
63 

Compositional Timing Analysis of Asynchronized 

Distributed Cause-effect Chains 

MARIO GÜNZEL , TU Dortmund University 

KUAN-HSUN CHEN , University of Twente 

NIKLAS UETER , GEORG VON DER BRÜGGEN , MARCO DÜRR , and JIAN-JIA CHEN , 
TU Dortmund University 

Real-time systems require the formal guarantee of timing constraints, not only for the individual tasks but also 

for the end-to-end latency of data flows. The data flow among multiple tasks, e.g., from sensors to actuators, is 

described by a cause-effect chain, independent from the priority order of the tasks. In this article, we provide 

an end-to-end timing-analysis for cause-effect chains on asynchronized distributed systems with periodic 

task activations, considering the maximum reaction time (MRT) (i.e., the duration of data processing) and the 

maximum data age (MDA) (i.e., the worst-case data freshness). We first provide an analysis of the end-to- 

end latency on one local electronic control unit (ECU) that has to consider only the jobs in a bounded time 

interval. We extend our analysis to globally asynchronized systems by exploiting a compositional property 

to combine the local results. Throughout synthesized data based on an automotive benchmark as well as on 

randomized parameters, we show that our analytical results improve the state-of-the-art. 
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 INTRODUCTION 

ndustrial systems with real-time constrains require timeliness to ensure their correct function-

lity. Specifically, timing properties like end-to-end latencies are used to validate safety-critical
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Fig. 1. An example application redrawn from the WATERS challenge 2019 [ 20 ]. An exemplary chain in the 
application is emphasized by the bold blue arrows. 
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asks that have to perform a desired control within a certain time interval, e.g., when analyzing

he interaction of electronic control units ( ECUs ) in a car. 

A cause-effect chain is a strictly ordered set of tasks where the order describes data read and

rite dependencies. The WATERS industry challenge 2019 [ 20 ] provided an example, shown in

igure 1 , that consists of the strictly ordered set of a lidar grabber task, a localization task, a sensor

usion task, a trajectory planner task, and a control task that also sets the actuators with velocity

nd steering signals. In this example, an instance (job) of the lidar grabber task reads information

rom the LiDAR sensor, builds a point cloud, and shares that point cloud data with a job of the

ocalization task. Similarly, the computed data from the trajectory planner job is shared with a

ontrol and actuation job. In a so-called end-to-end timing analysis , the timing behavior of the

unction implemented by the task chain, i.e., the steering and velocity control based on the LiDAR

ensory inputs, is analyzed with respect to maximum reaction time ( MRT ) and maximum
ata-age ( MDA ) . 
The MRT denotes the length of the longest time interval starting from the occurrence of an

xternal cause (in the WATERS example new LiDAR sensor data) to the earliest time where this

xternal cause is fully processed (actuated), i.e., the maximum button to action delay . The MDA
enotes the length of the longest time interval starting with sampling a value to the last point in

ime where an actuation is based on this sampled value. 

Most approaches in the literature that validate timing requirements of cause-effect chains can

e classified into two categories: active approaches [ 9 , 16 , 28 ], which control the release of jobs

n the subsequent tasks in the chain to ensure that the data is correctly written and read, and

assive approaches [ 2 , 3 , 6 , 10 , 11 , 13 , 15 , 17 , 22 , 27 , 29 ], which analyze how the data is produced

nd consumed among the job of the recurrent tasks in the cause-effect chain. The approaches

roposed in this work can be classified as passive approaches. 

When all tasks in the system are mapped to one embedded device, they can be assumed synchro-

ized as they have access to the same local clock. However, when tasks are mapped to multiple em-

edded devices, each device usually has its own clock with a different offset and jitter; a so-called

lobally asynchronized system. To enable a coherent collaboration among multiple distributed

evices, clock synchronization techniques [ 23 ] enable one global system clock for all devices; a

o-called globally synchronized system. Globally synchronized systems are usually easier to be

ptimized and analyzed, but the synchronization mechanism imposes strong dependencies (e.g.,

n the master node for clock synchronization), which makes the distributed system fragile against

ault tolerance [ 6 ]. Therefore, accepting globally asynchronous clocks with offset and jitter enables

istributed embedded systems that are robust against imperfect synchronization of the architecture .
e call such systems globally asynchronized locally synchronized ( GALS ) systems. 
CM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 63. Publication date: July 2023. 
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Multiple results for the end-to-end timing analysis of distributed systems with different syn-

hronization assumptions have been provided in the literature: 

—Davare et al. [ 10 ] provide an upper bound for the MRT of cause-effect chains for periodic

task sets on GALS systems. 

—Dürr et al. [ 11 ] present two upper bounds, one for MRT and one for MDA, considering

cause-effect chains for sporadic task sets on GALS systems. 

—Kloda et al. [ 22 ] provide an upper bound for the MRT of cause-effect chains for periodic

task sets on globally synchronized systems. 

—Becker et al. [ 4 ] provide an upper bound for the MDA of cause-effect chains for periodic

task sets on globally synchronized systems. 

Since Dürr et al. [ 11 ] show that the MDA is less than or equal to the MRT, the upper bounds

rovided by Davare et al. [ 10 ] and Kloda et al. [ 22 ] also hold for the MDA. However, the anal-

sis by Kloda et al. [ 22 ] is restricted to synchronous task releases, i.e., the first job of each task

s released at time 0, and assumes that the worst-case response time ( WCRT ) of each task is

nown beforehand. Moreover, the article from Schlatow et al. [ 29 ] focuses on the analysis of MDA

f harmonic task systems. Their analysis for non-harmonic cases is in fact more pessimistic than

avare’s analysis [ 10 ], i.e., Equation (36) in [ 29 ] plus the WCRTs of the tasks in the chain is dom-

nated by Davare’s analysis [ 10 ]. Becker et al. [ 2 , 3 , 5 ] analyze end-to-end timing agnostic of the

cheduler, i.e., only using information about the task release and deadline, with the goal to synthe-

ize job-level dependencies to tighten timing guarantees. Their extension [ 4 ] analyzes the MDA

ith various levels of timing information. Recently, Gohari et al. [ 17 ] provided an analysis for the

DA under non-preemptive scheduling, whereas this work focuses on preemptive systems. 

Dürr et al. [ 11 ] introduce job chains to describe data flow through a task set and to define MRT

nd MDA. In particular, they show that the MRT (MDA, respectively) of a schedule can be de-

ermined by computing the maximum length of immediate forward (backward, respectively) job

hains. However, these definitions of MRT and MDA are limited to a sporadic task model where

ach task has a minimum and a maximum inter-arrival time. This work provides a definition that

s not bounded to any specific task model. 

Previous results [ 10 , 11 , 22 ] (implicitly) assume that MRT and data age are only measured when

ll tasks are already in the system, i.e., when all tasks have released their first job. Validation of this

ssumption is only possible by correctly accounting for the globally asynchronous clocks of the

CUs, which may be difficult to achieve or even impossible. Furthermore, such an assumption also

rohibits the possibility of compositional end-to-end timing analysis , where a cause-effect chain is

ecomposed into smaller segments that can be analyzed separately with a compositional property
o be used for analyzing the MRT and data age. We refine this assumption so that a compositional

roperty can be achieved and there is no need for any assumption on global time. 

It is worth noting that Dürr et al. [ 11 ] showed that their proposed end-to-end timing analyses

or the sporadic task model analytically dominate the upper bound proposed by Davare et al. [ 10 ].

n this work, we leverage on the analytical upper bounds by Dürr et al. [ 11 ] as a backbone and

mprove them by showing that considering only a finite time window is sufficient for the analysis.

We provide an end-to-end analysis for single ECUs, in which predefined periodic tasks are

cheduled under a fixed-priority preemptive scheduling policy. Subsequently, we utilize the com-

ositional property to extend the analysis to the interconnected ECU scenario, in which multiple

ingle ECUs are connected by an inter-communication infrastructure, e.g., controller area net-

ork ( CAN ) [ 8 ] or FlexRay [ 14 ]. For the interconnected scenario, we assume partitioned sched-

ling, i.e., there are individual periodic task sets for each ECU. Whereas tasks on a single ECU

re scheduled using one synchronized clock, the clocks among different ECUs are usually not
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 63. Publication date: July 2023. 
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ynchronized. Such GALS are of high practical relevance. For instance, according to the FlexRay

tandard [ 14 ], the data communication cycle is divided into static segments (i.e., synchronous

ime-triggered communication) and dynamic segments (i.e., asynchronous event-driven commu-

ication). We note that, although the notion of ECUs is adopted from automotive systems, our

ork is not limited to automotive systems but can be extended to similar settings. 

Contributions: We examine MRT and MDA of cause-effect chains for asynchronous periodic

ask sets on GALS distributed systems. Our main contributions are: 

—In Section 4 , we provide precise definitions of MRT and MDA . The underlying model only

assumes recurrently released jobs with certain read- and write-operations. Hence, the def-

inition is valid for all well-known task models (e.g., periodic tasks and sporadic tasks) and

communication models (e.g., implicit communication and logical execution time ( LET )).

It covers the single ECU as well as the interconnected ECU scenario. In particular, in Sec-

tion 4.3 we show that MRT and MDA allow a compositional property in form of the Cutting-

Theorem. 

—In Section 5.1 , we provide a method to analyze MRT and MDA in the single ECU scenario for

periodic tasks under preemptive fixed-priority scheduling. In particular, we show that a safe

upper bound can be conducted from two extreme cases, i.e., applying only the best-case

execution time ( BCET ) and the worst-case execution time ( WCET ) over a bounded

time horizon. 

—Section 5.2 extends the local analysis to interconnected ECUs and shows how to bound the

time for communication between ECUs in a globally asynchronized distributed system. 

—In Section 6 , we discuss how the results of this work regarding the MDA can be applied to

the maximum reduced data age, which is more common in the literature. 

—We evaluate the proposed analysis for single and interconnected ECUs in Section 7 , show-

ing that it outperforms state-of-the-art analyses for both MRT and MDA. Moreover, we

compare it with lower bounds for MDA and MRT and conclude that our bounds are close

to the exact result. 

This manuscript is based on a conference article [ 18 ] which focuses on a special scenario, assum-

ng fixed execution time of a periodic task, i.e., the WCET is the same as the BCET. The solution

resented in Section 5.1 is also an exact end-to-end analysis for the special scenario in the confer-

nce article [ 18 ] but can be applied to more general cases, in which the execution time of a task

an be any value between its best-case and worst-case execution time. 

 SYSTEM MODEL 

n this section, we introduce definitions and notation for the task model, the communication model,

ause-effect chains, and job chains utilized in this work. 

.1 Jobs and Tasks 

or a general definition of MRT and MDA, we rely on a very basic model of jobs and tasks that

re executed on multiple ECUs. If the ECUs are not synchronized, i.e., their clocks are not aligned,

hen we take their clock shifts into account to compare the time of events on the ECUs on a global

evel. First, we introduce jobs , schedules , and tasks . We assume that there is no parallel execution

f jobs on one ECU, i.e., each ECU is a uniprocessor system. 

A job J is an instance of a program, which produces an output based on its input. It is released at

ime r J and has to be executed for a certain amount of time c J ≥ 0 to finish. A schedule S specifies

he execution behavior of jobs on the ECUs. If J is scheduled by S, the start time (or start) of J is
CM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 63. Publication date: July 2023. 
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Fig. 2. Read- and write-events under implicit communication. 
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J 

and the finishing time (or finish) of J is f S 
J 

. For the sake of readability, we omit the

ndex S for all definitions if the choice of a schedule is clear in the context. The aggregation of all

obs which are instances of the same program is called a task , denoted by τ . We assume that each

ask is assigned to one ECU, i.e., all jobs of one task are scheduled on the same ECU, and that the

obs aggregated to one task τ are countable. We denote the set of all tasks as T and the jobs of τ
s ( τ ( m)) m ∈ N 

, with 0 � N . Furthermore, we assume that the task set T is finite. 

Whereas the general definitions from Section 4 are valid for all kinds of task models, e.g., for

eriodic or sporadic tasks, the analysis in Section 5 is limited to periodic tasks . A periodic task

s described by the tuple τ = (C 

u 
τ , C 

� 
τ , T τ , ϕτ ) ∈ R 

4 , where C 

u 
τ and C 

� 
τ ≥ 0 are the WCET and

he BCET of the task, respectively, T τ > 0 is the period, and ϕτ ≥ 0 is the phase of the task. By

efinition, C 

u 
τ ≥ C 

� 
τ ≥ 0 . The first job is released at time ϕτ . Afterward, τ recurrently releases a job

very T τ time units. More specifically, we have r τ (m) = ϕτ + (m − 1 ) ·T τ and c τ (m) ∈ [ C 

u 
τ , C 

� 
τ ] for

ll m ∈ N . The utilization of a task τ is defined by U τ : = 
C 

u 
τ

T τ
. We assume that the total utilization

 T 

: = 
∑ 

τ ∈T 

U τ of a task set T on a single ECU is at most 1. The maximal phase of T is denoted

y Φ = Φ(T ) : = max τ ∈T 

ϕτ . The hyperperiod of T is H = H (T ) : = lcm ( { T τ | τ ∈ T } ), i.e., the least

ommon multiple of all periods in the system. The existence of such hyperperiod is required for

ur analysis in Section 5 . 

