2304.14628v2 [cs.SE] 4 Jul 2023

arXiv

Barriers and Self-Efficacy: A Large-Scale Study on the Impact of
OSS Courses on Student Perceptions

Larissa Salerno
Isalernodeca@student.unimelb.edu.au
The University of Melbourne
Melbourne, Victoria, Australia

Igor Steinmacher
igor.steinmacher@nau.edu
Northern Arizona University
Flagstaff, Arizona, United States

ABSTRACT

Open source software (OSS) development offers a unique opportu-
nity for students in Software Engineering to experience and partic-
ipate in large-scale software development, however, the impact of
such courses on students’ self-efficacy and the challenges faced by
students are not well understood. This paper aims to address this
gap by analyzing data from multiple instances of OSS development
courses at universities in different countries and reporting on how
students’ self-efficacy changed as a result of taking the course, as
well as the barriers and challenges faced by students.

CCS CONCEPTS

« Applied computing — Collaborative learning; - Software
and its engineering — Open source model; « Information
systems — Open source software.

KEYWORDS

open source software, barriers, self-efficacy, education

ACM Reference Format:

Larissa Salerno, Simone de Franca Tonhao, Igor Steinmacher, and Christoph
Treude. 2023. Barriers and Self-Efficacy: A Large-Scale Study on the Impact
of OSS Courses on Student Perceptions. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1 (ITiCSE
2023), July 8-12, 2023, Turku, Finland. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3587102.3588789

1 INTRODUCTION AND MOTIVATION

As part of their coursework, students in Software Engineering often
do not get the opportunity to participate in large-scale software
projects with hundreds of developers, thousands of files, and long
project history. Yet, many of the challenges inherent in software
development only become apparent when software development is
conducted at such a large scale. While it is often unrealistic to embed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ITiCSE 2023, July 8-12, 2023, Turku, Finland

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0138-2/23/07...$15.00
https://doi.org/10.1145/3587102.3588789

Simone de Fran¢a Tonhao
siimone.franca@gmail.com
State University of Maringa

Maringa, Parana, Brazil

Christoph Treude
christoph.treude@unimelb.edu.au
The University of Melbourne
Melbourne, Victoria, Australia

students in an industry project for a semester, open source software
(OSS) development offers a unique opportunity for students to
experience and participate in large-scale software development.

Recognizing this opportunity, several universities are now offer-
ing dedicated courses that introduce students to OSS development
and guide them in making their first contribution to an open source
project. But what is the impact of such courses?

Using data from four instances of three courses at three univer-
sities in three countries and a total of 359 students, we report on
how students’ self-efficacy changed as a result of taking a course
on OSS development, what barriers the students expected before
starting, and what challenges they actually faced in retrospect.

2 RELATED WORK

Several recent efforts studied how OSS projects are used in the
context of a classroom [4, 5, 8, 10, 11]. Some aimed to understand
how projects used in the classroom are chosen. For example, Smith
et al. [11] focused on selecting the most appropriate projects for
students’ work. Morgan and Jensen [8] detailed the experience of
teaching a Software Engineering course based on OSS projects.
Other papers report experiences of using OSS in different courses
and contexts. Buchta et al. [4] reported their experience in teaching
software maintenance and evolution aspects in a Software Engi-
neering course. Holmes et al. [6, 7] reported the lessons of their
Undergraduate Capstone OSS Projects (UCOSP) in two instances.
They present details of the course, benefits, and potential challenges.
Holmes et al. [6] also analyzed how students perceived the op-
portunity of taking the capstone course based on OSS. They report
that students took advantage of the opportunity to apply their skills
in real tasks, from real projects, while receiving real feedback from
project maintainers. Steinmacher et al. [12] also report the per-
ception of students who contributed to OSS projects as part of an
undergraduate course. They were interested in understanding the
impact of a portal on the students’ perceived self-efficacy. Similarly,
Pinto et al. [9] investigated the perspective of students a few years
after they took a course based on contributions to OSS projects.
They found that students recurrently report challenges from social,
process, and technical natures but they also report benefits related
to improving their technical skills and their self-confidence.
Differently from the previous literature, in this paper we take a
closer look at how an OSS course may change the perception of stu-
dents about contributing to an OSS project. We aim to understand

https://doi.org/10.1145/3587102.3588789
https://doi.org/10.1145/3587102.3588789

ITiCSE 2023, July 8-12, 2023, Turku, Finland

the shift in terms of self-perceived efficacy and in terms of barriers
expected and actually faced during the contribution process.

