
Online Programming Exams - An Experience Report
Seán Russell

University College Dublin
Dublin, Ireland

sean.russell@ucd.ie

Simon Caton
University College Dublin

Dublin, Ireland
simon.caton@ucd.ie

Brett A. Becker
University College Dublin

Dublin, Ireland
brett.becker@ucd.ie

ABSTRACT
When seeking to maximise the authenticity of assessment in pro-
gramming courses it makes sense to provide students with practical
programming problems to solve in an environment that is close
to real software development practice, i.e., online, open book, and
using their typical development environment. This creates an as-
sessment environment that should afford students sufficient op-
portunities to evidence what they have learned, but also creates
practical challenges in terms of academic integrity, flexibility in the
automated grading process, and assumptions surrounding how the
student may attempt to solve the problems both in terms of correct
and incorrect solutions. In this experience report, we outline two
independently observed cohorts of students sitting the same Java
programming exam, with different weights, over three years. This
is undertaken as a reflective exercise in order to derive a series
of recommendations and retrospectively obvious pitfalls to act as
guidance for educators considering online programming exams
for large (i.e. 𝑛 > 150) introductory programming courses. After
discussing our assessment methodology, we provide 4 high-level
observations and centre a set of recommendations around these to
aid practitioners in their assessment design.

CCS CONCEPTS
• Social and professional topics → Student assessment; Com-
puting education.

KEYWORDS
authentic assessment, plagiarism, programming, video
ACM Reference Format:
Seán Russell, Simon Caton, and Brett A. Becker. 2023. Online Programming
Exams - An Experience Report. In Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science Education V. 1 (ITiCSE 2023),
July 8–12, 2023, Turku, Finland. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3587102.3588829

1 INTRODUCTION
The task of accurately assessing the code writing abilities of stu-
dents in programming classes has always been a challenge. Many
university programming courses continue the use of paper exams
requiring hand-written solutions, while others use controlled envi-
ronments for programming and other computer-based exams [14].
The transition to online education precipitated by the COVID-19

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ITiCSE 2023, July 8–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0138-2/23/07.
https://doi.org/10.1145/3587102.3588829

pandemic was sudden and required the adaptation of many long-
used teaching and assessment strategies [22].

This paper details the experiences of the authors in adapting
the examination practices of two programming classes over three
years for online delivery. In total 540 students (average of 180 per
year) were observed. Prior to the pandemic these classes made use
of computer-based testing, in the form of proctored programming
examinations, as one of their principle summative assessments. The
use of unique exam questions, coupled with the proctored environ-
ment provided little opportunity for cheating. This paper details
the approach taken to migrate this assessment to an unproctored
online environment while limiting the opportunity for cheating.

The risk of academic integrity violations prompted a consid-
eration of alternatives that could be used to replace a timed pro-
gramming assessment. The options considered included multiple
choice questions (MCQ), individualised code tracing exercises [19],
parsons problems and faded parsons problems [6, 29], and combi-
nations of these. However, none of the options considered provided
a similar measurement of the code writing ability of the students
or afforded a particularly authentic environment.

Consideration then turned to what mechanisms could be put in
place to restore confidence in the accuracy of the same assessment
conducted online and assuage concerns about susceptibility for
academic integrity violations. The following sections discuss related
work and concepts, the context in which the strategies were applied,
the detail of our approach to online programming examination, the
lessons we learned from the process and improvements that we
consider making in the future. We believe that this experience will
prove useful to the many other educators who have, or still are,
struggling with the difficulties of employing online assessments
that provide genuine assessment (mitigating academic integrity
violations) with a suitable degree of authenticity.

2 BACKGROUND
This section discusses research and areas of concern that have
influenced the design of the assessment in this study. The primary
concerns were to maximise the authenticity of the assessment while
mitigating academic integrity violations. Finally, considerations
around the utility of differing approaches to automatically grading
code are considered.

2.1 Authenticity
One of the original aims behind the design of the assessment was
a desire to make it as authentic as possible within the bounds
of an examination. Programming experience gained prior to and
during the completion of these classes will most likely have come
while programming using an integrated development environment
(IDE). When professionally applying the knowledge that they have
learned, the students will most likely be programming using an

436

https://orcid.org/0000-0003-1992-8303
https://orcid.org/0000-0001-9379-3879
https://orcid.org/0000-0003-1446-647X
https://doi.org/10.1145/3587102.3588829
https://doi.org/10.1145/3587102.3588829
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3587102.3588829
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587102.3588829&domain=pdf&date_stamp=2023-06-30


ITiCSE 2023, July 8–12, 2023, Turku, Finland Seán Russell, Simon Caton, & Brett A. Becker

IDE. Gulikers et al. [11] described the five-dimensional framework
(5DF), by which the degree of authenticity of an assessment can be
objectively viewed. The dimensions are the task itself, the physical
and social context under which it takes place, the assessment result,
and the assessment criteria.

The programming examinations in these classes are designed
with an aim to be authentic with respect to all dimensions of au-
thenticity except the social context in which the students perform
the assessment. Prior to the pandemic, these assessments were car-
ried out within a proctored examination environment (in-person)
where no internet access or communication were permitted. Stu-
dents were allowed notes that were either printed or digital, so a
suitably prepared student would have access to the Java API and
example code to refer to. This is considered an important aspect
of creating a more authentic environment, as students will not be
expected to produce code only from memory in a professional ca-
pacity. As a result of this, the primary concern of exam invigilators
was the prevention of communication between students and illicit
use of devices or internet access.

