
The Impact of a Remote Live-Coding Pedagogy on Student
Programming Processes, Grades, and Lecture Questions Asked

Anshul Shah
ayshah@ucsd.edu

University of California, San Diego

Vardhan Agarwal
v7agarwa@ucsd.edu

University of California, San Diego

Michael Granado
magranado@ucsd.edu

University of California, San Diego

John Driscoll
jjdrisco@ucsd.edu

University of California, San Diego

Emma Hogan
emhogan@ucsd.edu

University of California, San Diego

Leo Porter
leporter@ucsd.edu

University of California, San Diego

William Griswold
bgriswold@ucsd.edu

University of California, San Diego

ABSTRACT
Live coding—a pedagogical technique in which an instructor plans,
writes, and executes code in front of a class—is generally considered
a best practice when teaching programming. However, only a few
studies have evaluated the effect of live coding on student learning
in a controlled experiment and most of the literature relating to live
coding identifies students’ perceived benefits of live-coding exam-
ples. In order to empirically evaluate the impact of live coding, we
designed a controlled experiment in a CS1 course taught in Python
at a large public university. In the two remote lecture sections for
the course, one was taught using live-coding examples and the other
was taught using static-code examples. Throughout the term, we
collected code snapshots from students’ programming assignments,
students’ grades, and the questions that they asked during the
remote lectures. We then applied a set of process-oriented program-
ming metrics to students’ programming data to compare students’
adherence to effective programming processes in the two learning
groups and categorized each question asked in lectures following
an open-coding approach. Our results revealed a general lack of
difference between the two groups across programming processes,
grades, and lecture questions asked. However, our experiment un-
covered minimal effects in favor of the live-coding group indicating
improved programming processes but lower performance on as-
signments and grades. Our results suggest an overall insignificant
impact of the style of presenting code examples, though we reflect
on the threats to validity in our study that should be addressed in
future work.

CCS CONCEPTS
• Social and professional topics → Computing Education.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ITiCSE 2023, July 8–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0138-2/23/07.
https://doi.org/10.1145/3587102.3588846

Adalbert Gerald Soosai Raj
asoosairaj@ucsd.edu

University of California, San Diego

KEYWORDS
live coding, programming processes, incremental development, de-
bugging, grades, lecture experience
ACM Reference Format:
Anshul Shah, Vardhan Agarwal, Michael Granado, John Driscoll, Emma 
Hogan, Leo Porter, William Griswold, and Adalbert Gerald Soosai Raj. 
2023. The Impact of a Remote Live-Coding Pedagogy on Student Program-
ming Processes, Grades, and Lecture Questions Asked. In Proceedings of the 
2023 Conference on Innovation and Technology in Computer Science Education
V. 1 (ITiCSE 2023), July 8–12, 2023, Turku, Finland. ACM, New York, NY, 
USA, 7 pages. https://doi.org/10.1145/3587102.3588846

1 INTRODUCTION
Live coding is a pedagogical technique in which an instructor writes 
code in real-time in front of students in a class [26]. In contrast 
to static-code examples, live-coding examples allow the instruc-
tor to demonstrate coding concepts and techniques in a dynamic 
and interactive way. Multiple prior studies have shown benefits 
of live coding, such as improved learning outcomes [6, 25] and 
reduced extraneous cognitive load during lectures [22]. Specifically, 
students and instructors have also reported perceived benefits to 
the programming process, such as engaging in incremental coding 
[3, 23, 25], improved debugging skills [4, 19], and better testing 
skills [3, 16].

Despite live-coding being recommended as a best practice for 
teaching programming [5], a literature review on live coding [26] 
revealed a lack of work that evaluates the empirical impact of 
live coding on student learning and programming processes. To 
bridge this gap, we conducted a quasi-experimental study during 
the Spring 2022 term at UC San Diego, a research-intensive public 
university in the United States, where a CS1 course was taught 
remotely with live-coding examples in one section and with static-
code examples in another section. The purpose of our study is to 
provide an empirical examination of unresolved questions from 
prior work, relating to students’ programming processes, learning 
outcomes, and lecture experiences.

Throughout the term, as students completed weekly program-
ming assignments, we collected snapshots of their code every time 
they ran it. We also collected students’ grades on each assignment, 
exam, and other course activities. Finally, we obtained the text of

533

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3587102.3588846
https://doi.org/10.1145/3587102.3588846
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587102.3588846&domain=pdf&date_stamp=2023-06-30


ITiCSE 2023, July 8–12, 2023, Turku, Finland Anshul Shah et al.

each question students asked in lecture via chat, enabled by the
remote technology used for lectures. Together, these sources of data
allowed us to empirically evaluate whether a live-coding pedagogy
impacts students’ programming processes and the types of ques-
tions that students asked during lectures. Specifically, we ask the
following research questions:

(1) How does a remote, live-coding pedagogy impact students’
programming processes, such as adherence to incremental
development and using debugging techniques?

(2) How does a remote, live-coding pedagogy impact student
performance on assignments and exams?

(3) How does a remote, live-coding pedagogy impact the types
of questions that students ask during lectures?

2 RELATEDWORK
2.1 Prior Live Coding Controlled Studies
Live coding has been empirically evaluated over the past couple
of decades, with numerous studies evaluating the impact of live
coding on student perceptions. However, a literature review of
live coding [26] indicated that only three prior studies have used
an experimental approach to assess the impact of live coding on
student learning [22, 25, 29].