3 COURSE DESIGN

The courses considered in this study were Software Engineering
courses with a focus on software processes; the courses had been
taught by two of the authors at three institutions in three different
countries, but all followed a similar structure. In class, students
learned about OSS development practices, tools, processes, the
history of OSS development, licenses, and research on newcomer
onboarding and mining software repositories. These were taught
through lectures and exercises on topics such as source code man-
agement, code review, and continuous integration using GitHub.
For assessment, students were required to complete online
quizzes on the theoretical lecture material and individual “mini-
netnographies” in which they analyzed the progression of selected
GitHub users from their first contribution to their current role in
OSS development. This was intended to introduce students to role
models in the field. The majority of the assessment was focused on
team projects, in which students worked in groups of approximately
five to make a contribution to an open source project. The lecturers
provided a selection of projects for the student teams to choose
from and contacted the project maintainers in advance to ensure
that student contributions would be received in a timely and re-
spectful manner. In most cases, the lecturers already had an ongoing
relationship with these maintainers from previous collaborations.
Each student team was tasked with selecting a non-trivial open
issue from an open source project and developing a plan for ad-
dressing it. The lecturers provided feedback on these plans through
a short team presentation to guide the teams as needed. The teams
then had a few weeks to complete their proposed open source con-
tribution and were encouraged to submit an initial pull request
early to allow for multiple rounds of feedback from the project
maintainers. The final assessment was based on team presentations
and the submitted pull requests. Most of the marks were awarded
based on how well each team followed open source contribution
processes and interacted with the project maintainers. Whether the
pull request was successfully merged played a secondary role in the
grading, as it can depend on factors outside of students’ control.

4 RESEARCH METHODS

In this section, we detail data collection and analysis.

4.1 Data Collection

Table 1 presents the open and close-ended questions used to collect
data from the 359 students who took one of the open source courses
taught at one of the three institutions considered in this study.

First, all students from all courses were asked to answer an open-
ended question about the challenges that they anticipated facing
before they began their team projects. The same question was
asked after their contribution attempt, to provide an account of
the challenges they actually encountered.

Using the same before-after design, we administered a self-
efficacy questionnaire with a five-point Likert-scale (Strongly Dis-
agree, Disagree, Neutral, Agree, Strongly Agree) to measure the
impact of the course. Self-efficacy is a measure of the confidence

Larissa Salerno, Simone de Franca Tonhao, Igor Steinmacher, & Christoph Treude

in the participants’ perceived ability to perform a task, which can
impact one’s actual ability to complete a task [2]. The question-
naire applied was borrowed from Steinmacher et al. [12]. The items
had been further classified into Social, Process, and Technical cate-
gories [14], to enable a better understanding of these dimensions
in the perceived experience.

4.2 Quantitative Data Analysis

To analyze the impact of the OSS course on the students’ self-
efficacy, we first mapped the Likert scale answers to an ordinal
(numeric) scale, from 1 to 5 (with 1 representing Strongly Disagree
and 5, Strongly Agree). We kept only the entries from those students
who provided answers both before and after the course (n=359).

We, then, mapped a mixed-effects logistic regression model. We
used the answer provided per question as our dependent variable
and the item type (social, process, or technical) and when the answer
was provided (before or after the course) as fixed effects. We also
modeled the participant and the item itself as random effects.

We used ANOVA to evaluate the differences between before
and after answers per type. We used the estimated marginal means
(EMMs) to compare among groups after fitting the model and re-
porting the effect size per item type.

4.3 Qualitative Data Analysis

We analyzed the open-ended answers using the Thematic analy-
sis [3] approach. Thematic analysis is a method of analyzing quali-
tative data that involves breaking down and coding the text into
meaningful themes. It is useful for understanding how different
pieces of information are related, identifying patterns in responses,
and uncovering underlying meanings within a dataset. Thematic
analysis provides researchers with an effective way to explore their
data more deeply by allowing them to identify key ideas or concepts
that can be used as the basis for further research or decision-making.

