
Exploring Programming Task Creation of
Primary School Teachers in Training

Luisa Greifenstein
luisa.greifenstein@uni-passau.de

University of Passau
Passau, Germany

Ute Heuer
ute.heuer@uni-passau.de

University of Passau
Passau, Germany

Gordon Fraser
gordon.fraser@uni-passau.de

University of Passau
Passau, Germany

ABSTRACT

Introducing computational thinking in primary school curricula
implies that teachers have to prepare appropriate lesson material.
Typically this includes creating programming tasks, which may
overwhelm primary school teachers with lacking programming sub-
ject knowledge. Inadequate resulting example code may negatively
affect learning, and students might adopt bad programming habits
or misconceptions. To avoid this problem, automated program anal-
ysis tools have the potential to help scaffolding task creation pro-
cesses. For example, static program analysis tools can automatically
detect both good and bad code patterns, and provide hints on im-
proving the code. To explore how teachers generally proceed when
creating programming tasks, whether tool support can help, and
how it is perceived by teachers, we performed a pre-study with 26
and a main study with 59 teachers in training and the LitterBox
static analysis tool for Scratch. We find that teachers in training
(1) often start with brainstorming thematic ideas rather than setting
learning objectives, (2) write code before the task text, (3) give more
hints in their task texts and create fewer bugs when supported by
LitterBox, and (4) mention both positive aspects of the tool and
suggestions for improvement. These findings provide an improved
understanding of how to inform teacher training with respect to
support needed by teachers when creating programming tasks.

CCS CONCEPTS

• Social and professional topics→ Software engineering ed-

ucation; K-12 education; • Software and its engineering →
Visual languages.

KEYWORDS

assignments, automated feedback, block-based programming, ele-
mentary school, LitterBox, preservice teacher education, Scratch

ACM Reference Format:

Luisa Greifenstein, Ute Heuer, and Gordon Fraser. 2023. Exploring Program-
ming Task Creation of Primary School Teachers in Training . In Proceedings
of the 2023 Conference on Innovation and Technology in Computer Science
Education V. 1 (ITiCSE 2023), July 8–12, 2023, Turku, Finland. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3587102.3588809

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE 2023, July 8–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0138-2/23/07. . . $15.00
https://doi.org/10.1145/3587102.3588809

Figure 1: Hint on the the bug pattern Missing Loop of a

teacher’s Scratch program provided by LitterBox.

1 INTRODUCTION

Programming tasks can be used to foster computational think-
ing [25] and represent a crucial part of computer science lessons [37].
Such tasks usually show example code to young learners before
they create their own code, such as in the Use-Modify-Create frame-
work [23], the PRIMM approach [41], or the TIPP&SEE strategy [39].
When this example code, however, is of poor quality, learners might
adopt bad programming habits and their learning might be im-
peded [18]. This problem is further exacerbated at primary school
level: Computer science related topics have often only recently
been introduced to the curricula [17, 32] and such changes often
go along with various issues [22, 38, 49]. Furthermore, particularly
primary school teachers consider their lacking subject knowledge a
challenge [13, 40]. As a consequence, primary school teachers may
struggle when creating example code for their programming tasks.

Professional programmers receive feedback on their code from
automated analysis tools. In principle, such tools may also provide
scaffolding for teachers, in particular since new tools have also
started to emerge for educational programming languages such as
Scratch [24]. For example, LitterBox provides hints on how to
improve code that contains smells or bugs [6, 15]. Figure 1 shows
a bug in a teacher’s example code which would certainly lead to
confusion with learners, and the feedback LitterBox provides.

In this paper, we aim to investigate whether and how the use of
a tool such as LitterBox also affects the creation of programming
tasks. We therefore conducted an A/B study with 85 teachers in
training. All participants were instructed to create a programming
task for primary school children and completed a survey afterwards,
and half the participants used the LitterBox tool during the cre-
ation. By comparing the resulting tasks and survey responses we
aim to empirically answer the following research questions:
RQ 1: How do teachers in training create programming tasks?
RQ 2: How does tool support affect the task text and the code?
RQ 3: How do teachers in training perceive the tool support?

We find that (1) teachers tend to start with programming be-
fore writing a task text; (2) tool support has positive effects on
code as well as task texts; and (3) teacher feedback helps us pro-
vide criteria for effective (tool) support. Consequently, we derive
recommendations to inform teacher training on task creation.

ar
X

iv
:2

30
6.

13
88

6v
1

 [
cs

.C
Y

]
 2

4
Ju

n
20

23

https://orcid.org/0000-0002-9707-7762
https://orcid.org/0009-0005-1400-4509
https://orcid.org/0000-0002-4364-6595
https://doi.org/10.1145/3587102.3588809
https://doi.org/10.1145/3587102.3588809

ITiCSE 2023, July 8–12, 2023, Turku, Finland Luisa Greifenstein, Ute Heuer, & Gordon Fraser

2 BACKGROUND

2.1 Pedagogical Programming Tasks

Exploration of how teachers create tasks should consider criteria for
pedagogical tasks. Generally, pedagogical tasks are characterised
by the school setting in contrast to real-world or target tasks [33].
However, students should be able to transfer their gained competen-
cies which is why pedagogical tasks should also relate to real-world
activities. Moreover, pedagogical tasks should involve the learner
and have clear task specifications [11, 33]. Creating such pedagog-
ical tasks can be seen as one essential part of designing lessons
besides organising social structures and designing supportive en-
vironments [11]. Tasks also have a crucial role in the computer
science classroom, e.g., in the form of exercises or examples [37]
which is also reflected in courses for primary school teachers [9].
However, to our knowledge, there has not yet been a systematic
evaluation of the creation of pedagogical programming tasks.

