
Jinter: A Hint Generation System for Java Exercises
Jorge A. Gonçalves

jorgealexgoncalves@gmail.com
Instituto Universitário de Lisboa (ISCTE-IUL)

Lisboa, Portugal

André L. Santos
andre.santos@iscte-iul.pt

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL
Lisboa, Portugal

Figure 1: Jinter providing hints for progressing in programming exercises.

ABSTRACT
Programming novices often struggle when solving exercises, slow-
ing down progress and causing a dependency on external aid such
as a teacher, a more experienced person, or online resources. We
present Jinter1, a tool to generate hints to solve small exercises in-
volving Java methods. The hints are produced taking into account
the current state of an exercise and a backing model solution. The
aid may refer to spotting errors or missing parts to achieve the de-
sired outcome while taking into account behavioral equivalences of
programming constructs (e.g., loop structures, forms of assignment,
boolean expressions, etc). We evaluated the approach by survey-
ing 8 programming instructors, finding that about two-thirds of
the automated hints either match or are related to those given by
instructors.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Applied computing → Computer-assisted instruction.

KEYWORDS
introductory programming, scaffolding, hints, feedback
ACM Reference Format:
Jorge A. Gonçalves and André L. Santos. 2023. Jinter: A Hint Generation
System for Java Exercises. In Proceedings of the 2023 Conference on Innovation
and Technology in Computer Science Education V. 1 (ITiCSE 2023), July 8–12,
2023, Turku, Finland. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3587102.3588820
1Prototype available for experimentation at https://jinter.org

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE 2023, July 8–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0138-2/23/07. . . $15.00
https://doi.org/10.1145/3587102.3588820

1 INTRODUCTION
Programming is an essential skill that all computer science stu-
dents must master, as well as students from other fields, especially
those related to STEM. In introductory programming courses, stu-
dents exhibit various difficulties in syntactic knowledge, concep-
tual knowledge, and strategic knowledge [11]. Syntactic knowledge
refers to the syntax of the programming language under usage.
Conceptual knowledge relates to misconceptions of programming
constructs or machine operation. Strategic knowledge of program-
ming refers to expert-level knowledge about planning, writing, and
debugging programs for solving novel problems using syntactic
and conceptual knowledge.

Our work is focused on tool support for strategic knowledge,
more concretely, aiding in the necessary steps to solve an introduc-
tory programming exercise. This aid consists of hints for helping
learners to progress when they do not realize which steps are nec-
essary to reach the desired goal, or when they do not understand
what is causing the unexpected behavior (where are the bugs). Ac-
cording to the Cambridge Dictionary, a hint may refer to “a piece
of advice that helps you to do something”, or “something that you
say or do that shows what you think or want, usually in a way
that is not direct”. This is the meaning that we aim for hints in the
context of our work, as opposed to a tip with direct information
such as “add statement i = 0”. We aim to provide a learning aid
that helps to reach a desired solution, but not in a prescriptive way
through instructions that can be taken blindly without any thought.
We envision a tool that mimics a human tutor that is not giving
tips that spell out concrete code statements, but rather hints that
require learners to think about how to proceed.

Automated hints are a central aspect in Intelligent Tutoring
Systems (ITS), as they are a form of scaffolding [12]. Scaffolding
refers to the learning support that is available to a student during
the learning process, a core aspect of the 4C/ID model for complex
learning [15]. The goal of scaffolding is to help students to acquire
new skills and knowledge by breaking down the learning process
into smaller, more manageable steps. Feedback on which aspects
are correct is also a form of scaffolding, as it confirms that one is

375

https://doi.org/10.1145/3587102.3588820
https://doi.org/10.1145/3587102.3588820
https://jinter.org
https://doi.org/10.1145/3587102.3588820
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587102.3588820&domain=pdf&date_stamp=2023-06-30

ITiCSE 2023, July 8–12, 2023, Turku, Finland Jorge A. Gonçalves and André L. Santos

on the right track, removing uncertainties and insecurities in the
learning process. As a learner becomes more proficient, the amount
of scaffolding provided can gradually reduce, allowing the student
to be more secure about their learning.

