
Automated Questions About Learners’ Own Code Help to Detect 
Fragile Prerequisite Knowledge

Teemu Lehtinen
teemu.t.lehtinen@aalto.fi

Aalto University
Espoo, Finland

Otto Seppälä
otto.seppala@aalto.fi
Aalto University
Espoo, Finland

Ari Korhonen
ari.korhonen@aalto.fi

Aalto University
Espoo, Finland

ABSTRACT
Students are able to produce correctly functioning program code
even though they have a fragile understanding of how it actually
works. Questions derived automatically from individual exercise
submissions (QLC) can probe if and how well the students under-
stand the structure and logic of the code they just created. Prior
research studied this approach in the context of the first program-
ming course. We replicate the study on a follow-up programming
course for engineering students which contains a recap of general
concepts in CS1. The task was the classic rainfall problem which
was solved by 90% of the students. The QLCs generated from each
passing submission were kept intentionally simple, yet 27% of the
students failed in at least one of them. Students who struggled with
questions about their own program logic had a lower median for
overall course points than students who answered correctly.

CCS CONCEPTS
• Applied computing→ Interactive learning environments;
• Social and professional topics→ Computer science educa-
tion.

KEYWORDS
QLC; prerequisite knowledge; program comprehension; online ed-
ucation
ACM Reference Format:
Teemu Lehtinen, Otto Seppälä, and Ari Korhonen. 2023. Automated Ques-
tions About Learners’ Own Code Help to Detect Fragile Prerequisite 
Knowledge. In Proceedings of the 2023 Conference on Innovation and 
Technology in Computer Science Education V. 1 (ITiCSE 2023), July 8–12, 
2023, Turku, Finland. ACM, New York, NY, USA, 7 pages. https://
doi.org/10.1145/3587102.3588787

1 INTRODUCTION
While novice programmers might be able to produce a working 
solution to a programming problem, some of them might struggle 
and answer incorrectly even simple questions about their own 
(functionally correct) program code [8]. Previous research suggests 
that this phenomena may be due to fragile programming skills in 
general [13], misconceptions on programming constructs [11, 20], 
inability to trace code [1, 10] or that the failing students did not 
construct the program by themselves [22]. Recent advances in AI

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ITiCSE 2023, July 8–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0138-2/23/07.
https://doi.org/10.1145/3587102.3588787

are likely to exacerbate the problem by supplying code that the
student may not fully comprehend. All of the previous reasons can
seriously hinder learning on a second programming course.

We partially replicate previous studies on automatically gener-
ated Questions about Learners’ Code (QLCs) [7, 8, 16] by adapting
selected research questions to new context. The previous studies fo-
cused on students’ program comprehension during the first weeks
of their first programming course (CS1). The studies found that a
number of students perform poorly when answering questions
on their own functionally correct code. In addition, two studies
reported that students who answer incorrectly to QLCs have on
average lower success on the course.

The three papers call for replications and improved research
designs as future efforts. In the present study we answer this call:
research QLCs in a new context, a programming course for non-
CS majors with a CS1 as prerequisite. As the students are further
in their programming studies we expect them to have better pro-
gramming skills and ability to answer QLCs similar to those in the
previous studies. We do not, however, have access to their grades or
research data about their performance on the prerequisite course.

We utilize QLCs on a second programming course to collect cases
where students submit a program, but do not properly understand
how it works. A variation of the classic Rainfall-problem [21] was
used as a programming recap exercise. The students submitted their
solutions to an automated grading platform allowing resubmits.
After the programming task, students were offered multiple-choice
QLCs that were generated for the program they submitted and
which we expected the programmer should be able to answer. The
students’ answers to these questions were analyzed to discuss the
following research questions:

RQ1 How well do students answer QLCs for an exercise tar-
geting prerequisite knowledge?

RQ2 How do the QLC results relate to success on second pro-
gramming course?

We hypothesized that QLCs could reveal weaknesses in pre-
requisites which again can lead to low grades or even drop-outs.
We found that success rates for the different types of QLCs were
comparable to those reported in previous studies [7, 8, 16] even
though the students had passed a CS1 in Python. Furthermore, stu-
dents answering incorrectly about their own program logic had a
lower median for course points compared with those that answered
correctly.

The rest of the paper is structured as follows. Section 2 gives some
background and introduces the related studies of which selected
questions are replicated in this research. Section 3 gives the context
in which this study is conducted, introduces the exercise used
in the study, and explains how the data was analysed. Section 4

505

https://orcid.org/0000-0003-4794-3818
https://orcid.org/0000-0003-4694-9580
https://orcid.org/0000-0002-2784-7979
https://doi.org/10.1145/3587102.3588787
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3587102.3588787
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587102.3588787&domain=pdf&date_stamp=2023-06-30


ITiCSE 2023, July 8–12, 2023, Turku, Finland Teemu Lehtinen, Otto Seppälä, & Ari Korhonen

summarises the results, and finally Section 5 discusses the findings,
their interpretations, and some threats to validity.

