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Convolutional neural networks (CNNs) are used in our daily life, including self-driving cars, virtual assistants,

social network services, healthcare services, and face recognition, among others. However, deep CNNs

demand substantial compute resources during training and inference. The machine learning community

has mainly focused on model-level optimizations such as architectural compression of CNNs, whereas the

system community has focused on implementation-level optimization. In between, various arithmetic-level

optimization techniques have been proposed in the arithmetic community. This article provides a survey on

resource-efficient CNN techniques in terms of model-, arithmetic-, and implementation-level techniques, and

identifies the research gaps for resource-efficient CNN techniques across the three different level techniques.

Our survey clarifies the influence from higher- to lower-level techniques based on our resource efficiency

metric definition and discusses the future trend for resource-efficient CNN research.
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1 INTRODUCTION

Recent improvements in network and storage devices have provided the machine learning com-
munity with the opportunity to utilize immense data sources, leading to the golden age of AI and
deep learning [22]. Since modern Deep Neural Networks (DNNs) require considerable comput-
ing resources and are deployed in a variety of compute devices, ranging from high-end servers to
mobile devices with limited computational resources, there is a strong need to realize economi-
cal DNNs that fit within the resource constraints [128, 160, 161]. Resource-efficient DNN research
has vividly been carried out independently in various research communities including the machine
learning, computer arithmetic, and computing system communities. Recently, DeepMind proposed
the resource-efficient deep learning benchmark metric, which is the accuracy along with the re-
quired memory footprint and number of operations [84].

With this regard, this article surveys resource-efficient techniques for Convolutional Neu-

ral Networks (CNNs) based on the three-level categorization: the model-, arithmetic-, and
implementation-level techniques along with various resource efficiency metrics as shown in
Figure 1, since CNN is one of the most widely used DNN architectures [100]. Our resource ef-
ficiency metrics include the accuracy per parameter, operation, memory footprint, core utiliza-
tion, memory access, and Joule. For the resource efficiency comparison between the baseline CNN
and a CNN utilizing resource-efficient techniques, the accuracy should be equivalent between
the two CNNs. In other words, it is not fair to compare the resource efficiency between a CNN
producing a high accuracy and a CNN producing a low accuracy since the resource efficiency is
significantly higher in a low-performing CNN based on our resource metrics. We categorize the
resource-efficient techniques into the model-level resource-efficient techniques if they compress the
CNN model sizes, the arithmetic-level resource-efficient techniques if they utilize reduced precision
arithmetic and/or customized arithmetic rules, and the implementation-level resource-efficient tech-

niques if they apply hardware optimization techniques to the CNNs (e.g., locating local memory
near Processing Elements (PEs)) to improve physical resource efficiency such as the accuracy
per compute resource and per Joule.

In Figure 1, CNNs can be considered as a resource-efficient technique since they improve the ac-
curacy per parameter, per operation, and per memory footprint, compared to fully connected neu-
ral networks. The resource efficiency from CNNs can be further improved by applying the model-,
arithmetic-, and implementation-level techniques. The model- and arithmetic-level techniques can
affect the accuracy since they affect either the CNN model structure or the arithmetic rule, whereas
the implementation-level techniques generally do not affect the accuracy. The model-level tech-
niques mostly contribute to improving abstract resource efficiency, whereas the implementation-
level techniques contribute to improve physical resource efficiency. Without careful consideration
at the intersection between the model- and the implementation-level techniques, a CNN model
compressed by the model-level techniques might require significant runtime compute resources,
incurring longer training time and inference latency than the original model [31, 119]. Thus, to
optimize the performance and energy efficiency on a particular hardware, it is essential to consider
the joint effect of the model-, arithmetic-, and implementation-level optimizations.
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Fig. 1. Survey on resource-efficient CNN techniques based on resource efficiency metrics.

Related survey works are as follows. Sze et al. [155] provided a comprehensive tutorial and
survey toward efficient processing of DNNs, discussing DNN architectures, software frameworks
(e.g., PyTorch, TensorFlow, Keras), and the implementation methods optimizing Multiply-and-

Accumulate Computations (MACs) of CNNs on given compute platforms. Cheng et al. [35, 36]
conducted a survey on the model compression techniques including pruning, low-rank factor-
ization, compact convolution, and knowledge distillation. Deng et al. [45] discussed joint model-
compression methods that combined multiple model-level compression techniques, and their
efficient implementation on particular computing platforms. Wang et al. [166] provided a survey
on custom hardware implementations of DNNs and evaluated their performance using the Roofline
model of Williams et al. [171]. Hoefler et al. [82] provided a survey on pruning techniques to gen-
erate sparse DNNs and a tutorial of how to train such sparse DNNs. Ghimire et al. [58] provided a
survey on model compression methods and computing platforms suitable for accelerating CNNs.

Unlike the previous survey works, we conduct a comprehensive survey on resource-efficient
CNN techniques in terms of the model-, arithmetic-, and implementation-level techniques by
clarifying which resource efficiency can be improved with particular techniques according
to our resource efficiency metrics as defined in Section 2.2. Such clarification would provide
machine learning engineers, computer arithmetic designers, software developers, and hardware
manufacturers with useful information to improve particular resource efficiency for their CNN
applications. Besides, since we notice that fast wireless communication and edge computing
development affects CNN applications [190], our survey also includes cutting-edge resource-
efficient techniques for distributed AI such as early exiting techniques [160, 161]. The holistic and
multi-facet view for resource-efficient techniques for CNN from our survey would allow for a
better understanding of the available techniques and, as consequence, a better global optimization,
compared to previous survey works. The main contributions of our article include the following:

• This article first provides a comprehensive survey coverage of the recent resource-
efficient techniques for CNNs in terms of the model-, arithmetic-, and implementation-level
techniques.
• To the best of our knowledge, our work is the first to provide a comprehensive survey on

arithmetic-level utilization techniques for CNNs.
• This work utilizes multiple resource efficiency metrics to clarify which resource efficiency

metrics each technique improves.
• This article provides the influence of resource-efficient CNN techniques from higher- to

lower-level techniques (refer to Figure 1).
• We discuss the future trend for resource-efficient CNN techniques.

ACM Computing Surveys, Vol. 55, No. 13s, Article 276. Publication date: July 2023.



276:4 J. Lee et al.

Fig. 2. Perceptron and neural network model.

We discuss our resource efficiency metrics for CNNs in Section 2, the model-level resource-
efficient techniques in Section 3, the arithmetic-level techniques in Section 4, the implementation-
level techniques in Section 5, and the influences between different-level techniques and the future
research trends in Section 6, and we present our conclusion in Section 7. Our article excludes
higher-level training procedure manipulation techniques such as one-pass ImageNet [84], bag of
freebies [20], and data augmentation. We have predominantly collected papers that have been
(1) highly cited or (2) published in world-leading machine learning or computing system confer-
ences/journals (e.g., CORE: A/A∗ or JCR Q1).

2 BACKGROUND ON CNNS AND RESOURCE EFFICIENCY

This section describes our CNN overview and resource efficiency metric, as preparatory to the
description of resource-efficient techniques via the three different levels.

2.1 Deep Learning Overview

Deep learning is defined as “learning multiple levels of representation” [17] and often utilizes CNNs
to learn the multiple levels of representation. CNNs are trained using the training dataset, and
their prediction accuracy is evaluated using the test dataset [5, 100]. In this section, we describe
the perceptron model (i.e., artificial neuron) first and then CNNs later.

2.1.1 Perceptron Model. The McCulloch and Pitts’s neuron (a.k.a. M-P neuron) [123], proposed
in 1943, was a system mimicking the neuron in the nervous system, receiving multiple binary
inputs and producing one binary output based on a threshold. Inspired by the work of McCulloch
and Pitts [123], Rosenblatt [139] proposed the “perceptron” model consisting of multiple weights,
a summation, and an activation function as shown in Figure 2(a).

Equation (1) describes a perceptron’s firing activityyout using the inputs xi associated with their
weights wi , where the i represents an index to indicate one of multiple inputs:

yout =
⎧⎪⎨
⎪
⎩

1, if (Σnin

i=1wi × xi > threshold ) or (Σnin

i=1wi × xi + bias > 0)

0, if (Σnin

i=1wi × xi ≤ threshold ) or (Σnin

i=1wi × xi + bias ≤ 0),
(1)

where nin is the number of the inputs. The function that determines the firing activity is referred
to as the activation function, and the bias is in proportion to the probability of the firing acti-
vation [126]. Since the single perceptron model is suitable only for linearly separable problems, a
Multi-Layer Perceptron (MLP) model can be used for non-linearly separable problems as shown
in Figure 2(b), wherew j,k, (i ) represents a weight linking the jth neuron in the (i − 1)th layer to the

k th neuron in the ith layer. The signal sj, (i ) in Figure 2 follows Equation (2):

sj, (l ) = Σ
n

(l−1)
in

i=1 (wi, j, (l ) × xi, (l−1) ) = (WT
(l )x(l−1) )j , (2)
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and x j, (l ) = θP (sj, (l ) ), where θP (s ) is a perceptron’s activation function that follows Equation (1)

(i.e., step function), and W(l ) consists of the matrix elements, wi, j, (l )s, for the ith row and the jth

column.

2.1.2 Deep Neural Network. Since it requires tremendous efforts for human to optimize MLPs
manually, neural networks that adopt a soft threshold activation function θN (sigmoid, ReLU, etc.)
were proposed to train the weights according to the training data [169, 172]. term neural network

is sometimes interchangeably used with MLP [126]. For clarity, we name an algorithm as an MLP
if it utilizes a step function for its activation functions and as a neural network if it utilizes a soft
threshold function. In Figure 2(b), the output from the ith neuron at the l th layer in a neural network
employing a soft threshold activation function, θN (·), can be represented as Equation (3):

xi, (l ) = θN (si, (l ) ). (3)

A neural network allows the weights and the biases to be trained using backpropagation [5]. A
neural network model is often referred to as a feed-forward model in that the weights always link
the neurons in the current layer to the neurons in the very next layer. In a neural network, the
middle layers located between the input and output layer are often referred to as hidden layers

(e.g., two hidden layers in Figure 2(b)). A neural network with multiple hidden layers is referred
to as a DNN [155].