It should be noted that in this paper we are applying a subjective
and somewhat artificial view of authenticity [10] due to educational
requirements. A truly authentic environment would have the stu-
dents free to communicate and collaborate and would not have
such a strict time limitation, but would be less useful at measuring
individual student ability.

2.2 Plagiarism and Collusion
Software development often encourages code reuse and collabora-
tive development practices, which makes the concept of academic
integrity difficult to formalise in computing [26]. Previous research
has found that as much as 90% of students will admit to committing
academic integrity violations (including cheating) at least once [21].
The difference between assignments in the field of computing and
others means that the boundaries of acceptable and unacceptable
practices are much more difficult to define for computing assess-
ments than for essays [24]. The nature of programming assessments
makes them vulnerable to plagiarism as it can be often difficult
to distinguish between two correct solutions, particularly when
strict or descriptive code style rules are applied. Frequently all stu-
dents will have a shared scaffold to start from and specification to
meet [16].

The Fraud Diamond is a model used to explain when fraud is
likely to occur and how to prevent it, it has previously been ap-
plied to the context of plagiarism [1]. It frames the likelihood of
fraud (or plagiarism in our case) in terms of incentive (the student
wants/needs to plagiarise), opportunity (the student can plagiarise),
rationalisation (the student can convince themselves it is worth the
risk), and capability (the student believes they can do it and not get
caught). Conceptually, prevention of plagiarism can be achieved
by eliminating any one of these dimensions, i.e. if there was no
opportunity to plagiarise it can’t happen, or if the student does not
believe they will get away with it then they won’t do it.

In the original in-person proctored exam setting, the principle
concern was for the prevention of collusion. Exam questions were
never repeated, so there was no concern that solutions existed on
the internet for the students to plagiarise. Any discussion between

students was prevented and any use of internet access resulted in
the student receiving 0, thus the aimwas to prevent any opportunity
for students to collude and reduce their belief in the capability of
doing so without get caught.

2.2.1 Contract Cheating. Contract cheating is not a new develop-
ment in higher education [5], though it is one that appears to be
on the rise [8]. This form of plagiarism can often be difficult, if not
impossible to detect. Sites like Chegg and Course Hero advertise
the low response times for questions, which can be as little as 15
minutes. This makes it feasible for students to post questions and
receive answers within the time window of the exam.

2.2.2 AI. Within the last two years, a new threat to academic
integrity emerged with the release of Generative AI tools that gen-
erate code from text prompts such as GitHub Copilot, and more
recently ChatGPT [2]. Although only in their infancy, these tools
have already proven capable of scoring in the upper quartile in
a CS1 exam, where problem descriptions were given verbatim to
the Codex API [9]. The demonstrated capability of these services
requires the consideration of plagiarism as well as collusion when
using assessments for the first time.

They also have an effect on the dynamics of the model of plagia-
rismmore generally. Many universities apply the same punishments
to students who share their work as they do to students who have
copied [18]. Opportunity to collude with another student is con-
tingent on the trust of that student that they will not get caught
and jeopardise their own grade. These services pose no risk of re-
jection and as a result students will have an excellent opportunity
to plagiarise as long as they have access to one of these services. It
should be noted that the nascent tools designed to determine the
likelihood that a given text was generated by AI are easy to fool,
and are not useful for detecting if code was AI generated.

2.2.3 Plagiarism Detectors. Traditional collusion and plagiarism
has been the battleground of a quiet war between students and the
developers of similarity (plagiarism) detectors. Plagiarism detectors,
such as MOSS and JPlag [17, 20], analyse student assignments and
identify where pairs or groups of submissions share similarities and
highlight this for analysis by instructors. Different tools operate
within different domains and offer different capabilities, for instance
somewill work on any text and others will operate only on a specific
set of programming languages, some will compare submissions
with content from the internet and other will only compare against
other submission. These tools are useful in their principle role after
plagiarism has occurred, but can also be discussed early in the class
to reduce students belief that they can get away with it [25].

2.2.4 Remote Proctoring. Remote proctoring became a fundamen-
tal component of the assessment strategy of many universities
during online education [27]. Research has noted that remote proc-
toring had only minimal impact on student performance in ex-
aminations [12]. Other universities, in the face of concerns over
privacy, security and accessibility, chose to oppose the use of remote
proctoring [23].

2.2.5 Video Explanations. The use of video in assessment would
have been considered somewhat unconventional before the pan-
demic. Zarb and BirtlesKelman [30] trialled the use of video to

437



Online Programming Exams - An Experience Report ITiCSE 2023, July 8–12, 2023, Turku, Finland

replace a more traditional presentation based assessment. This was
beneficial to students, who appreciated the opportunity to rehearse,
and to staff, who were capable of giving better feedback.

VanDeGrift [28] augmented traditional written exams with short
video explanations of their solutions. This was primarily designed
as a measure to prevent academic integrity violations, though it was
more effective as a reflective exercise for the students. Students were
required to complete and submit a video explaining their solution
to one of the questions in the exam by the end of the day. These
exams took the form of Moodle quizzes where the questions could
be multiple choice, short answer, true/false, short code fragments
or free-response. Students had the opportunity to correct mistakes
that they uncovered after completing the exam and consequently
could improve their scores.

2.3 Autograding
One of the benefits of a computer-based programming exam is
the possibility for automated analysis to be used to partially or
fully complete grading. There are many tools which can be used
for this functionality, but they are often limited to use within a
particular system or virtual learning environment [3]. Automated
assessment can dramatically reduce the assessment workload of
teaching staff, but present different limitations depending on the
technique employed [15].