This paper presents Jinter, a tool to generate hints to solve in-
troductory exercises involving Java methods (see Figure 1). The
usage scenario consists of a learner, in the context of a well-defined
exercise (platform), requesting a hint to progress (next step) or to
understand what can be improved (fix some part of the code). Jinter
takes into account the current snapshot of the learner’s code and
computes a hint by contrasting it with reference solutions for the
exercise being solved.

The analysis is performed using Behavior Trees (BTs), a more
abstract representation than Abstract Syntax Trees (ASTs) that take
into account behavioral equivalences among syntactical alterna-
tives. The hints follow a priority directly related to the depth of the
tree nodes where they are applicable. In addition, the similarities be-
tween the learner code and the reference solution are used to derive
positive feedback that highlights which parts are correct. The more
hints a learner requests, the more scaffolding a learner is having on
a particular exercise. Hence, the same exercise given to different
learners may have a wide range of scaffolding degrees, from none
(no hints requested) to high (every step was assisted by a hint).
Despite targeting Java, so far we did not approach object-oriented
programming concepts such as polymorphism and inheritance, but
instead, we focused on structured programming constructs.

Scaffolding is of utmost importance in an ITS, given that a hu-
man instructor is not available (at least in the short-run) to help
learners to overcome difficulties. Nevertheless, even in traditional
in-person or online classes with instructors, automated hints have
the potential to make contact time more productive, especially in
large classes where instructor availability for individual student
assistance may be scarce. Even if a student is only able to take ad-
vantage of a fraction of the provided automated hints, that already
alleviate the dependency on instructors, sparing some of their time
to assist with other difficulties (possibly the more complex cases).
Furthermore, unblocking students while they are autonomously
doing homework may also contribute to more efficient usage of
their time and alleviate frustration.

We evaluated the hints provided by Jinter by surveying 8 pro-
gramming instructors, asking them to provide hints for 15 scenarios,
organized into 3 sequences of steps to solve an exercise. Further-
more, participants had to contrast their hints with the automated
hints, and further rate the appropriateness of the latter indepen-
dently of their choice. Out of a total of 120 ratings, more than
one-third (37%) of Jinter hints match those of instructors, and an
additional third (33%) were considered similar.

These results are encouraging towards adopting a tool such as
Jinter in teaching settings, which we have not done so far. Despite
that the similarity with human instructor hints is satisfactory, it
is necessary to carry out usability studies to investigate how well
learners can understand and make use of the hint messages. Our
contribution consists of demonstrating that it is possible to generate
meaningful hints for small introductory programming problems
involving Java methods.

2 RELATEDWORK
The HINTS framework [8] describes techniques for the generation
of programming hints. Our approach is situated in the category of
tools where the learners’ code is compared to existing solutions. We
adopt the same definition of programming hint proposed in HINTS:
”... any type of feedback that improves a student’s knowledge of how
to complete a programming exercise. For example, it may help them
to identify mistakes in their program, suggest potential ways to pro-
ceed, recommend concepts to revise or clarify the task requirements.”
Feedback may have a major influence on learning processes, and
is effective when it informs the learner about progress and how to
proceed [4].

In the realm of programming, automated feedback may assume
different forms [6, 10], such as expected result checking (unit test),
source code quality, program efficiency, finding mistakes, or pro-
viding code hints – the focus of our work. Code hints may be
provided by a human instructor, typically in a lab class. However,
an instructor is not available in self-taught (online) or autonomous
learning moments (homework). Hence, our approach aims at provi-
sioning code hints at scale pertaining to strategic knowledge, and
secondarily of syntactic and conceptual knowledge [11].

Keuning et. al, in their 2018 survey of automated feedback for
programming exercises [6], concluded that very few tools provide
feedback regarding knowledge on how to proceed (next step hints).
AutoTeach [1] is one of those tools, supporting Eiffel, where exer-
cise hints are predefined by teachers by annotating the reference
solutions. Compared to our approach, Jinter hints are computed
solely from the reference solution code — not requiring any other
input. A more recent survey by Paiva et. al [10], focused on auto-
mated assessment, did not encounter tools that provide next-step
hints and positive feedback in the style of our approach.