The analysis consisted of two phases, one phase to analyze an-
swers to the question related to challenges the students anticipated
before contributing, and another phase for the question about the
challenges that students faced after contributing to an OSS project.
Two of the authors worked individually on thematically analyzing
the challenges reported by the students. The researchers analyzed
each answer and derived themes according to the content of each
student’s response. For simplicity’s sake, we decided to adopt the
same themes and categories nomenclature from two similar studies
that one of the authors conducted in the past [1, 13]; some of the
categories did not have a correspondent, so for those we added new
terms to the original nomenclature. The outcome of the analysis
was a list of themes that were placed into five categories: New-
comers’ orientation, Newcomers’ characteristics, Communication,
Documentation problems, and Technical hurdles.

In total, 265 students responded the before questionnaire, and
191 students answered the after questionnaire. We analyzed the
data combining the three courses. The themes were generated
according to the content of the students’ answers. The researchers
read each response carefully, derived a list of challenges reported
in each answer, and then generated themes by merging challenges.
For example, one participant mentioned — “Learning the syntax and
language that the project uses might take awhile depending on the

Barriers and Self-Efficacy

ITiCSE 2023, July 8-12, 2023, Turku, Finland

Table 1: Survey Questions

BEFORE

What challenges do you expect to encounter when trying to make a source code contribution to an open source project? Open-Ended
AFTER

What challenges did you encounter when trying to make a source code contribution to an open source project? Open-Ended

BEFORE AND AFTER

I feel comfortable asking for help from the open source community using electronic communication means.

I can write my questions and understand answers in English.
I'am good at understanding code written by other people.
I feel comfortable with the process of contributing to an open source project.

I think that contributing to an open source software project is an interesting activity.
I'feel I can set up and run an application if a set of instructions is properly given.

I can choose an adequate task to fix if a list of tasks is given.

I am pretty good at searching for solutions and understanding technical issues by myself.

I'have pretty good skills to write and change code.

I can find the piece of code that needs to be fixed given a bug report presenting the issue.

Likert-Scale

Likert scale Social
Likert scale Social
Likert scale Process
Likert scale Process
Likert scale Process
Likert scale Process

language and application towards that project”. From that chunk
of text, we identified that the need to learn a new programming
language might be a challenge when contributing to an OSS project
for the first time, so we added “Learn a new programming language”
to the list of potential themes. In general, the two researchers had
no difficulty in reaching a consensus, as the themes each researcher
identified were similar.

5 IMPACT ON SELF-EFFICACY

The distribution of answers before and after look very similar
when we observe the boxplots in Figure 1. However, it is possible
to observe a small shift in the mean of the answers after the course.
Since visual inspection did not highlight any clear pattern, and since
the scale used was small, we focus on the results of the logistic
model to understand if there were any trends.

First, as shown in Table 2, the result of the regression showed
that the fixed-effects explain more than 50% of the answers provided
by the participants. Residual is greater than the variance explained
by the random effects, although the individual preferences (partici-
pants) are non-negligible. Analyzing the result of the ANOVA test,
we observed that the F-value indicates significant differences for
both the time (before and after) and the type of the items (Social,
Process, and Technical) — F-values=47.723 and 5.785, respectively.

Table 2: Random Effects analysis

Group Name Variance Std.Dev.

participant (Intercept) 0.25536 0.5053
item (Intercept) 0.02632 0.1622
Residual 0.51727 0.7192

Table 3: Results for the ANOVA analysis

SumSq MeanSq F-value

when 24.6854 24.6854 47.723
type 5.9848 2.9924 5.785

When digging deeper into the differences before and after per
dimension, the result of the regression showed a significant differ-
ence when comparing the answers provided before and after the
course for all three dimensions (Social, Process, and Technical) —

Likert scale Technical
Likert scale Technical
Likert scale Technical
5
4 2 :
3
2
1
Before After Before After Before After

Figure 1: Distribution of answers before and after the course,
with answers related to Process, Social, and Technical shown
from left to right. The red circle identifies the values average.

p-value<0.001. The effect size showed an increase in the values of
answers received after the course for all dimensions (x0.16, small
effect size). Given these results, we conclude that, although with a
small effect size, the students perceived themselves as more confi-
dent with the OSS contribution process at the end of the courses
(the small shift in the mean —Figure 1— is indicative of this im-
provement).

6 BEFORE-AFTER COMPARISON

We received a total of 265 responses for the before contributing
question and 191 answers for the after contributing question. The
diagrams in Figure 2 and Figure 3 represent the challenges we iden-
tified through the analysis process. We used the categories names
represented in similar studies [12, 13] to group the challenges. The
diagram comprises five categories with multiple subcategories, rep-
resenting the challenges students have reported. The approximate
percentage of students who reported each challenge is displayed
next to the categories and subcategories’ names.