During analysis, usually, only the task description is known instead of the actual jobs. Therefore,

ll schedules S that are compatible with the task specification must be considered. If the underlying

cheduling algorithm is deterministic, then each schedule is uniquely determined by the release

ime and execution time of all jobs in the schedule. In this case, it is sufficient to consider all job

equences that are compatible with the task specification to cover all possible schedules. We call

ne of those job sequences for task τ a job collection for τ . Let J C (τ ) be the set of all job collections

f task τ . Since in each schedule S for each task one job collection is under consideration, we

efine the set of all job collections for T as the cartesian product of the sets of job collections

or each task, i.e., J C (T ) : = 
∏ 

τ ∈T 

J C (τ ). One schedule S is then equivalent to one job collection

c ∈ J C (T ), and we write S = S (jc ). To distinguish jobs from different job collections, we denote

y τ (m, jc ) the mth job of a task τ in the job collection jc , and use τ (m) if the underlying job

ollection jc is clear in the context. 

.2 Communication Model 

hen jobs communicate, they receive (read) their input from a shared resource and hand over

write) their output to a shared resource. Jobs from the same tasks write to the same resource

nd messages are overwritten; that is, at any time only the latest output of a task is available. We

enote the first read-event of a job J in the schedule S by re S 
J 

, and we denote the last write-event

f J in S by w e S 
J 

. For the sake of clear notation, we write re J and we J if the schedule S is obvious

r irrelevant to determine the read- and write-events. We consider two common communication

olicies. One is called implicit communication , where the read- and write-events are aligned with

he start and finish of the jobs, respectively (i.e., re S 
J 
= s S 

J 
andw e S 

J 
= f S 

J 
), as depicted in Figure 2 .
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 63. Publication date: July 2023. 
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The other one is based on the concept of LET [ 21 ]. To utilize LET, each task τ is equipped with a

elative deadline D τ . Each job J released by a task τ has an absolute deadline d J = r J + D τ . The read-

nd write-events of each job J are set to its release time and deadline, respectively (i.e., re S 
J 
= r J 

nd w e S 
J 
= d J ). Although LET is originally limited to a single ECU, Ernst et al. [ 12 ] provide a

eneralization to the interconnected ECU setup. If we utilize LET in the following, we consider

nly feasible schedules, in which each job finishes before its deadline, i.e., f S 
J 
≤ d J for all jobs J 

n S. Note that these two approaches provide a tradeoff: While implicit communication leads to

horter latencies, LET provides timing determinism [ 19 ]. 

We assume that the following (not very restrictive) requirements are met: 

—The read- and write-events of the jobs of each task τ ∈ T are ordered in the sense that

r e S 
τ (m) 
< r e S 

τ (m+1 ) 
, w e S 

τ (m) 
< w e S 

τ (m+1 ) 
, and re S 

τ (m) 
≤ w e S 

τ (m) 
for all m ∈ N . 

—The sets { re S 
τ (m) 
|m ∈ N} and { w e S 

τ (m) 
|m ∈ N} have no accumulation point, i.e., in each

bounded time interval there are only finitely many read- and write-events. 

We note that the above properties are fulfilled if we consider the most common task models;

hat is, periodic or sporadic tasks together with LET or implicit job communication. 

We assume systems are composed of multiple ECUs. The communication infrastructure between

ifferent ECUs is modeled by additional communication tasks τ c . Those are usual tasks in the sense

f Section 2.1 , where each job has the purpose of transferring data between ECUs. More specif-

cally, jobs released by communication tasks read data from a shared resource of one ECU and

rite it to a shared resource of another ECU. We assume that the communication tasks are exe-

uted on dedicated components and do not impair the job execution of the non-communication

asks. For notational convenience, those dedicated components are treated as communication

CUs. This abstraction is valid for common inter-communication infrastructures like CAN [ 8 ] or

lexRay [ 14 ]. 

.3 Cause-effect Chains 

 cause-effect chain E = (τ1 → · · · → τk ) describes the path of data through different programs by a

nite sequence of tasks τi ∈ T . For example, if task τ1 uses data provided by τ3 , then E = (τ3 → τ1 ).
he task order in a cause-effect chain is not necessarily identical with the order given by the

cheduling algorithm, i.e., a task may consume data produced by a lower-priority task. We denote

y | E | the number of tasks in E, where |E | ≥ 1 . Moreover, for m ∈ {1 , . . . , | E | }, E (m) denotes the

th task of the cause-effect chain E. For example, let E = (τ4 → τ5 → τ1 ), then |E | = 3 , E (1 ) =

4 , E (2 ) = τ5 , and E (3 ) = τ1 . We note that cause-effect chains are inspired by event-chains of the

UTOSAR Timing Extensions [ 1 ], which represent chains of more general functional dependency.

To obtain data for the first task in a cause-effect chain, data may need to be sampled . We assume

n implicit sampling rate, where the sampling for a cause-effect chain E happens at the read-event

f each job of E (1 ). Nevertheless, we can easily model any kind of sampling by adding sampling
asks to the system which read and write data at the time the sampling happens. Please note that the

ead- and write-events of the jobs of the sampling tasks need to fulfill the requirements assumed

n the previous subsection. Such sampling tasks can usually be modeled as a task assigned to an

dditional ECU or as a task with WCET of 0, which means they do not affect the schedule S. 

We consider two types of cause-effect chains. Local cause-effect chains only contain tasks on a

ingle ECU (with synchronized clock). The tasks of interconnected cause-effect chains are spread

mong multiple ECUs. These ECUs may either be synchronized or asynchronized , i.e., they have

ynchronized or asynchronized clocks. We note that the definitions in Section 4 are valid for all

inds of cause-effect chains; the distinction is only necessary for the analysis in Section 5 . 
CM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 63. Publication date: July 2023. 
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.4 Job Chains 

he concept of job chains is essential to determine MRT and MDA. We adapt the definition from

ürr et al. [ 11 ] to our model with read- and write-events. Let E and S be a cause-effect chain and

 schedule for T , respectively. 

Definition 1 (Job Chain). A job chain of E for S is a sequence c E,S = (J 1 , . . . , J |E | ) of data-

ependent jobs of tasks in T with the following properties: 

— J i is a job of E (i ) for all i ∈ {1 , . . . , | E | }. 
—Data is read by J i+1 after it is written by J i in the schedule S, i.e., we J i ≤ re J i+1 for all

i ∈ { 1 , . . . , |E | − 1 } . 

ike Dürr et al. [ 11 ], we consider two types of job chains, namely, forward and backward job

hains. 

Definition 2 (Immediate Forward Job Chain). An immediate forward job chain is a job chain c E,S =
(J 1 , . . . , J |E | ) where for all i ∈ {1 , 2 , . . . , |E | − 1 } the read-event of the job J i+1 is the earliest after

he write-event of the job J i . That is, J i+1 = arg min J ∈E (i+1 ) ,r e J ≥we J i 
re J . 

Definition 3 (Immediate Backward Job Chain). An immediate backward job chain is a job chain

 

E,S = (J 1 , . . . , J |E | ) where for all i ∈ {| E | , | E | − 1 , . . . , 2 } the write-event of the job J i−1 is the last

efore the read-event of the job J i . That is, J i−1 = arg max J ∈E (i−1 ) ,we J ≤r e J i 
we J . 

If we consider the schedule from Figure 2 with E = (τ1 → τ2 ), then (τ1 (1 ), τ2 (1 ) ) , (τ1 (2 ) , τ2 (2 ) ) ,
nd ( τ1 ( 3 ), τ2 ( 2 ) ) are immediate forward job chains, while ( τ1 ( 1 ), τ2 ( 1 ) ) and ( τ1 ( 3 ), τ2 ( 2 ) ) are im-

ediate backward job chains. 

 PROBLEM DEFINITION 

n this article, we analyze the MRT and the MDA of distributed cause-effect chains E in GALS

ystems. We assume that the task set associated with each ECU as well as communication tasks

etween the ECUs are given. 

—Input: Some (interconnected) cause-effect chain E. 

—Output: An upper bound on the MRT and an upper bound on the MDA of E. 

To solve this problem, we (1) provide a local analysis in Section 5.1 under implicit communica-

ion policy, and (2) extend the analysis to several ECUs in Section 5.2 . 

 MAXIMUM REACTION TIME AND MAXIMUM DATA AGE 

his article presents an end-to-end timing analysis based on cause-effect chains, i.e., the time

nterval between the occurrence of a cause (external activity or sampling a sensor value) and a

ecognizable effect (finish processing the data or movement of an actuator) is determined. Such

n end-to-end timing analysis guarantees the correct functionality of safety critical tasks within a

iven time frame. For control engineering, the MRT (How long does it take until an external cause

s processed?) and the MDA (How old is the data used in an actuation?) of a cause-effect chain are

f special interest. 

.1 Augmented Job Chains 

et E be a cause-effect chain and let S be a schedule for the task set T . Data movement through

he schedule S following the dependencies of E can be captured by a sequence of events from

n external activity to actuation as shown in Figure 3 : The (change of) data is the result of some
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 63. Publication date: July 2023. 
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Fig. 3. Chain of events to trace one data stream of E. 
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xternal activity and is fed into the system by sampling . By our assumption in Section 2.3 , the

ampling coincides with the read-event of a job of the first task E (1 ). When the first job in the

equence of events finishes execution, it writes the data to a shared resource. Afterward, the second

ob reads the data from that shared resource, processes it, and writes it again to a shared resource

or the next task, and so on. When the last job in the sequence writes to a shared resource, the data

s completely processed by the system. After that, an actuation can happen based on that data. 

MDA and MRT are defined by Dürr et al. [ 11 ] using backward and forward job chains, respec-

ively. In fact, job chains describe only the data stream from sampling until the data is processed.

n this article, we cover the whole data stream by adding events for external activity and actuation.

e call such extended job chains augmented job chains . 

Definition 4 (Augmented Job Chain). An augmented job chain of E for schedule S is a sequence

 

E,S = (z, J 1 , . . . , J |E | , z 
′ ), where (J 1 , . . . , J |E | ) is a job chain, and z ≤ re J 1 and z ′ ≥ we J |E | are time

nstants of an external activity and an actuation, respectively. 

We denote by c E,S (k ) the kth entry of the augmented job chain c E,S . To be precise, c E,S (1 ) =
 , c E,S ( |E | + 2 ) = z ′ , and c E,S (k ) = J k−1 for 2 ≤ k ≤ |E | + 1 . To describe the time from external

ctivity to actuation for one data stream, we define the length �(c E,S ) of an augmented job chain

 

E,S as 

�(c E,S ) : = c E,S ( |E | + 2 ) − c E,S (1 ) = z ′ − z. (1)

n the following we omit the indices S and E of job chains if they are clear in the context. 

The MRT bounds the time from external activity to the instant where data is completely pro-

essed by the system. We omit the time between the processed-event and actuation, by only consid-

ring augmented job chains where the actuation is the time of the processed-event, i.e., z ′ = we J |E | .
he longest time from external activity to sampling occurs if the external activity takes place di-

ectly after the previous sampling event. Hence, we construct immediate forward augmented job
hains , to determine the MRT, in the following way: 

Definition 5 (Immediate Forward Augmented Job Chain). An immediate forward augmented job

hain � c E,S m 

is the unique augmented job chain (z, J 1 , . . . , J |E | , z 
′ ), such that: 

—The external activity happens directly after the mth sampling, i.e., z = re E (1 ) (m) . 

—The sampling happens at the next read-event of E (1 ), i.e., J 1 = E ( 1 ) ( m + 1 ). 
—The sequence (J 1 , . . . , J E ) is an immediate forward job chain for E in S. 

—The actuation is set to the time where the data is processed, i.e., z ′ = we J |E | . 

For each m ∈ N there is an immediate forward augmented job chain. Comparing them, as done

n the next subsection, yields the definition of MRT. 

On the other hand, the MDA bounds the time from the sampling of data to an actuation based

n that sampling. In the worst case, the actuation based on the data processed at a certain time

appens directly before the next processed-event. 

Definition 6 (Immediate Backward Augmented Job Chain). An immediate backward augmented

ob chain � c E,S m 

is the unique augmented job chain (z, J 1 , . . . , J |E | , z 
′ ), such that: 
CM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 63. Publication date: July 2023. 
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Fig. 4. An example of backward augmented job chains under implicit communication. The cause-effect chain 

under analysis is E = (τ1 → τ2 ). 
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—The actuation happens directly before the mth processed-event, i.e., z ′ = we E ( |E |) (m) . 

—The processed-event happens at the previous write-event of E ( |E |), i.e., J |E | = E ( |E |)
(m − 1 ). 

—The sequence (J 1 , . . . , J E ) is an immediate backward job chain for E in S. 

—The external activity is set to the time where the data is sampled, i.e., z = re J 1 . 

Please note that there is not necessarily an immediate backward augmented job chain for all

 ∈ N . We call such chains incomplete backward augmented job chains . As no data is read for an

ncomplete backward augmented job chain, it is ignored when analyzing the data age. For brevity,

he length of incomplete augmented job chains is set to 0. 

Example 7 (Backward Augmented Job Chain Determination). Figure 4 shows a single ECU sched-

le with two periodic tasks τ1 = (C 

u 
τ1 
= 1 , C 

� 
τ1 
= 1 , T τ1 = 5 , ϕτ1 = 1 ) and τ2 = (C 

u 
τ2 
= 1 , C 

� 
τ2 
= 1 , T τ2 =

 , ϕτ2 = 0 ). We assume implicit job communication, i.e., data is read at the start of each job and

ritten at the finishing time of each job. The determination of the direct backward augmented job

hain for � c 5 of cause-effect chain E = (τ1 → τ2 ) starts with 5-th write-event of the last task in the

ause-effect chain at time 13. The backward job chain included in � c 5 is (J 1 ,2 , J 2 ,4 ), and sampling is

et to 6, which is the read-event of J 1 ,2 . This leads to � c 5 = (6 , J 1 ,2 , J 2 ,4 , 13 ). Similar to the described

rocedure, � c 4 and � c 3 are determined. A special case occurs if we consider � c 1 or � c 2 . The immediate

ackward augmented job chain � c 1 is incomplete, since there is no write-event of a job of τ2 before

e J 2 ,1 = 1 . Moreover, � c 2 is incomplete as well since there is no immediate backward job chain with

he second entry J 2 ,1 . 