Knowledge about metacognition is a different type of feedback
where a learner is evaluated concerning knowing why certain op-
tions were followed. Recent approaches have attempted to achieve
this by posing questions about learners’ code [7], fostering reflec-
tion over the written code, either in a just-in-time fashion when
a potential misconception is detected [5] or in a post-submission
to assess how well the learner understands the solution and the
applied programming constructs [13].

Zimmerman and Rupakheti [17] developed a Java framework
to recommend specific code edits relevant to students’ problems
when they are trying to solve a specific programming exercise.
The framework offers recommendations based on the best match
between the student’s solution and the teacher’s suggested solution.
This work is the closest to our approach in terms of howwe compute
the hints, namely through computing tree edit distances to reference
solutions. Their contribution focuses on the technical feasibility of
computing source code edits, while no efforts on elaborating hints
and evaluating scenarios were carried out.

CATNIP [3] is a hint generation tool for Scratch programming.
Our approach, albeit targeting Java, shares the same strategy of
matching learners’ reference solutions by comparing their structure
at the AST level. They have found that about half of the generated
hints are considered useful, a result that roughly aligns with our
results (about half of the Jinter hints were rated as very good, albeit
in a different context).

376

Jinter: A Hint Generation System for Java Exercises ITiCSE 2023, July 8–12, 2023, Turku, Finland

3 JINTER
Jinter is a tool that materializes our approach in the realm of Java,
though most of the ideas described here could apply to other lan-
guages with structured programming constructs.We implemented a
Web-based service as a REST API for generating the hints and aWeb
browser client to demonstrate the approach (though other clients
are possible, such as an IDE). This section describes the aspects
about tool usage and user experience, illustrated with screenshots
of the Web browser client.

3.1 User interface
Figure 2 illustrates the code editor while a user is writing the code
to compute the maximum value in an array of integers, and is
presented with a hint concerning the declaration of variables. The
code marks holding the hints are inserted once the user has made
an explicit request. When mouse-hovering the marks, the user sees
a popup widget with the description of the hint, consisting of a
small sentence that describes the hint, and further information that
explains a relevant associated concept and provides an example
(not visible in the figure due to space constraints).

The usage flow of Jinter is straightforward. Once stuck in the
process of solving an exercise, a learner may request a hint. The
current state of the code (snapshot) is sent along with the request.
Having the code in a parseable state is a prerequisite for using the
system. By parseable we mean without having lexical or syntax
errors, but it may have semantic errors (e.g., type mismatches,
missing returns, duplicate identifiers, etc).

We considered that a convenient way to present hints is to
present them one at a time, prioritized according to their relevance.
On the one hand, too many marks in the code may lead to excessive
noise. On the other hand, we believe it would not make sense to
provide a hint that requires elements that are not yet present. For
instance, a hint related to an instruction to include in the method
body would not make sense if the expected parameters are not
yet declared (hence, the hint of declaring parameters has higher
priority).

For the same snapshot, the system always outputs the same hint
for improvement (if there are any). Once a learner modifies the
code, either following a provided hint or not, a new request will
lead to another hint based on the latest snapshot. Finally, if the
learner feels no need to request more hints, he or she may submit
the code and they will be checked against test cases. At this point,
the learner may have a solution that works only for some cases and
may request more hints that target missing or incorrect parts.

3.1.1 Next-step hints. Next-step hints are those that suggest some
increment in the code (as in Figure 2). For instance, hints suggest
(a) adding parameter or variable declarations, (b) including a return
statement, or (c) declaring a loop. These hints are computed by
checking the missing parts against the reference solution. Jinter
prioritizes elements according to a depth-first traversal of the refer-
ence solution AST. In this way, hints concerning the return type
and parameters of a method are suggested before the elements in
the method body. In turn, the missing statements in the body are
suggested according to their sequence in the reference solution.
For example, if a return statement requires a variable, the hint to
declare the latter will be suggested first.

Figure 2: Jinter: next-step hint for declaring variables.

Figure 3: Jinter: fix hint for correcting operator.