As computational thinking can be fostered by programming
activities [25], programming tasks are commonly created by com-
puter science teachers [37]. Independently of their classification
(e.g., their inherent activities [5], or the representation of the prob-
lem and the solution [37]), code is often included to be debugged,
completed or tested [5, 37]. This goes along with several teaching
approaches that start with or even focus on tasks with given code
such as the Use-Modify-Create framework: In the first two of the
three phases learners are tasked to deal with given code [23]. The
use phase is further structured within the PRIMM approach, where
young learners work intensively with the given code as they pre-
dict, run and investigate it [41]. The learning strategy TIPP&SEE
provides meta-cognitive scaffolding between the use and modify
step and has been designed in particular to support diverse learn-
ers at primary school level [39]. Other approaches for primary
school computer science education such as the Universal Design
for Learning also consider splitting tasks into minor parts [20].

2.2 Good Example Code

The existence of tasks including example code as part of the learn-
ing process [23, 39, 41] makes it crucial to consider criteria for
good code, such as being dedicated to only one (new) element [21],
being kept simple [16], and adhering to criteria related to names,
expressions, or decomposition [43]. When learners are exposed to
example code, they might adopt good programming habits from
code examples if these are well written [36]. However, when the
code quality is low, learners might not only imitate this coding style:
Hermans and Aivaloglou found that code comprehension decreases
when learners aged 12 to 14 years are given programs that contain
code smells [18]. This is problematic since understanding code is a
prerequisite to, e.g., deliberate on a bug and fix it during debugging
activities [36]. Such effects might even increase for primary school
children [8]. There exist many suggestions on how to achieve high
code quality. Therefore, Stegeman et al. analysed handbooks and
interviewed instructors to develop an assessment model [43]: They
derived nine main criteria, such as names, expressions or decompo-
sition. Consequently, educators should consider code quality when
designing example code, but this might be particularly challeng-
ing for primary school teachers who often consider their lacking
subject knowledge a problem [13, 40].

2.3 Tool Support for Scratch Programs

Code quality can be analysed automatically by tools [4, 6, 30, 35, 44],
which differ regarding the given feedback [31]: Dr. Scratch [30]
and LitterBox [6], which are both accessible via a convenient
web frontend, both give positive feedback (in terms of scores by
Dr. Scratch and code perfumes [34] by LitterBox) and feedback
on concepts. While Dr. Scratch returns general information on
the detected computational thinking concepts, LitterBox returns
specific hints on how to proceed regarding detected smells and
bug patterns. Therefore, Dr. Scratch might be particularly effec-
tive for extending programs according to computational thinking
concepts [46] and LitterBox for repairing and improving pro-
grams [15]. LitterBox thus might support creating good example
code, which is why in this paper we focus on this tool.

LitterBox [6] detects bad (bugs and smells) and good code
patterns (perfumes [34]). When checking programs on the web
interface, hints on the detected patterns are given. As shown in
Fig. 1, a typical hint consists of an explanation of the underlying
concept and (for bad code patterns) a suggested improvement [6].
While the automated hints have been demonstrated to be helpful
for debugging foreign code [15], it has not been investigated yet
whether they support teachers in creating programming tasks.

3 METHOD

3.1 Pre-Study

We performed a preliminary study to optimise the setting of our
main study and retrieve additional feedback on the tool. The pre-
study was performed as part of an earlier implementation of the
seminar “Computational Thinking in Primary School” at the Uni-
versity of Passau in Germany with 12 teachers in training and
additionally in a standalone workshop with 14 teachers in train-
ing. All participants were instructed to use LitterBox for creating
a task and therefore received a short instruction on the usage of
LitterBox (but none regarding code quality). In contrast to the
main study, participants were completely free in how often to use
the tool, they had less time (about 40 instead of 60-70 minutes) and
were allowed to work in groups.

The pre-study informed the design of the main study (e.g., re-
garding time and tool usage) and some updates of the LitterBox
tool. The updates enable us to compare the evaluations of earlier
versions of the tool in the pre-study with more current versions in
the main study in RQ 3 (Table 1).

3.2 Participants

In the main study, 59 teachers in training (46 females and 13 males)
participated. All of them are teachers in training at the University
of Passau in Germany: 86.4 % are pursuing a degree in primary
school education, 6.8 % in secondary school education and 8.5 %
additionally or exclusively in (media) pedagogy. Within their stud-
ies, they chose the seminar “Computational Thinking in Primary
School”. The teachers in training were divided into two groups
(Ctrl, Trmt) by their last names. This method was chosen due to the
learning platform used. We ensured that the groups are balanced
which resulted in 29 participants in group Ctrl and 30 participants
in group Trmt and similar programming experience (Table 2). While

Exploring Programming Task Creation ITiCSE 2023, July 8–12, 2023, Turku, Finland

Table 1: Data used to answer the RQs.

RQ Study Group Qualitative Data Quantitative Data

1 main study Trmt, Ctrl • textual answers on the procedure (“How did you pro-
ceed?”) and specific issues (“Where did you have difficul-
ties and what worked well?”)

• numerical answers on time (“How much
time did you invest in your own task?”)

2 main study Trmt, Ctrl • task text (task title, sub-tasks, task type [37]) • code metrics and code patterns
3 main study,

pre-study
Trmt • textual answers on positive tool evaluation (“Note posi-

tive aspects, purposes, advantages, especially helpful hints
etc.”) and negative (“Note negative aspects, limitations,
suggestions for improvement, less helpful hints etc.”)