The most common techniques for automatic grading are based
on output comparison, unit test or code quality. Output compari-
son relies on execution of the program with specified input such
that the output can be matched with expected output. Unit test
based grading permits the inspection of components of a student’s
solution in isolation. Typically, comparisons are made between
expected and returned values of functions or methods provided
known parameters. Code quality is more difficult to assess auto-
matically, though linting and source code analysis tools, such as
PMD can help in this process.

These approaches can have drawbacks from the perspectives
of both instructors and students. Output comparison is typically
unforgiving, that is a single incorrectly placed character means a
failed test, and as such considered by some to be inadequate for use
in a learning context [15]. The introduction of testing code (like unit
tests or similar) can complicate the compilation and/or execution
process and produce error messages that are more difficult for
students to solve [4]. Unit tests require a certain knowledge of
the expected design of the components in the system in order to
test them. This means rather than specifying the overall goal and
leaving design to the students questions must specify the design
more closely (potentially providing interfaces for students to base
their work on). Static analysis tools are generally more suited to
finding problematic code fragments than consistently measuring
the quality of code that they analyse.

3 CONTEXT
University College Dublin is a European doctoral granting insti-
tution with approximately 40,000 students and the equivalent of

an “R1” (very high research activity) in the US Carnegie Classifica-
tion1. Approximately 1,000 undergraduates and 600 postgraduates
are computer science students (major and minor). There are over
60 faculty members who teach both graduate and undergraduate
courses resulting in courses which typically range in size from 60
to 200 students.

We focus on three years of two approximately isomorphic object-
oriented programming (OOP) classes within different contexts.
Class A are second year undergraduate students learning OOP
in Java. These students have completed two semesters of proce-
dural programming in C. Class B are completing the subject as part
of a MSc in computer science. These students typically do not have
prior OOP or Java experience from their undergraduate degrees as
those who already have experience with these topics are prevented
from enrolling.

The final summative programming exam was identical and syn-
chronously completed by both classes. Table 1 shows the number
of students of the last three years for both classes. The upward
trend in these numbers is such that the use of in-person proctored
exams would have become increasingly infeasible due to a lack of
sufficiently large spaces to accommodate all students. As pandemic
restrictions eased and returning to in-person teaching, the exam
remained online.

Table 1: Student numbers for classes A & B 2020-2022

Class 2020 2021 2022 Total Average
A 129 143 141 413 138
B 22 48 57 127 42
Total 151 191 198 540 180

The classes are equivalent in terms of the lecture material and
practical work, but differ slightly in their assignments. Class A
has a unit testing assignment (to improve familiarity with unit
testing based evaluation) while class B (a post graduate course)
includes project work. Both classes share the same weekly home-
work exercises, and practical exam. Since returning to in-person
teaching, class A has live in-person lectures and labs, but class B
has remained mostly online, as this was the existing pre-pandemic
delivery modality. The programming exam constitutes a significant
proportion of the final grade of both classes (70% for class A, 40%
for class B).

Both classes make use of Coderunner [13], a plugin for the Moo-
dle Virtual Learning Environment (VLE) that enables the automatic
grading of computer programs in a number of languages. While
Coderunner is principally designed to assess based on outcome
testing, test cases can be designed to more closely simulate unit
testing or though the use or the Java reflection API can measure
some elements of code quality. As such students are sufficiently
experienced with these testing methods that their use in an exam
situation would not be a cause for concern.

During the pandemic, university leadership adopted the position
that remote proctoring services would be institutionally disallowed.
1carnegieclassifications.acenet.edu/carnegie-classification/classification-
methodology/basic-classification/

438

https://carnegieclassifications.acenet.edu/carnegie-classification/classification-methodology/basic-classification/
https://carnegieclassifications.acenet.edu/carnegie-classification/classification-methodology/basic-classification/


ITiCSE 2023, July 8–12, 2023, Turku, Finland Seán Russell, Simon Caton, & Brett A. Becker

This decision was based on concerns over student privacy and
security, as well as concerns of the rights afforded to students
under the EU General Data Protection Regulation (GDPR)2.

4 METHOD
Given the requirement of accurately assessing the ability of stu-
dents to write code, it was decided to transition the programming
exam from a Bring-Your-Own-Device (BYOD), proctored, in-person
setting to an online exam without proctoring. To address concerns
of a potential increase in academic integrity violations, an addi-
tional must-pass video component was added to the exam. This
section describes the approach taken to question design as well as
to the overall timing and grading of an online programming exam
with video explanations.

4.1 Instructor vs. Machine
Following the release of AI coding assistants like GitHub Copilot,
the questions in previous exams were assessed against these new
systems. Questions that were poorly answered by these systems
were analysed and a rudimentary determination was made as to
the attributes that made them difficult for the AI to solve them. The
key attribute was questions that would be difficult to solve using
only the problem statement, but with example output and sufficient
unit tests become much more solvable by students.

The issue faced in designing questions to beat AI code genera-
tion is that obfuscation in the wording or design of the problem
statements would have a negative effect on the ability of students to
understand them.While this has not been exhaustively investigated,
it seems that these systems struggle with determining information
from more abstract output examples. This approach to question
design is not compatible with all of the learning objectives in course,
and as such were only used in at most one question.