Due to the large number of subcategories that each category
holds, we will focus on discussing the challenges with a higher
percentage. The categories will be discussed in separate subsections,
presenting the before and after results.

ITiCSE 2023, July 8-12, 2023, Turku, Finland

Finding a mentor
0.37%

A

Making
meaningful
contributions 12%

Newcomers do not
know what is the

contribution flow 2%

A

Finding a task to
start with 8%

Knowledge on
versionning

control system 1%

NEWCOMERS'

ORIENTATION 24%

Experience on
unit testing 1%

Poor "How to
contribute" available
0.37%

Fear of judgement
6%

J

Knowledge on
technologies and
tools used 12%

Lack of coding
skills 13%

Lack ofdomaln
expertise 2%

[}
Newcomers'

Lack of technical
background 34%

previous knowledge

41%

NEWCOMERS'

CHARACTERISTICS

46%

) Performance
anxiety 3%

Lack of knowledge

» inprocess and

practices 2%

Newcomers'
behaviour 5%

|

Larissa Salerno, Simone de Franca Tonhao, Igor Steinmacher, & Christoph Treude

Lack of interpersonal
skills 0.37%

Delayed answers

%

Not receiving an
answer 6%

A

; :

Receptionissues

15%

v

Answering with too

advanced/complex
contents 2%

Code comments 1% (=,

AJ

v

Y

Shyness 0.37%

Lack of
proactivity 1%

commitment 3%

Lack of

Lack of
motivation 1%

Getting contribution Completing tasks
accepted 2% 3%

Newcomers' T Crashing the
9% aton Change requests project 1%
2%

' ?

COMMUNICATION English level 1%
16%
HURDLES 77%

v
| Documentation in
general 3% Local environment
setup hurdles 2%
{ Finding the correct
>
o . source 6%
Cognitive Code/architecture
v
)

Platform
dependency 1%

TECHNICAL

.| Building workspace
locally 1%

Lack of knowledge
about procedures
and conventions 18% |

Lack of
documentation 4%

problems 43% h hurdles 68%

Understanding the
scope 3%

DOCUMENTATION

PROBLEMS 4%

Understanding the
architecture/code
structure 30%

Understanding the

Information code 10%

overload 0.37%

Figure 2: Challenges the students expected before contributing to an open source project.

6.1 Newcomers’ Orientation

Analyzing the data, we identified a number of challenges students
expected to find before contributing to an open source project. In
total, 24% mentioned that the orientation and support they received
from the community was a key factor.

Out of the five subcategories, "Making a meaningful contribu-
tion" and "Finding a task to start with" were the most prominent,
with 12% of students indicating that not being able to make a mean-
ingful contribution to the project could be a challenge. One of the
participants said — "I think the big challenge is when I have to create
a new useful feature for the project. I need to define goals and objec-
tives". Finding a task to start with is also an aspect that students
mentioned, 8% stated that the process of picking an issue to work
on could be challenging, especially because of their skill level.

After contributing to an open source project, 29% of students
encountered challenges related to the orientation they received.
The percentage slightly increased, but the most noticeable change
is in the subcategories. Only 2% of the students stated that making
meaningful contributions was challenging, but 16% mentioned that
finding a task to start with was difficult. The main reason why
is that they could not predict the task difficulty level. One of the
participants mentioned mentioned how their team struggled to pick
the right issue to work on — "My team had trouble choosing an issue
because we have no idea how difficult one issue is", another student
mentioned — "Identifying the "good first issue" for our team to take
up. There were numerous issues on the [project] GitHub repository.
We wanted to make sure we do not pickup [sic] too hard or too easy
to solve issue as the contribution should be significant enough".

6.2 Newcomers’ Characteristics

Before making a contribution to an OSS project, 46% of the stu-
dents expected that their characteristic traits could potentially be

a challenge. In terms of their previous knowledge, 34% of the stu-
dents believe that their lack of technical background could be an
issue, especially when it comes to their lack of coding skills and
knowledge of technologies and tools used in the project.