In 2013, Rubin conducted the first controlled study that com-
pared the impact of live-coding examples and static-code examples
on students’ grades on assignments, exams, and a project [25].
The experimental design carefully controlled for the effect of the
live-coding examples by keeping all other conditions consistent
between the two groups, including the instructor, course content,
and assignments. The results indicated no significant difference in
assignment and exam grades, but students in the live-coding group
earned significantly higher grades on the final course project.

A 2016 Tan et al. used a pre- and post-test approach to mea-
sure the improvement of students’ conceptual understanding and
program implementation skills after 18 weeks of asynchronous
live-coding lecture videos [29]. The results of the study showed
that conceptual understanding did not improve from the interven-
tion, but the program implementation skills did show improvement.
However, since the study did not use a control and treatment group,
the results do not show the advantages of live-coding examples
over static-code examples.

In 2020, Soosai Raj et al. conducted a randomized, controlled
experiment to measure improvement in student learning [22]. The
study was designed such that the only difference between the two
groups was in the presentation of coding examples—the live-coding
group only saw code examples in which the instructor wrote the
code from scratch. The study found that students in the static-code
group showed slightly higher improvement between pre- and post-
tests than students in the live-coding group, although the difference
was not statistically significant. This result suggests that live coding
may not improve student outcomes in traditional assessments such
as exams that involve skills besides code writing (e.g., code tracing).

Although the results of these studies are inconclusive, we aim
to replicate these attempts to evaluate the learning impact of a
live-coding pedagogy. Further, these prior works are limited to
evaluating learning in terms of student grades; however, they do not

shed light on the impact of live coding on the specific programming
processes that students use.

2.2 Programming Process Metrics
In order to assess the impact of a live-coding pedagogy on stu-
dent programming processes, we leverage pre-existing metrics that
measure how effectively students adhere to ideal processes, such
as incremental development and effective debugging techniques.
In this section, we describe the process-oriented metrics that are
relevant to our research questions.

2.2.1 Incremental Development. The Measure of Incremental De-
velopment (MID) developed by Shah et al. measures a student’s
adherence to incremental development based on whether a student
added manageable chunks of code [27]. It was developed for CS1
programming tasks and is designed to be agnostic to the size of
the task. The metric rewards a student for writing code in smaller
chunks and not experiencing excessive struggle after large code
additions. The recent work by Charitsis et al. similarly aims to quan-
tify program decomposition, using Natural Language Processing
[8]. We note, however, that program decomposition can be slightly
different from incremental development. The metric by Charitsis
et al. defines program decomposition by the progression of functions
written by students, whereas the MID is agnostic to the number of
functions written.

2.2.2 Debugging. Since Jadud introduced the Error Quotient in
2006 [13], numerous metrics have been developed that relate to stu-
dents’ debugging processes and frequency of encountering errors
[2, 7, 15, 30, 31]. The metrics developed by Kazerouni et al. reward
students for starting the assignment early with regard to the as-
signment deadline [14], which is not the skill we aim to measure
for this experiment. The Normalized Programming State Model
[7] and the Watwin Score [31] rely on features such as time spent
working and semantic correctness of the code, which are expensive
features to obtain. However, the Repeated Error Density (RED) [2]
is not dependent on the size and programming language of the task
and accounts for cases when students encounter repeated errors
[30]. A lower score on the RED indicates that the student rarely
encountered the error or resolved the error message quickly.

2.3 In-Lecture Effects of Live Coding
There is currently little research that evaluates the impact of live-
coding examples on students during lecture. One of the few works
in this area compared the cognitive load of viewing static-code and
live-coding examples [22], which revealed students experience less
cognitive load when viewing live-coding example. Although the
work from Soosai Raj et al. evaluated the effect of bilingual instruc-
tion on the questions asked during lecture, we were moved by the
methods applied in that study. Soosai Raj et al. noted the questions
asked by students during lectures and grouped the questions into
categories based on Bloom’s taxonomy [24]. Although this previ-
ous analysis was outside the context of a live-coding pedagogy,
we plan to conduct a similar analysis by comparing the types of
questions between the treatment and control group in our study,
since our remote pedagogy enabled easy access to questions asked
by students.

534



The Impact of a Remote Live-Coding Pedagogy on Student Programming Processes, Grades, and LectureQuestions Asked ITiCSE 2023, July 8–12, 2023, Turku, Finland

3 STUDY DESIGN
3.1 Participants
Our study was conducted in a CS1 course at UC San Diego, which
is a large public R1 university. It was approved by the UC San
Diego IRB, and the IRB number is 201792. Of the 199 students
that consented to participate in the study, 91 students were in the
live-coding group and 108 students were in the static-code group.
Students were not randomly assigned to groups; they self-selected
into one of two lectures that were held at 9:30 AM or 11 AM on
Tuesdays and Thursdays each week. At the time of enrolling, they
did not know that there would be one live-coding lecture and one
static-code lecture.

We asked students to complete a pre-course survey when the
term started. In the survey, students self-reported their current
year in university, race, and prior experience with programming.
Students from each of the four years—from first year to fourth
year—were represented roughly evenly in the two groups. In the
live-coding group, 80% of students reported not having prior pro-
gramming experience, compared to 75% in the static-code group. In
the live-coding group, 50% of students self-identified as Asian, 20.5%
identified as Latinx, and 17% identified as White. In the static-code
group, 47.6% of students self-identified as Asian, 2.9% identified as
Latinx, and 13.3% identified as White. Across both lectures, less
than 10 students self-identified as any other race.