2 RELATEDWORK
Program comprehension (PC) has been researched extensively.
Schulte et al. [18] review PC literature from a computer science
education research perspective. They map existing PC models to
a proposed revised block model for education. The block model
describes PC in two dimensions: a scale of atoms–blocks–relations–
macro and other dimension on text–execution–purpose [17]. Those
dimensions combine to areas or a diagram of blocks where we can
examine comprehension; for example, execution through a sequence
of related function calls.

Although many people often think of programming with focus
on writing code, researchers have recognized the importance of
teaching program comprehension to novices and many learning
activities are suggested and developed to address this issue [3, 4,
6, 12, 19]. Another common conception is that if a person writes a
program they can reason how it works. However, this is not always
true and cases where students have poor comprehension of the
programs they wrote have been reported [5, 8, 11].

Perkins and Martin [13] researched difficulties that novice pro-
grammers encounter. In their experiment, instructors worked one-
on-one with the programming students and asked them questions
such as what does this element do? While such prompts help stu-
dents go forward the students’ reactions also reveal cases of fragile
knowledge. They further report on different types of fragility they
identified.

Lehtinen et al. [9] defined QLCs as an approach that poses ques-
tions to a student about the concrete structures and patterns in
a program, which the same student previously created. They hy-
pothesize such questions could test different areas of PC, catch
cases of unproductive success, and trigger reflection including self-
explanation. Furthermore, they describe a potential design of a
system to automate generation of QLCs.

Lehtinen et al. [8] report on an early pilot for QLCs where stu-
dents wrote open-text answers to QLCs that were manually pre-
pared for selected programwriting exercises for novices. Their main
research questions are “How well do students answer QLCs?” and
“How success in QLCs correlates with other learning data?”. They
used the block model to design their QLCs and report the following
student success rates: atom–text 95%, relation–text 67%, atom–
execution 72%, block–execution (80% and 75%), macro–execution
(58% and 79%), and macro–purpose 91%. Furthermore, among the
students who created a functionally correct program the ones who
answered the related set of the first three QLCs correctly had in-
creased course success and retention in comparison to students
who answered incorrectly.

Santos et al. [16] present a tool that automates QLCs for Java
programs and report on a pilot evaluation on CS1. The evaluation
asks “How do students perform in QLCs in their lab exercises?”
and “How do students perceive the activity of answering QLCs?”.
They measure above 80% success rates for QLCs targeting static
aspects (text in block model) and below 50% success rates for QLCs
targeting dynamic aspects (execution in the block model). Despite

the low success in the latter, students reported good average confi-
dence levels in both static and dynamic cases. The authors also note
that success rates have large variations for identical QLC templates
when the programming task changes, in other words, difficulty is
dependent on the program. In a post-exercise survey majority of
the students reported learning or reinforcement of their knowl-
edge regarding terminology. Approximately one third of students
reported the same regarding loops, recursion, and variable values.

Lehtinen et al. [7] present automated QLCs for JavaScript pro-
grams as well as pilot study on students’ answers. They report
success rates all the way from 33% up to 97%. In the upper end
the QLCs target block model’s text level and in the lower end they
require tracing in block model’s execution level. They find that
students who repeatedly answer QLCs incorrectly also have more
challenges while writing the program and tinker towards solutions.
Respectively, the average error rate in QLCs correlates negatively
with course success.

3 METHOD
3.1 Context
This study was conducted in a 12 weeks 5 ECTS1 programming
course given in Aalto University, a large research university in
Finland. The course includes topics such as introduction to Numpy
and Scipy modules in Python, basics in databases and how to in-
terconnect Python and SQL, MATLAB and Simulink programming,
and simple web programming with Javascript. The course has one
5 ECTS prerequisite programming course in Python. QLCs were
designed to be part of a recap exercise in week 1, which also in-
cluded three other programming exercises and a couple of multiple
choice questions. All of the exercises were automatically assessed
and the students got immediate feedback on their solutions. In
case the student did not achieve full points on the first attempt, 9
resubmissions were allowed.

The course had no final exam, but the final grade was calculated
based on the points received from the exercises and a project done
in groups (max. 3 students). To pass the course, students needed to
do at least half of the individual weekly exercises and the project.
To support this, the course had lab sessions on every weekday
for seeking help from teaching assistants (TA). The course had
also 5 live lectures and a couple recorded video lectures. Due to
the COVID-19 situation, the live lectures and lab sessions were in
Zoom2.