• evaluation of the tool’s usefulness on a 5-
point Likert scale from “completely true” to
“not at all true” (“LitterBox can help teachers
to create good example programs.”)

Table 2: Participants’ prior experience with programming.

Group School University Seminar Units 1–4

Ctrl 62.1 % 79.3 % 100 %
Trmt 53.3 % 80.0 % 100 %

group Ctrl did not receive any additional support, group Trmt were
instructed to use the LitterBox tool at least two times. As the
teachers in training had not used the tool previously, group Trmt
also received a short video about its usage and how it works, as
we knew from our pre-study and a related study with high school
students [27] that explaining these aspects would avoid confusion.

3.3 Data Collection

Table 1 gives an overview of the collected data regarding each
research question. All data were collected in the fifth unit of the
seminar, in which the theory of scaffolding, the Use-Modify-Create
framework [23] and different task types [10, 37] were also intro-
duced. The teachers in training were then tasked to create their
own Scratch programming task (consisting of a task text, a starter
program, and where applicable a sample solution) for the target
group of primary school children. While there were no specifica-
tions regarding, e.g., program size or task type, they were instructed
to spend at least 60 to 70 minutes to create their task. The teachers
in training were also advised to use a template for their task text
and to design an appealing task. They were not instructed to use
specific programming concepts, but were reminded to bear their
self-selected learning objectives such as a specific pattern or control
structure in mind. After completing their task, they submitted the
task text and a starter Scratch program.When the chosen task type
required changing or extending the code, a solution Scratch pro-
gramwas also submitted. Finally, they answered a survey consisting
of four open and two closed questions for group Trmt respectively
two open and one closed question for group Ctrl (Table 1). The
anonymised usage of the collected data has been granted by all
teachers in training.

3.4 Data Analysis

3.4.1 Qualitative analysis. We applied thematic analysis [3] on the
answers to the open questions of the survey (Table 1). One author
and one assistant read all statements and agreed on a coding scheme.
Then one author rated all data and the assistant rated 20 % of all
data independently to guarantee inter-rater reliability (𝐾 = 0.76).

To recognise more generalisable tendencies for our target group of
primary school teachers (in training), we counted occurrences for
each (sub-)category, which provides further quantitative data.

3.4.2 Quantitative analysis. We used a Wilcoxon rank sum test to
measure statistical differences between groups Ctrl and Trmt with
𝛼 = 0.05, and the Vargha-Delaney 𝐴12 effect size, which ranges
from 0 to 1. If 𝐴12 = .50, there are no effects in favour of any group,
if 𝐴12 > .50 the values of the dependent variable are higher for
group Ctrl than group Trmt and vice versa if 𝐴12 < .50.

3.4.3 RQ 1. We analysed the answers on the open questions for
RQ 1 (Table 1) qualitatively and then quantitatively to discover
differences between group Ctrl and group Trmt.

3.4.4 RQ 2. We analysed the data for RQ 2 (Table 1) quantitatively
to discover differences between group Ctrl and group Trmt. The
created tasks provided us with metrics on the code (calculated with
the LitterBox version from 5 January 2023) and the number of
types of programming tasks (deduced from [37]). As the teachers
in training were free to choose their task type, we analysed either
the solution Scratch program or the starter Scratch program de-
pending on the chosen task type: For USE tasks, there is no solution
program and for MODIFY tasks, the starter programs might con-
tain intended bugs or incomplete code patterns on purpose which
would distort the analysis. This resulted in 56 analysed programs
(53 solution programs and 3 starter programs).

3.4.5 RQ 3. We analysed the answers on the open questions for
RQ 3 (Table 1) qualitatively and then quantitatively to discover
differences between the pre- and the main study.

3.5 Threats to Validity

3.5.1 External validity. The teachers in training chose the seminar
voluntarily for their studies. This implies that the cohort (1) is self-
selected and (2) results might be different for less interested teachers
in training on the one hand and more experienced teachers or also
larger programs on the other. While participants were instructed
to create their own Scratch programs, they were told to use a
template for their task text that also contained an example task. The
example task was an extend task type with two subtasks and one
hint for each subtask and was aimed at collision detection. While
the example was perceived as helpful, it probably led to teachers
in training creating similar tasks, which is why the resulting task
texts may not be generalisable to other contexts.

ITiCSE 2023, July 8–12, 2023, Turku, Finland Luisa Greifenstein, Ute Heuer, & Gordon Fraser

Table 3: Procedure of teachers in training to create a task.

(Sub-)Category % teachers in training

Starting point 57.7 %
brainstorming or idea search 50.0 %
setting of learning objectives 9.6 %

Inspiration 30.8 %
example task 13.5 %
seminar material 13.5 %
Scratch environment 11.5 %

Sprite selection 17.3 %
Order 71.2 %
start with program, then task text 40.4 %
iterative approach or trial and error 25.0 %
start with task text, then program 15.4 %

Insecurity or difficulties 7.7 %

3.5.2 Internal validity. The study started with a short explanation
that students can learn from the example code in the tasks which is
why the code should be correct, readable and not promote miscon-
ceptions. However, this probably increased the attention to code
quality thus subsuming some of the impact of the tool support.
While group Trmt were instructed to use the LitterBox tool at
least twice, we did not check their behaviour. Moreover, they were
not obliged to implement the suggestions of LitterBox. A more
formal setting or including howmuch they actually used the output
of a tool could mitigate this threat.