3.2 Experimental Design
We conducted our study over one academic term in Spring 2022.
We used an experimental setup similar to that in Rubin’s initial
controlled study [25]. Each week, students attended two remote
80-minute lectures, a mandatory 50-minute in-person lab, and an
optional 50-minute in-person discussion section. Students also had
the option to attend office hours, either online or in-person, hosted
by instructional assistants or the instructor.

Both groups were taught by the same instructor, who has expe-
rience teaching a CS1 course with both static-code and live-coding
examples. The slides used in each lecture were identical for both
groups, except for the 4-6 code examples per lecture that were
shown to students. Importantly, students from both groups could
access previous lecture slides, which included the static code snip-
pets presented in class. Moreover, both the live-coding group and
the static-code group were explicitly taught about incremental de-
velopment, debugging techniques, and how to write test cases in a
lecture halfway through the term. We elaborate on the impact of
this lecture in Section 6.2.

The only difference between the treatment and control group
in the remote lectures was the presentation of the code examples.
In line with previous studies that used live-coding examples [26],
no pre-written code was presented to students when the instructor
used live coding. Instead, the instructor started with an empty
Python file and wrote the code from scratch. While live coding in
front of the class, the instructor intentionally engaged in effective
programming processes, such as incremental development and
using print statements for debugging. For example, when showing
longer code examples, the instructor broke the example down into
smaller chunks and compiled the code after writing each smaller
part. Additionally, the instructor occasionally made syntactic or

semantic errors and demonstrated how to use print statements to
locate them. Because of this unique aspect of the live-coding lecture,
we hypothesize the students in the live-coding group may have
acquired and used these implicit skills in their own programming
tasks. Some sample code snippets that were developed during the
live-coding portion of the lecture can be found at the following
link: https://bit.ly/code-examples-live-vs-static.

In the static-code group, the instructor showed a slide that had
pre-written Python code on it. The code snippets were identical to
the code written during the live-coding group. However, instead
of writing the code in an IDE, the instructor annotated the code
snippet by drawing memory diagrams, listing values of variables
during execution, or other notes that may be helpful for student
comprehension.

The controlled parts of the experiment included all other aspects
of the course, such as the required lab sections, optional discussion
sections, and office hours. Lab sections typically involved students
working in pairs on short programming tasks that covered lecture
content and did not provide an opportunity for a presentation of
code examples. In each discussion section, three teaching assistants
spent 50minutes reviewing recent lecture material and had students
work through roughly 3 to 5 code tracing questions. However, we
were not able to control the office hour interactions, as the 30
teaching assistants may have had different teaching styles in the
1-on-1 interactions with students.

4 METHODS
4.1 RQ1: Programming Processes
Throughout the term, students completed 8 programming assign-
ments (PAs), each of which had two to three programming tasks.
Students were given oneweek to work on each PA andwere allowed
to use pair programming [18]. The PAs covered all of the content
taught in our CS1 course: basic syntax, conditionals, functions, for
loops, while loops, image manipulation using 2-D lists of tuples
as images, dictionaries, and reading files. Students completed the
PAs on EdStem [9], a platform that includes an online integrated
development environment (IDE). EdStem provided our research
team with snapshots at runtime across all assignments for each
student who consented to participate in the research, consistent
with our human subjects research protocol. In total, we collected
approximately 150,000 snapshots across the 8 assignments.

Although we assigned 18 total programming tasks across 8 PAs,
not every task lent itself to analysis. In some tasks, students were
not asked to write functions and were given significant scaffolding.
Similarly, some tasks in later assignments were only one function
long or did not require complex logic. Instead, we wanted to an-
alyze the longer, more complex programming tasks to collect a
fuller representation of their programming processes. Therefore,
we removed PAs 1 and 2 from our analysis, since they both included
scaffolding and did not require students to write any functions. A
member of the research team then selected one task from each
PA that required more functions or needed more complex logic
to implement than the other task(s). The exact instructions and
content of each programming task in our final data can be found at
https://bit.ly/programming-tasks.

535

https://bit.ly/code-examples-live-vs-static
https://bit.ly/programming-tasks


ITiCSE 2023, July 8–12, 2023, Turku, Finland Anshul Shah et al.

Once we decided on the six tasks to analyze, we applied a suite
of process-oriented metrics to measure incremental development
and debugging skills. Due to their flexibility and relevance to our
research questions, we applied the Measure of Incremental De-
velopment (MID) [27], which computes a student’s adherence to
incremental development, and the Repeated Error Density (RED)
[2], which represents the amount a student struggled to fix a spe-
cific error. The MID was trained and evaluated on a similar data
set to our programming tasks [27] and the RED is agnostic to the
language or size of the program being analyzed [30]. Since other
metrics required an input such as time spent in the IDE [7, 31],
which we could not collect, or require unit tests to be written [15],
which was outside the scope of our assignments, we could not
apply them. Conversely, the MID and RED metrics only require
snapshots at the time of compilation, which can be readily collected
by online IDEs. We also applied a custom metric: the proportion of
snapshots that include a print statement within a function. While
this metric is not empirically evaluated and does not fully represent
debugging skills, we chose this specific metric because the instruc-
tor used print-statement debugging during the live-coding lectures
only. Therefore, this metric may reveal whether students implic-
itly picked up the programming processes demonstrated during
live-coding lectures.