Typically some 350 engineering students3 start doing the course
each year. There are no penalties for dropping the course and only
about 75-80% pass the course yearly. Most of the students are first
year students, but many might end up taking the course on the
second or third year, which also explains the relatively high drop
out rate.

The study was conducted in Spring 2021. 324 students volun-
teered to participate and gave their consent on the online course

1The European Credit Transfer and Accumulation System
2Zoom is a communications platform that allows users to connect with video, audio,
phone, and chat over Internet.
3Students majoring e.g. from Mechanical and Civil Engineering, but not Computer
Science

506



Automated Questions About Learners’ Own Code Help to Detect Fragile Knowledge ITiCSE 2023, July 8–12, 2023, Turku, Finland

platform.While all students did the same tasks, the volunteering stu-
dents allowed their anonymous exercise data (timestamps, answers,
automated feedback, points) to be used in our research. We offered
no incentives for the participation and informed that participation
had no effect on the course requirements or assessment. The course
instructor was one of the second authors. The local regulations did
not require an ethical board’s review for our research.

3.2 Task
The first week of the course included Python recap-material. We
selected the first program writing exercise, called “Calculation of
average rainfall”, for our QLCs experiment. For the rest of the course
and the 98 other exercises we only calculate students’ exercise
points. The rainfall task was to create a program according to the
following description which we translated to English for this article:

“Implement function rain(), which asks the user for
days’ rainfalls and calculates the average rainfall for
the given days. The program ends by providing -999 as
input. Notice that rainfall cannot be negative so your
program must ignore negative numbers. The program
must also ignore other inputs beside numbers (e.g. let-
ters). If the user does not input any acceptable numbers
the program must return 0.”

In addition to the description, an example of expected input and
output lines was given. The provided code template included an
empty function stub and a “main” block.

The students submitted their program online and received auto-
mated feedback based on four unit test cases:

(1) the program ends when -999 is given as input
(2) the program does not fail when lines of letters is given as input,
(3) the program ignores input that cannot be transformed into integer

numbers,
(4) the program outputs the average of the numbers given as input.

The differences from the expected output were displayed to the
student. In addition, TAs were available to answer questions and
give hints during online lab sessions. Based on the number of passed
unit test cases students received up to 95 points form the program
writing task. Students could resubmit their program up to 9 times
to receive new assessment and points.

Once the students had submitted their program at least once
they could open a questionnaire that included 2–3 generated QLCs.
If the program did not include a structure necessary to create one of
the question types the student would not receive that question type.
Students could only answer the QLCs once and received 5 points if
they answered correctly. Together the program writing and QLCs
were worth 100 points which were 1.4% of the total available on
the course.

QLC generation uses question templates and static program
analysis as described in [9]. The library for generating QLCs for
any python code is available as open source software4 and contains
both documentation and code examples. The selection of QLC types
has been further extended from the types included in this study.

Figure 1 presents an example questionnaire that was generated
for the included program and then answered by the user. These
were multiple-choice questions and students could only answer

4https://github.com/teemulehtinen/qlcpy

Figure 1: An example of a generated and answered question-
naire for a program that completes the rainfall task.

once. For increased learning, descriptions for each option were
displayed after the user had submitted their answers.

Table 1 presents the selected QLC templates (Q1-Q3) and de-
scriptions of their correct answer options as well as their incorrect
distractor options. The QLCs were designed to approach different
areas of program comprehension. We situate these questions in the
two dimensions of the block model for program comprehension.

Q1 has been a typical question type in previous QLC research. It
tests the students’ recognition of an atomic element, in this case a
variable, in the program’s structure (atom–text).

Q2 asks from which lines can the execution enter an except-
block. While testing understanding of block-structures, it relates
the expected error to the potential source of the error (relations–
execution).

Q3 takes a step deeper into the purpose of the code. More specif-
ically, it asks for the purpose of a statement in its context (atom–
purpose). The answer options are designed so that students should

507

https://github.com/teemulehtinen/qlcpy


ITiCSE 2023, July 8–12, 2023, Turku, Finland Teemu Lehtinen, Otto Seppälä, & Ari Korhonen

have some understanding of the program’s design to answer cor-
rectly.

3.3 Analysis
Anonymized data was extracted from the course platform for those
324 students that gave a research consent. We rejected 33 students
who did not create the rainfall program or did not answer the related
QLCs. Finally, we accepted 291 students (90%) in our research and
analysed their exercise data quantitatively.

To answer RQ1, we counted the numbers of correct as well as
incorrect answer options. For each type of question, we calculated
success rates as the number of correct answers divided by the total
number of answers. We discuss the relative difficulty of the different
QLC types in this study and compare to success rates reported in
earlier research.

To measure success on course we use Course Points that is the
sum of exercise points student earned during the course. The course
grade was assigned based on these points as well. To answer RQ2,
we separately investigate the three types of QLCs we generated. For
each QLC type, we compare the students who answered correctly
to those who answered incorrectly.