We note that immediate forward augmented job chains and immediate backward augmented job

hains are already uniquely determined by their corresponding job chain. The auxiliary entries for

xternal activity and actuation are included for the simplicity of calculations. 

.2 Definition of MRT and MDA 

et E be a cause-effect chain and let S be a schedule with task set T . With respect to Figure 3 , 

—reaction time is the time from an external activity until the data is processed, and 

—data age is the time from a sampling of data to actuation based on that data. 

We note that our definition differs from other definitions in the literature. For example, the

ata age definition by Dürr et al. [ 11 ] (denoted as the maximum reduced data age in this article)

nly covers the time until the data is processed. Our definition of MDA is necessary to obtain a

ompositional property in Section 4.3 ; that is, our definition ensures that the MDA of a cause-effect

hain E is the sum of the MDA of the segments of E. However, in Section 6 , we explain how the

ompositional property and local analysis can be applied to the reduced data age as well. 
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 63. Publication date: July 2023. 
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Fig. 5. Under implicit communication, the second task has slightly shifted read-event. 
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Similar to [ 11 ], we could define MRT (data age) as the supremum of the length of all immediate

orward (backward) augmented job chains. However, due to shifting of the first read-event, e.g.,

nduced by phases, the reaction time might become arbitrarily large: 

Example 8 We consider a task set T = {τ1 , τ2 } with cause-effect chain E = (τ1 → τ2 ) and re τ1 (1 ) =

 , re τ2 (1 ) = x . The immediate forward augmented job chain � c E,S 1 has a length of at least x . 

A solution to avoid this counterintuitive behavior is to only consider immediate forward (back-

ard) augmented job chains c E,S which start when all relevant tasks are in the system, i.e., 

c E,S ( 1 ) ≥ Re ( E, S) : = max 

i= 1 , . . . , |E | 
re S 

E (i ) (1 ) . (2)

his is similar to the (implicit) assumption by Dürr et al. [ 11 ] to measure MRT and data age only

hen all tasks are already in the system. However, due to this assumption, a slight shift of only

ne read-event might exclude multiple augmented job chains from consideration: 

Example 9. For the schedule from Figure 5 , if the jobs adhere implicit communication, the read-

vent of the first job of τ2 is slightly shifted. With the approach from Equation ( 2 ), for a cause-

ffect chain E (τ1 → τ2 ) only augmented job chains c with c (1 ) ≥ 12 would be considered, although

  1 , � c 2 , � c 3 , � c 4 , and � c 5 should be included. 

Hence, we only consider augmented job chains c E,S , if all tasks have their first read-event until

he next read-event of E (1 ) after c E,S (1 ). We call these augmented job chains valid . 

Definition 10 (Valid). Let c E,S = (z, J 1 , . . . , J |E | , z 
′ ) be some immediate forward or immediate

ackward augmented job chain for the cause-effect chain E in the schedule S. Let p ∈ N , such that

 = re E (1 ) (p ) holds. We call c E,S valid if and only if re E (1 ) (p+1 ) > Re (E, S). 

We are now prepared to define the MRT and MDA. 

Definition 11 (MRT and Data Age). For a cause-effect chain E with schedule S we define the

chedule-specific MRT and MDA by 

MRT (E, S) : = sup 

{ 
� 
(
� c E,S m 

) ���m ∈ N , � c E,S m 

valid 

} 
, (3)

MDA (E, S) : = sup 

{ 
� 
(
� c E,S m 

) ���m ∈ N, � c E,S m 

valid 

} 
, (4)

here the length � of an event-chain is defined as in Equation ( 1 ). 

Please note that this definition holds for all types of task sets and communication policies since

he critical part is offloaded to the determination of the read- and write-events. 

We also formulate a definition for MRT and data age which is not bounded to a specific schedule.

f the procedure to pull job releases and execution times from a task set is specified, e.g., the

ask sets are periodic or sporadic, and if the scheduling algorithm is known beforehand, then

his characterizes all possible schedules. Additionally, if the read- and write-events are uniquely
CM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 63. Publication date: July 2023. 
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etermined by the schedule, e.g., by following implicit communication or LET, then we define the

verall MRT and MDA 

MRT (E) : = sup 

S 
MRT (E, S), (5)

MDA (E) : = sup 

S 
MDA (E, S), (6)

y the supremum over all possible schedules S. Furthermore, if the scheduling algorithm is deter-

inistic, then there is a one-to-one mapping between the set of job collections J C (T ) and the set

f schedules. In this case, the MRT and MDA can be formulated as 

MRT ( E) = sup 

jc ∈JC (T ) 

MRT ( E, S ( jc ) ) , (7)

MDA ( E) = sup 

jc ∈JC (T ) 

MDA ( E, S ( jc ) ) . (8)

In their Theorem 6.2, Dürr et al. [ 11 ] prove that the data age is bounded by the reaction time for

heir system model. We note that even for this generalized definition 

MDA ( E, S) ≤ MRT ( E, S) (9)

holds for all possible schedules S: Let � c E,S m 

with m ∈ N be some valid immediate backward aug-

ented job chain. Furthermore, let p ∈ N such that � c E,S m 

(1 ) coincides with the read-event of the

th job of task E (1 ), that is, � c E,S m 

(1 ) = re E (1 ) (p ) . Similar to the proof of Theorem 6.2 in [ 11 ] we show

hat 

� 
(
� c E,S m 

)
≤ � 
(
� c E,S p 

)
, (10)

which is clearly upper bounded by the reaction time. Applying the supremum over all valid imme-

iate backward job chains concludes the result. We note that also MDA ( E) ≤ MRT ( E) holds since

quation ( 9 ) holds for all possible schedules S. 

.3 Cutting of Augmented Job Chains 

ne essential ingredient to apply a local analysis to the interconnected case in Section 5.2 is to

ut the cause-effect chain into smaller (local) parts. Our definition of MRT and MDA enables the

ossibility to deduce upper bounds by determining MRT and MDA on the smaller segments, re-

pectively. In this section, we prove that this compositional property holds for any task or com-

unication model. 

Theorem 12 (Cutting). Let E = (τ1 → · · · → τ |E | ) be any cause-effect chain. Furthermore, let k ∈
1 , . . . , |E | − 1 } be some integer. For the cause-effect chains E 1 : = (τ1 → · · · → τk ) and E 2 : = (τk+1 →
· · → τ |E | ) holds that 

MRT ( E, S) ≤ MRT ( E 1 , S) +MRT ( E 2 , S), (11)

MDA ( E, S) ≤ MDA ( E 1 , S) +MDA ( E 2 , S), (12)

or any schedule S. 

The proof of the Cutting-Theorem relies on cutting immediate forward (backward) augmented

ob chains into smaller immediate forward (backward) augmented job chains, such that their com-

ined length is at least the length of the initial immediate forward (backward) augmented job

hain. Figure 6 shows the concept for immediate backward augmented job chains, assuming that
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 63. Publication date: July 2023. 
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Fig. 6. Cutting one immediate backward augmented job chain � c E,S m 

into two as in the proof of Theorem 12 
(Cutting). 
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obs adhere implicit communication. We see that � ( � c E,S m 

) ≤ � ( � c E 1 ,S q+1 ) + � ( � c E 2 ,S m 

). The jobs in the se-

uence of � c E,S m 

, marked with the pattern, are distributed among � c E 1 ,S q+1 and � c E 2 ,S m 

. Only the events

or external activity and actuation have to be determined properly. 

Proof of Theorem 12 (Cutting). We first prove Equation ( 12 ). By definition, MDA (E, S) is
he supremum of the length of all valid immediate backward augmented job chains. We consider

ome valid immediate backward augmented job chain � c E,S m 

= (re J 1 , J 1 , . . . , J |E | , z 
′ ) with m ∈ N .

et q ∈ N , such that J k is the qth write-event of task E (k ), i.e., E ( k ) ( q) = J k . This scenario is de-

icted in Figure 6 . By the definition of immediate backward augmented job chains, the write-

vent of E ( k ) ( q + 1 ) occurs after the read-event of J k+1 , i.e., ˜ z ′ : = we E (k ) (q+1 ) > re J k+1 
. Further-

ore, (re J 1 , J 1 , . . . , J k , ˜ z 
′ ) = � c E 1 ,S q+1 and (re J k+1 

, J k+1 , . . . , J |E | , z 
′ ) = � c E 2 ,S m 

are immediate backward

ugmented job chains. They are both valid since r e J k+1 
≥ r e J 1 and since � c E,S m 

is valid. We obtain 

 

(
� c E,S m 

)
= z ′ − re J 1 ≤ z ′ − r e J k+1 

+ ˜ z ′ − r e J 1 = � 
(
� c E 1 ,S q+1 

)
+ � 
(
� c E 2 ,S m 

)
≤ MDA ( E 1 , S) +MDA ( E 2 , S).

pplying the supremum yields the result from Equation ( 12 ). 

Analogously, we prove Equation ( 11 ). By definition, MRT (E, S) is the supremum of the length of

ll valid immediate forward augmented job chains. Let � c E,S m 

= (z, J 1 , . . . , J |E | , we J |E | ) with m ∈ N 

e some valid immediate forward augmented job chain. Furthermore, let p ∈ N such that J k+1 

s the p-th job of E (k + 1 ), i.e., J k+1 = E (k + 1 ) (p) . By definition of immediate forward aug-

ented job chains, the read-event of E ( k + 1 ) ( p − 1 ) occurs before the write-event of J k , i.e.,

˜  : = re E (k+1 ) (p−1 ) < we J k . 
Since it is not clear directly, we shortly discuss the existence of the job E ( k + 1 ) ( p − 1 ). We know

hat E ( k + 1 ) ( p) exists, i.e., p ∈ N . It remains to show that p � 1 . We know that, by definition of

n immediate forward augmented job chain, r e E (k+1 ) (p ) ≥ r e J 1 > Re (E, S) since � c ES m 

is valid. If p
ould be 1, then Re (E, S) ≥ re E (k+1 ) (p ) which contradicts re E (k+1 ) (p ) > Re (E, S). This proves the

xistence of E ( k + 1 ) ( p − 1 ). 
With the definition of ˜ z from above, we define two immediate forward augmented job chains

z, J 1 , . . . , J k , we J k ) = � c 
E 1 ,S 
m 

and ( ̃  z , J k+1 , . . . , J |E | , we J |E | ) = � c 
E 2 ,S 
p−1 . The augmented job chain � c E 1 ,S m 

is

alid since the start coincides with the one of � c E,S m 

and since Re ( E, S) ≥ Re ( E 1 , S). The augmented

ob chain � c E 2 ,S p−1 is also valid since r e E (k+1 ) (p ) ≥ r e J 1 > Re ( E, S) ≥ Re ( E 2 , S). Hence, 

� 
(
� c E,S m 

)
= w e J |E | − z ≤ w e J |E | − ˜ z +w e J k − z = � 

(
� c E 1 ,S m 

)
+ � 
(
� c E 2 ,S p−1 

)
≤ MRT ( E 1 , S) +MRT ( E 2 , S). 

pplying the supremum yields the result from Equation ( 11 ). �
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Fig. 7. Two schedules of jobs released periodically by 3 tasks. For E = (τ1 → τ3 ), early completion of the first 
job of τ2 leads to a larger immediate forward augmented job chain. 
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Since Equations ( 11 ) and ( 12 ) hold for all schedules S, the Cutting-Theorem does also hold for the

verall MRT and overall MDA, i.e., MRT ( E) ≤ MRT ( E 1 ) +MRT ( E 2 ) and MDA ( E) ≤ MDA ( E 1 ) +
DA (E 2 ). This compositional property can deal with clock-shifts by cutting at those positions

here clock shifts occur. 

 ANALYSIS OF END-TO-END LATENCIES OF PERIODIC TASKS 

n this section, we assume that the tasks on each ECU are scheduled according to preemptive fixed-

riority scheduling. That is, on each ECU the tasks have a static priority-ordering and at each time

he pending job of the task with the highest priority is executed. Our objective is to determine the

RT and the MDA of such systems. 

Consider a schedule S of a periodic task system T and a cause-effect chain E of T . If a recurrent

attern of the read- and write-events in S can be observed, then it suffices to analyze a limited

ime window to compute MRT and MDA. The way to achieve a recurrent pattern of read- and

rite-events depends on the communication policy. 

For LET , the release pattern of all jobs repeats each hyperperiod after the maximal phase Φ : =

ax τ ϕτ . Therefore, the read- and write-events repeat each hyperperiod after the maximal first

ead, which is at the maximal phase Φ, as well. Furthermore, all immediate forward and immediate

ackward augmented job chains with external activity at or after Φ are valid. In this case, it suffices

o simulate all immediate backward and immediate forward augmented job chains with event for

xternal activity during [0 , Φ + H ) and compute the maximum value among the length of all those

alid augmented job chains. Kordon and Tang [ 24 ] compute the MDA on single ECU systems

fficiently for LET, using this procedure as a backbone. 