4 RESULTS

To answer the research questions posed in Section 1, we consider
the task texts, Scratch programs and survey results as described
in Section 3.

4.1 RQ 1: Procedure

On average, the teachers in training spent 82.52 minutes to cre-
ate their task. Table 3 shows the (sub-)categories identified in the
responses about how they proceeded when creating their tasks.

4.1.1 Starting point. Before starting the actual task creation, teach-
ers in training tend to brainstorm ideas (Table 3). The importance of
setting learning objectives, however, seems to be underestimated by
teachers in training (Table 3). Maybe it is (1) considered an obvious
part of creating a task that it does not have to bementioned; (2) done
very quickly and considered a minor and thus not noteworthy part
of creating a task; or (3) forgotten about and thus not considered in
the answer. The latter two explanations would be problematic as
setting goals and related criteria is a crucial aspect when carefully
designing tasks [7], for example for assessing learning outcomes.

4.1.2 Inspiration. The teachers in training often required some
kind of inspiration when brainstorming ideas (Table 3): “I looked at
all examples again that we have encountered so far. It was not easy for

me to come up with my own idea.” (Trmt, P66) Besides the example task or
other seminar material, some teachers in training took inspiration
from Scratch sprites, backgrounds, and tutorials.

4.1.3 Sprite selection. Sprites are not only a source of inspiration,
but their selection can be seen as an explicit step of task creation (Ta-
ble 3), which shows the non-negligible role of figures in Scratch.

4.1.4 Order. There are two alternatives of where to start creating
the task content: with programming, or with writing the task text.
Most teachers in training start—and partially also end—with the
code, for example one participant “created the initial scenario in

Scratch; wrote the task description; created the solution” (Ctrl, P46).
Additionally, trial and error, iterative, and even parallel approaches
are partially used (Table 3) like “at the same time, I thought about

possible task texts and noted hints for the solution” (Trmt, P16).

4.1.5 Insecurity. Some teachers in training perceived the creation
of tasks as difficult (Table 3), in particular because it was their
first attempt to design a complete task on their own. This matches
the finding that especially primary school teachers consider their
lacking knowledge a challenge [40].

4.1.6 Specific issues. While we found no significant differences
in the previous categories, when asked if they had specific issues,
group Trmt reported significantly fewer programming difficulties
(𝑝 = 0.038, 𝐴12 = 0.66) and group Ctrl stated that “creating compact

code” (Ctrl, P32) and “programming efficiently” (Ctrl, P33) was difficult.

RQ 1 Summary. Before creating their own tasks, the teachers in
training often search for ideas and take inspiration from other
examples. Generally, teachers in training tend to start with pro-
gramming and write the task text afterwards.

4.2 RQ 2: Effects of Tool Support on the Tasks

All tasks (both task texts and Scratch programs) of both groups
are available at https://doi.org/10.6084/m9.figshare.22657402.

4.2.1 Task text. The example task consisted of two subtasks (both
were ‘extend’ task types) and two hints. This should be kept in mind
when interpreting the following results. The tasks of the teachers
in training had 2.28 subtasks on average with a median of 2. Of the
teachers in training, 70 % created only ‘extend’ tasks in all of their
subtasks. Other task types [37] that were implemented in subtasks
could be classified as ‘create with given code’, ‘debug’ and ‘test’ task
types. ‘Optimising’ or ‘explaining’, e.g., were never realised even
though these task types were presented in the seminar. Regarding
the task titles, the topics seem to focus on animals (34.5 %), ball
games (20.7 %), every day life such as food (17.2 %) and fantasy
worlds (13.8 %). However, other school subjects than sports were
only addressed in 3.4 % of task titles. Group Trmt gave significantly
more hints in their task text than group Ctrl (𝑝 = 0.01, 𝐴12 = 0.33).
Group Ctrl inserted 1.28 (𝑥 = 2) and group Trmt 1.9 (𝑥 = 2) hints
on average. This might relate to group Trmt experiencing the tool’s
hints as helpful and discovering strategies for elaborated feedback
on concepts and on how to proceed. They might therefore also
want to scaffold their own tasks more.

4.2.2 Code metrics and code patterns. The created Scratch pro-
grams contain 3.44 sprites (𝑥 = 3), 7.53 scripts (𝑥 = 5) and 58.42
blocks (𝑥 = 40) on average. Considering the patterns found in the
code, the programs contain on average 0.98 different bug patterns
(𝑥 = 1), 2.71 smells (𝑥 = 2) and 5.91 perfumes (𝑥 = 6). However, the

https://doi.org/10.6084/m9.figshare.22657402

Exploring Programming Task Creation ITiCSE 2023, July 8–12, 2023, Turku, Finland

Table 4: Evaluation of positive aspects of the LitterBox tool

for creating tasks.

(Sub-)Category % teachers in training

Functionality 94.1 %
detection of patterns 70.6 %
suggestions for improvement 54.9 %
other 17.6 %

Advantages for teachers 29.4 %
time 9.8 %
additional help 9.8 %
affective help 5.9 %
other 5.9 %

Representation 27.5 %
Usefulness for students 19.6 %

Table 5: Evaluation of negative aspects of the LitterBox tool

for creating tasks.