4.2 RQ2: Student Grades
We recorded the grades of all students1 throughout the term, in-
cluding those from weekly programming assignments, lab work,
and reading quizzes on the Stepik e-textbook [28]. The labs and
reading quizzes were required for students and were graded based
on correctness, with unlimited attempts allowed until the deadline.
Additionally, we collected scores from the midterm and final exams,
as well as the overall course grades.

We evaluated student performance on weekly programming
assignments (PAs), a midterm exam, a final exam, and overall grade
(which included points from weekly lab and reading quizzes). For
each student, we removed the lowest score out of the 8 PA scores
as per course policy and calculated the average PA score.

4.3 RQ3: Lecture Questions Asked
One of the unique affordances of our remote experimental setting
was access to all of the questions students asked via the Zoom chat.
Teaching assistants monitored the chat and relayed questions to
the professor that they thought would be useful to the class. Other-
wise, teaching assistants responded in the chat. We have access to
427 questions asked during the 20 lectures. Of the 427 questions,
206 were asked by the live-coding group and 221 were asked by
the static-code group. Since questions about course logistics are
irrelevant to the impact of code examples on student learning, they
were excluded, resulting in a set of 406 questions.

We used an open-coding (“affinity diagramming”) approach [11]
to categorize the student questions based on common characteris-
tics. In order to categorize questions in an unbiased manner, the
researchers were made blind to whether the questions were from

1Note that the sample size for our student grades data is higher than the sample size
for our other analyses. This occurred because more students consented to releasing
their grades data from the course than to releasing their programming process data.

Table 1: Final code book achieved through open coding and
deliberation

Label Description: “Questions about...”
Conceptual - how an element of programming works in

general (not specific to the current program)
- practical applications or real world scenarios

Syntax - why a programming character or phrase is
needed in an example
- what certain Python terms mean

Result
Explanation

- how/why a specific output was produced or
why a result was correct
- an idea of why a certain result occurred
- how variables (names or values) change

Process - the motivation for writing part of the code
- why a programming element is used to further
the current program
- why a variable was given a certain name or
assigned a specific value
- where a portion of code was written

What If - a hypothetical scenario (these are along the
lines of “What if we ...”)

the live-coding or static-code lecture by combining and randomly
ordering the questions across all lectures.

Two researchers independently coded the first 60 student ques-
tions, creating their own initial code books. Those two code books
were compared and combined to create a common code book. The
researchers then began an iterative process of individually cate-
gorizing 50 unseen student questions according to the new code
book, comparing results, discussing, and updating properties in the
code book. After each iteration, the inter-rater reliability was mea-
sured and checked against an 80% agreement threshold. Following
the third iteration, the researchers agreed on 41 (82%) of the 50
responses, resulting in a Cohen’s kappa statistic of 0.77. After this
point, the two researchers evenly divided the remaining questions
and independently coded them according to the final code book,
shown in Table 1.

5 RESULTS
5.1 RQ1: Programming Process Results
We conducted two-sample t-tests [21] to compare the MID, RED,
and our custom metric between the two groups. In each application
of the t-test, we had a sample size of well over 25 [17] and similar
distributions between groups. We used an 𝛼 value of 0.05 as our
significance threshold for all tests, and applied a Holm-Bonferroni
correction for tests with multiple comparisons on the same topic
[12]. Table 2 shows the mean, standard deviation (SD), t-statistic
(t), p-value (p), and Cohen’s effect size (d) of all t-tests conducted.
The Cohen’s effect size indicates the standardized mean difference
between the two groups (e.g., an effect size of 0.2 denotes that the
mean in one group was 0.2 standard deviations higher than the
mean in another group) [10].

536



The Impact of a Remote Live-Coding Pedagogy on Student Programming Processes, Grades, and LectureQuestions Asked ITiCSE 2023, July 8–12, 2023, Turku, Finland

Table 2: Comparison of programming process metrics be-
tween live coding (n = 90) and static code group (n = 107)

Summary Statistics
Metric Group Mean SD t-stat p d

MID Live
Static

1.75
1.77

0.98
1.07 -0.08 0.93 -0.01

RED of
TypeError

Live
Static

0.32
0.34

0.41
0.49 -0.41 0.68 -0.06

RED of
NameError

Live
Static

0.14
0.15

0.25
0.23 -0.17 0.87 -0.02

RED of
SyntaxError

Live
Static

0.21
0.27

0.30
0.46 -0.97 0.33 -0.14

Ratio of
Prints

Live
Static

0.19
0.17

0.19
0.15 0.84 0.40 0.12

5.1.1 Incremental Development. We compared the adherence to
incremental development between the two learning groups using
the Measure of Incremental Development (MID). In Table 2, the first
row summarizes the results of a two-sample t-test [21] of the overall
MID between the two groups across all six programming tasks in
our data set. When interpreting the MID, a lower value indicates
greater adherence to incremental development. The average MID
of the live-coding group was lower than the static-code group, and
the effect size minimally favors the live-coding group. However,
the high p-value suggests that the difference is not statistically
significant. In fact, when we compared the MID values across each
assignment between PA3 and PA8, none of the comparisons were
statistically significant after we applied the Holm-Bonferroni [12]
correction to our 𝛼 values.