The lack of technical background proved to be a significant
hurdle after their contribution. Approximately 22% of the students
faced challenges regarding the technologies and tools used in the
projects. The need to learn new programming languages and use
tools they had never used before was the main aspect reported by
students — "Before I worked on this project, I knew nothing about
JavaFX, and I have not used Gradle once. It was hard for me to learn
a new thing from scratch, especially JavaFX since it is a minority
framework that not too many people are using it" said the student. On
the other hand, the fear of students regarding their lack of coding
skills did not become a reality, as only 3% of the students reported
facing challenges related to this aspect.

6.3 Communication

Regarding communication barriers, only 16% of the participants
expected to face any problems in this sense; most participants were
expecting to face reception issues, which included receiving de-
layed answers and not receiving an answer from the community.
After contributing, 27% of the participants encountered communi-
cation challenges; 12% of participants mentioned that they received
delayed answers and 2% did not receive any answer or feedback —
"Our final challenge was getting a response from the Project owner.
Although we made a PR, we never got the feedback".

The participants’ English level was also reported as an issue, as
the majority of students are from non-English speaking countries
— "Since most of the open Source projects are English, the language is
an important question. Sometimes I can’t correctly get the idea about
what should I do. I'm confused about my goal. It troubles me deeply".

Barriers and Self-Efficacy

— D —

Poor "How to
contribute" available
1%

Finding the correct
artifacts to fixan
issue 5%

L)

NEWCOMERS'
ORIENTATION 29%

Finding a task to
start with 16%

>

Finding a mentor Making Newcomers do not Answering with too
0.5% meaningful know what is the advanced/complex
. contributions 2% contribution flow 4% | contents 1%

versionnin Experience on
g unit testing 1% 3%
control system
0.5% [} ¥

Knowledge on {

[Fear of judgement

Documentation on

Knowledge on setting up the

Lack of technical

ITiCSE 2023, July 8-12, 2023, Turku, Finland

Not receiving an

Delayed answers Getting contribution

; 2 Completing tasks
answer 2% 12% accepted 1%

6%

e

Reception issues N
17% (communication 1%

COMMUNICATION

——— >

T T ‘ I .

Newcomers' Change requests

Platform
dependency 0.5%
Building workspace
locally 8%
Lack of knowledge
. about procedures
Local environment)
and conventions 11%
setup hurdles 9%

10%
*

Y
TECHNICAL
HURDLES 83%

27%

English level 10% l

o >
Documentation in

general 8%

Lack of
proactivity 1%

Lack of
motivation 1%

Shyness2% [+ l

Lack of
commitment 8%

Lack of Unclear
documentation documentation 0.5%

DOCUMENTATION
PROBLEMS 13%

technologies and o Performance -
tools used 22% background 31% anxiety 10% workspace 0.5%
JE— [}
Lackof coding | _ | Newcomers' Code comments 2%
skills 3% previous knowledge —
- 44% s {
i behaviour 10% ;
1
Lack of domain | NEWCOMERS' Lack of
expertise 3% CHARACTERISTICS documentation on
56% testing guides 1%
] [2) v

Information
overload 0.5%

. ,| Finding the correct
.. Code/architecture | source 8%
hurdles 67% ’

Code characteristics
0.5%

12%

A

Code
icomplexity/instability=

¥
Cognitive
problems 47% 0.5%

& | . L] X L

Understanding the
code 11%

Understanding the
architecture/code
structure 33%

Understanding the
scope 3%

Figure 3: Challenges the students encountered after contributing to an open source project.

6.4 Documentation Problems

As the students were having contact with the projects for the first
time, the documentation to understand the project and the code
was crucial. Before contributing, only 4% of the participants were
expecting to find a lack of documentation about the projects they
would be working on. However, this scenario changed after con-
tributing, when 12% of the participants mentioned that one of the
challenges they faced was the lack of documentation about the
project. The lack of documentation in general, comments in the
code, testing guides, and setting up the environment documentation
were aspects they indicated as challenging after contributing.

6.5 Technical Hurdles

The category of technical hurdles emerged as the most frequently
cited by the students both before and after contributing. Before
contributing, 77% of the students were expecting to face technical
challenges, such as challenges related to the understanding of the
code structure and architecture of the project.

Approximately 30% of students expected challenges when under-
standing the architecture of the project and code structure — "Some
source code can be very hard to read depending on the structure. The
code might be separated into different files with dependencies from
another file. Understand what the code is already doing can take some
time before making any contribution to the code"; another student
said — "Understanding the code structure could take quite a while due
to either an unusual code style or the size of the project”.

