PUT operations for objects of the
type T,, T2 Tn, respectively,
then the only way to retrieve the n th
object is by first requesting n - 1
G ET operations of type T1, T2
T,~-1, respectively. This scheme is not
well-suited to the ABC application
in which access to any one of the
previously saved CD objects may be
required at any time.

One way of removing this diffi-
culty is to introduce a new abstrac-
tion called the rep library. A rep li-
brary is associated with a file, but
abstracts from the file by suppressing
details associated with keeping track
of external REP locations and file
positions. In a rep library, each ex-
ternal REP has an associated num-
ber by which it is known to both the
library and the library user.

5 .5 Except ion Handl ing

In Section 4, no method of han-
dling exceptions was suggested. We
now give Fortran implementations
for two alternate methods: precon-
ditions and signalling.

A precondition is a condition
which must be satisfied at the time
an operation is requested. Failure to
satisfy a precondition results in pro-
gram termination, preferably pre-

695 Communications
of
the ACM

October 1982
Volume 25
Number 10

COMPUTING
PRACTICES
ceded by an error message. All ex-
ceptions are handled as precondi-
tions in Figures 5-7, making use of
the STOP i statement for program
termination.

A more sophisticated scheme al-
lows the calling program to be noti-
fied or signalled when the exception
is raised. Signalling can be imple-
mented by using label constants in
the manner of Figure 8, where RE-
MELT's second exception has been
implemented by signalling.

Once a choice of methods for
handling each exception has been
made, the formal specification
should be revised in the manner of
Figure 9.

6. Conclusion

In the experience of the author,
large Fortran systems developed "us-
ing our methodology tend to be more
reliable than systems developed us-
ing smaller conventional decompo-
sition techniques. They also tend to
be smaller

By eliminating COMMON stor-
age and localizing design decisions
within modules, a low degree of
module coupling is achieved. This
means that program errors and pro-
gram modifications have a small ra-
dius of effect. The result is high sys-
tem reliability and ease of mainte-
nance.

Smaller system size results from
the phenomenon of sharing: Each
operation is coded once rather than
at the point of each reference.
Smaller program library size results
from sharing across applications, a
phenomenon rarely observed nowa-
days in spite of the proliferation of
common procedure libraries. In
practice, sharing of subsidiary ab-
stractions like hash tables, rep librar-
ies, and systems of equations will
occur most frequently.

Drawbacks of the methodology
include decreased program effi-
ciency (e.g., run-time type checks),
the necessity of using a relatively
dangerous construct to achieve en-
capsulation (the Fortran multiple en-
try point procedure), and the inevi-

696

In the calling program:
DO 10 E = 1, MAXNUM(X)

CALL REMELT(X, E, *10)

10 CONTINUE

In the CD Module:
ENTRY REMELT(X, E, *)

IF(element E does not exist)RETURN 1

Fig. 8. Implementation of the Second REMELT Exception by Signalling.
I

O-OPERATION REMELT(X, E, *)
PURPOSE: Removes the element with element number E

from CD object X.
EFFECTS:

ELT(X, E) = (0,0,0,0)
equilibrium (X)

PRECONDITIONS:
1. - 'CAPCD(X)

SIGNALS:
1. 'ELT(X,E) = (0,0,0,0)

Fig. g. Modified REMELT Specification.

table reliance on nonstandard lan-
guage features to implement nontri-
vial abstractions.

It is our strong belief that in an
era of rising software costs, the ad-
vantages of a programming meth-
odology based on data abstraction
far outweigh its disadvantages. We
further believe that the methodology
proposed here is not only a viable
alternative to traditional methodol-
ogies in a conventional environment,
but is one which brings us more
closely into line with the direction of
current developments in program-
ming languages and systems.
References
1. American National Standards Institute.
Programming Language Fortran, ANSI
X3.9-1978.

2. Fabry, R.S. Capability-based addressing.
Comm. ACM 17, 7 (July 1974), 403-412.
Describes the use of capabilities for
addressing objects in an object-ofiented
operating system.

3. Guttag, J.V., Horowitz, E., and Musser,
D.R. Abstract data types and software
validation. Comm. ACM 2t, 12 (Dec. 1978),
1048-1064. Presents an algebraic technique
for specifying abstract data types and shows
how to use such specifications in proofs of
correctness.

4. Ichbiah, J.D., et al. Preliminary Ada
reference manual. A CM S1GPLAN Notices
14, 6 (June 1979),

5. Jones, A.K., and Liskov, B. An access
control facility for programming languages.
Carnegie-Mellon Univ., Pittsburgh, Pa., 120,

Communications
of
the ACM

1976. Proposes a capability-based system for
defining types and objects which facilitates
compile-time checking of access fights in
languages which support user-def'med
abstract data types.

6. Korthage, R.R. Logic. and Algorithms.
John Wiley and Sons, New York, 1966.
The logical notation used in this paper has
been adopted from this standard
undergraduate logic textbook.

7. Liskov, B., and Zilles, S. Specification
techniques for data abstractions. IEEE
Trans. Software Eng. SE-1 1 (March 1975),
7-19. A classic paper describing, illustrating,
and comparing five categories of techniques
for specifying data abstractions.

8. Liskov, B., Snyder, A., Atkinson, R., and
Schaffert, C. Abstraction mechanisms in
CLU. Comm. ACM 20, 8 (Aug. 1977), 564-
576. Clu was one of the first languages to
provide linguistic support for user-defined
abstractions. This paper illustrates Clu's
abstraction mechanisms by means of an
extended programming example.