3.1.2 Fix hints. Fix hints are those that suggest modifying or re-
moving some part of the code (see Figure 3). For instance, hints
suggest: (a) removing an extraneous parameter, (b) using a different
expression for initializing a variable, or (c) using a different operator
in a binary expression. These hints are computed by looking for
differences in parts that partially match with the reference solution
in terms of element types, but whose properties are different. In the
example of Figure 3, there was a match in the if statement guards
of both the code snapshot and the reference solution, both of which
consisted of binary expressions, but with a different operator.

3.1.3 Positive feedback. Together with the improvement hints, Jin-
ter also provides a list of positive feedback hints that emphasize
which elements are correct (see Figure 4). During the comparison
of learner code with the reference solution, the matching code
elements will form the list of positive feedback. This list may be
obtained even if the code is not executable due to semantic errors.
The positive feedback is useful to reinforce to the learner that a
viable path is being followed, and it was demonstrated to have a
significant impact on learning in an ITS [9].

3.2 Behavioral equivalence
When checking the learner code against a reference solution, Jin-
ter works with a representation that abstracts several syntactical
aspects and identifiers of the learner and reference solution. This
allows distinct exercise solutions, which may look substantially dif-
ferent on the surface, to be considered equivalent when computing
the hints. Figure 5 illustrates this with two equivalent snippets that
use different loop structures (while, for) and expression statements,
yet, their behavior is the same.

Loop structures are treated as a uniform concept, and there is no
distinct notion for a single statement or block statement in control
structure bodies (these are all treated as a sequence of statements).
Variable assignments are desugared so that incrementation/decre-
mentation and compound assignment operators are normalized
into a canonical form. Concerning relational and arithmetic expres-
sions, we use specific comparators for taking operator semantics
into account (see Table 1). These aspects are also illustrated in the
examples of Figure 5.

377

ITiCSE 2023, July 8–12, 2023, Turku, Finland Jorge A. Gonçalves and André L. Santos

Figure 4: Jinter: positive feedback hints.

int sum = 0;
int i = 1;
while(i < 10) {

sum = sum + i;
i = i + 1;

}

int s = 0;
for(int i = 0; 10 > i; i++)

s += i;

Figure 5: Two behaviorally equivalent loops for summing
natural numbers and a common Behavior Tree that repre-
sents their behavior (when a normalisation of expressions
is applied, see Table 1).

a ≥ b b ≤ a ¬(a < b) ¬(b > a)

a ≤ b b ≥ a ¬(a > b) ¬(b < a)

a > b b < a ¬(a ≤ b) ¬(b ≥ a)

a < b b > a ¬(a ≥ b) ¬(b ≤ a)

a = b b = a ¬(a , b) ¬(b , a)

a , b b , a ¬(a = b) ¬(b = a)

a + b b + a

a ∗ b b ∗ a

a++ a = a + 1 a = 1 + a a += 1
a−− a = a - 1 a -= 1

Table 1: Semantic equivalence in expressions.

4 IMPLEMENTATION
As mentioned, our approach relies on comparing a snapshot of the
learner code with reference solutions. For each one of these, we
obtain an Abstract Syntax Tree (AST)2 and further derive what we
refer to as a Behavior Tree (BT), which allows for additional syntac-
tic aspects to be abstracted and achieve the behavioral equivalence
discussed in the previous section.
2for this purpose we use JavaParser (https://javaparser.org/), a popular open-source
library for reengineering Java code

4.1 Behavior Trees (BT)
We use the notion of a Behavior Tree (BT) for representing a pro-
gram. A BT is similar to an AST, but with fewer and more abstract
concepts. The description provided by a BT focuses on the specifi-
cation of behavior (content), rather than on syntax (form). An AST
does abstract extraneous syntactic elements, such as curly braces
and semicolons, but has distinct representations for equivalent
constructs (e.g., while vs. for loop, compound assignments, incre-
mentors, etc). Furthermore, a BT also discards identifiers (which are
a matter of form), allowing declarations (such as variables) to have
an identity and to be referenced from expressions. In a BT there is
a single node type for each one of the elementary structured pro-
gramming concepts. A BT comprises the control-flow concepts of
sequence, selection, and repetition (loop), as well as the statement
concepts of assignment, return, call, break, and continue.