4.2 Exam Details and Timing
The exam contained five questions in total. The students were re-
quired to complete two: one from part A (Q1 and Q2; fundamentals
questions, e.g. inheritance and code design) and one from part B
(Q3, Q4, and Q5; more problem solving questions, e.g. reading files,
manipulating arrays etc.). Both questions carry equal weight. The
timing of the exam is as follows:

-3 weeks: Formal exam instructions are released
-15 min: Scaffolded code is released
-5 min: Exam questions released (so they could be printed)
0 min Exam commences

+180 min: Exam questions must be submitted to VLE
+180 min: Video questions released
+190 min: Grace period (code) ends, late penalty applies
+240 min: Video narrated demonstrations submitted
+260 min: Grace period (video) ends, no further submissions
allowed
Students are given five minutes in which they can prepare their

system for the exam by downloading and importing code and test
files into their IDE. Students are not aware of the video questions
that they will be asked to complete until +180 minutes. Students

2gdpr.eu/

should have submitted their code before the questions are available,
this is to prevent students from altering their submission at the
last minute to selectively cut parts that they cannot explain (and
presumably have gained through plagiarism or collusion).

At +180 minutes, the second question paper is released contain-
ing the video questions. For each of the questions (Q1 - Q5) there
are four video questions. So if the student answered Q2 and Q5,
then they must choose two questions from both Q2 and Q5 and
address them in a video response, with code demonstration / high-
lighting to support their answer. We allow the student to choose
2 from 4 video questions (for example in Q2) because questions
can relate to specific parts of the task, and this choice allows for
situations where the student may not have attempted the entire
question. It also allows for a larger distribution of answers (there are
more questions). The following are examples of a typical question
(with the objective to make the student reflect on their submission
and coding thought processes) which includes some metacognitive
reflection [7]:

• Discuss how you handled String parsing in this question.
How did you break up the String and why did you do it
this way? Were there alternatives, and why did you not use
these?

• Pick the aspect of the question you found the most challeng-
ing, but believe you have answered correctly. Why specifi-
cally was it challenging and how did you go about developing
your solution for this aspect of the question?

• Which of the unit test(s) (that your code passes) was/were
the most helpful in developing your solution? Discuss how
it/they helped you answer the question(s).

Students are expected to record a video that does not (signifi-
cantly) exceed five minutes in duration which addresses four of
the video questions. Students are explicitly not required to appear
on camera, though they are free to if they wish, only to show the
relevant code as they are explaining it. This is in consideration of
privacy concerns and is in line with university policies regarding
forced use of cameras by students.

4.2.1 Late Submissions. Late submissions are allowed, but are pe-
nalised at the rate of 2.5 points per two minute block. To allow
for disruption due to technical issues, a ten minute grace period is
used. Immediately at the end of this period the full late penalty is
enforced, so a student submitting at ten minutes and 30 seconds
late would be penalised 15 points.

This policy is strictly enforced, but exceptions are made for
students with official accommodations and students who face un-
expected technical problems (in this event students must make
contact with the instructor and provide documentation – claims
after the time are not considered).

4.3 Grading Workflow
The grading commitment required for this approach to program-
ming assessment is quite heavy and averages at about 15 minutes
per student; it can be less for very high/low scoring submissions.
The inspection and building of feedback consumes the bulk of this
time. Automatic grading could reduce this time to the duration of
the video explanations (or less if played at an increased speed).

439

https://gdpr.eu/


Online Programming Exams - An Experience Report ITiCSE 2023, July 8–12, 2023, Turku, Finland

The grading workflow is made up of the following steps; 1) a
script processes student submissions, assembles them into prepared
structure, compiles their submission and also the (question appro-
priate) unit tests against the student’s submission, if needed), 2)
manual inspection of code and fixing (small) errors, 3) unit tests
are executed, 4) final round of small fixes (and tests run again); 5)
manual and automated feedback are merged, and unit test score
(computed by the test scripts) captured. To standardise the grading
workflow, all information is entered into a GDPR compliant online
form (which has additional data entry validation checks) and facili-
tates the capture of some descriptive statistics as well as additional
logic and prompts (for code quality scoring) for grade computation;
some VLEs offer the same functionality.

4.4 Grading
The grade for each question consists of three components, an auto-
matically graded score based on unit tests, a score for code quality
based on manual code inspection (workflow step two), and a score
based on the explanation of the question in the video. In the ques-
tions in part A, this breakdown was 18 points determined by unit
tests, 7 for code quality, and 10 points for the video explanations.
In part B, unit tests determined 20 points of the score, while code
quality contributed 5, and the video explanation contributed 10.

4.4.1 The VideoQuestions. The score that a student receives for
the video component is based on a binary determination that the
student understands and explains sufficiently the code that they
have submitted. In the event that a student is determined to have
provided a sufficiently clear response to the video question, then
they are awarded a score based on the number of points they have
earned in the other components of the question. For example, if a
student scores 20 out of 25 for the other components of the question,
then their score in the video will be 8 out of 10 (for a total of 28/35).
Alternatively, if the video explanation is not satisfactory, the student
will receive the score 0 out of 35 for that question.

This choice was made after consideration of two undesirable
scenarios. In the first scenario, a student submits code that is se-
verely flawed and scores five points from a possible 25, however the
video description explains the code clearly. An award of 10 points
would be significant and not in line with the quality of code actually
submitted. In the second scenario, a student submits perfect code
and gets 25 points out of the available 25, however the student is
unable to explain the code or respond to the questions. An award
of just 0 for the video and the original 25 points for the other part
of the question would result in a final score of 70%.