For implicit communication , the read- and write-events depend significantly on the execu-

ion time of the jobs under analysis. Furthermore, the read- and write-events might change when

dditional tasks are released. Due to this behavior, the pattern of read- and write-events in S does

ot repeat after Φ + H . However, in Section 5.1.1 we show that the pattern of minimal and max-

mal read- and write-events for each job repeats after Φ + 2 H , and that it can be determined by

imulating the schedule with the worst-case and with the best-case execution time in a bounded

nterval. This information can then be exploited to obtain an upper bound on the MDA and MRT.

lease note that it is not sufficient to simulate the MDA and the MRT for the job collection where

ach job executes the WCET, as depicted in Figure 7 . The remaining part of this section considers

mplicit communication. 

.1 Local Analysis 

e assume that the cause-effect chain E under analysis is local, i.e., it contains only tasks on

ne (synchronized) ECU. Moreover, the tasks adhere to the implicit communication policy and
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ll schedules are obtained by a fixed-priority preemptive scheduling algorithm with fixed task

riorities. For the sake of simplicity, we consider T to contain only tasks from one ECU as well, as

he tasks from other ECUs have no impact on the scheduling behavior of the tasks on that ECU. 

In the conference version [ 18 ] of this manuscript, the local analysis is achieved by enumerating

ossible immediate backward and forward augmented job chains, assuming a fixed execution time

or each periodic task, i.e., the WCET is the same as the BCET. Our new analysis is applicable for

ore general cases, in which the execution time of a task can be any value between its best-case

nd worst-case execution time. It requires three steps: 

(1) We calculate upper and lower bounds for both the read- and write-events of each job by

simulating the schedule two times, once with the tasks WCETs and once with the BCETs.

(2) Based on these upper and lower bounds, we bound the length of all immediate forward

and immediate backward augmented job chains. 

(3) We bound the MDA and the MRT. 

n addition to the generality provided in the analysis, we also show in Corollary 29 that our new

nalysis remains exact for the special scenario discussed in the conference version [ 18 ]. 

5.1.1 Step 1: Obtain Bounds for Read- and Write-events. Since under implicit communication

he read- and write-events coincide with start and finish of the jobs, it is sufficient to examine

hose. Intuitively if the execution time of any job is increased, the interference on the other jobs

oes not decrease, and therefore the start and finish of all jobs cannot be decreased as well. Hence,

he latest (earliest, respectively) start and finish of a job are achieved if all jobs execute their worst-

ase (best-case, respectively) execution time. Formally, we state the following two Propositions and

efer for a rigorous proof to Appendix A . 

Proposition 13. Let jc max be the job collection of a set T of periodic tasks where all jobs execute
ccording to their WCET. Consider the mth job J = τ (m, jc max ) of a task τ ∈ T in the job collection
c max . Then, for the preemptive fixed-priority schedule S (jc max ), the starting time and finishing
ime of J in S (jc max ) are upper bounds on the starting time and finishing time of the mth job
f τ for any job collection, respectively. That is, for any other job collection jc ∈ J C (T ), we have

 

S (jc max ) 
J 

≥ s S (jc ) 
τ (m, jc ) 

and f S (jc max ) 
J 

≥ f S (jc ) 
τ (m, jc ) 

. 

Proposition 14. Let jc min be the job collection of a set T of periodic tasks where all jobs execute
ccording to their BCET. Consider the mth job J = τ (m, jc min ) of a task τ ∈ T in the job collection
c min . Then, for the preemptive fixed-priority schedule S (jc min ), the starting time and finishing time
f J in S (jc min ) are lower bounds on the starting time and finishing time of the mth job of τ for

ny job collection, respectively. That is, for any other job collection jc ∈ J C (T ), we have s S (jc min ) 
J 

≤
 

S (jc ) 
τ (m, jc ) 

and f S (jc min ) 
J 

≤ f S (jc ) 
τ (m, jc ) 

. 

Under implicit communication, the starting time and the finishing time coincide with the read-

nd write-events. Hence, the lower and upper bounds for starting time and finishing time from

ropositions 13 and 14 are lower and upper bounds for the read- and write-events as well. We

onclude that for each job we can provide upper and lower bounds for the read- and write-events

y simulating the schedule two times until the job finishes: Once when all jobs execute their WCET

nd once when all jobs execute their BCET. 

Since for each task, there are infinitely many jobs, we cannot simulate the schedule for each job

ndividually. Therefore, in the following, we show that it is sufficient to simulate the schedule for

 finite time window since the release pattern repeats. The following considerations are based on

he work of Leung and Whitehead [ 26 ]. Their proofs cannot be used directly, since they create a
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ew schedule (they call it a partial schedule) and show that this one repeats. We need to show that

ven the original schedule repeats. 

In the following, let S ′ be the fixed-priority schedule of the task set T = { τ1 , . . . , τn } on one

CU where either the execution of all jobs is fixed to their worst-case, i.e., S ′ = S (jc max ), or the

xecution of all jobs is fixed to their best-case, i.e., S ′ = S (jc min ). We denote by C 1 , . . . , C n the

xed execution times of all jobs of the tasks τ1 , . . . , τn . Without loss of generality, we assume that

he tasks’ indices are assigned according to their priority, i.e., τi has a higher priority than τj if

nd only if i < j. For a time instant t , we denote by e xe c (S ′ , t ) the tuple (s 1 ,t , . . . , s n,t ) where each

 i,t is the amount of time that jobs of τi have been executed since their last release. Similar to the

roof of Leung and Whitehead [ 26 , Lemma 3.3], we show the following. 

Lemma 15. For all t ≥ Φ the relation e xe c (S ′ , t ) ≥ e xe c (S ′ , t + H ) (component-wise) holds. 

Proof. For a proof by contradiction, we assume that there are some t ≥ Φ and i ∈ {1 , . . . , n}
uch that s i,t < s i,t+H 

. We show that in this case infinitely many tasks τj have a time instant 

t j ≥ ϕτj 
with s j,t j < s j,t j +H 

. (13)

This contradicts the fact that T is finite. 

By assumption, there is at least one task with the property from Equation ( 13 ). Assume there

re only finitely many tasks with this property and let τj be the one of them with the highest

riority. Since s j,t j < s j,t j +H 

, there exists some t ′ ∈ [ ϕτj 
, t j ] , where τj is not executing at time t ′

ut at t ′ + H . Hence, there is some higher priority task τj ′ which executes during t ′ but not during

 

′ + H , i.e., s j ′ ,t ′ < s j ′ ,t ′ +H 

= C j ′ since all jobs of task τj ′ have the same execution time. Since τj ′ 

xecutes during t ′ , we know that ϕτj ′ ≤ t ′ . This contradicts the assumption that τj is the highest

riority task with the property from Equation ( 13 ). �

Furthermore, similar to Leung and Whitehead [ 26 , Lemma 3.4], we use the preceding lemma to

how that the schedule repeats after Φ + 2 H ; that is, the schedule in the interval [ Φ + H , Φ + 2 H )
oincides with the one in [ Φ + 2 H , Φ + 3 H ), [ Φ + 3 H , Φ + 4 H ), and so on. We only utilize that the

otal utilization U T 

= 
∑ 

τ ∈T 

C τ

T τ
of the system is at most 1, as assumed in Section 2 . 

Lemma 16. When U T 

≤ 1 , then e xe c (S ′ , t ) = e xe c (S ′ , t + H ) holds for all t ≥ Φ + H . 

Proof. We assume that there is some t ≥ Φ + H with e xe c (S ′ , t ) � e xe c (S ′ , t + H ). Then, by

emma 15 , there is some index j with s j,t > s j,t+H 

. There are two cases. Either, (a) the ECU idles

t some time instant t ′ ∈ [ t , t + H ] , or (b) the ECU is busy during the interval [ t , t + H ] . 

For (a), by Lemma 15 , e xe c ( S ′ , t ′ ) = ( C 1 , . . . , C n ) ≤ e xe c (S ′ , t ′ − H ), i.e., the ECU also idles at

ime t ′ − H . Since the job releases are the same, the schedule coincides in the intervals [ t ′ − H , t]
nd [ t ′ , t + H ] . Hence, e xe c (S ′ , t ) = e xe c (S ′ , t + H ). 

For (b), since s j,t > s j,t+H 

and s i,t ≥ s i,t+H 

for all i , by Lemma 15 , there is more remaining work-

oad by jobs in the ready queue at time t than at time t + H . We conclude that there was more

orkload released during (t , t + H ] than could be executed by the ECU. Since the ECU did not idle

etween t and t + H , this means that 
∑ n 

i= 1 C i 
H 

T τi 
> H , which contradicts 

∑ n 
i= 1 

C τi 

T τi 
≤ 1 . �

Based on Lemma 16 , the schedule repeats after Φ + 2 H . More precisely, the starting time and fin-

shing time of any mth job J = τ (m, jc max ) of τ ∈ T for the schedule obtained by the job collection

c max that is released not before Φ + 2 H can be recursively computed using the formulas: 

—s S (jc max ) 
J 

= s S (jc max ) 

τ (m− H 

T k 
, jc max ) 

+ H

— f S (jc max ) 
J 

= f S (jc max ) 

τ (m− H 

T k 
, jc max ) 

+ H
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 63. Publication date: July 2023. 



63:16 M. Günzel et al. 

S  

s  

c

A  

t

 

a  

t  

r

 

w

 

 

 

 

f

 

o  

j  

w  

n  

a  

b

 

b  

I  

i  

r

A

imilarly, the starting time and finishing time of any mth job J = τ (m, jc min ) of τ ∈ T for the

chedule obtained by the job collection jc min that is released not before Φ + 2 H can be recursively

omputed using the formulas: 

—s S (jc min ) 
J 

= s S (jc min ) 

τ (m− H 

T k 
, jc min ) 

+ H

— f S (jc min ) 
J 

= f S (jc min ) 

τ (m− H 

T k 
, jc min ) 

+ H

s a result, for our settings with jc min and jc max it is sufficient to generate a schedule until all jobs

hat are released before Φ + 2 H are finished. 

In particular, the results from the previous propositions and the fact that read- and write-events

re set to the starting time and finishing time enables us to provide upper and lower bounds for

he read- and write-events. Independent from the job collection, they are formulated by functions

 e min , r e max , w e min , w e max : T ×N → R as follows: 

Definition 17 ( r e min , r e max , w e min , w e max ). For a task set T , we denote by r e min , r e max , w e min ,
 e max functions T ×N → R . Let τ ∈ T and m ∈ N . We define: 

—r e min (τ , m) = s S (jc min ) 
τ (m, jc min ) 

and r e max (τ , m) = s S (jc max ) 
τ (m, jc max ) 

—w e min (τ , m) = f S (jc min ) 
τ (m, jc min ) 

and w e max (τ , m) = f S (jc max ) 
τ (m, jc max ) 

The values of the functions from Definition 17 at any (τ , m) ∈ T ×N are constructed as follows:

(1) We conduct two fixed-priority preemptive schedules, one for jc min and one for jc max , until

all jobs released before Φ + 2 H are finished. 

(2) If ϕτ +m ·T τ < Φ + 2 H , then the values of starting time and finishing time are directly

taken from the corresponding schedules. 

(3) If ϕτ +m ·T τ ≥ Φ + 2 H , then we calculate the read- and write-events recursively as de-

scribed after Lemma 16 and set the values accordingly. 

By the results from Propositions 13 and 14 , we obtain that 

—r e min (τ , m) ≤ re 
S (jc ) 
τ (m, jc ) 

≤ r e max (τ , m) and 

—w e min (τ , m) ≤ we 
S (jc ) 
τ (m, jc ) 

≤ w e max (τ , m)

or all tasks τ ∈ T , for all job collections jc ∈ J C (T ), and for all m ∈ N . 

5.1.2 Step 2: Bound Length of Augmented Job Chains. The fundamental step for the computation

f MRT and MDA is the construction of immediate forward and immediate backward augmented

ob chains, respectively. However, the jobs in those job chains are associated with a job collection

hereas our estimation targets to provide a bound independent of the job collection. Therefore, we

eed to replace the jobs in the chain with an integer indicating the job. To that end, we construct

bstract integer representations � I E i and 

� I E i , which estimate the immediate forward and immediate

ackward augmented job chains independent of the job chain under analysis. 

An abstract integer representation I ∈ N 

| E | +2 = (i 0 , . . . , i | E | +1 ) is an |E | + 2 tuple of natural num-

ers. Its purpose is to define an augmented job chain (z, J 1 , . . . , J |E | , z 
′ ) under any job collection.

n particular, z is always at the read-event of the i 0 th job of E (1 ), z ′ is at the write-event of the

 | E | +1 th job of E ( |E |) and J j is the i j th job of E (j ). More precisely, we say that an abstract integer

epresentation can be evaluated at a job collection jc by applying an evaluation function. 
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Fig. 8. Construction of � I E 1 = (1 , 2 , 2 , 2 ) for E = (τ1 → τ2 ). We assume that the read-event lower bound and 

write-event upper bound for each job are given and that τ2 has higher priority than τ1 . 
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Definition 18. For a given cause-effect chain E we define the evaluation function 

Eval E : 
⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

abstract integer 

representations 

for E 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 

× J C → 

{ 
augmented 

job chains 

} 

( I = ( i 0 , . . . , i | E | +1 ), jc ) �→ Eval E (I , jc ), 

here Eval E ( I , jc ) = ( z , J 1 , . . . , J |E | , z 
′ ) is the augmented job chain with z = re S (jc ) 

E (1 ) (i 0 , jc ) 
, z ′ =

e 
S (jc ) 
E ( |E |) (i | E | +1 ) 

, and J j = E ( i ) ( i j , jc ) for all j ∈ {1 , . . . , | E | }. 