(Sub-)Category % teachers in training

Functionality 33.3 %
no solving of all problems 11.8 %
no analysis of semantics 9.8 %
incorrect analysis 7.8 %
no automatic refactoring 5.9 %

Representation 33.3 %
comprehension problems 25.5 %
usability 9.8 %

None 27.5 %
No usefulness for students 7.8 %

number of smells and bug patterns differs significantly between
group Ctrl and group Trmt: When supported by LitterBox, teach-
ers in training inserted significantly fewer bug patterns (𝑝 = 0.034,
𝐴12 = 0.66) and smells (𝑝 = 0.022, 𝐴12 = 0.68). Group Ctrl inserted
1.26 (𝑥 = 1) bug patterns while Group Trmt inserted 0.72 (𝑥 = 0)
bug patterns. Group Ctrl inserted 3.19 (𝑥 = 3) smells while group
Trmt inserted 2.28 (𝑥 = 2) smells. This suggests that the LitterBox
tool is helpful for debugging programs and for improving the code
quality. To avoid that this finding is only an artefact of smaller pro-
grams, we also calculated the bug density and smell density with
#bugs/#blocks and #smells/#blocks which is still significantly lower
for group Trmt than group Ctrl (bugs: 𝑝 = 0.034,𝐴12 = 0.66; smells:
𝑝 = 0.022, 𝐴12 = 0.68). We also looked at the individual patterns
and (despite the small sample size) found that the Missing Loop bug
pattern occurs significantly more often in the programs of group
Ctrl (𝑝 = 0.035, 𝐴12 = 0.57). This could be because the bug pattern
is generally very common and the corresponding LitterBox hint
(Fig. 1) is easy to implement.

RQ 2 Summary. LitterBox supports teachers in training with
creating more scaffolded task texts and less faulty programs while
there were no effects on, e.g., program size or the task type.

82% 0%18%Usefulness

100 50 0 50 100

completely true fairly true partly true somewhat untrue not at all true

Figure 2: Rated usefulness of the tool for creating tasks.

4.3 RQ 3: Tool Evaluation

The categories of the textual answers provide information about
positive (Table 4) and negative aspects (Table 5) of the tool support.

4.3.1 General evaluation. Overall, the teachers in training were in
favour of the tool support and no teacher in training disagreed with
its usefulness (Fig. 2). This aligns with primary school teachers
considering tools useful for giving feedback (even though they
often were not aware of tools) [13]. When directly asked about
negative aspects of and suggested improvements for the tool, 27.5 %
of teachers in training stated that they cannot think of any (Table 5).

4.3.2 Functionality. Teachers in training like that the LitterBox
tool detects different types of patterns and gives suggestions for im-
provement (Table 4). Indeed, most LitterBox hints are composed
of feedback on concepts and feedback on how to proceed [6, 31],
“that makes it easier for inexperienced teachers to recognise and fix

bugs” (Trmt, P82). Teachers in training perceived some missing func-
tionality as negative (Table 5). While incorrect analyses such as
false positives are a common problem of automated feedback tools
and should therefore be explained beforehand to enable users to
interpret automated hints [27], other criticised aspects are out of
the scope of the LitterBox tool such as the analysis of semantics
(Table 5): “Litterbox cannot judge, if my code makes sense semanti-

cally” (Trmt, P35). This is true as LitterBox is a static analysis tool that
analyses the code patterns but not the output [6]. Semantics could
be analysed with dynamic analysis tools such as the Whisker test
framework for Scratch [42]. Another interesting suggestion of the
teachers in training was to perform automatic refactoring (as for ex-
ample already explored for Scratch programs [1, 45]) as “you still

have to repair the bug yourself and find a new solution” (Trmt, P61). Auto-
matic refactoring might save time for teachers, although one needs
to be careful regarding learning processes: Elaborated feedback
involves and motivates the learner (both at teacher or student level)
more than a provided or automatically generated solution [14, 31].

4.3.3 Advantages for teachers. Teachers in training perceive sev-
eral advantages especially for teachers such as the additional help
they receive, or help in terms of affective factors (Table 4). Litter-
Box might moreover save time as “bugs can be detected without

having to search and try for a long time” (Trmt, P69) and you “get feedback
in the process and are able to react to it immediately” (Trmt, P42). This
refers to some keys of effective feedback such as being timely, ac-
tionable and ongoing or formative [48]. This could support teachers
regarding the frequently identified lack of time for planning and
during computer science lessons [40, 50], as for example reported
in a recent study on the efficiency of automated hints for debug-
ging Scratch programs [15]. Apart from timing issues, automated
tools might also provide some support regarding the reported rel-
atively low computer science self-esteem [47] and programming

ITiCSE 2023, July 8–12, 2023, Turku, Finland Luisa Greifenstein, Ute Heuer, & Gordon Fraser

self-concept [13] of primary school teachers as “it is not only shown
what is wrong or messy, but also what you have done well. That is

motivating” (Trmt, P64) (i.e., it reports code perfumes [34]).

4.3.4 Representation. The way LitterBox represents its findings
was mentioned both positively and negatively (Tables 4 and 5). The
teachers in training are in favour of the tool’s illustration such as
“the visual representation is always great” (Trmt, P5). However, teachers in
training often had comprehension problems. These are significantly
lower in the main compared to the pre-study (𝑝 = 0.048,𝐴12 = 0.62).
Further investigation is needed on whether this results from the
revised study design or improvements of the tool.

4.3.5 (Not) for students. While the teachers in training were asked
about positive and negative aspects of the LitterBox tool for cre-
ating tasks, some teachers in training also noted their opinion on
the usefulness of LitterBox for students. While some teachers in
training consider the tool “functional for primary school students to

check themselves” (Trmt, P1) and to get a “sense of achievement without

the teacher’s help” (Trmt, P6), others state that “for a primary school

child, Litterbox would probably seem overwhelming, so it is only use-

ful for the teacher” (Trmt, P67). Therefore, more research is needed on
whether LitterBox is usable by young learners, how they can be
activated, for example using self-explanation prompts [26], and if
more straightforward hints are needed.