Presumably, this student colluded or plagiarised in some way.
However, lacking proof, the result would stand. The scoring of these
questions is designed to remove the question of collusion or plagia-
rism and focus on the ability to show understanding. A score of zero
in the video component is not considered an academic integrity
violation, though it can provide excellent evidence in the event
of referral to disciplinary procedures. In the analogy of the Fraud
Diamond, we are attempting to undermine both rationalisation and
capability dimensions in order to prevent plagiarism.

Naturally, a student who believes that they are going to fail
the exam could rationalise that they there is no cost to attempting
plagiarism. An emphasis on the fact that the disciplinary procedures

of the university are more serious than a failing grade and strictly
applied in cases of plagiarism may provide some mitigation.

4.4.2 Automatic Grading. Anumber of unit tests are supplied to the
students before the beginning of the exam along with the scaffold
code. These are only a subset of the tests used in the automatic
grading part of the exam grade. The goal behind this decision was
to encourage/require students to consider relevant edge cases and
to test for them in their own solution. The subset of the tests is
chosen such that if all of the supplied tests are passed, then the
student will have at least a passing grade (presuming they pass the
video assessment). This gives students a reasonable goal to strive
for and pushes high achieving students to excel.

4.4.3 Code Style. Although a large component of the grading is au-
tomated, this desire to assess students on aspects of code style that
are poorly measured by computers means that manual inspection
of the code is required. An example here is inheritance: a student
could pass some of the unit tests without exhibiting best practice;
coding style captures this difference in the exam grade. While this
inspection is taking place, errors that would prevent the compila-
tion and execution of the unit test are fixed and detailed feedback is
recorded. These fixes are minor in nature (e.g. removing additional
spaces in generated Strings, typos in method signatures, etc.) and
specifically do not seek to effect the result(s) of the unit tests. This
review is typically completed while the student’s video is playing,
though it may be consulted later if the understanding of the student
is in doubt. During the inspection process, thorough feedback is
prepared for each student. This details the deficiencies identified
in the code style portion, fundamental errors in the question, com-
ments on approach to the solutions as well as comments on the
effectiveness of the video explanations.

4.4.4 Feedback. The output of the unit tests is formatted and com-
bined with a detailed explanation of what each of the tests was
assessing. Combined with the feedback prepared in the inspec-
tion, this is delivered to each student individually. More general
feedback is made available to the whole class describing common
mistakes for each question, the maximum and average grades and
the distribution of which students attempted which questions.

4.4.5 Plagiarism Detectors. The scaffolded nature of the assign-
ments and the influence of the specifications and unit tests present
a particular challenge to the use of plagiarism detectors. These
tools are still used to indicate the pairs of submissions that are
most probably to be a result of collusion, but still requires thorough
manual inspection carried out after grading has been completed.

5 OBSERVABLE OUTCOMES
Perhaps the most poignant observation is that this assessment
strategy acts as a wake up call for weaker students; the video in
particular. There are several instances of students that do not sub-
mit the video if they perceive there to be no point; e.g. they will fail
anyway (because of the provided unit tests). There are occasionally
cases where the student submits “a video” because it is required,
which constitutes a form of self-efficacy and self-reflection. Here
common examples include videos where students discuss how or
why they could not (successfully) undertake the coding problem(s).

440



ITiCSE 2023, July 8–12, 2023, Turku, Finland Seán Russell, Simon Caton, & Brett A. Becker

Aligned to this is the general (reported via course evaluation) stu-
dent view that the process is not fair, too hard, or lacking sufficient
completion time. Anecdotally it seems that this view changes as
students progress through the programme and begin to value the
experience. This may become apparent after their first exposure to
the work place either through a whiteboard interview or coding
challenge as part of a recruitment process, and possibly during in-
ternships. This observation would, however, need to be formalised
to solidify findings and pedagogical reasoning.

Students have very little room for “grade negotiation”: the unit
tests illustrate problems with code, video reflection causes self-
evaluation of performance, students have a subset of these tests
prior to submission so they (should) know if they did well or not
even prior to receiving feedback, and the personalised feedback
from the hidden tests comes on top of this. Over 3 years, only a
handful of requests for additional feedback (𝑛 < 10) have occurred.
Even students that fail the video question and subsequently got 0 in
the assessment ask for feedback rather than question the outcome.

The videos can also act as an additional mechanism of code qual-
ity review: students may focus their discussion on something the
assessor missed, or which wasn’t (initially) in the grading crite-
ria. Similarly, students can focus their discussion on parts of the
question they did not complete, and receive partial credit for this.
Closely related to this, weaker students often struggle to answer the
video questions, and attempts to bluff tend to be quite obvious. This
stems from the nature of the questions: reflective video questions
where the student has to comment on why certain activities were
undertaken or aspects of the problem that were most challenging
tend to reveal areas of misunderstanding, misconceptions of the
course and other fundamental issues with their submission(s).

Finally, for cases of suspected academic misconduct, the video
can act as substantial evidence of misconduct. Here generally, the
student couldn’t explain the submission purported as their own,
or has major misconceptions of their submission and/or its quality.
An example here is when the student claims their code to pass all
unit tests, but their video illustrates otherwise.

6 LESSONS, CONCLUSIONS AND
RECOMMENDATIONS

The final design of the programming assessment has evolved over
the last four years, with the last three being influenced by the
pandemic. This section details some of the lessons that were learned
during that evolution, some of the changes still being considered
and overall conclusions about this approach to assessment.