2.1.3 Training: Backpropagation. In the forward pass, the neuron outputs are propagated
in the forward direction based on the matrix-vector multiplications as shown in Equation (2).
Likewise, the weights and the biases can be trained in the backward direction using matrix-vector
multiplications. This method is called backpropagation. The backpropagation method consists of
three steps, allowing a gradient descent algorithm to be implemented efficiently on computers.
It finds the activation gradients, δ j, (l )s (i.e., the gradients with respect to all the signals, sj, (l )s,
in Equation (2)), in step 1, finds the weight gradients (i.e., the gradients with respect to all the
weights) using the activation gradients in step 2, and finally updates the weights using the weight
gradients in step 3. All δ j, (l−1)s are found in the backward direction using the matrix-vector

multiplications by replacing W
T
(l )

to W(l ) and x j, (l−1) to δ j, (l ) in Equation (3). After all activation

gradients have been found, the weight gradients can be found. Finally, the weights are updated
using the weight gradients. The backpropagation requires additional storage to store all the
weights and activation values. Once a DNN is trained, the DNN is used for the inference task
using the trained weights. Please refer to the work of Abu-Mostafa et al. [5] for further details on
the backpropagation method. After a DNN is trained, the DNN’s accuracy is evaluated using the
validation dataset which is unseen from the training.

2.1.4 Convolutional Neural Network. CNN employs multiple convolutional layers, and each
convolutional layer utilizes multiple filters to perform convolutions independently with respect
to each filter as shown in Figure 3, where a filter at a convolutional layer consists of as many ker-

nels as the number of the channels at the input layer (e.g., three kernels per filter in Figure 3). For
example, each 3 × 3 filter has nine weight parameters and slides from the top-left to the bottom-
right position, generating four output values with respect to each position (e.g., top-left, top-right,
bottom-left, and bottom-right positions) in Figure 3. The outputs from the convolutions are often
called feature maps and are fed into activation functions. Modern CNNs such as ResNet [72] often
employ a batch normalization layer [90] between the convolutional layer and the ReLU layer to
improve the accuracy.

The CNN is a resource-efficient DNN architecture in terms of the accuracy per parameter and
per operation by leveraging the two properties: local receptive field and shared weights [103]. For
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Fig. 3. Convolution operations in a CNN.

example, performing convolutions using multiple small kernels extracts multiple local receptive
features from the input image during training, and each kernel contains some meaningful pattern
from the input image after being trained [189]. Thus, a CNN utilizes much fewer weights than a
fully connected DNN, since the kernel’s height and weight are generally much smaller than the
height and the width at the input layer, leading to the improved resource efficiency. Notice that a
convolutional layer becomes a fully connected layer if the height and the width at the input layer
are matched with each kernel’s height and width. The number of total weights in a layer in a CNN
is much less than used in a fully connected neural network, since the local receptive weights are
shared over the entire feature on a layer.

Training a CNN also utilizes backpropagation using the transpose of kernel matrices in a filter
to update the weights in the filter. The mini-batch gradient descent algorithm is widely used to
train CNNs, which utilizes part of training data to update the weights per iteration. The number
of data used per iteration is often referred to as the batch size B (e.g., B = 64 or 128). Each epoch
consumes the entire training data, consisting ofN /B iterations, whereN is the number of the entire
training data. The mini-batch gradient descent method is a resource-efficient training algorithm in
terms of the accuracy per operation, compared to the batch gradient descent method that utilizes
entire training dataset per iteration (i.e., the batch gradient descent method updates the weights
per epoch). For parallel backpropagation implementation with respect to B data samples in one
mini-batch, all the weights and all the activation values using B training samples should be stored
to update the weights per the mini-batch iteration, requiring B× additional storage, compared to
the backpropagation using a stochastic gradient descent algorithm which updates the weights per
training sample.

2.2 Resource Efficiency Metrics

Recently, researchers from DeepMind [84] proposed the metrics for resource-efficient deep learn-
ing benchmarks, including the top-1 accuracy, the required memory footprint for training, and the
required number of floating operations for training, and evaluated the resource efficiency for deep
learning applications by jointly considering the three metrics. The Roofline model [171] discussed
attainable performance in terms of the operational intensity defined as the number of Floating-

Point (FP) operations per DRAM access. Motivated by other works [84, 171], our resource effi-
ciency metrics include the accuracy per parameter, per operation, per memory footprint, per core
utilization, per memory access, and per Joule as shown in Figure 1.

2.2.1 Accuracy per Parameter. We consider the accuracy per parameter (i.e., weight) a resource
efficiency metric. The accuracy per parameter is an abstract resource efficiency metric since
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higher accuracy per parameter does not always imply higher physical resource efficiency after its
implementation [1, 84].

2.2.2 Accuracy per Operation. We consider the accuracy per arithmetic operation a resource
efficiency metric. This is also an abstract metric, since it can be evaluated prior to the implemen-
tation.

2.2.3 Accuracy per Compute Resource. Instruction-driven architecture such as CPU or GPU
requires substantial memory accesses due to instruction fetch and decode operations, whereas
data-driven architecture such as ASIC or FPGA can minimize the number of memory accesses,
resulting in energy efficiency. We further categorize such compute resource into core utilization,
memory footprint, and memory access, required to operate a CNN on given computing platforms.
For example, the memory access can be interpreted as GPU DRAM access (or off-chip memory)
for a GPU and as FPGA on-chip memory access (or off-chip memory) for a FPGA.

Accuracy per Core Utilization. The core utilization in this work represents the utilization per-
centage of the processing cores or PEs.

Accuracy per Memory Footprint. The accuracy per memory footprint is related to both physical
and abstract resource efficiency as shown in Figure 1. The memory footprint is in proportion to the
number of the parameters, but it can be varied according to a precision level applied for arithmetic.
For example, if a half precision arithmetic is applied for a CNN, the memory footprint can be saved
by 2× compared to a single-precision arithmetic CNN.

Accuracy per Memory Access. A computing kernel having a low operational intensity cannot
approach a peak performance defined by hardware specification since the data supply rate from
DRAM to CPU cannot catch up with the data consumption rate by arithmetic operations. Such
kernels are called memory bound kernels in the work of Williams et al. [171]. Other type kernels
are called compute bound kernels, which can approach a peak performance defined by hardware
specification. Utilizing reduced precision arithmetic can improve the performance for both mem-
ory bound kernels by improving the data supply rate from DRAM to CPU and compute bound
kernels by increasing word-level parallelism on SIMD architectures [105].

2.2.4 Accuracy per Joule. Dynamic power consumption is the main factor to determine energy
consumption required for computationally intensive tasks (e.g., CNN training/inference tasks). The
dynamic power consumption, PD , follows:

PD = #TT R ×CCP ×V 2
CP × fCP , (4)

where #TT R is the number of toggled transistors, CCP is an effective capacitance, VCP is an opera-
tional voltage, and fCP is an operational frequency for a given computing platformCP . Generally,
the required minimum operational voltage is in proportion to the operational frequency. Therefore,
adapting the frequency to the voltage scaling can save power cubically (a.k.a. Dynamic Voltage Fre-
quency Scaling [147]). For example, minimizing the operations required to operate a CNN during
runtime contributes to minimizing #TT R , resulting in power reduction and energy savings; we
discuss the resource-efficient techniques leveraging this in Section 5.3.1.

2.2.5 Interrelated Influence of Resource Efficiency Metrics. A higher-level resource efficiency
metric influences a lower-level metric as shown in Figure 1. For example, accuracy per param-
eter affects accuracy per memory footprint and/or memory access. Reduced parameters require
less compute memory footprints and minimize the number of arithmetic operations, leading to re-
duced core utilization, memory accesses, and energy consumption. Energy consumption of CNNs
on CPUs and GPUs mainly comes from memory access [7, 180]. Therefore, minimizing mem-
ory access cost is the main consideration for energy savings for CNNs [155]. For example, most

ACM Computing Surveys, Vol. 55, No. 13s, Article 276. Publication date: July 2023.



276:8 J. Lee et al.

Fig. 4. Categorization of model-level resource-efficient techniques.

implementation-level resource-efficient techniques focus on minimizing memory access cost to
save energy consumption.

3 MODEL-LEVEL RESOURCE-EFFICIENT TECHNIQUES

The model-level resource-efficient techniques, mostly developed from the machine learning com-
munity, aim at reducing the CNN model size to fit the models to resource-constrained systems such
as mobile devices and IoT. We categorize the model-level resource-efficient techniques as shown
in Figure 4.

3.1 Weight Quantization

The weight quantization techniques quantize the weights with a smaller number of bits, improving
the accuracy per memory footprint. The training procedure should be amended according to the
weight quantization schemes.

3.1.1 Binary Weight Quantization. The BinaryConnect training scheme [41] allowed a CNN to
represent the weights using one bit. In step 1, the weights are encoded to {−1, 1} using a stochastic
clipping function. In step 2, the forward pass is performed using the encoded binary weights. In
step 3, backpropagation seeks all activation gradients using full precision. In step 4, the weights are
updated using full precision, and the training procedure goes back to step 1 for the training using
the next mini-batch. This method required only one bit to represent the weights, thus improving
the accuracy per memory footprint. In addition, the binary weight quantization also removed the
need for multiplication arithmetic operations for MAC operations, improving the accuracy per
operation. Moreover, if the activations are also quantized to the binary value, all MAC operations
in the CNN can be implemented only with XNOR gates and a counter [42, 135].