In the following, we utilize the minimal and maximal read- and write-events determined in

ection 5.1.1 to construct � I E i and 

� I E i . Subsequently, we show that the evaluations Eval E ( � I 
E 
i , jc ) and

val E ( � I 
E 
i , jc ) are augmented job chains which are not smaller than � c E,S (jc ) 

i and � c E,S (jc ) 
i , respec-

ively. Therefore, the evaluations can be utilized to bind the MDA and MRT. 

Definition 19 (Construction of � I E i ). Let i ∈ N be a natural number. The abstract integer repre-

entation 

� I E i = (i 0 , . . . , i | E | +1 ) ∈ N 

| E | +2 is an ( |E | + 2 )-tuple with 

—i 0 = i and i 1 = i + 1 . 

—For j ∈ {2 , . . . , | E | } the entry i j is the smallest number in N such that 

(1) re min ( E ( j ), i j ) ≥ w e max ( E ( j − 1 ) , i j−1 ) , or 

(2) re min ( E ( j ), i j ) is no less than the i j−1 th release of E (j − 1 ) and E (j − 1 ) has higher

priority than E (j ). 

—i | E | +1 = i |E | . 

e define by �( � I E i ) : = w e max (E ( |E |), i | E | +1 
) − re min ( E (1 ), i 0 ) the length of the abstract integer

epresentation 

� I E i . 

Please note that i 1 represents the (i + 1 )-th job of E (1 ) and i 2 , . . . , i |E | are chosen such that the i j -
h job of E (j ) safely reads data after it was written by the i j−1 th job of E (j − 1 ) for all j = 2 , . . . , | E | .
urthermore, i 0 and i | E | +1 represent the read-event of the ith job of E (1 ) and the write-event of the

 |E | th job of E ( |E |), respectively. This description is similar to the description of immediate forward

ugmented job chains presented in Definition 5 . 

Example 20. Figure 8 shows how the abstract representation 

� I E 1 = (1 , 2 , 2 , 2 ) is constructed. The

rst entry is set to 1 due to the index of � I E 1 . The second entry is computed by 1 + 1 , which rep-

esents the second job of τ1 . The write-event upper bound of the second job of τ1 is lower than

he read-event of the second job of τ2 under any job collection, since the write-event upper bound
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 e max (τ1 , 2 ) = 7 , is no less than the read-event lower bound re max (τ2 , 2 ) = 7 . The last value of
 

 

E 
1 = (1 , 2 , 2 , 2 ) is simply repeated to account for the event for actuation. 

The abstract integer representation yields an upper bound on the immediate forward augmented

ob chains as stated in the following lemma. 

Lemma 21 (Forward Bound). Let � I E i = (i 0 , . . . , i | E | +1 ) be some abstract representation as specified
n Definition 19 . We have the following inequality 

� 
(
� c E,S (jc ) 

i 

)
≤ � 
(
Eval E 

(
� I E i , jc 

))
≤ � 
(
� I E i 

)
, (14)

or all job collections jc ∈ J C (T ). 

Proof. We first show that � ( � c E, jc i ) ≤ � ( Eval E ( � I E i , jc ) ) . In the following, we use the notation

  

E, jc 
i = (z, J 1 , . . . , J |E | , z 

′ ) and Eval E ( � I 
E 
i , jc ) = ( ̃  z , ˜ J 1 , . . . , ˜ J |E | , ˜ z 

′ ). Since the first entry of � I E i is i , we

now that ˜ z is at the read-event of the ith job of E (1 ). In addition, z is at the read-event of the ith
ob of E (1 ). Therefore, z = ˜ z . Moreover, J 1 and 

˜ J 1 are both the (i + 1 )-th job of E (1 ) and, therefore,

oincide as well. In the following we show that 

r J j ≤ r ˜ J j 
, (15)

or all j ∈ { 1 , . . . , |E | } by induction. For j = 1 , Equation ( 15 ) holds by the above discussion. Assume

quation ( 15 ) holds for j − 1 , then the write-event of J j−1 is no later than the write-event of ˜ J j−1 . By

efinition 19 , the job 

˜ J j reads data after it was written by 

˜ J j−1 . Therefore, ˜ J j reads data after it was

ritten by J j−1 as well. Since J j is the earliest job which reads data that was written by J j−1 , it must

e released not later than 

˜ J j , i.e., r J j ≤ r ˜ J j 
. This concludes the proof of Equation ( 15 ) by induction.

ince r J |E | ≤ r ˜ J |E | 
, J |E | writes data no earlier than 

˜ J |E | writes data, and ˜ z ′ ≥ z ′ . We conclude that

( � c E,S (jc ) 
i ) = (z ′ − z) ≤ ( ̃  z ′ − ˜ z ) = �(Eval E ( � I 

E 
i , jc ) ) . 

Next, we prove �( Eval E ( � I 
E 
i , jc )) ≤ �( � I E i ). Let � I E i = ( i 0 , . . . , i | E | +1 ). By Propositions 13 and 14 ,

e min ( E ( 1 ), i 0 ) ≤ re E (1 ) (i 0 , jc ) = z and w e max ( E ( | E | ), i | E | +1 ) ≥ we E ( |E |) (i | E | +1 , jc ) = z 
′ hold. We con-

lude that �( Eval E ( � I 
E 
i , jc )) = z ′ − z ≤ w e max ( E ( | E | ), i | E | +1 ) − re min ( E ( 1 ), i 0 ) = �( � I 

E 
i ). �

Now, we consider � I E i , constructed as follows. 

Definition 22 (Construction of � I E i ). Let i ∈ N be a natural number. The abstract integer repre-

entation 

� I E i = (i 0 , . . . , i | E | +1 ) ∈ N 

| E | +2 is a ( |E | + 2 )-tuple with: 

—i | E | +1 = i and i |E | = i − 1 . 

—For j ∈ {|E | − 1 , . . . , 1 } the entry i j is the highest number in N such that 

(1) re min ( E ( j + 1 ), i j+1 ) ≥ w e max ( E ( j ) , i j ) , or 

(2) E (j ) has higher priority than E (j + 1 ) and re min (E (j + 1 ), i j+1 ) is no earlier than

the release of the i j th job of E (j ). 

—i 0 = i 1 . 

e define by �( � I E i ) : = w e max ( E ( | E | ), i | E | +1 ) − re min ( E ( 1 ), i 0 ) the length of the abstract integer rep-

esentation 

� I E i . 

As for immediate backward augmented job chains, we call the abstract representation 

� I E i com-
lete , if it can be fully constructed. Otherwise, we call it incomplete . Note that this construction of
� 
 

E 
i is similar to the construction of immediate backward augmented job chains in Definition 6 . 
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By using the evaluation function specified in Definition 18 , we provide a bound for the immedi-

te backward augmented job chains as well. The only difference with respect to Lemma 21 is that

e have to exclude the incomplete representations. 

Lemma 23 (Backward Bound). Let � I E i = (i 0 , . . . , i | E | +1 ) be some complete abstract representation.

hen � c E, jc i is complete as well and we have the following inequality 

� 
(
� c E,S (jc ) 
i 

)
≤ � 
(
Eval E 

(
� I E i , jc 
))
≤ � 
(
� I E i 

)
, (16)

or all job collections jc of T . 

Proof. Let � I E i = (i 0 , . . . , i | E | +1 ) be complete. Moreover, let � c E,S (jc ) 
i = (z, J 1 , . . . , J |E | , z 

′ ) and

val E ( � I 
E 
i , jc ) = ( ̃  z , ˜ J 1 , . . . , ˜ J |E | , ˜ z 

′ ). We have z ′ = ˜ z ′ and J |E | = ˜ J |E | . Analogous to the proof of

emma 21 , we obtain r J j ≥ r ˜ J j 
for all j ∈ {| E | , . . . , 1 } inductively since we have we ˜ J j 

≤ re ˜ J j+1 
≤

e J j+1 and J j is the latest job which writes before re J j . In the end, we obtain z = re J 1 ≥ re ˜ J 1 
= ˜ z .

e conclude that �( � c E,S (jc ) 
i ) = z ′ − z ≤ ˜ z ′ − ˜ z = �( Eval E ( � I 

E 
i , jc ) ) . Please note that since for all j a

ob 

˜ J j exists which writes data before the read-event of J j−1 , the immediate backward job chain

�  
E,S (jc ) 
i can be fully constructed and is therefore complete. 

As in the proof of Lemma 21 , we observe that �( Eval E ( � I 
E 
i , jc )) = ˜ z ′ − ˜ z is upper bounded by

 e max ( E ( | E | ), i | E | +1 ) − re min ( E ( 1 ), i 0 ) = �( � I 
E 
i ). This concludes the proof of Equation ( 16 ). �

However, there may still be some immediate backward augmented job chains � c E,S (jc ) 
i which are

omplete but whose corresponding abstract representation 

� I E i is not. For those chains, we provide

n upper bound in the following. 

Lemma 24 (Second Backward Bound). Let i ∈ N be a natural number and let jc be some collec-

ion of jobs for T , such that the immediate backward augmented job chain � c E,S (jc ) 
i is complete. The

ength of � c E,S (jc ) 
i is upper bounded by 

� 
(
� c E,S (jc ) 
i 

)
≤ w e max ( E ( |E |), i ) − re min ( E (1 ), 1 ) = : B (i ). (17)

Proof. Let � c E,S (jc ) 
i = (z, J 1 , . . . , J |E | , z 

′ ). Then z ′ is at the write-event of the ith job of E ( |E |),
.e., z ′ ≤ w e max ( E ( | E | ) , i ) . Moreover, if � c E,S (jc ) 

i is complete, then the job J 1 of E (1 ) exists. The read-

vent of that job (which equals z) is no earlier than the read-event of the first job of E (1 ). Therefore,

 ≥ re min ( E ( 1 ) , 1 ) . We conclude �( � c E,S (jc ) 
i ) = z ′ − z ≤ w e max ( E ( | E | ), i ) − re min ( E ( 1 ) , 1 ) . �

5.1.3 Step 3: Provide End-To-End Latency. By Lemma 21 (respectively, Lemmas 23 and 24 ), the

omputation of MRT (respectively, MDA) is reduced to a construction of the abstract representa-

ions � I E i (respectively, � I E i ). As proven in Section 5.1.1 , the upper and lower bounds on the read-

nd write-events repeat each hyperperiod after Φ + 2 H . Therefore, the construction and also the

ength of the abstract integer representations � I E i and 

� I E i repeats as well and only a finite number of

hem has to be considered to provide a latency bound. The following two lemmas show that it is

ufficient to consider abstract integer representations where the job that is described by the first

ntry is released until Φ + 2 H . 

Lemma 25. Let � I E i = (i 0 , . . . , i | E | +1 ) be an abstract integer representation with ϕE (1 ) + (i 0 − 1 ) ·
 E (1 ) ≥ Φ + 2 H . There exists j ∈ N such that for � I E j = (j 0 , . . . , j | E | +1 ): 

—ϕE (1 ) + (j 0 − 1 )T E (1 ) ∈ [ Φ + H , Φ + 2 H )

—� ( � I E j ) = � ( 
� I E i )
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Proof. Since Z : = [ Φ + H , Φ + 2 H ) has length H and w : = ϕE (1 ) + (i 0 − 1 ) ·T E (1 ) is no less

han the right boundary of Z , there exists some ξ ∈ N such that w − ξ · H ∈ Z . We choose

 : = i − ξ · H 

T E (1 ) 
and consider � I E j . Since the maximal and minimal read- and write-events repeat each

yperperiod H , the underlying job sequence of � I E j is just the abstract representation of � I E i shifted

hyperperiods to the left. Therefore ϕE (1 ) + (j 0 − 1 ) ·T E (1 ) = w − ξ · H ∈ Z and � ( � I E j ) = � ( 
� I E i ). �

Please note that since for � I E i the first entry is i 0 = i , if i is increased, then i 0 is increased as well.

s a consequence, to find all i such that ϕE (1 ) + (i 0 − 1 )T E (1 ) < Φ + 2 H is fulfilled, it is sufficient to

onsider i = 1 , 2 , 3 , . . . and stop as soon as ϕE (1 ) + (i 0 − 1 )T E (1 ) ≥ Φ + 2 H . 

In a similar way, we formulate the lemma for � I E i . 

Lemma 26. Let � I E i = (i 0 , . . . , i | E | +1 ) be an abstract integer representation with ϕE (1 ) + (i 0 − 1 ) ·
 E (1 ) ≥ Φ + 2 H . There exists j ∈ N such that for � I E j = (j 0 , . . . , j | E | +1 ): 

—ϕE (1 ) + (j 0 − 1 )T E (1 ) ∈ [ Φ + H , Φ + 2 H ) 

—� 
(
� I E j 

)
= � 
(
� I E i 

)

Proof. The proof is analogous to the proof of Lemma 25 , except that j : = i − ξ · H 

T E ( |E |) 
. �

Please note that for � I E i the first entry is not necessarily i 0 = i . However, if i is increased, then

 0 is increased as well as proven in the following lemma. As a consequence, to find all i such that

E (1 ) + (i 0 − 1 )T E (1 ) < Φ + 2 H is fulfilled, it is sufficient to consider i = 1 , 2 , 3 , . . . and stop as soon

s ϕE (1 ) + (i 0 − 1 )T E (1 ) ≥ Φ + 2 H . 