5.1.2 Debugging. We conducted two-sample t-tests on the Re-
peated Error Density (RED) values across 5 different error types:
Type Errors, Name Errors, Syntax Errors, Value Errors, Index Errors,
and Key Errors (only found in PA7 and PA8). In this table, a lower
score indicates a lower frequency of that error occurring through-
out a student’s development process for that PA, which generally
indicates better debugging skills. Table 2 displays the RED values
for the three most common types of errors we saw among the PAs
by a significant margin: Type Errors, Name Errors, and Syntax Er-
rors. The results show a small effect size in favor of the live-coding
group across all three types of errors, though the differences are not
statistically significant. Further, the two-sample t-tests across all
error types and all assignments revealed no statistically significant
difference in the RED value between the two groups.

Table 2 also shows the average proportion of snapshots that
include a print statement inside of a function. For this metric, a
higher value indicates more frequent use of print statements inside
a function. Similar to the results of the MID and RED metrics,
we found a small effect of 0.12 in favor of the live-coding group,
although the results were not statistically significant.

5.2 RQ2: Student Grades Results
We conducted two-sample t-tests to compare students’ grades. We
found that the mean scores of the static-code group were slightly
higher than those of the live-coding group for assignments, both

Table 3: Comparison of grades between live coding and static
code learning groups

Grade (out of 100)
Item Group N Mean SD t p d

PAs Live
Static

115
126

82.50
84.38

21.75
18.58 -0.72 0.47 -0.09

Midterm
Exam

Live
Static

115
126

85.05
86.90

21.75
18.63 -0.70 0.48 -0.09

Final
Exam

Live
Static

115
126

73.19
76.19

27.44
25.64 -0.87 0.38 -0.11

Overall Live
Static

115
126

82.94
84.83

20.12
17.80 -0.77 0.44 -0.10

Table 4: Comparison of the types of questions asked between
the live coding lectures and static code lectures

Frequency of Label
Label Live Coding Static Coding

Process 32.9%
(n = 61)

33.9%
(n = 75)

Result
Explanation

18.9%
(n = 35)

18.0%
(n = 40)

What if 7.5%
(n = 14)

13.1%
(n = 29)

Conceptual 24.8%
(n = 46)

19.0%
(n = 42)

Syntax 15.6%
(n = 29)

15.8%
(n = 35)

Total 100%
(n = 185)

100%
(n = 221)

exams, and overall grades. Indeed, the effect sizes for each item in
Table 3 are favorable for the static-code group, though the p-values
are too large to identify any statistically significant differences.

5.3 RQ3: Lecture Questions Results
Table 4 displays the frequency of each label in our code book across
all 406 questions asked between the two groups. Notably, the live-
coding group asked more “Conceptual” questions than the static-
code group, but asked fewer “What if” questions. In order to test
for an association between the type of code example and the types
of questions asked, we conducted a chi-squared test [20]. Our test
returned a chi-square statistic of 4.60, which has a p-value of 0.33.
Therefore, with an 𝛼 value of 0.05, there was no relationship de-
tected between the types of questions asked by either group.

6 DISCUSSION
6.1 Findings
Our results are unable to confirm the perception among instructors
and students that live-coding examples improve students’ program-
ming processes [3, 4, 16, 19] due to the lack of significant differences
in the programming metrics between the two groups. One inter-
pretation of the minimal effect we detected is that the style of code

537



ITiCSE 2023, July 8–12, 2023, Turku, Finland Anshul Shah et al.

examples in lecture does not have a significant impact on how stu-
dents program. Within any given week of the CS1 course at our
large, public university, students attended two lectures, one lab
section, one optional discussion section, and optional tutor hours.
They also read one chapter from their interactive, online textbook
[28], completed all the shorter-form programming activities in the
textbook, and wrote two to three longer functions in their pro-
gramming assignment. Among all these weekly activities, the code
examples that are displayed in class make up only a fraction of
lectures, which themselves are only a fraction of the time spent on
learning material related to the class. Though the p-values were
ultimately insignificant, it is noteworthy that in all five metrics
in Table 2, the direction of the effect is in favor of the live-coding
group, though the effect size is minimal.

Our results on the impact of live coding on students’ grades
also revealed no significant differences, though the effect size for
all four items in Table 3 were minimally in favor of the static-
code group. The lack of a significant difference across exam or
assignment scores aligns with Rubin’s study [25]. On our exams,
students had to demonstrate declarative knowledge, such as code
tracing and identifying correct syntax, more so than procedural
knowledge, such as how to develop code. Since the lecture content
was exactly the same for the experimental and treatment groups,
we suspect that students in both groups acquired similar declarative
knowledge. This reasoning also holds true for assignment scores—
both groups had access to the same code snippets regardless of
whether the snippets were live coded or presented as static code.
Since assignment grades were given based on the correctness of
the final state of the students’ submitted code, they only needed
to demonstrate a correct implementation of the logic, which both
groups could obtain from revisiting the lecture slides.

Our analysis regarding the types of questions asked between the
two lecture groups also detected no significant relationship between
the type of questions asked and the lecture group that students were
in. One notable takeaway, however, is that the static-code group
asked more questions across the entire quarter. Unfortunately, the
interpretation for such a finding is ambiguous since it could either
be the case that students were more engaged in the static-code
lectures, so they wanted to ask more questions, or it may be that
students were more confused in the static code lectures, so they
needed to ask more questions. Similarly, we note that there was
nearly double the rate of “What if” questions asked by the static-
code group. Although the results were not statistically significant,
we believe this finding may lend some evidence to the advantages of
the dynamic aspect of live coding in showing students hypothetical
changes to the code, thereby reducing “What if” questions.