The testing strategy employed in an exam heavily affects the
skills being assessed. In other words, a completely output-based
test can give freedom of design to students, however these are often
marked in a pass/fail manner. Thus some level of manual inspection
is required to assess the quality of the design (and give partial credit
in the result that one or more tests does not pass). Unit tests can
be configured to reward students for partially correct solutions, by
having a more fine grained testing strategy, but require that the
specification(s) of the question are much more specific. This, how-
ever, can create situations where the assessment of students’ design
skills is relatively shallow. Other assessments within the course
can counter this. Choosing between these assessment and grading

design options (output vs. unit tests, coarse vs. fine grained testing,
automated vs. style and best practice assessment) should consider
the skill(s) and course learning objective(s) are being evaluated.

The time commitment for this assessment strategy is significant,
but scalable in the number of assessors (assuming they have appro-
priate programming competence). This is currently at the limit of
what we consider appropriate for small-scale (𝑛 < 3) assessment
teams, as class sizes increase, there may be a need to reduce or repri-
oritise the time spent manually inspecting code. This experience
report reflects on introductory level programming courses. As such,
were problem complexity to increase this would have implications
for how specific parts of the grading workflow are instrumented.

Students should be given sufficient opportunity to experience
the conditions and expectations of the exam. This can be for low or
no stakes in the course, but should give them the experience of all
of the principle components of the exam. For example, download
of scaffolding, completion of questions, the specific requirements
of the tests and how it will score their code. For class A, they
do a small(er)-scale assignment on a previous exam question to
familiarise them with unit testing based assessment of code quality.
Students have the opportunity to (for extra credit) demo lab work in
practical classes in a form similar to the video questions. Students
that avail of this score significantly higher in the practical exam.

Students must be clearly informed about how the assessment is
graded and of the importance of the video explanations. Addition-
ally, the detection tools and consequences of academic integrity
violations should be emphasised. This should be done as early as
possible before a student could potentially fall too far behind in their
study of the class materials, and also to give the student enough
time to process the implications and manner of the exam and its
execution. This can (and perhaps should) include providing past
exams as a point of reference (with the associated unit tests).

It should be noted that a small portion of the class was observed
completely ignoring the supplied unit tests, preferring instead to
less formally (if at all) evaluate their solutions. Some simply do not
use them, others reconstruct tests based on example output in the
exam paper using additional main methods with consideration of
the console output. Essentially this behaviour is a form of “false
friend” to the student in that it can give the impression that the
code is “good enough” whereas in reality it would fail multiple unit
tests, have method signature (or other code) errors and general
oversights that the unit tests would otherwise draw attention to.

There are still a number of aspects of the assessment process
that can be improved and which we are currently considering. First,
is to require that the task in the video is to show the execution and
results of the unit tests. This is to try and combat the population of
the course that do not use the tests, or who do not understand their
importance. Second, to integrate the testing more explicitly into
the submission process. For example, integration with the CI/CD
workflows of GitHub (as the mechanism to run the unit tests) as
this would better align with modern day software development
practices. This would also have the added benefit of generating
a trace of how the student attempts the question(s) giving more
feedback and self-reflection opportunities. Finally, the introduction
of a low stakes practice assessment (in the same vein) would help
make students aware of the complexity of the task awaiting them
and tangibly incentivise their preparation for it.

441



Online Programming Exams - An Experience Report ITiCSE 2023, July 8–12, 2023, Turku, Finland

REFERENCES
[1] Ibrahim Albluwi. 2019. Plagiarism in Programming Assessments: A Systematic

Review. ACM Trans. Comput. Educ. 20, 1, Article 6 (dec 2019), 28 pages. https:
//doi.org/10.1145/3371156

[2] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing Machinery,
New York, NY, USA, 500–506. https://doi.org/10.1145/3545945.3569759

[3] Jeremiah Blanchard, John R. Hott, Vincent Berry, Rebecca Carroll, Bob Ed-
mison, Richard Glassey, Oscar Karnalim, Brian Plancher, and Seán Russell.
2022. Stop Reinventing the Wheel! Promoting Community Software in Com-
puting Education. In Proceedings of the 2022 Working Group Reports on Innova-
tion and Technology in Computer Science Education (Dublin, Ireland) (ITiCSE-
WGR ’22). Association for Computing Machinery, New York, NY, USA, 261–292.
https://doi.org/10.1145/3571785.3574129

[4] Simon Caton, Seán Russell, and Brett A. Becker. 2022. What Fails Once,
Fails Again: Common Repeated Errors in Introductory Programming Auto-
mated Assessments. In Proceedings of the 53rd ACM Technical Symposium on
Computer Science Education - Volume Volume 1 (Providence, RI, USA) (SIGCSE
2022). Association for Computing Machinery, New York, NY, USA, 955–961.
https://doi.org/10.1145/3478431.3499419

[5] Robert Clarke and Thomas Lancaster. 2013. Commercial Aspects of Contract
Cheating. In Proceedings of the 18th ACM Conference on Innovation and Technology
in Computer Science Education (Canterbury, England, UK) (ITiCSE ’13). Association
for Computing Machinery, New York, NY, USA, 219–224. https://doi.org/10.
1145/2462476.2462497

[6] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a New
Exam Question: Parsons Problems. In Proceedings of the Fourth International
Workshop on Computing Education Research (Sydney, Australia) (ICER ’08). As-
sociation for Computing Machinery, New York, NY, USA, 113–124. https:
//doi.org/10.1145/1404520.1404532