Figure 5 presents a common BT for the two code snippets. We
can see a tree overlay that links variable expressions to the variable
declarations (dashed arrows).

4.2 Tree Edit Distance (TED)
Tree Edit Distance (TED) refers to the minimum number of node
insertions, node deletions, and node reclassifications required to
transform a given tree into a desired target tree. We compute the
Tree Edit Distance between the BTs of the learner code and the
reference solution using the Zhang-Shasha algorithm [16]. If several
reference solutions with different ways of solving the exercise are
available, the TED is used to select the one that is closer to the
learner code and use it to derive the hints.

A TED between two BTs computes a matrix with the edit dis-
tances between all the subtrees, analogously to the Levenshtein
string distance. The matrix values are used to match the nodes
of the learner code BT with nodes of the reference solution BT,
based on tree similarity (lower edit distances). As a precondition
for the match, the root nodes have to be of the same type (e.g., loop,
variable declaration), although they may have different properties.
Figure 6 illustrates a matching of BTs, where grey nodes mark the
matched nodes. On the left-hand side we can see a learner code
snippet with an iteration skeleton and the respective BT, whereas,
on the right-hand side, we have the BT of the previous example
given in Figure 5.

The calculation of the edit cost directly relates to the number
of node elements that differ. Variable declarations are a special
case, where not only their properties are considered (type and
initialization), but also their role in the program [2] by analyzing
dependent statements using a similar technique as in [14]. This
is relevant, because two variable declarations may have the same
properties (type and initialization), but distinct roles in the program.
Take the variable declarations of sum and i of the first code snippet
of Figure 5 as an example. Although they have the same properties,
the former has a Gatherer role [2] whereas the latter has a Stepper
role [2].

Discerning variable roles allows improved matchings, as we
illustrate in the case of Figure 6. Notice that the variable n matches
the iteration variable of the reference solution, not the Gatherer
one that accumulates the summation (despite that the latter is
declared first). This match allows Jinter to suggest having a Gatherer

378

Jinter: A Hint Generation System for Java Exercises ITiCSE 2023, July 8–12, 2023, Turku, Finland

Figure 6: Matching of Behavior Trees: snippet in the left hand side matching the program of Figure 5 (right hand side).

variable since the variable for iteration (Stepper) is already present
in the learner code. Follow-up hints would consist of modifying the
initialization of the Stepper and the loop guard.

5 EVALUATION
Jinter was not yet used in teaching settings. As a first evaluation
of our approach, we aimed at assessing the appropriateness of the
hints provided by Jinter through comparison to those of experienced
instructors. To achieve this, we asked programming instructors to
fill in a questionnaire where they evaluated hints generated by
Jinter and contrasted them with their own. The positive feedback
items provided by Jinter were out of the scope of this evaluation.
We focus on the following research questions:

RQ1.How do Jinter hints compare to those given by instructors?
RQ2.Howdo instructors rate the appropriateness of Jinter hints?

5.1 Methods
We recruited programming instructors that are currently working
at our institution through direct invitation. The selection criteria
were that the instructor had been involved in the lab classes of at
least two offerings of the introductory programming course, while
not being an author of this paper.

We handed in an anonymous online questionnaire in English
and requested the answers to be in English as well. We estimated
that the questionnaire would take about 30 minutes to complete.
The questionnaire was answered by participants without any su-
pervision or assistance, and was divided into three sections, each
targeting one programming exercise. Each section consisted of a
Jinter usage scenario description comprising:

(1) a reference Java solution to the exercise
(2) a sequence of 5 incremental Java code snapshots that are

incomplete and/or incorrect towards solving (1)
(3) the generated Jinter hint for each code snapshot of (2)

We chose classic introductory programming exercises for the study,
which are familiar to all instructors, namely:

(1) factorial (non-recursive)
(2) summation of an integer array
(3) replacing the first occurrence of an integer in an array

Each sequence starts with an empty method, possibly with an
incorrect signature, and further stages progressively more closely
to the reference solutions. The evolution of the sequence was arti-
ficially created, introducing errors that we frequently observe in
our lab classes, so that a diverse set of scenarios could be evaluated,
broadly covering the sorts of hints Jinter provides. We also used
the survey to collect points of improvement to Jinter hints.