Besides the architecture and code structure, 10% of the students
were expecting to face challenges in understanding the code itself,
especially in terms of understanding different coding styles — "The
main challenge I would encounter is the steep learning curve that
comes with understanding code written by other people. I find the
starting point to be the most difficult in every project”. One student
also pointed out how the variety of coding styles can affect the
code readability — "As the community grows and a lot of developers

participate, it will be challenging to establish coding standards, as
each individual has their own style in coding. This might impact the
readability of the code".

The lack of knowledge about procedures and conventions was
also a concern for 18% of the students before contributing. Students
believe that not meeting the projects’ code standards could prevent
them from having their contribution accepted — "It’s possible to
receive some negative feedback from the community if my coding
practice does not meet the standard"; another student also shared
the same perception — "Another challenge will be adhering to the
requirements of the submission such as some projects might have a
certain code coverage that needs to be added or to ensure that all
existing test cases pass".

The concerns students had regarding technical hurdles became a
reality, as 83% of the students faced technical challenges while mak-
ing contributions to the projects. Understanding the code structure
and architecture was the major challenge, being mentioned by 33%
of the students — "As expected, understanding the project structure
is hard. I was at a loss for how to start at the beginning"; another
student reported — "Jumping on board and knowing nothing about
the source code or the software architecture was quite challenging".

Understanding the code was also a challenge for 11% of the stu-
dents, similarly to before contributing. The main issue was related
to the different coding styles — "The coding style was inconsistent
across the files of the project. As a result, our team had to take more
time trying to figure out which coding style was the most common".
The lack of knowledge about procedures and conventions also hap-
pened to be an issue for 11% of the students. According to one of
them, the project demanded a strict standard, but it was not offering
any information or instructions — "Abiding by coding standards/style
of the open source project. We had a few issues where our pull request
was not accepted due to the way we did the task".

ITiCSE 2023, July 8-12, 2023, Turku, Finland

7 DISCUSSION

In this section, we discuss the implications of our results for educa-
tors as well as threats to the validity of our study.

7.1 Implications

A single contribution experience is not sufficient. Our study
revealed that a single OSS course might not be enough to improve
students’ self-efficacy and ability to overcome barriers. Our findings
showed that some of the challenges students anticipated turned out
to be true, while others were even more difficult to overcome than
expected. For instance, we observed an increase in performance
anxiety, from 3% expected to 10% encountered. To address this, we
recommend educators consider incorporating OSS contributions
into multiple courses and/or encouraging participation in programs
such as Google Summer of Code, despite scheduling constraints.
Tools and technologies are crucial for success. Our study
found that students were initially worried about their lack of coding
skills (13%) and knowledge of tools and technologies (12%) before
starting their OSS contribution journey. However, in hindsight,
they realized that knowledge of tools and technologies (22%) was a
much greater issue than coding skills (3%). While coding skills are
necessary, we recommend educators to incorporate tools and tech-
nologies into their curriculum. Real-world software projects, both
in industry and open source, rely heavily on tools and technologies,
and students’ proficiency in using them is crucial for their future.
Documentation issues are more prevalent than anticipated.
One of the most striking differences in our “before” and “after”
survey responses was related to documentation problems. While
only 4% of the students expected such issues, they were actually
encountered by 13%. The problem of inadequate or outdated doc-
umentation is a well-established issue in Software Engineering
literature. Therefore, we urge educators to prepare students for
the realities of software documentation, including teaching them
how to write clear and comprehensive documentation and how to
navigate code bases where documentation may be lacking.
Non-native speakers face difficulties with conventions,
communication, and documentation. Large-scale software de-
velopment is equally about communication and collaboration as it
is about programming. English is the primary language of commu-
nication in most projects, and students for whom it is not their first
language can struggle with understanding and adapting to com-
mon conventions and styles. Educators can support these students
by providing them with templates for effective first messages to a
project or pull request titles and descriptions. Encouraging them
to study and learn from successful contributions by other open
source contributors can serve as a guide for them to communicate
effectively with contributors from diverse backgrounds.
Understanding code and code structure requires signifi-
cant effort. This includes becoming familiar with coding styles,
conventions, and best practices used in the project. However, the
strict time frame of a university course does not align well with the
flexible nature of OSS contributions. OSS projects are ongoing and
can take a long time to fully understand, whereas university courses
are often limited to a specific semester or term, creating a mismatch
between the two environments. Educators should be aware of this
mismatch and provide students with adequate time and resources

Larissa Salerno, Simone de Franca Tonhao, Igor Steinmacher, & Christoph Treude

to become proficient in navigating and contributing to OSS projects
before they are ready to work on their first contribution.