According to visual inspection, the course points have non-
normal distribution. The maximum points available on the course
cause a ceiling effect as the automatically assessed exercises can be
submitted 10 times to get feedback and collect more points. Also
course points tend to accumulate close to the limits required for
different course grades.

In case of non-normal distributions, we calculate Mann-Whitney
𝑈 -tests for the hypothesis that two groups, students answering
QLCs correctly and incorrectly, have equal medians. In addition,
we calculate common language effect size. We use an alpha level of
𝑝 < .05 to reject the hypothesis and as we test three comparisons
we use Bonferroni correction 𝑝/3 = .017 to avoid false-positive
analysis.

4 RESULTS
Out of the 291 students in the study 79 students (27%) failed at
least one of the QLCs generated for their program. Table 1 presents
success rates and counts of incorrect answers that students have
for each of the three different QLC types. Next, we highlight the
findings for each type and include the question’s target in the
block model for program comprehension to ease comparison with
previous studies.

In Q1 (atom–text), students have 86% success rate. Indented
line in Table 1 presents common missed variable names which is
different from how those variables were actually used. Four students
missed a variable name that was assigned in a for-statement and
seven students missed a variable name that they used for a reference
to a list structure. We did not identify other potential patterns.

The Q2 (relations–execution) was asked from 48 students less
than the other two question types as the question could not be
generated for programs that did not include a try–except structure.
The students who received the question have an 85% success rate.
The majority (33) of incorrect answers selected the line that declares
the targeted try-block and in 24 cases of those, the correct line is
the next line after the selected try-line.

Table 1: The three QLCs, descriptions of their correct and
incorrect answer options, and numbers of students who an-
swered each option. Success rates are in bold text and indented
lines list student counts for actual labels used as answer options.

Q1 Which of the following are variable
names in the program? (𝑁 = 291) Students

• Correct options selected 249 86%
• Missed a variable 22 8%

i (6) list (4) sum (2) one-off names (11)
• Selected a built-in function 21 7%

print (7) float (7) input (6) len (1)
• Selected a reserved word 20 7%

return (6) if (5) while (3) try (2)
except (2) pass (1) for (1)

• Selected an unused word 3 1%
n (1) total (1) other (1)

Q2 From which line can program
execution jump to line X? (𝑁 = 243) Students

The line in question starts an except-block. 243
• Correct line 207 85%

int/float (196) input (7) division by zero (4)
• The related try line 33 14%
• Outside and before the related try-block 3 1%

Q3 Which of the following best describes
the purpose of line X? (𝑁 = 291) Students

The line in question calls built-in function input. 234
• Correct: Accepts new data 227 97%
• Ignores negative input 4 2%
• Is a condition for ending the program 2 1%
• Guards against division by zero 1 0%

The line in question is a condition that skips
a block where zero would divide. 57
• Correct: Guards against division by zero 54 95%
• Is a condition for ending the program 2 4%
• Ignores negative input 1 2%

Table 2: Median course points for students who answered
different QLCs correctly (T) or incorrectly (F), numbers of
students, degrees of freedom, Mann-Whitney 𝑈 -test statistic,
𝑝-value for the null hypothesis that the two medians are
equal, and common language effect size.

QLC 𝑀𝐷T 𝑀𝐷F 𝑛T 𝑛F df 𝑈 𝑝 CLES

Q1 5272 5603.5 249 42 289 4932 .556 .47
Q2 5366 4227.5 207 36 241 4716 .011 .63
Q3 5348 3941 281 10 289 2124 .006 .76

In Q3 (atom–purpose), students have 96% success rate. We did
confirm that none of the incorrect answers could be defended with

508



Automated Questions About Learners’ Own Code Help to Detect Fragile Knowledge ITiCSE 2023, July 8–12, 2023, Turku, Finland

3k
1

4k
2

5.1k
3

6k
5

0

50 N=249 MD

Q1 Variable, Correct

3k
1

4k
2

5.1k
3

6k
5

0

46 N=207 MD

Q2 Try–Except, Correct

3k
1

4k
2

5.1k
3

6k
5

0

61 N=281 MD

Q3 Purpose, Correct

3k
1

4k
2

5.1k
3

6k
5

0

11 N=42 MD

Q1 Variable, Incorrect

3k
1

4k
2

5.1k
3

6k
5

0

7 N=36 MD

Q2 Try–Except, Incorrect

3k
1

4k
2

5.1k
3

6k
5

0

7 N=10 MD

Q3 Purpose, Incorrect

St
ud

en
ts

Histograms of course points. Tick marks denote grade limits.