5.1.1 Instructions for participants. The following was the descrip-
tion of the task given in the questionnaire:

Your task is to describe a short hint (one sentence) that
you find the most pertinent for progressing or correct-
ing the code. Please consider that a hint is not a direct
prescription of the next step, but rather an indirect clue
of what might be missing or is incorrect. Please do not
write straight tips in the form of “what to do next” or
“change X to Y”.
After describing your hint you will be presented with
an automated hint for the same scenario, for which you
will be asked to (a) rate the similarity of the automated
hint with yours (1 - 3 scale); (b) rate the appropriateness
of the automated hint (independently of yours) based
on your experience as a programming instructor (1 - 5
scale); and (c), explain how the hint could be improved
(optional). Please do not edit your hints after seeing the
respective automated hint.

5.1.2 Threats to validity. The study participants are all instructors
at the same institution. However, they have different backgrounds
(CS, Electrical Engineering, Math), ages, and years of experience.
Nevertheless, recruiting instructors from different institutions and
countries would likely widen the range of perspectives.

The sequence of code snapshots for each exercise was artificially
created, which raises the issue of the scenarios being too unrealis-
tic. Collecting scenarios where actual learners request hints would
strengthen the validity of the experiment. We believe that the most
significant threat in this respect has to do with the artificially cre-
ated incorrect parts, not the incomplete code snapshots. However,
based on our teaching experience, we are confident that the cases
of incorrect code which we considered are frequent in practice.

379

ITiCSE 2023, July 8–12, 2023, Turku, Finland Jorge A. Gonçalves and André L. Santos

5.2 Results
A total of 8 programming instructors have accepted to participate
in the study (6 men, and 2 women). Hence, we collected a total of
120 hint ratings (15 from each participant).

5.2.1 RQ1. Instructor/automated hints matching. For each hint sce-
nario, participants were asked to rate the similarity of their hint
with the one provided by Jinter. Figure 7 presents a stacked column
chart with the percentage of matches grouped by the stage in the
sequence of code snapshots (one to five). We obtained a global
match of 37% between instructors and Jinter, with an additional
33% of cases where participants considered the hint to be related to
theirs.

There is an apparent tendency for higher matching when the
code snapshots approximate the reference solution. Recall that the
higher the stages are closer to the reference solution. This tendency
is not surprising given that code snapshots that are more completed
will necessarily narrow down the scope for filling gaps through
hints.

5.2.2 RQ2. Jinter hint rating. For each hint scenario, participants
were asked to rate the appropriateness of the Jinter hints. Figure
8 presents a stacked column chart with the distribution of ratings,
also grouped by the stage in the sequence of code snapshots (one
to five). We can observe that almost at every stage, at least half of
the hints were rated with the highest score. Furthermore, three-
quarters of all the hints were rated with the first (very good) or
second highest score (good), implying that instructors consider a
great majority of the hints to be appropriate.

The hints with the lowest scores (neutral and below) are more
prevalent in the first stages of the scenarios. We investigated these
lower-rated hints through the textual explanations given by par-
ticipants. We summarise two illustrative cases. In exercise 1, the
first code snapshot consisted of a correct method signature and an
empty body, and the Jinter hint was analogous to the one of Figure
2. Participants mentioned that a first hint should focus on using
repetition (loop), not on declaring a variable (with no additional
information). In exercise 2, the first code snapshot had an integer
parameter (int), instead of a reference to an integer array (int[]),
and the Jinter hint consisted of “the solution is not expecting a
value type for this parameter”. Participants considered the hint too
indirect and involving a concept that beginners often do not master
(distinguishing value and reference type).

6 CONCLUSIONS AND FUTUREWORK
Jinter stands as a proof of concept for hint generation for intro-
ductory Java exercises. We conclude that it is possible to generate
meaningful hints, given that the majority of those are rated posi-
tively by programming instructors. Moreover, it is worth noting
the considerable match of instructor and Jinter hints (over one-
third of the total). However, the evaluation indicates that the initial
hints, both concerning method signatures and empty bodies can be
improved.