RQ 3 Summary. The teachers in training consider it helpful to
get feedback on code patterns during the creation of a task but
suggest some extensions such as automatic refactoring.

5 DISCUSSION

5.1 Teacher Training in General

One way for research to actually propagate to the classroom is to
inform teacher training, which is a main strategy to counteract
challenges such as lacking knowledge or confidence [13]. Mason
and Rich [28] performed a systematic literature review of 21 studies
on computing education training for primary school teachers and
found that teacher training can be effective both for increasing
knowledge and for improving attitudes. The knowledge teachers
gain during training can be categorised into technological knowl-
edge (TK), pedagogical knowledge (PK) and content knowledge
(CK) according to the TPACK framework [19]. We consider these
three categories regarding our results and related work on the
support needed by teachers when creating programming tasks.

5.2 Pedagogical Knowledge of Tasks

We found that teachers in training need ideas for their tasks (RQ 1).
Experienced teachers draw inspiration from existing material [13]
from, e.g., Code.org (https://code.org/), Teach Computing (https:
//teachcomputing.org/primary-teachers), the Raspberry Pi Founda-
tion (https://raspberrypi.org/), or publicly shared Scratch projects.
When selecting existing or creating new programs, gender differ-
ences should also be considered, i.e., “I thought of a topic that is

appealing for both boys and girls” (Trmt, P42), which is in-line with prior
research: While both girls and boys like programs with animals,
girls’ programs rather involve, e.g., music and dancing and boys’
programs, e.g., soccer [12]. In our study, shared preferences and

those of boys were applied, but girls’ preferences are rather under-
represented. These preferences show a need for differentiation, but
also allow for cross-curricular teaching with, e.g., artistic subjects,
which again opens up a wide range of ideas for tasks.

5.3 Content Knowledge of Programming

We found that teachers in training often have difficulties when pro-
gramming (RQs 1 and 2). Teacher training is known to be effective
for promoting subject knowledge [28], for example by letting pri-
mary school teachers try out a variety of task types [9]. This might
not only help with pedagogical knowledge but also with content
knowledge, as the teachers are exposed to (appropriate) example
code. This could also reduce affective issues, as low confidence is
related to lacking subject knowledge [13].

5.4 Technological Knowledge of Tools

We found that even when primary school teachers in training strug-
gle with programming they can be supported with tools such as
LitterBox (RQs 1 to 3). Teachers also have difficulties supporting
students during programming [29, 50], which again could be sup-
ported with automated analysis tools. However, even in-service
teachers are often unaware of available tools, although they con-
sider them useful once they are presented to them [13].We therefore
suggest that teacher training should introduce automated analysis
tools. Since programming is the most common approach to foster
computational thinking [2], and Scratch is a very popular program-
ming environment, tools for Scratch could often be meaningfully
integrated into teacher training.

6 CONCLUSIONS

Example code is an essential component of educational program-
ming tasks, but inadequate example code may negatively affect
learning. Unfortunately, primary school teachers often have insuf-
ficient programming knowledge to produce good example code
when preparing tasks. In this paper we studied whether and how
the support of a static code analysis tool, LitterBox, influences
teachers in training when creating tasks. While the study led to
important suggestions on how to improve LitterBox further, we
also found positive effects on code as well as the task text.

While a primary aim of our study is to inform teacher training,
it also has implications on future research in code analysis tools.
For example, analysis tools are built to simply report all code issues
they encounter. However, depending on the task type there can
be different types of code examples, such as starter code, inten-
tionally buggy code, or solution code, and each type of program
may merit different types of analyses. Future research could also
consider further tools and types of analysis, as well as the use of
deep learning techniques to analyse not only the code in isolation,
but in conjunction with the corresponding task text.

ACKNOWLEDGMENTS

This work is supported by the Federal Ministry of Education and Re-
search through project “primary::programming” (01JA2021) as part
of the “Qualitätsoffensive Lehrerbildung”, a joint initiative of the
Federal Government and the Länder. The authors are responsible
for the content of this publication.

https://code.org/
https://teachcomputing.org/primary-teachers
https://teachcomputing.org/primary-teachers
https://raspberrypi.org/

Exploring Programming Task Creation ITiCSE 2023, July 8–12, 2023, Turku, Finland

REFERENCES

[1] Felix Adler, Gordon Fraser, Eva Gründinger, Nina Körber, Simon Labrenz, Jonas
Lerchenberger, Stephan Lukasczyk, and Sebastian Schweikl. 2021. Improving
Readability of Scratch Programs with Search-based Refactoring. In 2021 IEEE
21st International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 120–130.

[2] Maria Ausiku and Machdel Matthee. 2021. Preparing Primary School Teachers
for Teaching Computational Thinking: A Systematic Review. In International
Symposium on Emerging Technologies for Education, International Conference on
Web-Based Learning. Springer, 202–213.

[3] Manfred Max Bergman. 2010. Hermeneutic content analysis: Textual and audio-
visual analyses within a mixed methods framework. SAGE Handbook of Mixed
Methods in Social and Behavioral Research. Thousand Oaks, SAGE (2010), 379–396.

[4] Bryce Boe, Charlotte Hill, Michelle Len, Greg Dreschler, Phillip Conrad, and
Diana Franklin. 2013. Hairball: Lint-inspired static analysis of scratch projects.
Proc. ACM Technical Symposium on Computer Science Education, 215–220.