3.1.2 Ternary Weight Quantization. Li et al. [108] proposed ternary weight networks that
utilized ternary weights, improving accuracy, compared to the binary weight networks. All the
weights on each layer were quantized into three values, requiring only two bits to represent the
quantized weights. The overall training procedure was similar to that of Courbariaux et al. [41],
but with ternary valued weights instead of the binary weights. The ternary weight network
showed equivalent accuracy to various single-precision networks with MNIST, CIFAR-10, and
ImageNet, whereas the binary weight quantization [41] showed minor accuracy loss. Zhu
et al. [196] scaled the ternary weights independently for each layer with a layer-wise scaling
approach, improving the accuracy further, compared to Li et al. [108].

3.1.3 Mixed Quantization. Hubara et al. [88] proposed the “Quantized Neural Network,” which
quantizes the activations and the weights to arbitrary lower-precision format. For example,
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quantizing the weights to one bit and the activations to two bits improved the accuracy compared
to the binarized CNN of Courbariaux et al. [42].

3.2 Pruning

Pruning unimportant neurons, filters, and channels can save computational resources for CNN ap-
plications without sacrificing accuracy, improving the accuracy per parameter and per operation.
Coarse-grained pruning methods such as pruning filters or channels are not flexible to achieve a
prescribed accuracy but can be implemented efficiently on hardware [114], implying higher phys-
ical resource efficiency than fine-grained pruning such as pruning weights. Notice that such prun-
ing methods can degrade confidence scores without careful retraining, even though they did not
affect top-1 accuracy [184].

3.2.1 Pruning Weights. In 1990, LeCun et al. [104] proposed a weight pruning method to gener-
ate sparse DNNs with fewer weights without losing accuracy. In 2015, the weight pruning approach
was revisited [70], and the weights were pruned based on their magnitudes after training—the
pruned CNNs were retrained to regain the lost accuracy. The pruning and retraining procedures
could be performed iteratively to prune the weights further. This method reduced the number of
weights of AlexNet by 9× without losing accuracy. In 2016, Guo et al. [63] noticed that pruning
wrong weights could not be revived, and proposed to prune and splice the weights per mini-batch
training to minimize the risk from pruning wrong weights from previous mini-batch training. For
example, the pruned weights were also used in the weight update procedure during the back-
propagation and were restored when they were reconsidered as the important weights. In 2017,
Yang et al. [180] proposed an energy-aware weight pruning method in which the energy con-
sumption of a CNN was directly measured to guide the pruning process. In 2019, Frankle and
Carbin [53] demonstrated that some of pruned models outperformed the original model by re-
training the pruned models with replacing the survived weights with the initial random weights
used for training the original model.

3.2.2 Pruning Neurons. Instead of pruning individual weights, pruning a neuron can remove a
group of the weights belonging to the neuron [85, 120, 152, 188]. In 2015, Srinivas and Babu [152]
pruned the redundant neurons having similar weight values in a trained CNN model. For example,
the weights in a baseline neuron were compared to the weights in other neurons at the same layer,
and the neurons having similar weights to the baseline neuron were fused to the baseline neuron
based on a Euclidean distance metric in the weight values between the two neurons. In 2016, Mariet
and Sra [120] pruned the redundant neurons based on the “determinantal point process” metric.
Hu et al. [85] measured the average percentage of zero activations per neuron and pruned the
neurons having a high percentage of zero activations according to a given compression rate. Yu
et al. [188] pruned unimportant neurons based on the effect of the pruning error propagation on
the final response layer (e.g., the neurons were pruned backward from the final layer to the first
layer). The methods of pruning neurons improved the resource efficiency, such as the accuracy per
parameter and per operation.

3.2.3 Pruning Filters. Pruning insignificant filters after training can improve the accuracy
per parameter and per operation. The feature maps associated with the pruned filters and the
next kernels associated with the pruned feature maps should be also pruned. Pruning filters can
maintain the dense structure of DNN unlike pruning weights, implying that it is highly probable
to improve physical resource efficiency further, compared to pruning weights. Li et al. [109]
pruned unimportant filters based on the summation of absolute weight values in the filter. The
pruned CNNs were retrained with the survived filters to regain the lost accuracy. Yang et al. [181]
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pruned filters based on a platform-aware magnitude-based metric depending on the resource-
constrained devices. ThiNet [118] calculated the significance of the filters using the outputs of the
next layer and pruned the insignificant filters based on this significance measurement.

3.2.4 Pruning Channels. Unlike pruning filters, pruning channels removes the filters at the cur-
rent layer and the kernels at the next layer associated with the pruned channels. The network
slimming approach [114] pruned insignificant channels, producing compact models while keeping
equivalent accuracy, compared to the models prior to pruning. For example, insignificant chan-
nels were identified based on scaling factors generated from the batch normalization of Ioffe and
Szegedy [90], and the channels associated with lower scaling factors were pruned. After the initial
training, the channels associated with relatively low scaling factors were first pruned, and retrain-
ing was then performed to refine the network. He et al. [75] identified unimportant channels using
LASSO regression from a pre-trained CNN model and pruned them. The channel pruning brought
5× speedup on VGG16 with minor accuracy loss. Lin et al. [112] pruned unimportant channels dur-
ing runtime based on a decision maker trained by reinforcement learning. Gao et al. [56] proposed
another dynamic channel pruning method that dynamically skipped the convolution operations
associated with unimportant channels.

3.3 Compact Convolution

To improve resource efficiency such as the accuracy per operation and per parameter from com-
putationally intensive convolution operations, many compact convolution methods have been
proposed.

3.3.1 Squeezing Channel. In 2016, Iandola et al. [89] proposed SqueezeNet, in which each net-
work block utilized the number of 1 × 1 filters less than the number of the input channels to
reduce the network width in the squeezing stage and then utilized multiple 1 × 1 and 3 × 3 ker-
nels in the expansion stage. The computational complexity was significantly reduced by squeezing
the width while compensating the accuracy in the expansion stage. SqueezeNet reduced the num-
ber of parameters by 50×, compared to AlexNet on ImageNet without losing accuracy, improving
accuracy per parameter. Gholami et al. [59] proposed SqueezeNext that utilized separable con-
volutions in the expansion stage; a k × k filter was divided into a k × 1 and a 1 × k filter. Such
separable convolutions reduced the number of parameters further compared to SqueezeNet while
maintaining AlexNet’s accuracy on ImageNet, improving accuracy per parameter further, com-
pared to SqueezeNet.

3.3.2 Depth-Wise Separable Convolution. Xception [38] utilized depth-wise separable convolu-
tions, which replace 3D convolutions with 2D separable convolutions followed by 1D convolu-
tions (i.e., point-wise convolutions) as shown in Figure 5, to reduce computational complexity. The
2D separable convolutions are performed separately with respect to different channels. Howard
et al. [83] proposed MobileNet v1 that utilizes depth-wise separable convolutions with two hy-
perparameters, “width multiplier and resolution multiplier,” to fit CNNs to resource-constrained
devices by fully leveraging the accuracy and resource tradeoff in the CNNs. MobileNet v1 showed
equivalent accuracy to GoogleNet and VGG16 on the ImageNet dataset with less computational
complexity, improving the accuracy per parameter and per operation.

3.3.3 Linear Bottleneck Layer. In general, the manifold of interest (i.e., the subspace formed by
the set of activations at each layer) could be embedded in low-dimensional subspaces in CNNs.
Inspired by this, Sandler et al. [142] proposed MobileNet v2 consisting of a series of bottleneck
layer blocks. Each bottleneck layer block as shown in Figure 6 received lower-dimensional
input, expanded the input to high-dimensional intermediate feature maps, and projected the
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Fig. 5. Depth-wise convolution used in the work of Howard et al. [83].

Fig. 6. Bottleneck layer block used in the work of Sandler et al. [142].

high-dimensional intermediate features onto low-dimensional features. Keeping linearity for the
output feature maps was crucial to avoid destroying information from non-linear activations, so
linear activation functions were used at the end of each bottleneck block.

3.3.4 Group Convolution. In a group convolution method, the input channels are divided into
several groups, and the channels in each group are separately participated in convolution with
other groups. For example, the input channels with three groups required three separate convo-
lutions. Since group convolution does not communicate with the channels in other groups, com-
munication between different groups is performed after the separate convolutions. Group convo-
lution methods [86, 87, 119, 193] reduced the number of MAC operations, improving the accu-
racy per operation, compared to CNNs using regular convolution. In 2012, AlexNet utilized group
convolution to train the CNNs effectively using two NVIDIA GTX580 GPUs [100]. Surprisingly,
AlexNet using group convolution showed superior accuracy to AlexNet using regular convolution,
improving the accuracy per operation. In 2017, ResNext [177] utilized group convolution based on
ResNet [72] using a cardinality parameter (i.e., the number of groups). In 2018, Zhang et al. [193]
noticed that the point-wise convolutions were computationally intensive in practice in the depth-
wise convolutions and proposed ShuffleNet that applied group convolution to every point-wise
convolution to reduce compute complexity further, compared to MobileNet v1. ShuffleNet shuf-
fled the output channels from the grouped point-wise convolution to communicate with differ-
ent grouped convolutions, demonstrating superior accuracy to MobileNet v1 on ImageNet and
COCO datasets, given the same arithmetic operation cost budget. Ma et al. [119] proposed Shuf-
fleNet v2, which improved physical resource efficiency further compared to ShuffleNet [193] by
employing equal channel width for input and output channels where applicable and minimizing
the number of operations required for 1 × 1 convolutions. Rather than choosing each group ran-
domly and shuffling them, Huang et al. [86] proposed to learn each group for a group convolution
during training. The “learned group convolution” was applied in DenseNet [87], and DenseNet im-
proved the accuracy per parameter and per operation, compared to ShuffleNet, given a prescribed
accuracy.