[7] Paul Denny, James Prather, Brett A. Becker, Zachary Albrecht, Dastyni Loksa, and
Raymond Pettit. 2019. A Closer Look at Metacognitive Scaffolding: Solving Test
Cases Before Programming. In Proceedings of the 19th Koli Calling International
Conference on Computing Education Research (Koli, Finland) (Koli Calling ’19).
Association for Computing Machinery, New York, NY, USA, Article 11, 10 pages.
https://doi.org/10.1145/3364510.3366170

[8] David J. Emerson and Kenneth J. Smith. 2022. Student Use of Homework Assis-
tance Websites. Accounting Education 31, 3 (2022), 273–293. https://doi.org/10.
1080/09639284.2021.1971095 arXiv:https://doi.org/10.1080/09639284.2021.1971095

[9] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of
OpenAI Codex on Introductory Programming. In Australasian Computing Educa-
tion Conference (Virtual Event, Australia) (ACE ’22). Association for Computing
Machinery, New York, NY, USA, 10–19. https://doi.org/10.1145/3511861.3511863

[10] Judith Gulikers, Theo Bastiaens, and Paul Kirschner. 2006. Authentic Assessment,
Student and Teacher Perceptions: The Practical Value of the Five-dimensional
Framework. Journal of Vocational Education & Training 58, 3 (2006), 337–357.
https://doi.org/10.1080/13636820600955443

[11] Judith T. M. Gulikers, Theo J. Bastiaens, and Paul A. Kirschner. 2004. A Five-
Dimensional Framework for Authentic Assessment. Educational Technology
Research andDevelopment 52, 3 (2004), 67–86. https://doi.org/10.1007/BF02504676

[12] Elizabeth A. Hall, Christina Spivey, Hailey Kendrex, and Dawn E. Havrda.
2021. Effects of Remote Proctoring on Composite Examination Per-
formance Among Doctor of Pharmacy Students. American Journal of
Pharmaceutical Education 85, 8 (2021). https://doi.org/10.5688/ajpe8410
arXiv:https://www.ajpe.org/content/85/8/8410.full.pdf

[13] Richard Lobb and Jenny Harlow. 2016. Coderunner: A Tool for Assessing
Computer Programming Skills. ACM Inroads 7, 1 (feb 2016), 47–51. https:
//doi.org/10.1145/2810041

[14] Terence Nip, Elsa L. Gunter, Geoffrey L. Herman, JasonW.Morphew, andMatthew
West. 2018. Using a Computer-Based Testing Facility to Improve Student Learning
in a Programming Languages and Compilers Course. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education (Baltimore, Maryland,
USA) (SIGCSE ’18). Association for Computing Machinery, New York, NY, USA,
568–573. https://doi.org/10.1145/3159450.3159500

[15] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated Assess-
ment in Computer Science Education: A State-of-the-Art Review. ACM Trans.
Comput. Educ. 22, 3, Article 34 (jun 2022), 40 pages. https://doi.org/10.1145/
3513140

[16] Jonathan Pierce and Craig Zilles. 2017. Investigating Student Plagiarism Patterns
and Correlations to Grades. In Proceedings of the 2017 ACM SIGCSE Technical

Symposium on Computer Science Education (Seattle, Washington, USA) (SIGCSE
’17). Association for Computing Machinery, New York, NY, USA, 471–476. https:
//doi.org/10.1145/3017680.3017797

[17] Lutz Prechelt, GuidoMalpohl, Michael Philippsen, et al. 2002. Finding Plagiarisms
Among a Set of Programs With JPlag. J. Univers. Comput. Sci. 8, 11 (2002), 1016.

[18] Charles P. Riedesel, Alison L. Clear, Gerry W. Cross, Janet M. Hughes, Simon, and
Henry M. Walker. 2012. Academic Integrity Policies in a Computing Education
Context. In Proceedings of the Final Reports on Innovation and Technology in
Computer Science Education 2012 Working Groups (Haifa, Israel) (ITiCSE-WGR
’12). Association for Computing Machinery, New York, NY, USA, 1–15. https:
//doi.org/10.1145/2426636.2426638

[19] Seán Russell. 2022. Automated Code Tracing Exercises for CS1. In Proceedings
of 6th Conference on Computing Education Practice (Durham, United Kingdom)
(CEP ’22). Association for Computing Machinery, New York, NY, USA, 13–16.
https://doi.org/10.1145/3498343.3498347

[20] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. 2003. Winnowing: Local
Algorithms for Document Fingerprinting. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data (San Diego, California) (SIGMOD
’03). Association for Computing Machinery, New York, NY, USA, 76–85. https:
//doi.org/10.1145/872757.872770

[21] Judy Sheard, Martin Dick, Selby Markham, Ian Macdonald, and Meaghan Walsh.
2002. Cheating and Plagiarism: Perceptions and Practices of First Year IT Students.
In Proceedings of the 7th Annual Conference on Innovation and Technology in
Computer Science Education (Aarhus, Denmark) (ITiCSE ’02). Association for
Computing Machinery, New York, NY, USA, 183–187. https://doi.org/10.1145/
544414.544468

[22] Angela A. Siegel, Mark Zarb, Bedour Alshaigy, Jeremiah Blanchard, Tom Crick,
Richard Glassey, John R. Hott, Celine Latulipe, Charles Riedesel, Mali Senapathi,
Simon, and David Williams. 2022. Teaching through a Global Pandemic: Educa-
tional Landscapes Before, During and After COVID-19. In Proceedings of the 2021
Working Group Reports on Innovation and Technology in Computer Science Edu-
cation (Virtual Event, Germany) (ITiCSE-WGR ’21). Association for Computing
Machinery, New York, NY, USA, 1–25. https://doi.org/10.1145/3502870.3506565