A limitation of our approach is when the learner code deviates
from the available reference solutions while pursuing a valid path.
In these situations, Jinter continues to provide hints, which may go
against the learners’ path. A point of improvement would be to have

Figure 7: Instructor and Jinter hintsmatch by sequence stage
(1: very incomplete snapshot, 5: almost complete).

Figure 8: Instructor rating of Jinter hints by sequence stage
(1: very incomplete snapshot, 5: almost complete).

a form of deciding when not to provide hints if the learner code
deviates considerably from the reference solutions. The analysis for
deriving the hints could also benefit from more behavioral equiva-
lences to those we currently support. For instance, concerning the
cases where a break or a return statement are equivalent (applicable
in our evaluation scenario 3), or inlining temporary variables that
are merely used to break down statements.

To assess the usefulness of the Jinter hints one would need to
carry out a user study with actual novice programming learners.
Such a study would allow us to work with real scenarios of hint
requests, and more importantly, to evaluate how learners can make
use of the provided messages and positive feedback.

ACKNOWLEDGMENTS
We thank the anonymous programming instructors that accepted
to participate in our study. This work was partially supported by
Fundação para a Ciência e a Tecnologia, I.P. (FCT) [ISTAR Projects:
UIDB/04466/2020 and UIDP/04466/2020].

380

Jinter: A Hint Generation System for Java Exercises ITiCSE 2023, July 8–12, 2023, Turku, Finland

REFERENCES
[1] Paolo Antonucci, Christian Estler, Durica Nikolić, Marco Piccioni, and Bertrand

Meyer. 2015. An Incremental Hint System For Automated Programming As-
signments. In Proceedings of the 2015 ACM Conference on Innovation and Tech-
nology in Computer Science Education (Vilnius, Lithuania) (ITiCSE ’15). As-
sociation for Computing Machinery, New York, NY, USA, 320–325. https:
//doi.org/10.1145/2729094.2742607

[2] Pauli Byckling and Jorma Sajaniemi. 2007. A Study on Applying Roles of Variables
in Introductory Programming. In 2007 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC 2007), 23-27 September 2007, Coeur d’Alene,
Idaho, USA. 61–68. https://doi.org/10.1109/VLHCC.2007.31

[3] Benedikt Fein, Florian Obermüller, and Gordon Fraser. 2022. CATNIP: An Auto-
matedHint Generation Tool for Scratch. In Proceedings of the 27th ACMConference
on on Innovation and Technology in Computer Science Education Vol. 1 (Dublin,
Ireland) (ITiCSE ’22). Association for Computing Machinery, New York, NY, USA,
124–130. https://doi.org/10.1145/3502718.3524820

[4] John Hattie and Helen Timperley. 2007. The Power of Feedback. Review of Edu-
cational Research 77, 1 (2007), 81–112. https://doi.org/10.3102/003465430298487
arXiv:https://doi.org/10.3102/003465430298487

[5] Austin Z. Henley, Julian Ball, Benjamin Klein, Aiden Rutter, and Dylan Lee. 2021.
An Inquisitive Code Editor for Addressing Novice Programmers’ Misconceptions
of Program Behavior. In 43rd IEEE/ACM International Conference on Software
Engineering: Software Engineering Education and Training, ICSE (SEET) 2021,
Madrid, Spain, May 25-28, 2021. IEEE, 165–170. https://doi.org/10.1109/ICSE-
SEET52601.2021.00026

[6] Hieke Keuning, Johan Jeuring, and BastiaanHeeren. 2018. A Systematic Literature
Review of Automated Feedback Generation for Programming Exercises. ACM
Trans. Comput. Educ. 19, 1, Article 3 (Sept. 2018), 43 pages. https://doi.org/10.
1145/3231711

[7] Teemu Lehtinen, André L. Santos, and Juha Sorva. 2021. Let’s Ask Students
About Their Programs, Automatically. In 29th IEEE/ACM International Conference
on Program Comprehension, ICPC 2021, Madrid, Spain, May 20-21, 2021. IEEE,
467–475. https://doi.org/10.1109/ICPC52881.2021.00054