3.3.5 Octave Convolution. Chen et al. [32] decomposed feature maps into a higher and a lower
frequency part to save the feature maps’ memory footprint and reduce the computational cost.
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The decomposed feature maps were used by specific convolution called octave convolution, which
performs a convolution between the higher and lower frequency part. The application of the octave
convolution to ResNet-152 architecture achieved higher accuracy using ImageNet dataset than the
regular convolution, improving the accuracy per operation and per memory footprint.

3.3.6 Downsampling. Qin et al. [132] applied a downsampling approach (e.g., a larger stride
size for a convolution) to MobileNet v1, improving the top-1 accuracy by 5.5% over MobileNet v1
on the ILSVRC 2012 dataset, given a 12M arithmetic operations budget.

3.3.7 Low Rank Approximation. Denton et al. [47] proposed a low rank approximation that
compresses the kernel tensors in the convolutional layers and the weight matrices in the fully
connected layers by using singular value decomposition. Another low rank approximation [98]
used Tucker decomposition to compress the feature maps, resulting in significant reductions in
the model size, the inference latency, and the energy consumption. Such low rank approximation
methods improve the accuracy per parameter, per operation, and per memory footprint.

3.4 Knowledge Distillation

The knowledge from a large-scale high-performing model (teacher network) could be transferred
to a compact neural network (student network) to improve resource efficiency such as accuracy per
parameter and per operation for inference tasks [23, 29, 138]. Buciluă et al. [23] utilized data with
the labels generated from the teacher model (i.e., a large-scale ensemble model) to train a compact
neural network. The compact model was trained with the pseudo training data generated from
the teacher model, demonstrating equivalent accuracy to the teacher model. Ba and Caruana [14]
noticed that the softmax outputs often resulted in the student network ignoring the information
of the other categorizations than the one with the highest probability, and utilized the values prior
to the softmax layer, from the teacher network, for the training labels to allow the student net-
work to learn the teacher network more efficiently. Hinton et al. [78] added a “temperature” term
for the labels to enrich the information from the teacher network and train the student network
more efficiently, compared to Ba and Caruana [14]. Romeo et al. [138] utilized both labels and in-
termediate representations from a wider teacher network to compress it to a thinner and deeper
student network. The “hint layer” was chosen from the teacher network, and the “guided layer”
was chosen from the student network. The student network was then trained so that the interme-
diate representation deviation between the outputs from the hint layers and guided layers could
be minimized. A thinner student network employed 10.4× less weight parameters, compared to a
wider teacher network, while improving accuracy. This technique is also known as “hint learning.”
Hint learning was applied to both the region proposal and classification components for object
detection applications [29].

3.5 Neural Architecture Search for Compressed Models

Zoph and Le [198] proposed the Neural Architectural Search (NAS) technique to seek optimal
DNN models in the space of hyperparameters of network width, depth, and resolution. In case
that compute resource budget was limited (e.g., mobile devices), many NAS variants exploited
the tradeoff between accuracy and latency to maximize resource efficiency given a compute
resource budget [74, 157–159, 174]. He et al. [74] proposed a NAS employing reinforcement
learning, AutoML, that sampled the least sufficient candidate design space to compress the
DNN models. MnasNet [157] utilized reinforcement learning with a balanced reward function
between the accuracy and the latency to seek a compact neural network model. Wu et al. [174]
proposed a gradient-based NAS that produced a DNN model with 2.4× model size reduction
compared to a MobileNet v2 without losing accuracy on the ImageNet dataset. Scheidegger
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Fig. 7. Categorization of arithmetic-level resource-efficient techniques.

et al. [143] proposed a narrow-space NAS to generate low-resource DNNs satisfying a strict
memory budget and inference time requirement for IoT applications. Anderson et al. [13] noticed
that conventional NAS might improve abstract resource efficiency rather than physical resource
efficiency, and utilized the hardware information including the inference latency for a NAS to
ensure that the candidate models could improve the physical resource efficiency in practice.
EfficientNet [158] utilized a NAS with compound scaling of depth, width, and resolution to seek
optimal DNN models given fixed compute resource budgets. Another NAS utilizing compound
scaling, EfficientDet, was proposed for object detection applications [159]. EfficientDet improved
accuracy using the COCO dataset with 4 to 9× model size reduction, compared to state-of-the-art
object detectors, improving the accuracy per parameters. Recently, Cai et al. [25] proposed a feed-
forward NAS approach that produced a customized DNN, given compute resource and latency
constraint.

4 ARITHMETIC-LEVEL RESOURCE-EFFICIENT TECHNIQUES

Utilizing lower-precision arithmetic reduces the memory footprint and the time spent transferring
data across buses and interconnections [52, 125, 182, 197]. Employing least sufficient arithmetic
precision for CNN applications can improve the accuracy per memory footprint and the accuracy
per memory access. We categorize the arithmetic-level resource-efficient techniques into the two
categories as shown in Figure 7, Arithmetic-Level Techniques for Inference and Arithmetic-Level

Techniques for Training. We discuss different number formats first and the deployment of such
number formats on CNNs later.

4.1 Number Formats for CNNs

This section describes various number formats for CNN applications, as preparatory to explaining
the arithmetic-level resource-efficient techniques. Fixed-Point (FiP) number format utilizes a bi-
nary FiP between the fraction and integer parts. For example, an eight-bit FiP format, “01.100000,”
represents 1.5 (i.e., ...0 × 21 + 1 × 20 + 1 × 2−1 + 0 × 2−2...) for the decimal representation, and the
point between the integer part and fraction part is fixed for arithmetic operations. Therefore, it
could be implemented with simple circuits, but the available data range is quite limited [130].

We exemplify the IEEE 754 general-purpose FP standard [4] to explain FP format and its arith-
metic, since this standard is used for most commercially available CPUs and GPUs. The IEEE 754
Floating-Point (IFP) data format [4] consists of sign, exponent, and significand as shown in Equa-
tion (5). For example, an FP number has a (p + 1)-bit significand (including the hidden one), an

e-bit exponent, and a one sign bit. The machine epsilon ϵmach is defined as 2−(p+1) . The value
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represented by FP is as follows:

yout =
⎧⎪⎨
⎪
⎩

normal mode: (−1)siдn × (1 × 20 + d1 × 2−1 + · · · + dp × 2−p ) × 2exponent−bias

subnormal mode: (−1)siдn × (d1 × 2−1 + · · · + dp × 2−p ) × 21−bias ,
(5)

where d1, . . . , dp represent binary digits, the ‘1’ associated with the coefficient 20 is referred to
as the hidden ‘1’, the exponent is stored in offset notation, and the bias is a positive constant. If
the absolute value of exponent is zero, the FP value is represented by the subnormal mode. IEEE
754 standard requires exact rounding for addition, subtraction, multiplication, and division; the
FP arithmetic result should be identical to the one obtained from the final rounding after exact
calculation. For example, based on the IEEE 754 rounding to nearest mode standard, FP arithmetic
should follow Equation (6):

f l (x1 � x2) = (x1 � x2) (1 + ϵr ), (6)

where |ϵr | ≤ ϵmach , � is one of the four arithmetic operations, and f l (·) represents the result from
the FP arithmetic. Notice that quantization quantizes data to lower precision, whereas arithmetic

is a rule applied to arithmetic operations between the two operands. For example, the quantization
affects the values for the two operands, x1 and x2, in Equation (6), whereas arithmetic affects the
rounding error, ϵr .

4.1.1 Half, Single, and Double Precision. The IEEE FP 32- (IFP32 or single-precision) and 64-bit
(IFP64 or double-precision) versions are available on most off-the-shelf conventional processors.
Additionally, the IEEE 754 standard includes a 16-bit FP format (IFP16 or half precision) [4]. p = 52,
e = 11, and bias = 1023 for IFP64, p = 23, e = 8, and bias = 127 for IFP32, and p = 10, e = 5, and
bias = 15 for IFP16. IFP16 is currently supported in hardware on some modern GPUs to accelerate
DNN applications [40, 79].

4.1.2 Brain FP Using 16 Bits (BFloat16). In 2018, a 16-bit Brain FP format [24, 186] was proposed
that was tailored to CNN applications. BFloat16 consists of an eight-bit exponent and a seven-bit
significand, supporting a wider dynamic data range than IFP16. BFloat16 is currently supported in
hardware in Intel Cooper Lake Xeon processors, NVIDIA A100 GPUs, and Google TPUs.

4.1.3 DLFloat. In the race of designing specific FP formats for CNNs, some authors [6, 167] pro-
posed another 16-bit precision format, DLFloat, consisting of a 6-bit exponent and a 9-bit signifi-
cand to provide better balance between dynamic data range and precision than IFP16 and BFloat16
formats for some CNN applications.

4.1.4 TensorFloat32 (TF32). NVIDIA proposed a 19-bit data format, TF32, consisting of a 1-bit
sign, an 8-bit exponent, and a 10-bit significand to accelerate CNN applications on A100 GPUs
with the same dynamic range support as IFP32 [51]. TF32 tensor cores in an A100 truncate IFP32
operands to 19-bit TF32 format but accumulate them using IFP32 arithmetic for MAC operations.

4.2 Arithmetic-Level Techniques for Inference

This section discusses various resource-efficient arithmetic-level techniques based on pre-trained
CNNs for the inference tasks.