6.2 Threats to Validity
The largest threat to validity occurred in the collection of our pro-
gramming process data. Specifically, the process data was noisy in
two ways. First, students were allowed to use pair programming
while completing their assignments, even though both students
would have to submit the code separately on EdStem. Although
students could only work with a partner within their lecture sec-
tion, which meant there was limited contamination between the
two groups, they still could work together on one computer and

copy-paste the finished code onto the other partner’s computer.
Second, students could get help from teaching assistants on the
assignments, which means that the development patterns we ob-
serve may also be a result of assistance from teaching assistants
on how to design and approach a solution. Both of these potential
confounds threaten the reliability of our data.

Another major threat to validity in our experiment is that we
taught students about incremental development and print statement
debugging in a lecture during Week 5 of the course. In this lecture,
the instructor explicitly showed students in both groups an exam-
ple of incremental development and how to use print statements
to validate a program’s logic. As a result, it is hard to determine
whether the programming processes we observed are a result of the
implicit skills they may have picked up during the lecture examples
or of the explicit instruction about these skills in the Week 5 lecture.

6.3 Limitations
A significant limitation of our study is that both the static-code and
live-coding pedagogy were administered remotely. Since nearly
every student in the lectures had their cameras turned off, we do
not know to what degree students were actually engaged during the
lecture and paying attention during the code examples. Therefore,
although many universities are using blended or hybrid learning
models after the COVID-19 pandemic [1], the results of a study
that implements a live-coding pedagogy in a traditional classroom
setting may shed further light on the true impact of live coding.

A second major limitation is that we administered live coding
in a CS1 course, so our findings may not extend to more advanced
courses. A large majority of our students did not have any prior
coding experience before taking the course. It may be the case that
first-time programmers do not pick up meaningful process-oriented
skills at this stage in their learning. Therefore, we urge a replication
of this work in contexts outside of a remote, CS1 course.

7 CONCLUSION
In our quasi experiment that compares a remote, live-coding ped-
agogy to a remote, static-code pedagogy, we ultimately found no
statistically significant differences between the control and treat-
ment group on programming processes, grades, or lecture questions
asked. One explanation for our lack of statistically significant re-
sults is that students’ programming processes on assignments and
students’ grades on exams are minimally impacted by the style of
code examples in lecture. Despite the lack of statistical significance,
the sizes and directions of the effect sizes indicate that the live-
coding group exhibited slightly better adherence to programming
processes, but the static-code group earned slightly better scores
on assignments and exams. Given that live coding is hailed as a
best practice to teach programming, future work should continue
to investigate the empirical impacts of the pedagogy so that instruc-
tors may know in which contexts, courses, and modalities to use a
live-coding pedagogy.

ACKNOWLEDGMENTS
This work was supported in part by NSF award 2044473.

538



The Impact of a Remote Live-Coding Pedagogy on Student Programming Processes, Grades, and LectureQuestions Asked ITiCSE 2023, July 8–12, 2023, Turku, Finland

REFERENCES
[1] Amreen Bashir, Shahreen Bashir, Karan Rana, Peter Lambert, and Ann Vernallis.

2021. Post-COVID-19 Adaptations; the Shifts Towards Online Learning, Hybrid
Course Delivery and the Implications for Biosciences Courses in the Higher
Education Setting. Frontiers in Education 6 (2021), 1–13. https://doi.org/10.3389/
feduc.2021.711619

[2] Brett A. Becker. 2016. A New Metric to Quantify Repeated Compiler Errors for
Novice Programmers. In Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education (Arequipa, Peru) (ITiCSE ’16).
Association for Computing Machinery, New York, NY, USA, 296–301. https:
//doi.org/10.1145/2899415.2899463

[3] Jens Bennedsen and Michael E. Caspersen. 2005. Revealing the Programming Pro-
cess. In Proceedings of the 36th SIGCSE Technical Symposium on Computer Science
Education (St. Louis, Missouri, USA) (SIGCSE ’05). Association for Computing Ma-
chinery, New York, NY, USA, 186–190. https://doi.org/10.1145/1047344.1047413

[4] Naomi R. Boyer, Sara Langevin, and Alessio Gaspar. 2008. Self Direction &
Constructivism in Programming Education. In Proceedings of the 9th ACM SIGITE
Conference on Information Technology Education (Cincinnati, OH, USA) (SIGITE
’08). Association for Computing Machinery, New York, NY, USA, 89–94. https:
//doi.org/10.1145/1414558.1414585

[5] Neil C. C. Brown and GregWilson. 2018. Ten quick tips for teaching programming.
PLOS Computational Biology 14, 4 (04 2018), 1–8. https://doi.org/10.1371/journal.
pcbi.1006023

[6] Russel E. Bruhn and Philip J. Burton. 2003. An Approach to Teaching Java Using
Computers. SIGCSE Bull. 35, 4 (Dec 2003), 94–99. https://doi.org/10.1145/960492.
960537