7.2 Threats to Validity

The conclusions we make are based on data from 359 students
from four instances of three courses at three universities in three
countries. While we consider this to be a large sample size, we note
that our findings may not necessarily generalize to other courses
or student populations. Additionally, the scope of the projects that
the students contributed to is relatively limited, and primarily com-
prises projects that the lecturers were familiar with. This may not
accurately reflect the experience of students who work on projects
that are not specifically advised to expect student contributions.
Furthermore, the qualitative analysis component of our research
introduces an element of subjectivity. To address this concern, we
employed a nomenclature in line with similar studies in the field.
The survey responses may be influenced by social desirability
bias, where participants provide responses that they believe are
socially acceptable rather than accurate. To mitigate this threat,
we emphasized to students that their answers would not affect
their grades. Additionally, the measures used to assess self-efficacy
may not be completely reliable or valid. We followed established
practices in phrasing the self-efficacy questions in the survey.

8 CONCLUSION

This paper aimed to address the gap in understanding the impact
of OSS development courses on students’ self-efficacy and the chal-
lenges faced by them. Through analyzing data from multiple in-
stances of OSS development courses at universities in different
countries, we found that students’ self-efficacy slightly improved
as a result of taking the course. Additionally, we identified that
many of the challenges anticipated by students actually occurred,
with issues related to tools, technologies, and documentation being
more prevalent than expected. Based on these findings, we provide
implications for educators on how to best guide students to make
successful contributions to an OSS project.

Future research in this area could aim to better understand the
long-term effects of participating in open-source software develop-
ment on students’ careers and professional growth. Additionally,
it would be interesting to explore how the students’ Software En-
gineering skills were impacted by their experience with the OSS
course as well as investigate the differences between the courses
in more detail. Thus, it would be valuable to explore and develop
effective strategies and best practices for both OSS projects and
educators to support and guide students through any challenges
and barriers they may encounter during their participation in OSS
development. This could not only enhance students’ learning expe-
riences, but also increase the chances of successful contributions to
open-source projects, ultimately promoting both students’ educa-
tion and the sustainability of OSS projects.

ACKNOWLEDGMENT

This work is partially supported by the National Science Foundation
under Grant number 2247929.

Barriers and Self-Efficacy

REFERENCES

[1] Sogol Balali, Igor Steinmacher, Umayal Annamalai, Anita Sarma, and Marco Au-

(6

[7

=

[

=

relio Gerosa. 2018. Newcomers’ barriers... is that all? an analysis of mentors’
and newcomers’ barriers in OSS projects. Computer Supported Cooperative Work
(CSCW) 217, 3 (April 2018), 679-714. https://doi.org/10.1007/s10606-018-9310-8

Albert Bandura. 1986. The explanatory and predictive scope of self-efficacy
theory. Journal of social and clinical psychology 4, 3 (March 1986), 359-373.
https://doi.org/10.1521/jscp.1986.4.3.359

Virginia Braun and Victoria Clarke. 2012. Thematic analysis. American Psycho-
logical Association, Washington, D.C., USA. https://doi.org/10.1037/13620-004

Joseph Buchta, Maksym Petrenko, Denys Poshyvanyk, and Vaclav Rajlich. 2006.
Teaching evolution of open-source projects in software engineering courses. In
2006 22nd IEEE International Conference on Software Maintenance (Philadelphia,
PA, USA) (ICSM). IEEE, New York, NY, USA, 136-144. https://doi.org/10.1109/
ICSM.2006.66

David Coppit and Jennifer M Haddox-Schatz. 2005. Large team projects in
software engineering courses. ACM SIGCSE Bulletin 37, 1 (February 2005), 137—
141. https://doi.org/10.1145/1047124.1047400

Reid Holmes, Meghan Allen, and Michelle Craig. 2018. Dimensions of experien-
tialism for software engineering education. In 2018 IEEE/ACM 40th International
Conference on Software Engineering: Software Engineering Education and Train-
ing (Gothenburg, Sweden) (ICSE-SEET ’18). ACM, New York, NY, USA, 31-39.
https://doi.org/10.1145/3183377.3183380

Reid Holmes, Michelle Craig, Karen Reid, and Eleni Stroulia. 2014. Lessons learned
managing distributed software engineering courses. In Companion Proceedings of
the 36th International Conference on Software Engineering (Hyderabad, India) (ICSE
’14). ACM, New York, NY, USA, 321-324. https://doi.org/10.1145/2591062.2591160

Becka Morgan and Carlos Jensen. 2014. Lessons learned from teaching open
source software development. In IFIP International Conference on Open Source
Systems (San José, CR) (IFIPAICT ’14). Springer, New York, NY, USA, 133-142.