4.2.1 Lower-Precision Arithmetic. Lower-precision FiP arithmetic has been widely used to de-
ploy CNNs on edge devices [179]. The effects of deploying various lower-precision arithmetic to
the CNN inference tasks were explored in terms of accuracy and latency [168, 175]. The BitFusion

method accelerated CNN inference tasks by employing variable bit-width FiP formats dynamically
depending on the different layers [148]. Similarly, Tambe et al. [156] proposed AdaptiveFloat that
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adjusted dynamic ranges of FP numbers depending on the different layers, resulting in higher
energy efficiency than FiP-based methods, given the same accuracy requirement.

4.2.2 Encoding Weights and Using a Lookup Table. Bordawekar et al. [21] leveraged the fact
that the exponent values of most of the weights were located within a narrow range and encoded
the frequent exponent values of the weights with fewer bits using a Huffman coding scheme,
improving the accuracy per memory footprint for natural language processing applications. A
lookup table, located between the memory and FP arithmetic units, is used to convert the encoded
exponent values into FP exponent values.

4.2.3 Applying Various Number Format Quantizations to CNNs. The Residue Number System

(RNS) is a parallel and carry-limited number system that transforms a big natural number to sev-
eral smaller residues. Therefore, RNS was often used to perform parallel and independent calcula-
tions on residues without carry-propagation, and it exploited such parallelism to accelerate CNN
computation [28]. In an RNS-based CNN, the weights of a pre-trained model were transformed to
RNS presentation. Recently, RNS was used to replace costly multiplication operations with simple
logical operations such as multiplexing and shifting, accelerating CNN applications [115, 140, 141].
The Logarithmic Number System applies the logarithm to the absolute values of the real num-
bers [130]. The main advantage of the Logarithmic Number System is in the capability of trans-
forming multiplications into additions and divisions into subtractions. In 2018, Vogel et al. [165]
utilized a five-bit logarithmic format using arbitrary log bases to improve resource efficiency such
as accuracy per memory footprint and per operations by replacing costly multiplication arithmetic
operations to simple bit-shift operations [165]. The Posit number format [66] employs multiple
separate exponent fields to represent dynamic range effectively. Recently, CNNs utilizing Posit
showed higher accuracy than various FP8 formats using Mushroom and Iris datasets [26, 27].

4.3 Arithmetic-Level Techniques for Training

This section discusses arithmetic-level resource-efficient techniques used for CNN training tasks.
Training CNNs generally requires higher-precision arithmetic due to extremely small weight gradi-
ent values [41, 196]. Adjusting arithmetic precision according to different training procedures such
as forward propagation, activation gradient updates, and weight updates can accelerate CNN train-
ing [64]. Training quantized CNNs often required stochastic rounding schemes [65, 176, 182, 195].

4.3.1 Mixed-Precision Training. A conventional mixed-precision training applied lower-
precision arithmetic to the multiplications in MACs, including both forward and backward
paths, and higher-precision arithmetic to the accumulations in the MACs using lower-precision
quantized operands [95, 125]. The higher-precision outcomes from MACs were quantized to a
lower-precision format to be used for consequent operations. In the following (X + Y) formats, X
represents the data format used for MAC operations and Y represents the arithmetic applied for
the accumulations in MAC operations (refer to the work of Gupta and Ranga [64] for details on
lower- and higher-precision arithmetic usage).

IFP16 + IFP32. In 2018, Micikevicius et al. [125] noticed that the weights were updated using very
small weight gradient values, and applied a lower-precision arithmetic IFP16 to the multiplications
and a higher-precision IFP32 to the accumulations for the weight updates. For example, in the
mixed-precision training approach in their work [125], IFP16 was used to store weights, activations,
activation gradients, and weight gradients, whereas IFP32 was used to keep the weight copies for
their updates. Along with accumulating IFP16 operands using IFP32 arithmetic, the use of loss
scaling allowed the mixed-precision training to achieve equivalent accuracy to the IFP32 training
while reducing the memory footprint.
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BFloat16 + IFP32. In 2018, mixed-precision CNN training using (BFloat16 + IFP32) was explored
by Ying et al. [186]. In 2019, Kalamkar et al. [95] studied BFloat16’s feasibility for mixed-precision
training for various CNNs including AlexNet, ResNet, and GAN, among others, and concluded
that the (BFloat16 + IFP32) scheme outperformed the (IFP16 + IFP32) scheme since BFloat16 could
represent the same dynamic range of data as IFP32 while using fewer bits.

FP8 + DLFloat. In 2018, Wang et al. [167] proposed a mixed-precision training method that
applies the 5eFP8 format (one sign bit, five-bit exponent, and two bits for the significand) to
the multiplications and DLFloat to the accumulations in MAC operations. The mixed-precision
method improved resource efficiency such as accuracy per memory footprint and accuracy per
memory access compared to various (FP16 + IFP32) schemes with respect to different FP16 formats.
Compared to the previous (FP16 + IFP32) methods, the chunk-accumulation and stochastic round-
ing schemes were additionally used to minimize the accuracy loss in the work of Wang et al. [167],
The chunk-based accumulation utilized 64 data per chunk instead of one long sequential accumu-
lation to reduce rounding errors. Utilizing a stochastic rounding scheme with limited-precision
format for deep learning was proposed earlier by Gupta et al. [65]. Sun et al. [153] noted that
(5eFP8 + DLFloat) training degraded accuracy for CNNs utilizing depth-wise convolutions such
as MobileNets. To overcome this issue, Sun et al. [153] proposed to employ two different eight-bit
FP formats each for forward and backward propagation to minimize the accuracy degradation
for compressed CNNs. The mixed-precision training utilized 5eFP8 for backpropagation and
another eight-bit FP format with (sign, exponent, significand) = (1, 4, 3), 4eFP8, for forward
propagation.

DLFloat Only. In 2019, Agrawal et al. [6] employed DLFloat for the entire training procedure, re-
moving the necessity of data conversions between the multiplications and the accumulations and
found that DLFloat could provide better balance between dynamic range and precision than IFP16
and BFloat16 for LSTM networks [80] using the Penn Treebank dataset. The DLFloat arithmetic
units removed subnormal mode and supported the round-to-nearest up mode to minimize compu-
tational complexity. In the work of Agrawal et al. [6], the DLFloat arithmetic showed equivalent
performance to IFP32 on ResNet-32 using CIFAR10 and ResNet-50 using ImageNet while using a
half of IFP32 bit width.

INT8 Only. Yang et al. [182] noticed that previously proposed mixed-precision training schemes
did not quantize the data in the batch normalization layer, requiring high FP arithmetic in some
parts of the data paths. To overcome this issue, a unified INT8-based quantization framework was
used to quantize all data paths in a CNN including weights, activation, gradient, batch normal-
ization, and weight update, among others, into INT8-based data. However, this training method
degraded the accuracy to some extent. In 2020, Zhu et al. [197] improved the accuracy, compared
to the work of Yang et al. [182], while keeping a unified INT8-based quantization framework. In
the work of Zhu et al. [197], the deviation of the activation gradient direction between before and
after quantization was minimized by measuring the distance during runtime based on the inner
product between the two normalized gradient vectors generated before and after quantization.

Four-Bit Data Only (INT4 + FP4). In 2020, Sun et al. [154] proposed a new training technique
using only four bits to represent weights, activations, and their gradient values, requiring
mixed-precision INT4-FP4 MAC operations. The weights and activations are stored using INT4
format since their data range is not wide, whereas their gradient values are stored using four-bit
FP format (FP4) since their data range is wide. The proposed FP4 format uses one bit for the sign
bit and three bits for the exponent (i.e., no mantissa bit) with radix-4 to represent wide-ranged
gradient values. Therefore, this training method can improve the accuracy per memory footprint
and memory access. A layer-wise gradient scaling approach with a customized rounding scheme
was employed to minimize the impact of large quantization errors caused by the four-bit
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representation for gradient values on the accuracy. This training method brought minor accuracy
loss using CIFAR10 and ImageNet datasets with a ResNet18, compared to IFP32.

Layer-Wise Adaptive FiP Training. In 2020, Zhang et al. [192] proposed a layer-wise adaptive
quantization scheme. For example, activation gradient distributions at fully connected layers fol-
lowed a narrower distribution, requiring more bit width for the quantizations. AlexNet was quan-
tized using INT8 for all the weights and activations and both INT8 (22%) and INT16 (78%) for the
activation gradients. The quantized AlexNet achieved equivalent accuracy to the one using IFP32
for entire training on the ImageNet dataset.

4.3.2 Block Floating-Point Training. Block Floating-Point (BFP) format utilizes a shared ex-
ponent for a series of numbers in a data block to reduce data size [170]. Applying BFP to CNNs can
improve the resource efficiency in terms of accuracy per memory footprint and per memory ac-
cess. In addition, BFP utilizes less transistors for simpler adders and multipliers than FP adders and
multipliers, resulting in improving accuracy per Joule. Various versions of CNN training methods
using BFP were proposed to improve resource efficiency.

Flexpoint. A DNN-optimized BFP format, Flexpoint [99], was proposed by Intel, and it was used
with the Nervana neural processors. The BFP format used 5 bits for a shared exponent and 16
bits for the significand for the data in a data block. Flexpoint utilized the format of (Flex N) + M,
where Flex N represents variable number of bits for the shared exponent according to the differ-
ent epochs, and M represents the number of bits for the separated significand. For example, the
number of exponent bits is adapted based on the dynamic range of the weight values depending
on the number of iterations; the dynamic range of the weight values at the current iteration was
predicted at the previous iteration. The (Flex N + 16) format produced equivalent accuracy to IFP32
in AlexNet using the ImageNet dataset and a ResNet using the CIFAR-10 dataset, resulting in sig-
nificant resource efficiency improvement in terms of accuracy per memory footprint and accuracy
per memory access.