[7] Adam S. Carter, Christopher D. Hundhausen, and Olusola Adesope. 2015. The
Normalized Programming State Model: Predicting Student Performance in Com-
puting Courses Based on Programming Behavior. In Proceedings of the Eleventh
Annual International Conference on International Computing Education Research
(Omaha, Nebraska, USA) (ICER ’15). Association for Computing Machinery, New
York, NY, USA, 141–150. https://doi.org/10.1145/2787622.2787710

[8] Charis Charitsis, Chris Piech, and John C. Mitchell. 2022. Using NLP to Quantify
Program Decomposition in CS1. In Proceedings of the Ninth ACM Conference on
Learning @ Scale (New York City, NY, USA) (L@S ’22). Association for Comput-
ing Machinery, New York, NY, USA, 113–120. https://doi.org/10.1145/3491140.
3528272

[9] Edstem. 2023. Edstem. https://edstem.org/
[10] David C. Funder and Daniel J. Ozer. 2019. Evaluating Effect Size in Psychological

Research: Sense and Nonsense. Advances in Methods and Practices in Psychological
Science 2, 2 (2019), 156–168. https://doi.org/10.1177/2515245919847202

[11] Gunnar Harboe, Jonas Minke, Ioana Ilea, and Elaine M. Huang. 2012. Computer
Support for Collaborative Data Analysis: Augmenting Paper Affinity Diagrams. In
Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work
(Seattle, Washington, USA) (CSCW ’12). Association for Computing Machinery,
New York, NY, USA, 1179–1182. https://doi.org/10.1145/2145204.2145379

[12] Winston Haynes. 2013. Holm’s Method. Springer New York, New York, NY,
902–902. https://doi.org/10.1007/978-1-4419-9863-7_1214

[13] Matthew C. Jadud. 2006. Methods and Tools for Exploring Novice Compilation
Behaviour. In Proceedings of the Second International Workshop on Computing
Education Research (Canterbury, United Kingdom) (ICER ’06). Association for
Computing Machinery, New York, NY, USA, 73–84. https://doi.org/10.1145/
1151588.1151600

[14] Ayaan M. Kazerouni, Stephen H. Edwards, and Clifford A. Shaffer. 2017. Quantify-
ing Incremental Development Practices and Their Relationship to Procrastination.
In Proceedings of the 2017 ACM Conference on International Computing Education
Research (Tacoma, Washington, USA) (ICER ’17). Association for Computing Ma-
chinery, New York, NY, USA, 191–199. https://doi.org/10.1145/3105726.3106180

[15] Ayaan M. Kazerouni, Clifford A. Shaffer, Stephen H. Edwards, and Francisco
Servant. 2019. Assessing Incremental Testing Practices and Their Impact on
Project Outcomes. In Proceedings of the 51st ACM Technical Symposium on Com-
puter Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association for
Computing Machinery, New York, NY, USA, 407–413. https://doi.org/10.1145/
3287324.3287366

[16] Michael Kölling and David J. Barnes. 2004. Enhancing Apprentice-Based Learning
of Java. SIGCSE Bull. 36, 1 (mar 2004), 286–290. https://doi.org/10.1145/1028174.
971403

[17] Saskia le Cessie, Jelle J Goeman, and Olaf M Dekkers. 2020. Who is afraid of non-
normal data? Choosing between parametric and non-parametric tests. European
Journal of Endocrinology 182, 2 (2020), E1 – E3. https://doi.org/10.1530/EJE-19-
0922

[18] Nachiappan Nagappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Kai Yang,
Carol Miller, and Suzanne Balik. 2003. Improving the CS1 Experience with
Pair Programming. In Proceedings of the 34th SIGCSE Technical Symposium on
Computer Science Education (Reno, Navada, USA) (SIGCSE ’03). Association for
Computing Machinery, New York, NY, USA, 359–362. https://doi.org/10.1145/
611892.612006

[19] John Paxton. 2002. Live Programming as a Lecture Technique. J. Comput. Sci.
Coll. 18, 2 (dec 2002), 51–56.

[20] Karl Pearson. 1900. X. On the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it can
be reasonably supposed to have arisen from random sampling. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50, 302 (July
1900), 157–175. https://doi.org/10.1080/14786440009463897

[21] Harry O. Posten. 1984. Robustness of the Two-Sample T-Test. Springer Netherlands,
Dordrecht, 92–99. https://doi.org/10.1007/978-94-009-6528-7_23

[22] Adalbert Gerald Soosai Raj, Pan Gu, Eda Zhang, Arokia Xavier Annie R, Jim
Williams, Richard Halverson, and Jignesh M. Patel. 2020. Live-Coding vs Static
Code Examples: Which is Better with Respect to Student Learning and Cognitive
Load?. In Proceedings of the Twenty-Second Australasian Computing Education
Conference (Melbourne, VIC, Australia) (ACE’20). Association for Computing Ma-
chinery, New York, NY, USA, 152–159. https://doi.org/10.1145/3373165.3373182

[23] Adalbert Gerald Soosai Raj, Jignesh M. Patel, Richard Halverson, and Er-
ica Rosenfeld Halverson. 2018. Role of Live-Coding in Learning Introduc-
tory Programming. In Proceedings of the 18th Koli Calling International Con-
ference on Computing Education Research (Koli, Finland) (Koli Calling ’18). As-
sociation for Computing Machinery, New York, NY, USA, Article 13, 8 pages.
https://doi.org/10.1145/3279720.3279725