9. Parnas, D.L. A technique for software
module specification with examples. Comm.
ACM. 15, 5 (May 1972), 330-336.
Introduces the specification technique now
widely referred to as the "state machine
technique." Gives several examples of
varying complexity.

10. Parnas, D.L. On the criteria to be used
in decomposing systems into modules.
Comm. ACM. 5, 12 (Dec. 1972), 1053-1058.
Compares two designs for a KWlC index
system and argues that the design based on
information hiding is more maintainable.

11. Robinson, L., Levitt, K.N., Neumann,
P.G., and Saxena, A.R. A formal
methodology for the design of operating
system software. In Current Trends in
Programming Methodology, Vol. 1: Software
Specification and Design,

October 1982
Volume 25
Number 10

Prentice Hall, Englewood Cliffs, N.J., 1977. Presents a specification
language derived from Parnas' technique and uses it to describe a
collection of modules in a secure operating system.
12. Shaw, M. The impact of abstraction concerns on modern
programming languages. Proc. 1EEL 68, 9 (Sept. 1980), 1119-1130.
Traces the ways in which programming languages have evolved in
response to new ideas about how to cope with complexity. Shows
how the abstraction principle has played a key role in more recent
developments.
13. Wirth, N. Program development by stepwise refinement. Comm.
ACM. 14, 4 (April 1971), 221-227. Proposes a method for developing
a program in a series of procedural refinement steps.

Appendix. Formal Specification of CD Abstraction
DECLARATIONS

INTEGER X,N,E,I,J
REAL R, V
LOGICAL L

OPERATIONS
O-OPERATION X: =NEWCD(N)

PURPOSE: Creates a new CD object Xwith N
nodes. The nodes are initially un-
connected and implicitly num-
bered 1 through N.

EFFECTS:
CAPCD(X)
NODES(X)=N
(i)[ELT(x,i)= (0,0,0,0)]
MAXNUM(X)=0
equilibrium(X)

EXCEPTIONS:
1. N_<0

V-OPERATION L: =CAPCD(X)
PURPOSE: Indicates whether its argument is

a capability for a CD object.
INITIAL VALUES

(i) I~CAPCD(i)]

V-OPERATION V: =VOLTS(X,I,J)
PURPOSE: Reads the algebraic voltage differ-

ence between nodes I and .J of CD
object X (a net voltage rise from I
to J gives a positive reading).

EXCEPTIONS:
1. -CAPCD(X)
2. -node(I)
3. -node(J)
4. -path(I,J)

V-OPERATION N: =NODES(X)
PURPOSE: Gives the number of nodes ha CD

object X.
EXCEPTIONS:

1. -CAPCD(X)

V-OPERATION (1,J,R,V): =ELT(X, E)
PURPOSE: Gives the characteristics and lo-

cation of element number E in CD
object X.

EXCEPTIONS:
1. -CAPCD(X)

O-OPERATION E := ADDELT(X, I, J, R, V)
PURPOSE: Inserts an element with character-

istics (R, V) between nodes I and
J of CD object X (a positive V is
a voltage rise from I to J). Assigns
element number E to the element.

EFFECTS:
MAXNUM(X)= 'MAXNUM(X)+ 1
ELT(X,MAXNUM(X))=(I,J,R,V)
equilibrium(X)

RETURNS:
MAXNUM(X)

EXCEPTIONS:
1. ~ 'CAPCD(X)
2. rhode(I)
3. ~node(J)
4. R_<O

V-OPERATION N: =MAXNUM(X)
PURPOSE: Gives the maximum element num-

ber assigned in CD object X.
EXCEPTIONS:

1. ~CAPCD(X)

O-OPERATION REMELT(X, E)
PURPOSE: Removes the element with element

number E from CD object X.
EFFECTS:

ELT(X,E)=(0,0,0,0)
equilibrium(X)

EXCEPTIONS:
1. ~ 'CAPCD(X)
2. 'ELT(X,E)=(0,0,0,0)

O-OPERATION ZAPCD(X)
PURPOSE: Disposes of CD object X.
EFFECTS:

-CAPCD(X)
EXCEPTIONS:

1. ~ 'CAPCD(X)

DEFINITIONS
node(i) ~ i ~ 1 A i ~< NODES(X)
connection(i, j) ~-~ Be[(ELT(X, e)=(i, j, r, v) V

ELT(X, e)=(j, i, r, v)) A r # 0]
path(i, j) ~ i=j V connection(i, j) V 3k[connection(i,k)

path(k,j)]
equilibrium(X)

(i)[VOLTS(X,i,i)=0] A
(i)fj)[VOLTS(X,i,j)= -VOLTS(X,j, i)] A
(i)(j)(k)[(connection(i,k) A path(k,j)) D

VOLTS(X,i,j)=VOLTS(X,i,k)+
VOLTS(X,k,j)] A

(i)
~ - - ~ 1F(ELT(X,e)=(i,j,r,-v) A r-~0) V

(ELT(X,e)=(j,i,r,+v) A r-~0)
0 =) THEN

/ (VOLTS(X,i,j)+v)/r
/ i E ~ SE

The attention of Computing Practices readers is called to this month's ACM Forum letter "On Programmer
Involvement for Quality Assurance" by Martin Gorfmkel, which refers to the paper by Gustafson and Kerr
in the January issue.

697/ Communications October 1982
of Volume 25
the ACM Number 10