BFP + FP training. Drumond et al. [48] proposed a hybrid use of BFP and FP for CNN training that
uses BFP only for MAC operations and FP for the other operations. Such hybrid training method
brought 8.5× potential throughput improvement with minor accuracy loss in WideResNet28-10
using the CIFAR-100 dataset on a Stratix V FPGA.

Block MiniFloat. It was noticed that ordinary BFP formats were limited in minimizing original
data loss with fewer bits and improving arithmetic density per memory access for CNN applica-
tions [52]. To address the two issues, Fox et al. [52] proposed Block Minifloat (BM) along with
customized hardware circuit design. The BM<e,m> format follows:

yout =

{
normal mode: (−1)siдn × (1 × 20 + d1 × 2−1 + · · · + dm × 2−m ) × 2exponent−bias−BI ASS E

subnormal mode: (−1)siдn × (d1 × 2−1 + · · · + dm × 2−m ) × 21−bias−BI ASS E ,

(7)

where bias = 2e−1 − 1 and BIASSE is a shared exponent value. BIASSE is scaled according to the
maximum value of the data for dot-product operations. For example, BM<2,3> represents a six-
bit data format having one sign bit, one-bit exponent, and three-bit significand. Such BM variant
formats were applied for training. Utilizing these six-bit BM formats produced equivalent accuracy
to IFP32 formats but with fewer bits using CIFAR 10 and 100 datasets with ResNet-18, resulting
in reduced memory traffic and low energy consumption. Therefore, BM improved the resource
efficiency in term of accuracy per memory access.

5 IMPLEMENTATION-LEVEL RESOURCE-EFFICIENT TECHNIQUES

Figure 8 classifies the implementation-level resource-efficient techniques. Most implementation-
level techniques have focused on improving energy efficiency and computational speed for MAC
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Fig. 8. Categorization of implementation-level resource-efficient techniques.

Fig. 9. MAC dataflow.

operations, since MACs generally occupy more than 90% of computational workload for both train-
ing and inference tasks in CNNs [155]. The implementation-level resource-efficient techniques
exploited the characteristics of MACs in the CNN including data reuse, sparsity of weights and
activations, and weight repetition from quantized CNNs.

5.1 Leveraging Data Reuse from Convolution

The weights and the activations are heavily reused in convolution operations. For example, the
weights of a filter are reused ((H − kH + 1) × (W − kW + 1))/stride times, where H = W = 4
(height and width at input channel) and kH = kW = 3 (height and width for a kernel) in Figure 3.
Generally, H and W are three orders of magnitude (128, 256, etc.), kH and kW are one order of
magnitude (3, 5, etc.), and stride is either 1 or 2. For example, if H =W = 128, kH = kW = 3, and
stride = 1, each filter is reused 16, 129 times for convolutional operations. Each input element at a
convolutional layer is also reused approximately M×kH ×kW times, where M is the number of the
total kernels used in the layer. Figure 9 describes the data access patterns for MAC operations used
for convolutional layers. In each MAC in Figure 9(a), the data, a, b, and c, are read from the memory
for multiply and add computation, and the result d is written back to the memory, where c contains
a partial sum for the MAC. To save energy consumption, highly reused data for MACs can be stored
in small local memory as shown in Figure 9(b). For example, the power consumption required to
access data depends on where the data are located—accessing data from off-chip memory, DRAM,
generally requires two orders of magnitude more than from on-chip memory [31]. Many research
works have presented how to leverage such data reuse properties to improve resource efficiency.

5.1.1 Employing SRAM Local Memory Near PEs. The use of SRAM buffers reduces the energy
consumed by CNNs by up to two orders of magnitude compared to DRAM. Similar to Figure 9(b),
the DianNao architecture [30] employed one Neural Functional Unit (NFU) integrated with
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three separated local buffers, each for holding 16 input neurons, 16 × 16 weights, and 16 output
neurons, to optimize circuitry for MAC operations. The weights and the activations stored to the
local memories were reused efficiently by additionally using internal registers to store the partial
sums and the circular buffer. The NFU is a three-stage pipelined architecture consisting of the
multiplication, the adder-tree, and the activation stage. In the multiplication stage, 256 multipli-
ers support the multiplications based on the weight connections between 16 input and 16 output
neurons. In the adder-tree stage, 16 feature maps are generated from the multiplications based on
adder-tree structure. In the activation stage, the 16 feature maps are approximated for the 16 ac-
tivations by using piece-wise linear function approximation. DianNao with a 65-nm ASIC layout
brought up to 118× speedup and reduced the energy consumption by 21× compared to a 128-bit
2-GHz SIMD processor over the benchmarks used in the work of Chen et al. [30]. One of the fol-
lowing studies adapted DianNao to deploy it on a supercomputer and named it DaDianNao [33].
Since the number of weights is generally larger than the number of input activations for convo-
lution operations, DaDianNao stored a big chunk of weights and shared them to multiple NFUs
by using a central embedded DRAM to reduce the data movement cost in delivering the weights
associated to each NFU.

5.1.2 Leveraging Spatial Architecture. Designing PEs and their local memory according to data
reuse properties of MAC operations improved energy efficiency on FPGAs and ASIC [31, 34]. For
example, Google TPU employs a systolic array architecture to send the data directly to an adja-
cent PE as shown in Figure 9(c) [3]. Chen et al. [31] noticed that the computational throughput
and energy consumption of CNNs mainly depended on data movement rather than computation
and proposed a “row-stationary” spatial architecture (a variant of Figure 9(c)), Eyeriss, to support
parallel processing with minimal data movement energy cost by fully exploiting the data reuse
property. For example, the three PEs in the first column in Figure 9(c) can be assigned to compute
the first row of the convolution output using a 3 × 3 filter—the three elements on each row of
the kernel are stored to the local memory on each PE (i.e., “row-stationary” structure in the work
of Sze et al. [155]), and all the elements in the kernel are reused during convolution, generating
the first row of the output. In this case, the partial summation values are stored back to the local
memory on each PE.

5.1.3 Circuit Optimization. Exploring binary weights [41] with binary inputs offered the oppor-
tunity to explore XNOR gates for the efficient implementation of a CNN [134], improving the ac-
curacy per memory foot print and per Joule. In 2021, Zhao et al. [194] proposed hardware-friendly
statistic-based quantization units and near data processing engines to accelerate mixed-precision
training schemes by minimizing the number of accesses to higher-precision data.

5.2 Leveraging Fast Convolution Algorithms

For commercially available CPUs or GPUs, transforming convolution operations into matrix multi-
plications can leverage data reuse properties to accelerate the convolution operations by utilizing
highly optimized BLAS libraries [163]; unrolling the weights of a 3D filter to a 1D vector transforms
3D convolution operations into 2D matrix multiplications (a.k.a. im2col convolution). Mathieu
et al. [121] implemented circular convolutions with a Fast Fourier Transform (FFT) algorithm
for CNNs. Using FFT, a circular convolution can be implemented with element-wise multiplications
between the spectrum signals of the image and the kernel in the frequency domain. The number
of multiplications required for a single FFT-based convolution between an N × N resolution im-
age and a k × k kernel requires N 2 (6loд2N + 4) multiplications (=6N 2loд2N (two FFTs and one
inverse FFT) + 4N 2 (element-wise multiplications between two complex numbers)), whereas con-
ventional convolution takes N 2k2 multiplications. Since the number of multiplications required
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for an FFT-based convolution does not depend on the kernel size, FFT-based convolutions are
useful when kernel sizes are relatively large (e.g., k2 > (6loд2N + 4)). Vasilache et al. [164] demon-
strated that CNNs implemented with NVIDIA cuFFT showed 1.4 to 14.5× speedups over cuDNN
for various kernel sizes. Highlander and Rodriguez [77] implemented FFT with an Overlap and
Add algorithm to reduce the FFT cost from O (N 2loд2N ) to O (N 2loд2k ) to apply FFT-based convo-
lutions for smaller-sized kernels. Zhang and Prasanna [191] customized the FFT-based convolution
architecture on FPGAs. Notice that such FFT-based convolutions achieve higher accuracy per op-
eration with the cost of additional memory footprint. Lavin and Gray [102] leveraged a Winograd
minimal filtering algorithm [173] to reduce the number of multiplication operations required for
convolutions to improve the accuracy per operation. Lu et al. [117] proposed an efficient architec-
ture for Winograd-based convolutions on FPGAs. Cong and Xiao [39] reformulated convolution
operations between an input tensor and multiple filters into a single matrix multiplication form
named convolution matrix multiplication to reduce the number of multiplications with the Strassen
algorithm.

5.3 Leveraging Sparsity of Weights and Activations

In the forward pass, negative feature map values are converted to zeros after ReLU activation func-
tions, making the activation data structure sparse. In addition, the trained weight values follow a
sharp Gaussian distribution centered at zero, locating most of the weights near to zero. Quantizing
such weights makes the weight data structure sparse, so the sparse weights can be fully exploited
on the quantized networks such as binarized CNNs [41, 42] and ternary weight CNNs [108, 196].