Figure 2: Students’ course performance in groups by whether they answered correctly or incorrectly to the QLC types.

true arguments. Possible reasons include selecting “Ignores negative
input” when the line has a condition to skip a block where division
by zero would happen, and selecting “Is a condition for ending
the program” when actually the line accepted new input using a
prompt that mentioned how to end the program.

Among the students who submitted the program and answered
the QLCs there were 13 cases where the student’s final program
failed at least one of the functional tests. From these students 100%
answered correctly to Q1 and 92% to Q3. 8 of these students re-
ceived Q2 and 63% answered correctly. The overlap with students
who did not fix their program to pass all tests and students who
answered QLCs incorrectly is small although students with incom-
plete programs have relatively less generations and more incorrect
answers to Q2.

In Figure 2, we study course points distributions separately for
the three different types of QLCs generated and whether the student
answered correctly or incorrectly. Our statistical tests reported in
Table 2 reveal that students who answered Q2 or Q3 incorrectly had
statistically significantly lower median course points than students
who answered correctly (𝑝 < .017) while answers to Q1 divided
students into groups having statistically identical means. We cal-
culated medium effect size for Q2 (.63) and large effect size for Q3
(.76). The common language effect size is the probability that in a
randomly selected pair the student who answered incorrectly has
lower course points than the student who answered correctly.

5 DISCUSSION
5.1 Interpretation and Implications
In this study, we have introduced QLCs incorporated into an au-
tomatic assessment system that takes students’ program code as
input, generates multiple-choice questions that target the program,
collects students’ answers, and presents automated feedback. We
have analyzed the results. In the following, we discuss the findings
in the light of the two research questions and compare them with
previous studies.

5.1.1 RQ1: How well do students answer QLCs for an exercise tar-
geting prerequisite knowledge? For Q1 and Q2 about 15% of the
students had answered incorrectly. This is aligned with previous
QLCs that have targeted block model’s text level or simple cases
of execution. For these types of QLCs students have typically had
above 70% success rates on their first programming course and in
many cases 10–15% of answers were incorrect. Lower success rates
have been recorded when students have to trace, that is, mentally
execute the program to answer QLCs.

Only 5% of students failed Q3 which is comparable to the best
success rates recorded in previous studies. There is only one earlier
evaluation of purpose level QLC where students had 91% success
rate [8].

It is surprising that the proportional number of students answer-
ing simple questions incorrectly remains the same also after com-
pleting their first programming course. Even though the student
population is different in these studies, there seems to be a trend
that some students can achieve very good program comprehension
already during the first couple of weeks in a first programming
course, while some students still struggle after completing a whole
course. The reasons must be manifold. Yet, we can use the results
to explore students’ programming knowledge and program com-
prehension.

In Q1, some students ignored variables that were used for lists
or iteration and the difference from assigning a single value to a
variable may have affected their thoughts. In Q2, several students
may have intentionally selected the line just before where the error
occurs which may be related to their mental model of execution. A
common reason for failing one or two unit tests for the program are
problems in handling unexpected input with a try-statement. Those
students received less related Q2 and struggled more to answer.
Many incorrect answers to Q3 suggest that the student searched for
superficial hints in the code line, such as strings of text or numerical
values, without understanding the actual purpose of the line. We
argue that above are signs of fragile knowledge.

509



ITiCSE 2023, July 8–12, 2023, Turku, Finland Teemu Lehtinen, Otto Seppälä, & Ari Korhonen

Plagiarism could increase the number of incorrect answers to
QLCs as students have weaker understanding of the code they sub-
mit in comparison to students who created their own programs. Sim-
ilarly, they may copy parts of code from examples, online sources
and discussions, or occasionally directly from instructors. Given
that our programming task is relatively simple and programs are
small students could answer QLCs correctly also when they did
not create the targeted program themself. In fact, we expect that
students who mastered CS1 should be able to do so.

Currently, artificial intelligence (AI) is readily available for stu-
dents to produce new code they may not understand but which
solves their programming assignment5. In some cases AI has been
found to write better programs for typical tasks in CS1 than most
students [2]. Raman and Kumar [14] argue that, due to advances in
AI, changes are required to the focus, pedagogy, and assessment of
program writing. They recommend greater emphasis on program
testing and comprehension. We believe QLCs have potential to be
part of the change.

5.1.2 RQ2: How do the QLC results relate to success on second
programming course? All of the researched students did submit a
working rainfall-program although 13 cases still failed some func-
tional tests. The students who then answered incorrectly to Q2 or
Q3 on average had lower course success. The Q2 and Q3 were de-
signed to target student’s program comprehension at block model’s
execution and purpose levels respectively. Student’s fragile knowl-
edge in these areas would be a hindering factor in learning more
programming content. We offer this as potential hypothesis for the
lower course success. As Q1 is a checkbox-style multiple choice
question it required the students’ carefully consider every answer
option separately. The incorrect options listed in Table 1 suggest
that there are probably multiple different reasons for the incorrect
answers.