Lemma 27. Let � I E i = (i 0 , . . . , i | E | +1 ) and 

� I E j = (j 0 , . . . , j | E | +1 ). If i ≤ j, then i 0 ≤ j 0 as well. 

Proof. It holds i | E | +1 = i ≤ j = j | E | +1 . Now we perform induction over k = | E | , . . . , 1 to show

hat i k ≤ j k . Since i k fulfills properties (1) and (2) in Definition 22 with respect to i k+1 , and

e min ( E ( k + 1 ), i k+1 ) ≤ re min ( E ( k + 1 ), j k+1 ) by induction, i k also fulfills properties (1) and (2) with

espect to j k+1 . Since j k is the maximal value that fulfills (1) and (2) with respect to j k+1 , it holds

 k ≤ j k . We conclude i 0 = i 1 ≤ j 1 = j 0 . �

Under the assumption that the read- and write-event upper and lower bounds as defined in

efinition 17 are computed for all jobs, we can construct � I E i and 

� I E i for all i = 1 , 2 , 3 , . . . until

E (1 ) + (j 0 − 1 )T E (1 ) ≥ Φ + 2 H . The abstract representations � I E i and 

� I E i provide an upper bound

n the length �( � c E,S (jc ) 
i ) of the corresponding immediate forward augmented job chain � c E,S (jc ) 

i 

nd on the length �( � c E,S (jc ) 
i ) of the corresponding immediate backward augmented job chains

�  
E,S (jc ) 
i by Lemmas 21 and 23 , respectively. By Lemmas 25 and 26 this finite number of abstract

epresentations is sufficient to bound the length of all immediate forward/backward augmented

ob chains. By taking the maximum max i �( � I 
E 
i ) and max i �( � I 

E 
i ) of the length of these finitely many

bstract representations, we obtain upper bounds on the maximum reaction time MRT (E) and

aximum data age MDA (E), namely, Equations ( 7 ) and ( 8 ), respectively. Please note that we need

o account for the complete � c E,S (jc ) 
i which do not have complete � I E i by Lemma 24 . 

Theorem 28 (Upper Bound for Implicit Communication). Let E be a cause-effect chain where

ll tasks are on one ECU and all tasks adhere to implicit communication. We denote by I f w the set

f all i ∈ N such that ϕE (1 ) + (i 0 − 1 )T E (1 ) < Φ + 2 H for � I E i = (i 0 , . . . , i | E | +1 ). Furthermore, we denote
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ALGORITHM 1 : MRT bound under implicit communication. 

1: Compute we max and re min by conducting concrete schedules. � After Definition 17 

2: I f w = { } , i 0 = 1 , i = 1 
3: while True do 

4: Construct � I i . � Definition 19 

5: i 0 : = first entry of � I i 
6: if ϕE (1 ) + (i 0 − 1 )T E (1 ) < Φ + 2 H then 

7: Add i to I f w . 

8: i = i + 1 

9: else 

10: break 

11: Compute upper bound from Equation ( 18 ). 

ALGORITHM 2 : MDA bound under implicit communication. 

1: Compute we max and re min by conducting concrete schedules. � After Definition 17 

2: I bw = { } , i 0 = 1 , i = 2 
3: while True do 

4: Construct � I i . � Definition 22 

5: i 0 : = first entry of � I i 
6: if ϕE (1 ) + (i 0 − 1 )T E (1 ) < Φ + 2 H then 

7: Add i to I bw . 

8: i = i + 1 

9: else 

10: break 

11: Compute upper bound from Equation ( 19 ). 
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y I bw the set of all i ∈ N − {1 } such that ϕE (1 ) + (i 0 − 1 )T E (1 ) < Φ + 2 H for � I E i = (i 0 , . . . , i | E | +1 ).
he following equations hold: 

MRT (E) ≤ max 

i ∈I f w 

� 
(
� I E i 

)
, (18)

MDA ( E) ≤ max 

i ∈I bw 

{ 
� 
(
� I E i 

)
, � I E i complete 

B ( i ), othe rw is e . 
(19)

Proof. According to Equation ( 7 ), the MRT of the cause-effect chain E is defined by

up i ∈N 

sup jc ∈JC 

� ( � c E,S (jc ) 
i ). Since � ( � c E,S (jc ) 

i ) ≤ � ( � I E i ) for all jc ∈ J C by Lemma 21 , the MRT is upper

ounded by sup i ∈N 

sup jc ∈JC 

�( � I E i ). Since �( � I E i ) is independent from jc , we obtain the upper bound

up i ∈N 

�( � I E i ). We conclude that by Lemma 25 only those abstract representations with i ∈ I f w 

ave to be considered. This yields Equation ( 18 ). 

By Equation ( 8 ), the MDA of E is sup i ∈N 

sup jc ∈JC 

{ �( � c E,S (jc ) 
i ) | � c E,S (jc ) 

i complete } . If � I E i is com-

lete, then � c E,S (jc ) 
i is complete and we know that � ( � c E,S (jc ) 

i ) ≤ � ( � I E i ) by Lemma 23 . If � I E i is not

omplete but � c E,S (jc ) 
i is complete, then we know �( � c 

E p ,S (jc ) 
i ) ≤ B (i ) by Lemma 24 . Hence, we con-

lude that Equation ( 19 ) holds. �

The procedures to compute our MRT and MDA bounds are shown in Algorithms 1 and 2 , re-

pectively. Please note that although the MDA is bounded by the MRT, the bounds provided in
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 63. Publication date: July 2023. 
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his section are over-approximations and do not necessarily follow this ordering. In particular, the

ound obtained for the MDA may be larger than the bound for the MRT. 

Furthermore, we note that in the case that C 

u 
τ = C 

� 
τ for all tasks τ ∈ T , the execution time of

very job of each task is fixed. In this case, only the job collection j c = j c max = j c min must be

onsidered and the maximal and minimal read- and write-events coincide with the actual read-

nd write-events. As a result, the abstract integer representations � I E i and 

� I E i constructed in Defi-

itions 19 and 22 always evaluate to � c E,S (jc ) 
i and � c E,S (jc ) 

i , respectively. Hence, the MDA and the

RT upper bounds obtained by Theorem 28 when excluding B (i ) from Equation ( 19 ) are exact. 

Corollary 29. If C 

u 
τ = C 

� 
τ holds for all tasks τ ∈ T , then MRT ( E) = max i ∈I f w 

�( � I E i ) and

DA ( E) = max i ∈I bw 

�( � I E i ) hold as well. 

Proof. If C 

u 
τ = C 

� 
τ for all tasks τ ∈ T , then there is only one job collection in J C (T ) = { jc } and

ne schedule S (jc ). Moreover, the maximal and minimal read- and write-events utilized in the

onstruction of � I E i and 

� I E i are the actual read- and write-events of the jobs, respectively. Hence,

 ( � c E,S (jc ) 
i ) = � ( Eval E ( � I 

E 
i , jc )) = �( � I E i ). Moreover, � c E,S (jc ) is complete if and only if � I E i is complete

nd we have � ( � c E,S (jc ) 
i ) = � ( Eval E ( � I 

E 
i , jc )) = �( � I E i ). We conclude that MRT ( E) = sup i �( � c 

E,S (jc ) 
i ) =

up i � ( � I 
E 
i ) = max i ∈I f w 

� ( � I E i ) and MDA (E) = sup i � ( � c 
E,S (jc ) 
i ) = sup i � ( � I 

E 
i ) = max i ∈I bw 

� ( � I E i ). �

Complexity : Two components play a decisive role for the time complexity of our analysis. We

a) create the schedule for the job collections jc max and jc min for the bounded time frame to obtain

inimal and maximal read- and write-events for each job, and (b) create and compare abstract

nteger representations based on the minimal and maximal read- and write-events. We examine the

ime complexity for a cause-effect chain E on an ECU with task set T = { τ1 , . . . , τn } with n tasks. 

Since the schedule repeats after Φ + 2 H , it suffices to schedule the jobs in the interval

0 , Φ + 2 H ). Hence, the time complexity for (a) is O ( Φ+2 H 

T min 
· n), where T min : = min τ ∈T 

T τ is the

inimal period in T . 

For each abstract integer representation we have to determine |E | + 2 integers. There is a

ost of query 

1 Q depending on the data structure for finding the next integer for the abstract

epresentation. To compute the MRT, we have to simulate and compare up to 

Φ+2 H 

T E (1 ) 
abstract

nteger representations, and for the MDA up to 

Φ+2 H 

T E ( |E |) 
abstract integer representations are under

nalysis. Hence, the time complexity for component (b) is O ( |E | ·Q · Φ+2 H 

T E (1 ) 
) for reaction time and

( |E | ·Q · Φ+2 H 

T E ( |E |) 
) for data age. 

We note that the time complexity for the method by Kloda et al. [ 22 ] coincides with the

omplexity of component (b) for our reaction time computation, except that they have to call a

atency function for each job instead of determining the job itself. The methods by Dürr et al. [ 11 ]

nd by Davare [ 10 ] have complexity O ( | E | ). Since these methods all assume that the WCRTs are

nown, i.e., computed in advance, the time complexity of the WCRT computation should also be

aken into account. 

.2 Interconnected Analysis 

n this subsection, we analyze the timing behavior of cause-effect chains that are distributed among

everal ECUs. If clock shifts are known and all tasks (even communication tasks) behave like
 The data structure can be designed such that Q = O (1 ). Let all jobs for each task τ be stored in a list l τ , ordered by their 

elease. If we want to find the first job of τ with minimal read-event after a time instant t and assume that all jobs finish 

heir execution before the subsequent job release, then only those jobs in the list with index j between � t−ϕτ −T τ
T τ

	 and 


 t−ϕτ
T τ
� are candidates to be checked, i.e., O (T τ /T τ ) many jobs. 
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eriodic tasks, then the analysis from the preceding subsection can be utilized. However, since

lobal clock synchronization is often avoided in distributed real-time systems to reduce failure

ependencies, the clock shifts between different ECUs are unknown by the observer. Moreover,

he implementation of communication tasks varies depending on the underlying architecture, e.g.,

hese tasks may behave in a non-preemptive or non-periodic manner. This hinders the exact de-

ermination of data age and reaction time. 

We discuss how to provide proper upper bounds on data age and reaction time of interconnected

ause-effect chains. Our estimations utilize only knowledge about the WCRT R τ c and maximum

nter-arrival time T 

max 
τ c , i.e., maximum time between two recurrent job releases, of each commu-

ication task τ c . 

Let S be a schedule of the task set T . Consider some interconnected cause-effect chain IE of T .

e separate IE into local cause-effect chains E 1 , . . . , E k with communication tasks τ c 
1 , τ

c 
2 , . . . , τ

c 
k−1 

.

ore specifically, we have 

IE = (E 1 → τ c 
1 → E 2 → τ c 

2 → · · · → τ c 
k−1 → E k ), (20)

here each E i , i = 1 , . . . , k only contains tasks on a single ECU, namely, ECU (E i ), and each τ c 
i , i =

 , . . . , k − 1 communicates from ECU (E i ) to ECU (E i+1 ). 
We utilize the Cutting-Theorem (Theorem 12 ) to estimate the reaction time and data age

f IE by its local components, i.e., MRT ( IE, S) ≤ ∑ k 
i= 1 MRT ( E i , S) +

∑ k−1 
i= 1 MRT ( ( τ c 

i ) , S) and

DA ( IE, S) ≤ ∑ k 
i= 1 MDA ( E i , S) +

∑ k−1 
i= 1 MDA ( ( τ c 

i ) , S) . Please note that (τ c 
i ), i = 1 , . . . , k − 1 can

e considered as a cause-effect chain of just one task. We apply the bound from Davare et al. [ 10 ]

o estimate data age and reaction time of (τ c 
i ) by T 

max 
τ c 

i 
+ R τ c 

i 
under implicit communication. 

Corollary 30. The MRT and data age of the interconnected cause-effect chain IE under implicit
ommunication can be estimated by the timing behavior of its local parts: 

MRT ( IE, S) ≤
k ∑ 

i= 1 

MRT ( E i , S) +
k−1 ∑ 

i= 1 

( T 

max 
τ c 

i 
+ R τ c 

i 
), (21)

MDA ( IE, S) ≤
k ∑ 

i= 1 

MDA ( E i , S) +
k−1 ∑ 

i= 1 

( T 

max 
τ c 

i 
+ R τ c 

i 
). (22)

Proof. The result follows from the Cutting-Theorem (Theorem 12 ) together with the estimation

y Davare et al. [ 10 ] as discussed above. �

We note that the values of MRT (E i , S) and MDA (E i , S) can be upper bounded by applying our

nalysis in Section 5.1 . 

Under LET we obtain a similar result. 

Corollary 31. The MRT and data age of the interconnected cause-effect chain IE under LET can
e estimated by the timing behavior of its local parts: 

MRT ( IE, S) ≤
k ∑ 

i= 1 

MRT ( E i , S) +
k−1 ∑ 

i= 1 

2 T 

max 
τ c 

i 
, (23)

MDA ( IE, S) ≤
k ∑ 

i= 1 

MDA ( E i , S) +
k−1 ∑ 

i= 1 

2 T 

max 
τ c 

i 
. (24)

Proof. This also follows from the Cutting-Theorem (Theorem 12 ). We use that under LET

DA ( ( τ c 
i ), S) ≤ MRT ( ( τ c 

i ), S) ≤ 2 T 

max 
τ c 

i 
. �
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For Corollary 31 , the values of MRT (E i , S) and MDA (E i , S) can be computed by comparing

alid augmented job chains with events for external activity during [0 , Φ + H ). 
Please note that a similar approach can be utilized to analyze end-to-end latencies on multi-

rocessor systems with partitioned scheduling algorithms, even if the cores are not synchronized.

n such a case each subchain E i represents a part of the cause-effect chain E that is executed

n one processor (instead of one ECU) and the communication tasks τ c 
i account for the core

ommunication. 