5.3.1 Skipping Operations During Runtime. In 2016, several methods to conditionally skip MAC
operations were proposed simultaneously [10, 31, 113]. Eyeriss [31] employed clock gating to
block the convolution operations during runtime when either the weight or the activation was de-
tected as zero to save computational power. Cnvlutin [10] skipped MAC operations associated with
zero activations by employing separated “neuron lanes” according to different channels. Similarly,
Liu et al. [113] proposed Cambricon-X that fetches the activations associated with any non-zero
weights for convolutions by using “step indexing” to skip the MAC operations associated with
the zero weights. Cambricon-X brought 6× resource efficiency improvement in terms of accuracy
per Joule compared to the original DianNao architecture. In 2017, Kim et al. [96] proposed ZeNa

that performs MAC operations only if both the weights and the activations are non-zero values.
In 2018, Akhlaghi et al. [8] proposed a runtime technique, SnaPEA, that performs MAC operations
associated with positive weights first and then negative weights later while monitoring the sign
of the partial sum value. Since the activation values from ReLU are always greater than or equal
to zero, the convolution operation can be terminated once the partial sum value becomes negative.
Notice that such decision should be performed during runtime, since the zero valued activation
patterns depend on the test images. In 2021, another method skipping zero operations, GoSPA [44],
was proposed, which is similar to ZeNa in that MAC operations were performed only when both
input activations and weights were non-zero values. Deng et al. [44] constructed a “Static Sparsity
Filter” module by leveraging the property that the weight values are static while the activation
values are dynamic to filter out zero activations associated with non-zero weights on the fly be-
fore MAC operations. Such skipping operation optimization techniques improved the accuracy per
Joule, since the transistors associated with skipped operations were not toggled during runtime,
saving dynamic power consumption.

5.3.2 Encoding Sparse Weights/Activations/Feature Maps. Since memory access operations dom-
inate the power consumption in CNN applications, fetching the weights less frequently from mem-
ory by encoding and compressing the weights and the activations can improve resource efficiency
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such as the accuracy per memory footprint, per memory access, and per Joule. Han et al. [68, 69]
utilized the Huffman encoding scheme to compress the weights. The quantized CNN reduced the
memory footprint of AlexNet on the ImageNet dataset by 35× without losing accuracy. In the
work of Han et al. [68, 69], a three-stage pipelined operation was performed to reduce the memory
footprint of CNNs as follows. The pruned sparse quantized weights were stored with Compressed
Sparse Row (CSR) format and then divided into several groups. The weights in the same group
were shared with the average value over the weights in the group, and they were retrained there-
after. Huffman coding was used to compress the weights further. Parashar et al. [129] employed an
encoding scheme to compress sparse weights and activations and designed an associated dataflow,
SCNN (Compressed-Sparse Convolutional Neural Network), to minimize data transfer and reduce
memory footprint. Aimar et al. [7] proposed NullHop that encodes the sparse feature maps by
using two sequentially ordered (i.e., internally indexed) additional storage, one for a 3D mask to
indicate the positions of non-zero values and the other for storing the non-zero data sequentially
in the feature map. For example, ‘0’s are marked at the position of zero values in the 3D mask, and
otherwise ‘1’s are marked. Decoding refers to both the 3D mask and the non-zero value list. Rhu
et al. [137] presented HashedNet that utilizes a low-cost hash function to compress sparse activa-
tions. The virtualized DNN (vDNN) [136] compressed sparse activation units using the “zero-value
compression” technique to minimize the data transfer cost between GPU and CPU. The vDNN al-
lowed users to utilize both GPU and CPU memory for DNN training.

5.3.3 Decomposing Kernel Matrix. Li et al. [110] proposed SqueezeFlow that reduces the num-
ber of operations for convolutions by decomposing the kernel matrix into non-zero valued sub-
matrices and zero-valued sub-matrices. This method can improve the accuracy per Joule.

5.4 Leveraging Weight Repetition in Quantized CNNs

Hedge et al. [76] noticed that the identical weight values were often repeated in quantized CNNs
such as binary weight CNNs [41, 42] and ternary weight CNNs [108, 196] and proposed the Unique

Weight CNN Accelerator (UCNN) that reduces the number of memory accesses and the number
of operations by leveraging the repeated weight values in the quantized CNNs. For example, if a
2 × 2 kernel consisting of {k1,1,k1,2,k2,1,k2,2} performs a convolution with the activation maps,

{a1,1,a1,2,a2,1,a2,2}. The conventional convolutional operation, Σi=2, j=2
i=1, j=1ki, j × ai, j , requires eight

read memory accesses, four multiplications, and three additions. If two of the weights in the kernel
are identical (e.g., k1,1 = k2,2 and k1,2 = k2,1), the convolutional operation can be performed using
k1,1 (a1,1 + a2,2) + k1,2 (a1,2 + a2,1), requiring six read memory accesses, two multiplications, and
three additions. The UCNN improved the accuracy per Joule by 1.2 to 4× in AlexNet and LeNet on
Eyeriss architecture using the ImageNet dataset.

5.5 Leveraging Innovative Technology

Many research attempts have leveraged innovative computing architecture technologies such as
neuromorphic computing and in-memory processing as follows.

5.5.1 Neuromorphic Computing. Neuromorphic computing mimics the brain, including brain
components such as neurons and synapses; furthermore, biological neural systems include axons,
dendrites, glial cells, and spiking signal transferring mechanisms [91]. The memristor, “memory
resistor,” is one of the most widely used devices in neuromorphic computing. ISAAC [146] replaced
MAC operation units with the memristor crossbars based on the DaDianNao architecture. In the
crossbars, every wire in horizontal wire array was connected to every wire in vertical wire ar-
ray with a resistor. Different level voltages, V = [v1,v2, . . . ,vm], were applied to the horizontal
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wires connected to a vertical wire by the different resistors, R = [1/д1, 1/д2, . . . , 1/дm]. With map-
ping vi to input elements and дi to weights, where i = 1, . . . ,m, the output current, I , from the
vertical wire can be represented as MAC operations in a layer, I = Σm

i (vi × дi ), based on Kirch-
hoff’s law. Multiple MAC operations can be performed by collecting the currents from multiple
vertical wires. ISAAC employed digital-to-analog converters to receive the input elements and
convert them into the appropriate voltages and analog-to-digital converters to convert the cur-
rent values into digitized feature map values. Due to lack of reprogrammability of resistors in the
crossbars, the ISAAC architecture was only available for the inference tasks. ISAAC improved 5.5×
accuracy per Joule compared to full-fledged DaDianNao. As another neuromorphic computing ap-
proach, many research attempts implemented Hodgkin-Huxley and Morris Lecar models [81] that
describes the activity of neurons using non-linear differential equations in hardware simulators
[15, 16, 49, 60, 149–151]. Several studies implemented neuromorphic architectures in ASIC, includ-
ing TrueNorth [9], SpiNNaker [127], Neurogrid [18], BrainScaleS [144], and IFAT [131]. Please
refer to the work of Schuman et al. [145] for a comprehensive survey of neuromorphic computing.

5.5.2 In-Memory Processing. Scaling down the size of transistors enables energy efficiency and
high performance for Von-Neumann computing systems. However, it became quite challenging
in the era of sub-10-nm technologies due to physical limitations [11, 54, 124]. To address this
challenge, researchers proposed a paradigm of in-memory processing to improve performance and
energy efficiency by integrating computations units into memory devices [67, 111, 178]. Several
studies proposed to enable in-memory processing to accelerate CNNs [12, 46, 55, 73, 97, 185]. The
in-memory accelerators can be implemented using non-volatile memory technologies, such as
phase change memory [92, 101], resistive random access memory [37, 61, 62, 94, 133], and SRAM
memory devices [185]. Several studies projected that the non-volatile memory based accelerators
are able to improve performance significantly compared to state-of-the-art microprocessors [61,
62]. The XNOR-SRAM technology [185] integrating the XNOR gates and accumulation logic into
SRAM can fetch data from SRAM and perform MAC operation in one cycle.

5.6 Adaptive Compute Resource Assignment

This section comprises the methods assigning runtime compute resources adaptively to the CNN
inference workload to improve resource efficiency. The implementation of the CNNs can be
adapted to the accuracy requirements of the applications by using various runtime implementation
techniques as follows.

5.6.1 Early Exiting. The required depth of CNN depends on the problem complexity. The “early
exiting” technique allows a CNN to classify an object as early as possible by having multiple exit
classifier points in a single CNN [128, 160, 161]. The early exiting technique was applied to dis-
tributed computing systems, addressing concern about privacy, response time, and higher quality
of experience [161]. Such early exiting methods minimized the compute resources and the infer-
ence latency, improving the accuracy per Joule, per operation, and per core utilization. Please refer
to the work of Matsubara et al. [122] for details on the early exiting techniques.

5.6.2 Runtime Channel Width Adaptation. The runtime channel width adaptation pruned unim-
portant filters during runtime. In 2018, Fang et al. [50] presented a single DNN model, NestDNN,
being able to switch between multiple capacities of the DNN during runtime according to the
accuracy and inference latency requirement. During training, unimportant filters from the origi-
nal model were pruned to generate the smallest possible model, the “seed model.” Each retraining,
some of pruned filters were added to the seed model while fixing the filter parameters from the pre-
vious training. Since the seed model was descended from the original model, the accuracy for each
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capacity in NestDNN was higher than the model having the identical capacity trained from the
scratch. Similarly, Yu et al. [187] proposed another runtime switchable DNN model, the Slimmable

Neural Network, in which a larger capacity model shared the filter parameters from a smaller ca-
pacity model.

5.6.3 Runtime Model Switching. Lee et al. [107] selected the best-performing object detectors
between multiple DNN detectors during runtime according to dynamic video content to improve
the accuracy per core utilization and per Joule. Lou et al. [116] switched between multiple DNNs,
generated from the Once-for-All NAS of Cai et al. [25], during runtime according to dynamic
workload. For example, when the inference latency of a DNN was increased due to a newly as-
signed workload, a runtime decision maker downgraded the current DNN during runtime to meet
a latency constraint. Such runtime model switching approaches were appropriate when memory
resources were sufficient, since the multiple DNNs should be pre-loaded in DRAM.

6 INTERRELATED INFLUENCES, INSIGHTS, AND FUTURE TRENDS

This section discusses the influence from higher- to lower-level techniques as shown in Figure 1,
resource efficiency metrics according to the techniques, insights into resource-efficient CNNs, and
future research trends based on the insights.