[8] JessicaMcBroom, Irena Koprinska, and Kalina Yacef. 2021. A Survey of Automated
Programming Hint Generation: The HINTS Framework. ACM Comput. Surv. 54,

8, Article 172 (oct 2021), 27 pages. https://doi.org/10.1145/3469885
[9] Antonija Mitrovic, Stellan Ohlsson, and Devon K. Barrow. 2013. The effect of

positive feedback in a constraint-based intelligent tutoring system. Computers &
Education 60, 1 (2013), 264–272. https://doi.org/10.1016/j.compedu.2012.07.002

[10] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated Assess-
ment in Computer Science Education: A State-of-the-Art Review. ACM Trans.
Comput. Educ. 22, 3, Article 34 (jun 2022), 40 pages. https://doi.org/10.1145/
3513140

[11] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review. ACM Trans.
Comput. Educ. 18, 1, Article 1 (Oct. 2017), 24 pages. https://doi.org/10.1145/
3077618

[12] Brian J. Reiser and Iris Tabak. 2014. Scaffolding. Cambridge University Press,
United Kingdom, 44–62. https://doi.org/10.1017/CBO9781139519526.005 Pub-
lisher Copyright: © Cambridge University Press 2006, 2014..

[13] André Santos, Tiago Soares, Nuno Garrido, and Teemu Lehtinen. 2022. Jask:
Generation of Questions About Learners’ Code in Java. In Proceedings of the 27th
ACM Conference on on Innovation and Technology in Computer Science Education
Vol. 1 (Dublin, Ireland) (ITiCSE ’22). Association for Computing Machinery, New
York, NY, USA, 117–123. https://doi.org/10.1145/3502718.3524761

[14] André L. Santos and Hugo S. Sousa. 2017. PandionJ: a pedagogical debugger
featuring illustrations of variable tracing and look-ahead. In Proceedings of the
17th Koli Calling Conference on Computing Education Research, Koli, Finland,
November 16-19, 2017. 195–196. https://doi.org/10.1145/3141880.3141911

[15] Jeroen J. G. van Merriënboer, Richard E. Clark, and Marcel B. M. de Croock.
2002. Blueprints for complex learning: The 4C/ID-model. Educational Technology
Research andDevelopment 50, 2 (2002), 39–61. https://doi.org/10.1007/BF02504993

[16] Kaizhong Zhang and Dennis Shasha. 1989. Simple Fast Algorithms for the Editing
Distance between Trees and Related Problems. SIAM J. Comput. 18, 6 (1989), 1245–
1262. https://doi.org/10.1137/0218082 arXiv:https://doi.org/10.1137/0218082

[17] Kurtis Zimmerman and Chandan R. Rupakheti. 2015. An Automated Framework
for Recommending Program Elements to Novices (N). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 283–288. https:
//doi.org/10.1109/ASE.2015.54

381

https://doi.org/10.1145/2729094.2742607
https://doi.org/10.1145/2729094.2742607
https://doi.org/10.1109/VLHCC.2007.31
https://doi.org/10.1145/3502718.3524820
https://doi.org/10.3102/003465430298487
https://arxiv.org/abs/https://doi.org/10.3102/003465430298487
https://doi.org/10.1109/ICSE-SEET52601.2021.00026
https://doi.org/10.1109/ICSE-SEET52601.2021.00026
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711
https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/10.1145/3469885
https://doi.org/10.1016/j.compedu.2012.07.002
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.1017/CBO9781139519526.005
https://doi.org/10.1145/3502718.3524761
https://doi.org/10.1145/3141880.3141911
https://doi.org/10.1007/BF02504993
https://doi.org/10.1137/0218082
https://arxiv.org/abs/https://doi.org/10.1137/0218082
https://doi.org/10.1109/ASE.2015.54
https://doi.org/10.1109/ASE.2015.54

	Abstract
	1 Introduction
	2 Related work
	3 Jinter
	3.1 User interface
	3.2 Behavioral equivalence

	4 Implementation
	4.1 Behavior Trees (BT)
	4.2 Tree Edit Distance (TED)

	5 Evaluation
	5.1 Methods
	5.2 Results

	6 Conclusions and Future Work
	Acknowledgments
	References