 ALTERNATIVE DATA AGE DEFINITION 

he definition of MDA from other analyses [ 4 , 11 , 22 ] differs from our definition of MDA in the

ollowing way: If we consider the chain of events as outlined in Figure 3 , their MDA includes only

he time from sampling until the processed-event and not until the actuation-event. This does

ot mean that their estimation is more precise, but that they bound a smaller time interval. For

omparison with the MDA from [ 4 , 11 , 22 ], we introduce the definition of a maximum reduced
ata age MRDA (E, S). It follows Definition 6 , except that we set the event for actuation to the

rocessed-event. 

Definition 32 (Reduced Immediate Backward Augmented Job Chain). A reduced immediate back-

ard augmented job chain 

� c ∗E,S m 

with m ∈ N is the unique augmented job chain (z, J 1 , . . . , J |E | , z 
′ )

here 

—the actuation is set to the time of the processed-event, which happens at the mth write-

event of E ( |E |), i.e., z ′ = we J |E | and J |E | = E ( |E |) (m) , 
—the sequence (J 1 , . . . , J E ) is an immediate backward job chain for E in S, and 

—the external activity is set to the time where the data is sampled, i.e., z = re J 1 . 

More specifically, the first |E | + 1 entries of � c ∗E,S m 

coincide with those of � c E,S m+1 and z ′ is set to

e J |E | . We define � c ∗E,S m 

to be valid if and only if � c E,S m+1 is valid in the sense of Definition 10 . The

educed data age is defined similar to Definition 11 : 

Definition 33 (Maximum Reduced Data Age). For a cause-effect chain E with schedule S we

efine the schedule specific maximum reduced data age by 

MRDA (E, S) : = sup 

{ 
� 
(

� c ∗E,S m 

) ���m ∈ N, � c ∗E,S m 

valid 

} 
, (25)

here � is the length of an augmented job chain as defined in Equation ( 1 ). As before, the over-
ll maximum reduced data age is obtained by the supremum over all schedules, i.e., MRDA (E) =
up S MRDA (E, S). 

The Cutting-Theorem (Theorem 12 ) is transferred to the defined reduced data age as follows. In

he proof, we cut off an immediate backward augmented job chain at the beginning. This works

ndependently from the choice of z ′ , i.e., we cut off an immediate backward augmented job chain

lso from a reduced immediate backward augmented job chain. For E = (E 1 → E 2 ) this leads to 

MRDA ( E, S) ≤ MDA ( E 1 , S) +MRDA ( E 2 , S). (26)

The computation in the local case is similar to Section 5.1 . However, to match the pattern of

� 
 

∗E,S 
i we introduce the abstract integer representation 

� I ∗E i which are constructed by the same rule

et as � I E i but the last two entries are set to i . With periodic job releases and fixed execution times,

he schedule repeats after Φ + 2 H where Φ is the maximal phase and H is the hyperperiod of tasks

n that ECU, respectively. Therefore, it suffices to construct and compare all � I ∗E i such that the first

ntry of � I ∗E i is less than Φ + 2 H , i.e., we denote this set of i by I b w ∗. We obtain the bound: 
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MRDA ( E) ≤ max 

i ∈I b w ∗

⎧ ⎪ ⎨ ⎪ ⎩ 

� 
(

� I ∗E i 

)
, � I ∗E i complete 

B ( i ), e ls e 
. (27)

For the interconnected case, we rely on the new cutting theorem from Equation ( 26 ) and obtain 

MRDA ( IE, S) ≤
k−1 ∑ 

i= 1 

( MDA ( E i , S) +T 

max 
τ c 

i 
+ R τ c 

i 
) +MRDA (E k , S), (28)

or any interconnected cause-effect chain IE = (E 1 → τ c 
1 → E 2 → · · · → τ c 

k−1 
→ E k ) as in

orollary 30 . The local values of maximum (respectively, maximum reduced) data age from

quation ( 28 ) are computed by simulating all the abstract integer representations � I E i (respectively,
� 

 

∗E 
i ) in a bounded time frame and using Equation ( 19 ) (respectively, Equation ( 27 )). 

 EVALUATION 

 relevant industrial use-case of the presented end-to-end latency analyses is the timing veri-

cation of cause-effect chains in the automotive domain. To assess the practical benefit of our

roposed analyses, we evaluated it using synthesized task sets and cause-effect chains that ad-

ere to the details described in Automotive Benchmarks For Free [ 25 ]. Furthermore, we gener-

ted task sets with the UUnifast algorithm [ 7 ] to assess the performance for general task pa-

ameters. We consider periodic task sets and implicit job communication to apply our analysis

esults from Sections 5 and 6 . Two setups are considered in the evaluation, which is released on

ithub [ 30 ]. 

Intra-ECU setup: All tasks in each cause-effect chain are mapped to one ECU and have a locally

ynchronized clock. 

Inter-ECU setup: Tasks within a cause-effect chain are mapped to different ECUs that are not

ynchronized. An interconnect fabric is used for data communication across different ECUs. 

In the following, we use the method by Davare et al. [ 10 ] to normalize all other end-to-end

ounds, since this method yields the most pessimistic result. We define the latency reduction
R (M) of an analysis method M with respect to an evaluated bound B (·), e.g., MRT, by 

LR ( M) : = ( B ( Davare ) − B ( M) ) /B ( Davare ) . (29)

Additionally, for the Intra-ECU case where all jobs execute the WCET (i.e., BC ET = W C ET ), an

xact analysis of MRT and MDA is given by Corollary 29 . Since this is a valid execution scenario for

he case where BC ET ≤W C ET , Corollary 29 provides a lower bound for the case BC ET ≤W C ET .

herefore, we also consider the gap reduction GR (M), defined by 

GR ( M) : = ( B ( Davare ) − B ( M) ) / ( B ( Davare ) − B ( Corollary 29 ) ) . (30)

n particular, the closer the gap reduction is to 1, the tighter that bound is to the lower bound, and,

herefore, the tighter that value is to the exact latency bound. 

.1 Task and Task Set Generation 

n this evaluation, a task τi is described by the WCET C i , period T i , phase ϕi , and priority πi .

urthermore, U i = C i /T i is the utilization of task τi . 

Automotive benchmark [ 25 ]: A task τi is generated as follows 2 : 
 In the automotive benchmark [ 25 ], atomic software components contain runnables subject to scheduling. Multiple 

unnables with the same period are afterward grouped together as a task. Since communication usually happens on the 

unnable level, we set up the experiments accordingly, and denote each runnable as a task to match the common notation 

n real-time systems research and the cause-effect chain model in the literature. 
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(1) The period T i in ms of a task τi is drawn from the set T = { 1 , 2 , 5 , 10 , 20 , 50 , 100 , 200 , 1,000 }
according to the related share 3 of [ 25 , Table III, IV, and V]. 

(2) The average-case execution time ( ACET ) of a task is generated based on a Weibull

distribution that fulfills the properties in [ 25 , Table III, IV, and V]. 

(3) The task’s WCET is determined by multiplying its ACET with its WCET factor, which is

drawn equally distributed from an interval [ f min , f max ] [ 25 ]. 

For the single ECU case, we generate 1,000 automotive task sets for each cumulative task set

tilization of U = 50% , 60% , 70% , 80% , and 90% . Since the tasks’ utilizations are determined by the

CET and the automotive specific semi-harmonic periods, we used a fully-polynomial approxi-

ation scheme to solve the subset-sum problem to select a subset of tasks within a candidate task

et such that the cumulative utilization satisfies the above requirements. We initially generate T ,

 set of 1,000 to 1,500 tasks, and then select a subset T ′ of tasks using the subset-sum approx-

mation algorithm to reach the targeted utilization within 1 percentage point error bounds, i.e.,

( 
∑ 

T ′ U i ) −U | ≤ 0 . 01 . On average, the generated task sets consist of 50 tasks. 

Uniform task set generation [ 7 ]: For user-specified values n ∈ N and 0 < U 

∗ ≤ 1 , the UU-

iFast algorithm [ 7 ] draws utilizations (U 1 , U 2 , . . . , U n ) from (0 , 1] n uniform at random under

he constraint that 
∑ n 

i= 1 U i = U 

∗. Due to the fact that the analyses are computationally tractable

nly for sufficiently small hyperperiods, we draw semi-harmonic periods based on the auto-

otive benchmark. For each of the utilization values, i.e., U 

∗ = 50% , 60% , 70% , 80% , and 90% ,

e generate 1,000 task sets with 50 tasks each. Each task’s period is drawn from the interval

1 , 2 , 000] according to a log-uniform distribution and rounded to the next smallest period in the

et { 1 , 2 , 5 , 10 , 20 , 50 , 100 , 200 , 500 , 1,000 } . Given the periods and utilizations, the WCET is set to

 i ·T i . 

To the best of our knowledge, there are no benchmarks published that detail and reason how

o experimentally set up an asynchronous release of tasks, i.e., what a task’s phase value should

e. Furthermore, the analysis by Kloda et al. [ 22 ] is formulated only for cause-effect chains with

ynchronous tasks. Hence, we consider synchronous task sets (with ϕi = 0 ) in this evaluation. All

asks are scheduled by preemptive Rate Monotonic ( RM ) scheduling. 

.2 Communication Tasks 

n order to evaluate interconnected cause-effect chains, we assume a fixed-priority communication

abric. Specifically, we draw the period of each message log-uniform at random from the range

0 ms to 10 , 000 ms and truncate the result to the next smallest integer to model the communication

requency. Furthermore, we assume that the transmission time of a message, i.e., execution time

n the communication fabric, is a constant. In our evaluations, we utilize the constant time from

tandard 2.0A CAN-Bus with 1 Mbps bandwidth, where transmitting 8 bytes of data (along with its

6 bits overhead due to its header and tail) takes C i = 130 · 10 −3 ms . Given the set of all messages

nd with random priority assignment, the WCRT of each communication task is calculated using

ime-demand analysis for non-preemptive tasks. 

.3 Cause-effect Chain Generation 

ntra-ECU cause-effect chain generation: Given a generated task set as described in Section 7.1 ,

he set of cause-effect chains is generated according to the description in Section IV-E in [ 25 ].
 The sum of the probabilities in [ 25 , Table III, IV, and V] is only 85%. The remaining 15% is reserved for angle-synchronous 

asks that we do not consider. Hence, all share values are divided by 0.85 in the generation process. 
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Fig. 9. Intra-ECU experiments for the automotive benchmark . Our method improves the state-of-the-art, 
especially for the MRDA. 
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amely, a set of cause-effect chains containing 30 to 60 cause-effect chains is generated from each

ask set as depicted in the following steps: 

(1) The number of involved activation patterns P j ∈ {1 , 2 , 3 }, i.e., the number of unique pe-

riods of tasks in a generated cause-effect chain, is drawn according to the distribution

shown in Table VI in [ 25 ]. 

(2) P j unique periods are drawn from the task set from a uniform distribution without re-

placement. More specifically, this step yields a set T j of P j distinct periods. 

(3) For each period in T j we draw 2 to 5 tasks at random (without replacement) according

to the distribution in Table VII in [ 25 ] from the tasks in the task set with the respective

period. 

The resulting cause-effect chains consist of 2 to 15 tasks and no task occurs multiple times in

he same cause-effect chain. 

Inter-ECU cause-effect chain generation: We generate 10,000 interconnected cause-effect

hains by selecting 5 cause-effect chains of different task sets with the same utilization under a

niform distribution. For each selection, we create 20 communication tasks as described in Sec-

ion 7.2 . Among them, 4 are chosen randomly to connect the 5 communication tasks. 

.4 Evaluation Results 

n Figures 9 and 10 , we show the evaluation results for the Intra-ECU case with automotive and

niform task generation, respectively. In Figures 11 and 12 , we show the evaluation results for the

nter-ECU case with automotive and uniform task generation, respectively. Since our definition of

aximum reduced data age from Section 6 coincides with the definition of data age from [ 4 , 11 ,
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 63. Publication date: July 2023. 



63:28 M. Günzel et al. 

Fig. 10. Intra-ECU experiments for the uniform benchmark . Again, our method improves the state-of- 
the-art, especially for the MRDA. 

Fig. 11. Inter-ECU experiments for the automotive benchmark . Our method improves the state-of-the- 
art for all setups. 
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4

A

2 ], we compare our analysis using maximum reduced data age instead. The boxplots display the

valuation results of the methods by Dürr et al. [ 11 ] (D19) and Kloda et al. [ 22 ] (K18) , as well as

f our method (0.0, 0.3, 0.7, 1.0) where the BCET of the task is set to 0.0, 0.3, 0.7 or 1.0 of the

CET. Since 1.0 is the bound given by Corollary 29 , the gap reduction is always equal to 1 and

herefore not reported. For the MRDA, the method by Becker et al. [ 4 ] 4 (B17) is displayed as well.

he plots show the latency reduction ( LR ) from Equation ( 29 ) or the gap reduction ( GR ) from
 We apply the method where the WCRT is known (see [ 4 , Table 1]). 

CM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 63. Publication date: July 2023. 