6.1 Influences of Model-Level Techniques on Arithmetic-Level Techniques

Weight quantization [41, 108, 196] in model-level techniques influenced arithmetic-level tech-
niques as shown in Figure 7. The multiplications using the quantized binary weights can be re-
placed with multiplexers, removing multiplication arithmetic operations. The resource efficiency
from the model-level techniques can be further improved by utilizing the arithmetic-level tech-
niques. For example, quantized CNNs such as ternary weight and binarized CNNs allowed INT8
arithmetic to be used in training [176, 182]. When reduced-precision CNNs suffered from zero gra-
dients, the reduced precision arithmetic was replaced with a hybrid version arithmetic using both
BFP and FP [48] or the BM format [52].

6.2 Influences of Model-Level Techniques on Implementation-Level Techniques

Weight quantization in model-level techniques influenced the implementation-level techniques as
shown in Figure 8. Pruning weights can bring sparsity in the hardware architecture while pruning
filters [109, 118] maintains dense structure. Weight quantization in the model-level techniques al-
lows a CNN to utilize fewer bits for weights to save memory resource usage, requiring customized
hardware. For example, EIE [68] is an inference accelerator with weights quantized by four bits.
To implement the weight quantization method effectively, EIE utilized weight sharing to reduce
the model size further and fit the compressed CNN into the on-chip SRAM. Exploring binary
weights [42] with binary inputs offered the opportunity to explore XNOR gates for the efficient
implementation of CNNs [134], improving the accuracy per memory footprint and per Joule. In
the work of Tridgell et al. [162], ternary neural networks [108, 196] were implemented on FPGAs
by unrolling convolution operations. Since quantized CNNs [108, 196] increased the number of
repeated weights in CNNs, UCNN [76] leveraged the property of the repeated weight values in
quantized CNNs to improve resource efficiency such as accuracy per memory access and per oper-
ation. As the main limitation, weight quantization methods (e.g., [41, 108, 196]) were not suitable
for commercially available CPUs and GPUs, since such computing platforms do not support binary
and ternary weights in hardware. Therefore, the implementation of weight quantization methods
on CPUs or GPUs might not improve accuracy per Joule, as higher-precision arithmetic still was
required in part of data path in training and inference. The bottleneck structures generated by
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compact convolutions in other works [89, 142] can be used to reduce the data size transferred
between a local device and an edge server for the efficient implementation of edge-based AI [122].

6.3 Influences of Arithmetic-Level Techniques on Implementation-Level Techniques

The arithmetic-level techniques influenced the implementation-level techniques as follows.
First, the research in arithmetic utilization acted as a catalyst for commodity CPUs and

GPUs. For example, mixed-precision research [125] laid a foundation for tensor cores in the
latest NVIDIA GPUs, which can accelerate the performance of CNN workloads by supporting
a fused multiply-add operation and the mixed-precision training capability in hardware [19].
The BFloat16 format [24] designed by Google overcomes the limited accuracy issue of the IFP16
format by providing the same dynamic range as IFP32, and it is supported in hardware in Intel
Cooper Lake Xeon processors, NVIDIA A100 GPUs, and Google TPUs. In 2016, NVIDIA Pascal
GPUs supported IFP16 arithmetic in hardware to accelerate CNN applications. In 2017, NVIDIA
Volta GPUs supported IFP16 tensor cores. In 2020, the NVIDIA Ampere architecture supported
tensor cores, TF32, BFloat16, and sparsity acceleration in hardware to accelerate MACs [2]. The
Graphcore company developed the Intelligent Processing Unit (IPU), which employs local
memory assigned to each processing unit with support for a large number of independently
operating hardware threads [93]. The IPU is an efficient computing architecture customized to
“fine-grained, irregular computation that exhibits irregular data access.”

Second, the arithmetic-level techniques led to specialized custom accelerators for CNNs. There
is ample evidence in the arithmetic-level literature (e.g., [21, 48, 52, 167, 180]) that even smaller
operators (e.g., 16 bits or even less) have almost no impact on the accuracy of CNNs. For example,
DianNao [30] and DaDianNao [33] were customized to 16-bit FiP arithmetic operators instead of
word-size (e.g., 32-bit) FP operators. ISAAC [146] is a fully fledged crossbar-based CNN accelera-
tor architecture, which implemented a memristor-based logic based on resistive memory, suitable
for 16-bit arithmetic for CNN workloads. Wang et al. [167] designed their customized 8-bit FP
arithmetic multiplications with 16-bit accumulations on an ASIC-based hardware platform with
a 14-nm silicon technology to support energy-efficient CNN training. The Eyeriss [31] and Sna-
PEA [8] accelerators were customized to 16-bit arithmetic. UCNN [76] utilized 8-bit and 16-bit FiP
configurations. SCNN [129] utilized 16-bit multiplication and 24-bit accumulation.

Last, the mixed-precision training schemes were accelerated in hardware by minimizing the data
conversion overhead between lower- and higher-precision formats in updating weights and acti-
vations [194]. Additionally, the stochastic rounding scheme was supported in hardware in the Intel
Loihi processor [43] and Graphcore IPU [93], since it was often required for quantizing weights
and activations during training [65, 176, 182].

6.4 Resource Efficiency Metrics According to Techniques

Table 1 shows the resource efficiency metrics improved by specific techniques discussed in
Sections 3, 4, and 5, by mapping rows for techniques, columns for metrics, and cells marked if
the corresponding technique improves the corresponding metric (‘©’ for an improved metric
directly by a technique and ‘E’ for the expected improved metric from directly improved metrics.).
In Table 1, A/Param, A/Op, A/MF, A/MA, A/CU, and A/Joule represent accuracy per parameter,
accuracy per operation, accuracy per memory footprint, accuracy per memory access, accuracy
per core utilization, and accuracy per Joule, respectively.

6.5 New Insights into Resource-Efficient CNNs and Future Research Trends

Model-level techniques focus on seeking the least sufficient connections between neurons to re-
duce the number of parameters, whereas arithmetic-level techniques focus on seeking the least
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Table 1. Resource Efficiency Metrics According to Techniques

sufficient number of bits to represent the data. We observe that CNNs having fewer connections
often perform better than the original model [53], whereas lower-precision CNNs do not perform
better than the original model. Therefore, we draw insight into resource-efficient CNNs that it is
highly probable that reducing number of weights has a regularization effect, whereas reducing
the number of bits to represent weights, activations, and gradients does not have a regularization
effect according to the bias-variance tradeoff [57]. For example, lower-precision arithmetic can
incur overfitting due to the increased rounding errors [5, 106] (e.g., four-bit CNNs in the work of
Sun et al. [154] are fit for ResNet18 rather than ResNet50). From this insight, incorporating the
arithmetic-level techniques into the model-level techniques will be a promising research direc-
tion since we expect that overfitting magnified by lower-precision arithmetic can be minimized by
regularizing the model with model-level techniques.

Model-level techniques [70, 75, 78, 159] have reduced parameters by 5 to 10× in general com-
pared to baseline models such as AlexNets, VGGNets, and ResNets, improving the accuracy per
parameter. On the contrary, the resource efficiency metrics improved by the arithmetic- and
implementation-level techniques rely on computing architectures. For example, reducing the
number of bits by 2× generally accelerates multiplications by 4× on ASICs/FPGAs [105]. It has
recently been demonstrated that using four bits could be sufficient to represent weights, activa-
tions, and their gradients with a specific rounding error scheme called two-phased rounding [154].
Since the four-bit FP arithmetic potentially brings approximately 64× speedup to multiplications
on ASICs/FPGAs compared to 32-bit FP arithmetic, the arithmetic-level techniques with a special
rounding scheme can improve the throughput of training significantly. From this insight, we expect
that incorporating the arithmetic-level techniques into ASICs is a promising research direction in
the future.

Most resource-efficient CNNs lack in explaining the effects of their techniques to the accuracy
according to other dynamic variables such as sample complexity (the number of training samples),
target complexity, and CNN complexity. It has been recently reported that increasing the depth of
the CNN follows a classic bias-variance tradeoff, whereas increasing the width of the CNN follows
the “bell-shaped” variance curve rather than a monotonically increasing pattern [183]. For example,

ACM Computing Surveys, Vol. 55, No. 13s, Article 276. Publication date: July 2023.



276:26 J. Lee et al.

if the CNN width is already saturated (beyond the peak of variance), increasing the CNN width
even with reduced precision arithmetic can improve the accuracy [71]. However, if the CNN width
is not saturated yet, increasing the CNN width might hurt the accuracy even with full precision.
Increasing the depth of the CNN with reduced-precision arithmetic will have different impacts. In
this regard, we suggest a meaningful unexplored research question: given a sample, a target, and
a CNN complexity, how can we determine if we need to increase (or decrease) depth (or width) to
improve the accuracy of reduced-precision CNNs according to the bias-variance tradeoff?

7 CONCLUSION

To the best of our knowledge, our survey is the first to provide a comprehensive survey cover-
age of the recent resource-efficient CNN techniques based on the three-level hierarchy including
model-, arithmetic-, and implementation-level techniques. Our survey also utilizes multiple re-
source efficiency metrics to clarify which resource efficiency metrics each technique can improve.
For example, most model-level resource-efficient techniques contribute to improving abstract re-
source efficiency, whereas the arithmetic- and implementation-level techniques directly contribute
to improving physical resource efficiency by employing reduced-precision arithmetic and/or opti-
mizing the dataflow of CNN architectures. Therefore, the efficient implementation of model-level
techniques on given compute platforms is essential to improve physical resource efficiency. It is our
hope that this work will contribute to the machine learning, arithmetic, and system communities
by providing them with a comprehensive survey for various resource-efficient CNN techniques
as guidelines to seek CNN structures using the least sufficient parameters and the least sufficient
precision arithmetic on particular compute platforms, customized to the problem complexity and
the training data quantity and quality.
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