Students in the previous study [16] self-reported terminology as
the topic they learned the most from answering QLCs. We assume
students can reason about program execution without knowing the
terminology that well. We do recognize the value of terminology
for communication and continued learning. However, in our study,
incorrect interpretations of execution or purpose are more related
with lower course success than potential gaps in knowledge of
terminology.

5.2 Threats to Validity
As students volunteered for the study there is a risk of selection
bias. Of all the students who started the course, 94% gave consent
to use their exercise data without any incentives. Unfortunately,
33 students did not complete the studied task. This likely excluded
lower achieving students - a possible selection bias.

It is important to note that there are many possible reasons to
answer incorrectly to the QLCs that we generated. We assume that
these simple questions can be answered correctly without signifi-
cant extra effort if the code is already understood while producing it.
However, there are reasons other than poor understanding, such as
carelessness which can make the student select an incorrect option.
Poor understanding in turn can be a result of fragile prerequisite
5For example Github Copilot and ChatGPT are AI tools that employ successful large
language models to generate program code.

knowledge or even plagiarised code with no intention to under-
stand the code. Some students may have also sought unsupervised
help to answer their personal QLCs online.

We chose to have only three simple questions to keep the study
short to ensure the participants stayed motivated. The students’
programs were manually examined to ensure there were no valid
arguments to choose an option designed to be incorrect. However,
we did not interview the students to discover why they answered
as they did.

In our analysis we use non-parametric statistical tests which
are less powerful than 𝑡-test for normal distributions, thus failure
to reject hypothesis of equal means is more likely. In contrast,
we test three different variables which increases the chance of
finding a case where the test rejects hypothesis of equal means. As a
countermeasure for rejecting the true hypothesis we use Bonferroni
correction. In the end, the tests did identify two cases of different
means from one case of identical means.We note that the population
who answered incorrectly to Q3 is small and recommend validation
using a larger population.

5.3 Conclusion
In this study, we have confirmed the results of earlier studies [7, 8,
16]. We found similar levels of incorrect answers to simple QLCs on
the second programming course as had previously been found for
the first weeks of starting programming. Success in two of our QLCs
predicted higher median of course points which supports previous
findings and adds to the testimony that QLCs can detect factors
that are relevant for learning. Thus, we argue QLCs are a promising
new question type to give early warnings on weak prerequisite
knowledge, which can be taken into account in the course design.
Some students might benefit from a more comprehensive recap
round in the beginning of the second programming course. QLCs
could complement concept inventories to provide a wider set of
problems to reveal students’ misconceptions that hinder learning.

More generally, we conclude that QLCs are a promising extension
to automated assessment systems. QLCs can be utilized to extend
the assessment of student-created programs beyond unit testing
and style linting to program comprehension [9]. If implemented
well, the shift in assessment may also affect student’s attitudes on
the importance of understanding programs [15].

The reasons why students struggle to interpret their own code
are not known. Novice coders tend to make extensive use of pro-
gramming forums [23] such as Stack Overflow and might use code
snippets that contain code they might not fully understand. The
recent introduction of free and easily available AI-based code gen-
eration tools is likely to exacerbate the problem further. As students
start using such tools while learning programming, the teaching
should focus more on tools and effective strategies for program
comprehension.

In the future, more studies are needed to analyse different types
of QLCs and why some students struggle to answer them correctly.
Moreover, with AI-assisted programming on the rise and student
enrollments high, it is ever more timely to find automated triggers
for self-explanations of code and self-regulation. QLCs hold the
potential to achieve that, but further research is needed to tap into
that potential.

510



Automated Questions About Learners’ Own Code Help to Detect Fragile Knowledge ITiCSE 2023, July 8–12, 2023, Turku, Finland

REFERENCES
[1] Kathryn Cunningham, Rahul Agrawal Bejarano, Mark Guzdial, and Barbara

Ericson. 2020. “I’m Not a Computer”: How Identity Informs Value and Expectancy
During a Programming Activity. In The Interdisciplinarity of the Learning Sciences,
14th International Conference of the Learning Sciences (Nashville, Tennessee) (ICLS
2020, Vol. 2). International Society of the Learning Sciences (ISLS), USA, 705–708.
https://repository.isls.org/handle/1/6733

[2] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of
OpenAI Codex on Introductory Programming. In Proceedings of the 24th Aus-
tralasian Computing Education Conference (Virtual Event, Australia) (ACE ’22).
Association for Computing Machinery, New York, NY, USA, 10–19. https:
//doi.org/10.1145/3511861.3511863