[5] Matt Bower. 2008. A taxonomy of task types in computing. In Proceedings of the
Conference on Innovation and Technology in Computer Science Education. 281–285.

[6] Gordon Fraser, Ute Heuer, Nina Körber, Florian Obermüller, and Ewald Wasmeier.
2021. Litterbox: A linter for scratch programs. In Proc. Int. Conference on Software
Engineering: Software Engineering Education and Training. IEEE, 183–188.

[7] Ursula Fuller, Colin G Johnson, Tuukka Ahoniemi, Diana Cukierman, Isidoro
Hernán-Losada, Jana Jackova, Essi Lahtinen, Tracy L Lewis, Donna McGee
Thompson, Charles Riedesel, et al. 2007. Developing a computer science-specific
learning taxonomy. ACM SIGCSE Bulletin 39, 4 (2007), 152–170.

[8] Alexandra Funke, Katharina Geldreich, and Peter Hubwieser. 2016. Primary
school teachers’ opinions about early computer science education. In Proceedings
of the Koli Calling Int. Conference on Computing Education Research. 135–139.

[9] Katharina Geldreich, Mike Talbot, and Peter Hubwieser. 2018. Off to new shores:
preparing primary school teachers for teaching algorithmics and programming.
In Proc. Workshop in Primary and Ssecondary Computing Education. 1–6.

[10] Katharina Geldreich, Mike Talbot, and Peter Hubwieser. 2019. Aufgabe ist nicht
gleich Aufgabe–Vielfältige Aufgabentypen bewusst in Scratch einsetzen. Infor-
matik für alle (2019).

[11] Peter Goodyear. 2015. Teaching as design. Herdsa review of higher education 2, 2
(2015), 27–50.

[12] Isabella Graßl, Katharina Geldreich, and Gordon Fraser. 2021. Data-driven Anal-
ysis of Gender Differences and Similarities in Scratch Programs. In The 16th
Workshop in Primary and Secondary Computing Education. 1–10.

[13] Luisa Greifenstein, Isabella Graßl, and Gordon Fraser. 2021. Challenging but Full
of Opportunities: Teachers’ Perspectives on Programming in Primary Schools. In
Koli Calling International Conference on Computing Education Research. 1–10.

[14] Luisa Greifenstein, Isabella Graßl, Ute Heuer, and Gordon Fraser. 2022. Common
Problems and Effects of Feedback on FunWhen Programming Ozobots in Primary
School. In Proc. Workshop in Primary and Secondary Computing Education. 1–10.

[15] Luisa Greifenstein, Florian Obermüller, Ewald Wasmeier, Ute Heuer, and Gordon
Fraser. 2021. Effects of Hints on Debugging Scratch Programs: An Empirical
Study with Primary School Teachers in Training. In The 16thWorkshop in Primary
and Secondary Computing Education. 1–10.

[16] Jean Griffin, Eliot Kaplan, and Quinn Burke. 2012. Debug’ems and other de-
construction kits for STEM learning. In IEEE 2nd integrated STEM education
conference. IEEE, 1–4.

[17] Fredrik Heintz, Linda Mannila, and Tommy Färnqvist. 2016. A review of models
for introducing computational thinking, computer science and computing in
K-12 education. In FIE ’16. 1–9.

[18] Felienne Hermans and Efthimia Aivaloglou. 2016. Do code smells hamper novice
programming? A controlled experiment on Scratch programs. In 2016 IEEE 24th
International Conference on Program Comprehension (ICPC). IEEE, 1–10.

[19] Mary C Herring, Matthew J Koehler, Punya Mishra, et al. 2016. Handbook
of technological pedagogical content knowledge (TPACK) for educators. Vol. 3.
Routledge New York.

[20] Maya Israel, Gakyung Jeong, Meg Ray, and Todd Lash. 2020. Teaching elementary
computer science through universal design for learning. In Proceedings of the
51st ACM Technical Symposium on Computer Science Education. 1220–1226.

[21] Takayuki Kimura. 1979. Reading before composition. ACM SIGCSE Bulletin 11, 1
(1979), 162–166.

[22] Laura R Larke. 2019. Agentic neglect: Teachers as gatekeepers of England’s
national computing curriculum. BJET 50, 3 (2019), 1137–1150.

[23] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in
practice. Acm Inroads 2, 1 (2011), 32–37.

[24] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 1–15.

[25] Linda Mannila, Valentina Dagiene, Barbara Demo, Natasa Grgurina, Claudio
Mirolo, Lennart Rolandsson, and Amber Settle. 2014. Computational thinking in
K-9 education. In ITICSE ’14. 1–29.

[26] Samiha Marwan, Joseph Jay Williams, and Thomas Price. 2019. An evaluation of
the impact of automated programming hints on performance and learning. In
Proc. ACM Conference on Int. Computing Education Research. 61–70.

[27] Samiha Marwan, Preya Shabrina, Alex Milliken, Ian Menezes, Veronica Catete,
Thomas W Price, and Tiffany Barnes. 2021. Promoting Students’ Progress-
Monitoring Behavior during Block-Based Programming. In Koli Calling Interna-
tional Conference on Computing Education Research. 1–10.

[28] Stacie L Mason and Peter J Rich. 2019. Preparing elementary school teachers to
teach computing, coding, and computational thinking. Contemporary Issues in
Technology and Teacher Education 19, 4 (2019), 790–824.