Compositional Timing Analysis of Asynchronized Distributed Cause-effect Chains 63:29 

Fig. 12. Inter-ECU experiments for the uniform benchmark . Again, our method improves the state-of- 
the-art for all setups. 
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quation ( 30 ). The method by Schlatow et al. [ 29 ] is omitted since it is dominated by Davare’s

ethod for non-harmonic task systems. 

For the Intra-ECU case, our analysis performs similar to K18 for MRT ((a) and (b) in Figures 9

nd 10 ) and outperforms the state-of-the-art for MRDA ((c) and (d) in Figures 9 and 10 ). We observe

hat under both benchmarks the LR and GR of our method increases when the BCET is closer to

he WCET. The GR ((b) and (d) in Figures 9 and 10 ) is in median over 90 percent for our methods

nd for K18, whereas D19 and B17 have a median GR of less than 55 percent in all scenarios. 

For the Inter-ECU case (Figures 11 and 12 ), our method outperforms the state-of-the-art signif-

cantly: Whereas our method shows a median LR of more than 30 percent in all cases, D19 has a

edian LR of around 5 percent or less. 

.5 Runtime Evaluation 

n the following, we study the control parameters that regulate the runtime of our analysis. More

pecifically, we show that (1) the runtime of our single ECU algorithm is dependent on the number

f jobs to be scheduled in the simulation, and (2) the runtime can be controlled by bounding the

yperperiod of the task sets under analysis. For the measurements, we use a machine equipped

ith 2x AMD EPYC 7742 running Linux, i.e., in total 256 threads with 2,25 GHz and 256 GB RAM.

ach measurement runs on one independent thread and covers the time for simulation of the best-

ase and worst-case schedule and for deriving the single ECU MRT, MDA, and maximum reduced

ata age. Both experiments rely on uniform task generation [ 7 ] with synchronous tasks. The total

tilization is pulled uniformly from [50 , 90] [%] and task periods are pulled log-uniformly from the

ntegers in [1 , 20] . As a result, the hyperperiod of the task set is between 1 and lcm (1 , 2 , . . . , 20 ) =
32 , 792 , 560 . From each task set, we choose 5 tasks at random without replacement and combine

hem into a cause-effect chain. 

For (1), we generate 1 , 000 task sets with 5 to 20 tasks each. The results are depicted in Figure 13 (a)

or task sets where the number of scheduled jobs is below 100 , 000 . The number of scheduled jobs

s upper bounded by # jobs ≤ ∑ # tasks 
i= 1 

2 ·hyp 

T i 
≤ 2 ·hyp 

T 1 
· # tasks as explained in Section 5.1 . For a fixed

umber of tasks and a fixed range of periods, we can control the number of scheduled jobs by

onstraining the hyperperiod. For example, when the hyperperiod is 1 , 000 and the number of

asks is 20, then there are at most 40 , 000 scheduled jobs. The exact number of jobs may be lower

ince big hyperperiods require bigger periods T i . 

In (2), for a given number of tasks per set, we create 1 , 000 task sets with hyperperiod in the

ange from 0 to 1 , 000 , 1 , 000 to 2 , 000 , 2 , 000 to 3 , 000 , and 3 , 000 to 4 , 000 , each. The median and
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Fig. 13. Runtime evaluation. 
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aximal runtimes sorted by hyperperiod bounds are depicted in Figure 13 (b) and (c), respectively.

e observe that with a low hyperperiod, the maximum runtime can be controlled. 

 CONCLUSION 

n this article, we analyze the MRT and MDA . We provide a precise definition in terms of augmented

ob chains and present a local analysis which performs close to the exact results. Moreover, we

ake this local analysis available to the interconnected ECU case by bounding the communication

ime between ECUs. 

We plan to further explore priority assignments such that all cause-effect chains in a system

eet their requirements. Moreover, we look for more efficient algorithms potentially obtained by

artitioning cause-effect chains not only at the ECU-communication but also on one ECU. 

PPENDIX 

 BOUNDS FOR START AND FINISH 

n the following we show that the latest starting time and finishing time of any job is achieved

hen all jobs execute their WCET, and the earliest starting time and finishing time is achieved

hen all jobs execute their BCET. In particular, we prove Propositions 13 and 14 . 

Proposition 13. Let jc max be the job collection of a set T of periodic tasks where all jobs execute
ccording to their WCET. Consider the mth job J = τ (m, jc max ) of a task τ ∈ T in the job collection
c max . Then, for the preemptive fixed-priority schedule S (jc max ), the starting time and finishing
ime of J in S (jc max ) are upper bounds on the starting time and finishing time of the mth job
f τ for any job collection, respectively. That is, for any other job collection jc ∈ J C (T ), we have

 

S (jc max ) 
J 

≥ s S (jc ) 
τ (m, jc ) 

and f S (jc max ) 
J 

≥ f S (jc ) 
τ (m, jc ) 

. 

Proposition 14. Let jc min be the job collection of a set T of periodic tasks where all jobs execute
ccording to their BCET. Consider the mth job J = τ (m, jc min ) of a task τ ∈ T in the job collection
c min . Then, for the preemptive fixed-priority schedule S (jc min ), the starting time and finishing time
f J in S (jc min ) are lower bounds on the starting time and finishing time of the mth job of τ for

ny job collection, respectively. That is, for any other job collection jc ∈ J C (T ), we have s S (jc min ) 
J 

≤
 

S (jc ) 
τ (m, jc ) 

and f S (jc min ) 
J 

≤ f S (jc ) 
τ (m, jc ) 

. 

Proof of Propositions 13 and 14. Let jc be any job collection for T . It is sufficient to show

hat for any job J ∈ jc the following two properties hold: 

Property P1. Whenever the job execution of any other job J ′ is increased (i.e., J ′ is replaced by a

job with more execution time), then the starting time of J does not decrease. 
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Property P2. Whenever the job execution of any other job J ′ is increased, then the finishing time

of J does not decrease. Or equivalently, whenever the job execution of any other job J ′ is
reduced , then the finishing time of J does not increase. 

The following proof is based on contradiction. In particular, we assume that P1 or P2 does not

old for all jobs in jc . We denote by 

˜ J the job in jc with the earliest finishing time such that P1

r P2 does not hold. In particular, for all jobs finished before ˜ J in S (jc ) both properties P1 and P2

old. Let ˜ τ denote the task of ˜ J . 
Without any impact on the execution behavior of ˜ J we remove all jobs of tasks with lower

riority than ˜ τ . Moreover, we remove all jobs from ˜ τ that are released later than 

˜ J . 
We obtain a contradiction in two steps: First, we show that P1 holds for ˜ J , meaning that P2 does

ot hold for ˜ J . In the second step, we lead statement “P2 does not hold for ˜ J ” to a contradiction. 

Step 1: Proof that P1 holds for ˜ J . Let [ д 1 , h 1 ) be the largest interval, such that 

—r ( ̃  J ) ∈ [ д 1 , h 1 ] , and 

—at all times during [ д 1 , h 1 ) either jobs with higher priority than ˜ τ or jobs of ˜ τ released before
˜ J are executed. 

or this interval the property s S (jc ) 
˜ J 
= h 1 holds. Let J 1 be the set of jobs that are executed dur-

ng [ д 1 , h 1 ). Then during [ д 1 , h 1 ) there is always pending workload from jobs of J 1 , i.e., for all

 ∈ [ д 1 , h 1 ) there exists some J ∈ J 1 such that t ∈ [ r S (jc ) 
J 
, f S (jc ) 

J 
). Moreover, for the jobs in J 1 Prop-

rties P1 and P2 hold since those jobs finish before ˜ J does. 

When increasing the execution time of any job, then f J does not decrease for all J ∈ J 1 by

roperty P2. As a result, during the interval [ д 1 , h 1 ) there is still pending workload from jobs of J 1

t all times, i.e., the ECU is blocked and cannot execute ˜ J . Hence, s S (jc ) 
˜ J 

is still ≥ h 1 , i.e. P1 holds

or ˜ J . Therefore, P2 does not hold for ˜ J by the initial assumption. 

Step 2: Contradiction of the statement “P2 does not hold for ˜ J ” . Let [ д 2 , h 2 ) be the largest

nterval, such that 

(a) ˜ J is executed at some time during the interval, and 

(b) at all times in the interval (д 2 , h 2 ) there is pending workload, i.e., workload that was released

before but is not already finished, from 

˜ J , earlier jobs of ˜ τ or jobs with higher priority than ˜ τ .

et J 2 be the jobs that are executed during the interval [ д 2 , h 2 ). By definition, ˜ J ∈ J 2 . In particular,

b) ensures that 

д 2 +
∑ 

{ 
J 
��� J ∈ J 2 and r J ∈ [ д 2 ,e ) 

} c J > e (31)

olds for all e ∈ [ д 2 , h 2 ), where c J is the actual execution time of job J , and 

д 2 +
∑ 

{ 
J 
��� J ∈ J 2 and r J ∈ [ д 2 ,h 2 ) 

} c J = h 2 . (32)

oreover, we observe the typical busy interval properties д 2 = min J ∈J 2 r J , i.e., the busy interval

tarts with a job release, and 

min 

J ∈I 
r J +
∑ 

J ∈I 
c J ≤ h 2 , (33)

or all subsets I ⊆ J 2 , i.e., all workload can be finished until the end of the busy interval. 

We have f ˜ J = h 2 as the following consideration shows: 
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— ˜ J is executed during [ д 2 , h 2 ) by (a). Therefore, ˜ J has pending workload during [ д 2 , h 2 ), i.e.,

(r ˜ J , f ˜ J ) ∩ (д 2 , h 2 ) � ∅ . Since [ д 2 , h 2 ) is the largest interval with pending workload and there

is pending workload during (r ˜ J , f ˜ J ), we conclude (r ˜ J , f ˜ J ) ⊆ (д 2 , h 2 ) and therefore f ˜ J ≤ h 2 . 

—Assume f ˜ J < h 2 for contradiction . Let I ⊆ J be the set of the jobs that are executed during

the interval [ f ˜ J , h 2 ) � ∅ . By definition, ˜ J � I holds. All jobs of I have higher priority than

˜ J by b). If a job of I would be released before f ˜ J then it would finish before f ˜ J due to

its priority. Therefore, all jobs of I are released at or after f ˜ J . Hence, there is no pending

workload at time f ˜ J which contradicts (b). 

ince Property P2 does not hold for ˜ J , there is a scenario where the execution time of any job is

educed but the finishing time of ˜ J is increased. We denote the job collection with that modified

xecution time by jc ′ . Let [ д ′ 2 , h 

′ 
2 ) be the busy interval of ˜ J , i.e., the interval that fulfills (a) and

b), in the new schedule S (jc ′ ). Moreover, let J 

′ 
2 be the jobs in the new schedule S (jc ′ ) that are

xecuted during [ д ′ 2 , h 

′ 
2 ). 

Analogous to the discussion that h 2 = f ˜ J in the original schedule S (jc ), h 

′ 
2 = f ˜ J holds in the

ew schedule S (jc ′ ). Hence, by the assumption that Property P2 does not hold, we have h 

′ 
2 > h 2 .

oreover, Equations ( 31 ), ( 32 ), and ( 33 ) hold for the new scenario as well. 

All jobs that are finished before д 2 in the original schedule S (jc ) fulfill Property P2. Therefore,

hey are also finished before д 2 in the new schedule S (jc ′ ). Consequently, in S (jc ′ ) there is no

ending workload at time д 2 , and д ′ 2 ≥ д 2 holds. In the following we show that both different cases

 

′ 
2 = д 2 and д ′ 2 > д 2 lead to a contradiction. 

—Case д ′ 2 = д 2 : In the new schedule S (jc ′ ) we have д ′ 2 +
∑ 

J ∈J ′ 2 ⊂jc ′ c J > h 2 by Equation ( 31 )

when choosing e = h 2 ∈ [ д ′ 2 , h 

′ 
2 ). However, in the original schedule S (jc ) we have д 2 +∑ 

J ∈J 2 ⊂jc c J = h 2 by Equation ( 32 ). Since the execution time of jobs is only decreased, we

have д ′ 2 +
∑ 

J ∈J ′ 2 ⊂jc ′ c J ≤ д 2 +
∑ 

J ∈J 2 ⊂jc c J , which leads to a contradiction that h 2 < h 2 as

follows: 

h 2 < д 
′ 
2 +

∑ 

J ∈J ′ 2 ⊂jc ′ 

c J ≤ д 2 +
∑ 

J ∈J 2 ⊂jc 

c J = h 2 . 

—Case д ′ 2 > д 2 : Let I ⊆ J 2 and I ′ ⊆ J 

′ 
2 be the jobs that are released during [ д ′ 2 , h 2 ) in the

original schedule S (jc ) and in the new schedule S (jc ′ ), respectively. As jc ′ and jc are job

collections of a periodic task set T , each job in jc ′ is represented by a corresponding job

in jc with the same release time but may have smaller execution time. Therefore, each

job in I has also a corresponding job in I ′ that has the same release time but may have

smaller execution time. Hence, we have 
∑ 

J ∈I c J ≥
∑ 

J ∈I ′ c J . By Equation ( 33 ) in the original

schedule we obtain д ′ 2 +
∑ 

J ∈I c J ≤ h 2 . By Equation ( 31 ) in the new schedule we obtain

д ′ 2 +
∑ 

J ∈I ′ c J > h 2 . These two conditions lead to the fact that 
∑ 

J ∈I c J < 
∑ 

J ∈I ′ c J which

contradicts 
∑ 

J ∈I c J ≥
∑ 

J ∈I ′ c J . 

ince we have lead both cases д ′ 2 = д 2 and д ′ 2 > д 2 to a contradiction, this concludes Step 2. �
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