[3] Cruz Izu and Claudio Mirolo. 2020. Comparing Small Programs for Equivalence:
A Code Comprehension Task for Novice Programmers. In Proceedings of the 2020
ACM Conference on Innovation and Technology in Computer Science Education
(Trondheim, Norway) (ITiCSE ’20). Association for Computing Machinery, New
York, NY, USA, 466–472. https://doi.org/10.1145/3341525.3387425

[4] Cruz Izu, Carsten Schulte, AshishAggarwal, Quintin Cutts, RodrigoDuran,Mirela
Gutica, Birte Heinemann, Eileen Kraemer, Violetta Lonati, Claudio Mirolo, and
RenskeWeeda. 2019. Fostering ProgramComprehension in Novice Programmers -
Learning Activities and Learning Trajectories. In Proceedings of theWorking Group
Reports on Innovation and Technology in Computer Science Education (Aberdeen,
Scotland Uk) (ITiCSE-WGR ’19). Association for Computing Machinery, New
York, NY, USA, 27–52. https://doi.org/10.1145/3344429.3372501

[5] Cazembe Kennedy and Eileen T. Kraemer. 2019. Qualitative Observations of
Student Reasoning: Coding in theWild. In Proceedings of the 2019 ACMConference
on Innovation and Technology in Computer Science Education (Aberdeen, Scotland
Uk) (ITiCSE ’19). Association for Computing Machinery, New York, NY, USA,
224–230. https://doi.org/10.1145/3304221.3319751

[6] Viraj Kumar. 2021. Refute: An Alternative to ‘Explain in Plain English’ Questions.
In Proceedings of the 17th ACM Conference on International Computing Education
Research (Virtual Event, USA) (ICER 2021). Association for Computing Machinery,
New York, NY, USA, 438–440. https://doi.org/10.1145/3446871.3469791

[7] Teemu Lehtinen, Lassi Haaranen, and Juho Leinonen. 2023. Automated Ques-
tionnaires About Students’ JavaScript Programs: Towards Gauging Novice Pro-
gramming Processes. In Proceedings of the 25th Australasian Computing Education
Conference (Melbourne, VIC, Australia) (ACE ’23). Association for Computing
Machinery, New York, NY, USA, 49–58. https://doi.org/10.1145/3576123.3576129

[8] Teemu Lehtinen, Aleksi Lukkarinen, and Lassi Haaranen. 2021. Students Struggle
to Explain Their Own Program Code. In Proceedings of the 26th ACM Conference
on on Innovation and Technology in Computer Science Education V. 1 (Virtual Event,
Germany) (ITiCSE ’21). Association for Computing Machinery, New York, NY,
USA, 206–212. https://doi.org/10.1145/3430665.3456322

[9] Teemu Lehtinen, André L. Santos, and Juha Sorva. 2021. Let’s Ask Students About
Their Programs, Automatically. In 2021 IEEE/ACM 29th International Conference
on Program Comprehension (ICPC). IEEE, New York, NY, USA, 467–475. https:
//doi.org/10.1109/ICPC52881.2021.00054

[10] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, Beth Simon, and Lynda Thomas. 2004. A Multi-National Study of
Reading and Tracing Skills in Novice Programmers. InWorking Group Reports
from ITiCSE on Innovation and Technology in Computer Science Education (Leeds,
United Kingdom) (ITiCSE-WGR ’04). Association for Computing Machinery, New
York, NY, USA, 119–150. https://doi.org/10.1145/1044550.1041673

[11] Sandra Madison and James Gifford. 2002. Modular Programming. Journal of
Research on Technology in Education 34, 3 (2002), 217–229. https://doi.org/10.
1080/15391523.2002.10782346

[12] Claudio Mirolo, Cruz Izu, and Emanuele Scapin. 2020. High-School Students’
Mastery of Basic Flow-Control Constructs through the Lens of Reversibility. In
Proceedings of the 15th Workshop on Primary and Secondary Computing Education
(Virtual Event, Germany) (WiPSCE ’20). Association for Computing Machinery,
NewYork, NY, USA, Article 15, 10 pages. https://doi.org/10.1145/3421590.3421603

[13] D. N. Perkins and Fay Martin. 1986. Fragile Knowledge and Neglected Strategies
in Novice Programmers. In Papers Presented at the First Workshop on Empirical
Studies of Programmers (Washington, D.C., USA). Ablex Publishing Corp., USA,
213–229.