[29] Tilman Michaeli and Ralf Romeike. 2019. Improving debugging skills in the
classroom: The effects of teaching a systematic debugging process. In Proceedings
of the 14th workshop in primary and secondary computing education. 1–7.

[30] Jesús Moreno-León, Gregorio Robles, and Marcos Román-González. 2015. Dr.
Scratch: Automatic analysis of scratch projects to assess and foster computational
thinking. RED. Revista de Educación a Distancia 46 (2015), 1–23.

[31] Susanne Narciss. 2013. Designing and evaluating tutoring feedback strategies
for digital learning. Digital Education Review 23 (2013), 7–26.

[32] Christin Nenner and Nadine Bergner. 2022. Informatics Education in German
Primary School Curricula. In International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives. Springer, 3–14.

[33] David Nunan. 2004. Task-based language teaching. Cambridge university press.
[34] Florian Obermüller, Lena Bloch, Luisa Greifenstein, Ute Heuer, and Gordon Fraser.

2021. Code Perfumes: Reporting Good Code to Encourage Learners. In The 16th
Workshop in Primary and Secondary Computing Education. 1–10.

[35] Go Ota, Yosuke Morimoto, and Hiroshi Kato. 2016. Ninja code village for scratch:
Function samples/function analyser and automatic assessment of computational
thinking concepts. In 2016 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 238–239.

[36] Brad Richards. 2000. Bugs as features: Teaching network protocols through
debugging. In Proc. ACM Tech. Symp. on Computer Science Education. 256–259.

[37] Alexander Ruf, Marc Berges, and Peter Hubwieser. 2015. Classification of pro-
gramming tasks according to required skills and knowledge representation. In
International Conference on Informatics in Schools: Situation, Evolution, and Per-
spectives. Springer, 57–68.

[38] Jim Ryder. 2015. Being professional: accountability and authority in teachers’
responses to science curriculum reform. Stud Sci Educ 51, 1 (2015), 87–120.

[39] Jean Salac, Cathy Thomas, Chloe Butler, Ashley Sanchez, and Diana Franklin.
2020. TIPP&SEE: a learning strategy to guide students through use-modify
Scratch activities. In Proceedings of the 51st ACM Technical Symposium on Com-
puter Science Education. 79–85.

[40] Sue Sentance and Andrew Csizmadia. 2017. Computing in the curriculum: Chal-
lenges and strategies from a teacher’s perspective. Education and Information
Technologies 22, 2 (2017), 469–495.

[41] Sue Sentance, Jane Waite, and Maria Kallia. 2019. Teachers’ experiences of using
primm to teach programming in school. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education. 476–482.

[42] Andreas Stahlbauer, Marvin Kreis, and Gordon Fraser. 2019. Testing scratch pro-
grams automatically. In Proc. ACM Joint Meeting on European Software Engineering
Conf. and Symposium on the Foundations of Software Engineering. 165–175.

[43] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. 2014. Towards an empir-
ically validated model for assessment of code quality. In Proceedings of the 14th
Koli Calling international conference on computing education research. 99–108.

[44] Peeratham Techapalokul and Eli Tilevich. 2017. Quality Hound — An online
code smell analyzer for scratch programs. In 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). 337–338.

[45] Peeratham Techapalokul and Eli Tilevich. 2019. Code quality improvement for all:
Automated refactoring for Scratch. In 2019 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 117–125.

[46] Giovanni Maria Troiano, Sam Snodgrass, Erinç Argımak, Gregorio Robles,
Gillian Smith, Michael Cassidy, Eli Tucker-Raymond, Gillian Puttick, and Casper
Harteveld. 2019. Is my game OK Dr. Scratch? Exploring programming and com-
putational thinking development via metrics in student-designed serious games
for STEM. In Proceedings of the 18th ACM international conference on interaction
design and children. 208–219.

[47] Rebecca Vivian, Keith Quille, Monica M McGill, Katrina Falkner, Sue Sentance,
Sarah Barksdale, Leonard Busuttil, Elizabeth Cole, Christine Liebe, and Francesco
Maiorana. 2020. An international pilot study of k-12 teachers’ computer sci-
ence self-esteem. In Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education. 117–123.

[48] Grant Wiggins. 2012. Seven keys to effective feedback. Feedback 70, 1 (2012),
10–16.

[49] T Wolff, L Hellmig, and A Martens. 2020. STATE OF THE ART IN CURRICULUM
RESEARCH FROM THE PERSPECTIVE OF GERMAN COMPUTER SCIENCE
TEACHERS. ICERI2020 Proceedings (2020), 9177–9184.

[50] Aman Yadav, Sarah Gretter, Susanne Hambrusch, and Phil Sands. 2016. Expanding
computer science education in schools: understanding teacher experiences and
challenges. Computer Science Education 26, 4 (2016), 235–254.

	Abstract
	1 Introduction
	2 Background
	2.1 Pedagogical Programming Tasks
	2.2 Good Example Code
	2.3 Tool Support for Scratch Programs

	3 Method
	3.1 Pre-Study
	3.2 Participants
	3.3 Data Collection
	3.4 Data Analysis
	3.5 Threats to Validity

	4 Results
	4.1 RQ 1: Procedure
	4.2 RQ 2: Effects of Tool Support on the Tasks
	4.3 RQ 3: Tool Evaluation

	5 Discussion
	5.1 Teacher Training in General
	5.2 Pedagogical Knowledge of Tasks
	5.3 Content Knowledge of Programming
	5.4 Technological Knowledge of Tools

	6 Conclusions
	Acknowledgments
	References