[10

[12

[13

ITiCSE 2023, July 8-12, 2023, Turku, Finland

https://doi.org/10.1007/978-3-642-55128-4_18

Gustavo Pinto, Clarice Ferreira, Cleice Souza, Igor Steinmacher, and Paulo
Meirelles. 2019. Training software engineers using open-source software: the
students’ perspective. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering Education and Training (Montreal, Canada)
(ICSE-SEET ’19).IEEE, New York, NY, USA, 147-157. https://doi.org/10.1109/ICSE-
SEET.2019.00024

Anita Sarma, Marco Aurélio Gerosa, Igor Steinmacher, and Rafael Leano. 2016.
Training the future workforce through task curation in an OSS ecosystem. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (Seattle, WA, USA) (FSE’16). ACM, New York, NY,
USA, 932-935. https://doi.org/10.1145/2950290.2983984

Therese Mary Smith, Robert McCartney, Swapna S Gokhale, and Lisa C Kacz-
marczyk. 2014. Selecting open source software projects to teach software engi-
neering. In Proceedings of the 45th ACM technical symposium on Computer science
education (Atlanta, Georgia) (SIGCSE '14). ACM, New York, NY, USA, 397-402.
https://doi.org/10.1145/2538862.2538932

Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio
Gerosa. 2016. Overcoming open source project entry barriers with a portal
for newcomers. In Proceedings of the 38th International Conference on Software
Engineering (Austin, Texas) (ICSE '16). ACM, New York, NY, USA, 273-284. https:
//doi.org/10.1145/2884781.2884806

Igor Steinmacher, Marco Gerosa, Tayana U Conte, and David F Redmiles. 2019.
Overcoming social barriers when contributing to open source software projects.
Computer Supported Cooperative Work (CSCW) 28, 1 (June 2019), 247-290. https:
//doi.org/10.1007/s10606-018-9335-z

Igor Steinmacher, Christoph Treude, and Marco Aurelio Gerosa. 2018. Let me in:
Guidelines for the successful onboarding of newcomers to open source projects.
IEEE Software 36, 4 (January 2018), 41-49. https://doi.org/10.1109/MS.2018.
110162131

https://doi.org/10.1007/s10606-018-9310-8
https://doi.org/10.1521/jscp.1986.4.3.359
https://doi.org/10.1037/13620-004
https://doi.org/10.1109/ICSM.2006.66
https://doi.org/10.1109/ICSM.2006.66
https://doi.org/10.1145/1047124.1047400
https://doi.org/10.1145/3183377.3183380
https://doi.org/10.1145/2591062.2591160
https://doi.org/10.1007/978-3-642-55128-4_18
https://doi.org/10.1109/ICSE-SEET.2019.00024
https://doi.org/10.1109/ICSE-SEET.2019.00024
https://doi.org/10.1145/2950290.2983984
https://doi.org/10.1145/2538862.2538932
https://doi.org/10.1145/2884781.2884806
https://doi.org/10.1145/2884781.2884806
https://doi.org/10.1007/s10606-018-9335-z
https://doi.org/10.1007/s10606-018-9335-z
https://doi.org/10.1109/MS.2018.110162131
https://doi.org/10.1109/MS.2018.110162131

	Abstract
	1 Introduction and Motivation
	2 Related Work
	3 Course Design
	4 Research Methods
	4.1 Data Collection
	4.2 Quantitative Data Analysis
	4.3 Qualitative Data Analysis

	5 Impact on self-efficacy
	6 Before-After Comparison
	6.1 Newcomers' Orientation
	6.2 Newcomers' Characteristics
	6.3 Communication
	6.4 Documentation Problems
	6.5 Technical Hurdles

	7 Discussion
	7.1 Implications
	7.2 Threats to Validity

	8 Conclusion
	References