[14] Arun Raman and Viraj Kumar. 2022. Programming Pedagogy and Assessment in
the Era of AI/ML: A Position Paper. In Proceedings of the 15th Annual ACM India
Compute Conference (Jaipur, India) (COMPUTE ’22). Association for Computing
Machinery, New York, NY, USA, 29–34. https://doi.org/10.1145/3561833.3561843

[15] Kay Sambell and LizMcDowell. 1998. The Construction of theHidden Curriculum:
messages and meanings in the assessment of student learning. Assessment &
Evaluation in Higher Education 23, 4 (1998), 391–402. https://doi.org/10.1080/
0260293980230406

[16] André Santos, Tiago Soares, Nuno Garrido, and Teemu Lehtinen. 2022. Jask:
Generation of Questions About Learners’ Code in Java. In Proceedings of the 27th
ACM Conference on on Innovation and Technology in Computer Science Education
Vol. 1 (Dublin, Ireland) (ITiCSE ’22). Association for Computing Machinery, New
York, NY, USA, 117–123. https://doi.org/10.1145/3502718.3524761

[17] Carsten Schulte. 2008. Block Model: An Educational Model of Program Com-
prehension as a Tool for a Scholarly Approach to Teaching. In Proceedings of
the Fourth International Workshop on Computing Education Research (Sydney,
Australia) (ICER ’08). Association for Computing Machinery, New York, NY, USA,
149–160. https://doi.org/10.1145/1404520.1404535

[18] Carsten Schulte, Tony Clear, Ahmad Taherkhani, Teresa Busjahn, and James H.
Paterson. 2010. An Introduction to Program Comprehension for Computer
Science Educators. In Proceedings of the 2010 ITiCSE Working Group Reports
(Ankara, Turkey) (ITiCSE-WGR ’10). Association for Computing Machinery, New
York, NY, USA, 65–86. https://doi.org/10.1145/1971681.1971687

[19] Amal A. Shargabi, Syed Ahmad Aljunid, Muthukkaruppan Annamalai, and Ab-
dullah Mohd Zin. 2020. Performing Tasks Can Improve Program Comprehension
Mental Model of Novice Developers: An Empirical Approach. In Proceedings of
the 28th International Conference on Program Comprehension (Seoul, Republic of
Korea) (ICPC ’20). Association for Computing Machinery, New York, NY, USA,
263–273. https://doi.org/10.1145/3387904.3389277

[20] Simon. 2011. Assignment and Sequence: Why Some Students Can’t Recognise
a Simple Swap. In Proceedings of the 11th Koli Calling International Conference
on Computing Education Research (Koli, Finland) (Koli Calling ’11). Association
for Computing Machinery, New York, NY, USA, 10–15. https://doi.org/10.1145/
2094131.2094134

[21] Elliot Soloway, Kate Ehrlich, Jeffrey. Bonar, and Judith Greenspan. 1982. What do
novices know about programming? Directions in Human-Computer Interaction 6
(1982), 27–54.

[22] Dieter Vogts. 2009. Plagiarising of Source Code by Novice Programmers a "Cry for
Help"?. In Proceedings of the 2009 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists (Vanderbijlpark,
Emfuleni, South Africa) (SAICSIT ’09). Association for Computing Machinery,
New York, NY, USA, 141–149. https://doi.org/10.1145/1632149.1632168

[23] David Wong-Aitken, Diana Cukierman, and Parmit K. Chilana. 2022. "It De-
pends on Whether or Not I’m Lucky" How Students in an Introductory Pro-
gramming Course Discover, Select, and Assess the Utility of Web-Based Re-
sources. In Proceedings of the 27th ACM Conference on on Innovation and Tech-
nology in Computer Science Education Vol. 1 (Dublin, Ireland) (ITiCSE ’22). As-
sociation for Computing Machinery, New York, NY, USA, 512–518. https:
//doi.org/10.1145/3502718.3524751

511

https://repository.isls.org/handle/1/6733
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3341525.3387425
https://doi.org/10.1145/3344429.3372501
https://doi.org/10.1145/3304221.3319751
https://doi.org/10.1145/3446871.3469791
https://doi.org/10.1145/3576123.3576129
https://doi.org/10.1145/3430665.3456322
https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/10.1145/1044550.1041673
https://doi.org/10.1080/15391523.2002.10782346
https://doi.org/10.1080/15391523.2002.10782346
https://doi.org/10.1145/3421590.3421603
https://doi.org/10.1145/3561833.3561843
https://doi.org/10.1080/0260293980230406
https://doi.org/10.1080/0260293980230406
https://doi.org/10.1145/3502718.3524761
https://doi.org/10.1145/1404520.1404535
https://doi.org/10.1145/1971681.1971687
https://doi.org/10.1145/3387904.3389277
https://doi.org/10.1145/2094131.2094134
https://doi.org/10.1145/2094131.2094134
https://doi.org/10.1145/1632149.1632168
https://doi.org/10.1145/3502718.3524751
https://doi.org/10.1145/3502718.3524751

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Context
	3.2 Task
	3.3 Analysis

	4 Results
	5 Discussion
	5.1 Interpretation and Implications
	5.2 Threats to Validity
	5.3 Conclusion

	References