[24] Adalbert Gerald Soosai Raj, Hanqi Zhang, Viren Abhyankar, Saswati Muker-
jee, Eda Zhang, Jim Williams, Richard Halverson, and Jignesh M. Patel. 2019.
Impact of Bilingual CS Education on Student Learning and Engagement in a
Data Structures Course. In Proceedings of the 19th Koli Calling International
Conference on Computing Education Research (Koli, Finland) (Koli Calling ’19).
Association for Computing Machinery, New York, NY, USA, Article 24, 10 pages.
https://doi.org/10.1145/3364510.3364518

[25] Marc J. Rubin. 2013. The Effectiveness of Live-Coding to Teach Introductory
Programming. In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education (Denver, Colorado, USA) (SIGCSE ’13). Association for Comput-
ing Machinery, New York, NY, USA, 651–656. https://doi.org/10.1145/2445196.
2445388

[26] Ana Selvaraj, Eda Zhang, Leo Porter, and Adalbert Gerald Soosai Raj. 2021. Live
Coding: A Review of the Literature. In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1 (Virtual Event,
Germany) (ITiCSE ’21). Association for Computing Machinery, New York, NY,
USA, 164–170. https://doi.org/10.1145/3430665.3456382

[27] Anshul Shah, Michael Granado, Mrinal Sharma, John Driscoll, Leo Porter,William
Griswold, and Adalbert Gerald Soosai Raj. 2023. Understanding and Measuring
Incremental Development in CS1. In Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education (Toronto, ON, Canada) (SIGCSE ’21).
Association for Computing Machinery, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3545945.3569880

[28] Stepik. 2023. Stepik. https://stepik.org/course/84164
[29] Sheng-Rong Tan, Yu-Tzu Lin, and Jia-Sin Liou. 2016. Teaching by demonstration:

programming instruction by using live-coding videos. In Proceedings of EdMedia
+ Innovate Learning 2016. Association for the Advancement of Computing in
Education (AACE), Vancouver, BC, Canada, 1294–1298. https://www.learntechlib.
org/p/173121

[30] Maureen M. Villamor. 2020. A Review on Process-oriented Approaches for
Analyzing Novice Solutions to Programming Problems. Research and Practice in
Technology Enhanced Learning 15, 1 (Apr 2020), 8. https://doi.org/10.1186/s41039-
020-00130-y

[31] Christopher Watson, Frederick W.B. Li, and Jamie L. Godwin. 2013. Predicting
Performance in an Introductory Programming Course by Logging and Analyzing
Student Programming Behavior. In 2013 IEEE 13th International Conference on
Advanced Learning Technologies. 319–323. https://doi.org/10.1109/ICALT.2013.99

539

https://doi.org/10.3389/feduc.2021.711619
https://doi.org/10.3389/feduc.2021.711619
https://doi.org/10.1145/2899415.2899463
https://doi.org/10.1145/2899415.2899463
https://doi.org/10.1145/1047344.1047413
https://doi.org/10.1145/1414558.1414585
https://doi.org/10.1145/1414558.1414585
https://doi.org/10.1371/journal.pcbi.1006023
https://doi.org/10.1371/journal.pcbi.1006023
https://doi.org/10.1145/960492.960537
https://doi.org/10.1145/960492.960537
https://doi.org/10.1145/2787622.2787710
https://doi.org/10.1145/3491140.3528272
https://doi.org/10.1145/3491140.3528272
https://edstem.org/
https://doi.org/10.1177/2515245919847202
https://doi.org/10.1145/2145204.2145379
https://doi.org/10.1007/978-1-4419-9863-7_1214
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/3105726.3106180
https://doi.org/10.1145/3287324.3287366
https://doi.org/10.1145/3287324.3287366
https://doi.org/10.1145/1028174.971403
https://doi.org/10.1145/1028174.971403
https://doi.org/10.1530/EJE-19-0922
https://doi.org/10.1530/EJE-19-0922
https://doi.org/10.1145/611892.612006
https://doi.org/10.1145/611892.612006
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1007/978-94-009-6528-7_23
https://doi.org/10.1145/3373165.3373182
https://doi.org/10.1145/3279720.3279725
https://doi.org/10.1145/3364510.3364518
https://doi.org/10.1145/2445196.2445388
https://doi.org/10.1145/2445196.2445388
https://doi.org/10.1145/3430665.3456382
https://doi.org/10.1145/3545945.3569880
https://doi.org/10.1145/3545945.3569880
https://stepik.org/course/84164
https://www.learntechlib.org/p/173121
https://www.learntechlib.org/p/173121
https://doi.org/10.1186/s41039-020-00130-y
https://doi.org/10.1186/s41039-020-00130-y
https://doi.org/10.1109/ICALT.2013.99

	Abstract
	1 Introduction
	2 Related Work
	2.1 Prior Live Coding Controlled Studies
	2.2 Programming Process Metrics
	2.3 In-Lecture Effects of Live Coding

	3 Study Design
	3.1 Participants
	3.2 Experimental Design

	4 Methods
	4.1 RQ1: Programming Processes
	4.2 RQ2: Student Grades
	4.3 RQ3: Lecture Questions Asked

	5 Results
	5.1 RQ1: Programming Process Results
	5.2 RQ2: Student Grades Results
	5.3 RQ3: Lecture Questions Results

	6 Discussion
	6.1 Findings
	6.2 Threats to Validity
	6.3 Limitations

	7 Conclusion
	Acknowledgments
	References