[23] Sarah Silverman, Autumm Caines, Christopher Casey, Belen Garcia de Hurtado,
Jessica Riviere, Alfonso Sintjago, and Carla Vecchiola. 2021. What Happens
When You Close the Door on Remote Proctoring? Moving Toward Authentic
Assessments with a People-Centered Approach. To Improve the Academy 39, 3
(mar 2021). https://doi.org/10.3998/tia.17063888.0039.308

[24] Simon, Beth Cook, Judy Sheard, Angela Carbone, and Chris Johnson. 2013. Aca-
demic Integrity: Differences between Computing Assessments and Essays. In
Proceedings of the 13th Koli Calling International Conference on Computing Ed-
ucation Research (Koli, Finland) (Koli Calling ’13). Association for Computing
Machinery, New York, NY, USA, 23–32. https://doi.org/10.1145/2526968.2526971

[25] Simon, Judy Sheard, Michael Morgan, Andrew Petersen, Amber Settle, and Jane
Sinclair. 2018. Informing Students about Academic Integrity in Programming. In
Proceedings of the 20th Australasian Computing Education Conference (Brisbane,
Queensland, Australia) (ACE ’18). Association for Computing Machinery, New
York, NY, USA, 113–122. https://doi.org/10.1145/3160489.3160502

[26] Simon, Judy Sheard, Michael Morgan, Andrew Petersen, Amber Settle, Jane
Sinclair, Gerry Cross, and Charles Riedesel. 2016. Negotiating the Maze of
Academic Integrity in Computing Education. In Proceedings of the 2016 ITiCSE
Working Group Reports (Arequipa, Peru) (ITiCSE ’16). Association for Computing
Machinery, NY NY, USA, 57–80. https://doi.org/10.1145/3024906.3024910

[27] Patriel Stapleton and Jeremiah Blanchard. 2021. Remote Proctoring: Expand-
ing Reliability and Trust. In Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education (Virtual Event, USA) (SIGCSE ’21). Association
for Computing Machinery, New York, NY, USA, 1243. https://doi.org/10.1145/
3408877.3439671

[28] Tammy VanDeGrift. 2022. Post-Exam Videos for Assessment in Computing
Courses: See and Hear Students’ Thinking. In Proceedings of the 53rd ACM Techni-
cal Symposium on Computer Science Education V. 1 (Providence, RI, USA) (SIGCSE
2022). Association for Computing Machinery, New York, NY, USA, 230–236.
https://doi.org/10.1145/3478431.3499273

[29] Nathaniel Weinman, Armando Fox, and Marti A. Hearst. 2021. Improving In-
struction of Programming Patterns with Faded Parsons Problems. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama,
Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA,
Article 53, 4 pages. https://doi.org/10.1145/3411764.3445228

[30] Mark Zarb and Jen BirtlesKelman. 2020. Through the Lens: Enhancing Assess-
ment with Video-Based Presentation. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education (Trondheim, Nor-
way) (ITiCSE ’20). Association for Computing Machinery, New York, NY, USA,
187–192. https://doi.org/10.1145/3341525.3387376

442

https://doi.org/10.1145/3371156
https://doi.org/10.1145/3371156
https://doi.org/10.1145/3545945.3569759
https://doi.org/10.1145/3571785.3574129
https://doi.org/10.1145/3478431.3499419
https://doi.org/10.1145/2462476.2462497
https://doi.org/10.1145/2462476.2462497
https://doi.org/10.1145/1404520.1404532
https://doi.org/10.1145/1404520.1404532
https://doi.org/10.1145/3364510.3366170
https://doi.org/10.1080/09639284.2021.1971095
https://doi.org/10.1080/09639284.2021.1971095
https://arxiv.org/abs/https://doi.org/10.1080/09639284.2021.1971095
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1080/13636820600955443
https://doi.org/10.1007/BF02504676
https://doi.org/10.5688/ajpe8410
https://arxiv.org/abs/https://www.ajpe.org/content/85/8/8410.full.pdf
https://doi.org/10.1145/2810041
https://doi.org/10.1145/2810041
https://doi.org/10.1145/3159450.3159500
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3017680.3017797
https://doi.org/10.1145/3017680.3017797
https://doi.org/10.1145/2426636.2426638
https://doi.org/10.1145/2426636.2426638
https://doi.org/10.1145/3498343.3498347
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/544414.544468
https://doi.org/10.1145/544414.544468
https://doi.org/10.1145/3502870.3506565
https://doi.org/10.3998/tia.17063888.0039.308
https://doi.org/10.1145/2526968.2526971
https://doi.org/10.1145/3160489.3160502
https://doi.org/10.1145/3024906.3024910
https://doi.org/10.1145/3408877.3439671
https://doi.org/10.1145/3408877.3439671
https://doi.org/10.1145/3478431.3499273
https://doi.org/10.1145/3411764.3445228
https://doi.org/10.1145/3341525.3387376

	Abstract
	1 Introduction
	2 Background
	2.1 Authenticity
	2.2 Plagiarism and Collusion
	2.3 Autograding

	3 Context
	4 Method
	4.1 Instructor vs. Machine
	4.2 Exam Details and Timing
	4.3 Grading Workflow
	4.4 Grading

	5 Observable Outcomes
	6 Lessons, Conclusions and Recommendations
	References



