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ABSTRACT 
Similarity checking is a common approach for detecting cheating 
in programming courses. A known limitation is high rates of 
similar pairs for programs lacking variability in possible solutions, 
especially for small programs. We experienced this issue in our 
CS1 course, where similarity checking in early weeks yielded 
many highly-similar pairs, many of which were not likely due to 
copying. Yet, we wish to catch copying students early, so that we 
can intervene and help those students avoid developing copying 
habits that may cause them trouble later. Our approach is to 
modify the program specifications to include variability-inducing 
requirements, namely places in the specifications where students 
make choices in their solutions, where different choices reduce 
the similarity scores. Those variability-inducing requirements are 
intentionally designed to avoid making the problem much harder 
for students. Examples of variability-inducing requirements 
include adding requirements to check for invalid input, or 
counting items. Such requirements have many different possible 
ways of implementing each. Essentially, variability-inducing 
requirements decrease the odds that two students would submit 
programs scored as highly-similar by a similarity checker, even 
for small programs. For 5 programs in our CS1 course, we added 
some variability-inducing requirements. Compared to an earlier 
term, the similarity checker’s highly-similar-pairs rate dropped 
from 52% to 20% on average. Students’ scores stayed the same 
from 98% to 96%, though time did increase from 18 min to 31 min 
on average. Adding such requirements helps instructors to do 
similarity detection and perform early interventions if desired. 
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1 INTRODUCTION 

Similarity detection tools [1][2], [3], 4 help instructors detect 
cheating on programming assignments, aka labs. However, if a 
lab’s solutions don’t have much variability, then similarity due to 
copying is hard to distinguish from coincidental similarity, 
resulting in a long unuseful similarity list. Figure 1 provides an 
example list, where 490 solution pairs have high similarity scores 
above 9.0, using a MOSS-based [2] similarity checker that outputs 
values from 0-10.0. For labs with low-variability solutions, which 
often dominate early labs in a class, the long similarity lists may 
cause instructors to skip cheating detection for those labs. 
Unfortunately, skipping cheating detection can lead to students 
developing a habit of copying, which may get them in trouble 
later, such as doing poorly on exams or being caught cheating on 
later labs.  

 

Figure 1: Similarity detector output list, without added 
variability-inducing requirements, is quite lengthy.  

Figure 2 provides an example scenario. In this example, assume a 
priori that Student B copied from Student A, with similar code 
highlighted, yielding the similarity score of 10.0 in Figure 1. 
However, assume a priori that Student C did not copy but 
coincidentally wrote a very similar solution, also yielding a 10.0 
similarity score with A. Student D did not copy either, yielding a 
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5.2 similarity score with A. Labs with low-variability solutions 
have too many coincidentally-similar pairs like (A, C) that are 
hard for instructors to distinguish from pairs like (A, B). These 
“false positives” can create excessive work for instructors, who 
cannot determine whether students A, B, or C are copying from 
each other.  

 
Figure 2: Code similarity for a lab, with no variability-
inducing requirements introduced yet. The highlighted text 
is what the similarity checker considers similar compared 
to Student A; the checker outputs that Student B has 10.0 
similarity, Student C has 10.0 similarity, and Student D has 
5.2 similarity. 
 
Many approaches to reducing the number of highly-similar 
students focus on improving the similarity detection tool itself, 
such as improving string-, graph-, or metric-based comparison 
[5], [6]. Some tools exclude small files to reduce false positives [7]. 
Some research [8] has examined how detection tools behave when 
students modify copied code. One approach aims to detect the 
original in a set of similar programs [9]. Some suggest looking 
beyond just code, to also consider comments and other features 
[10]. Many suggest going beyond similarity detection, such as 
requiring students to commit code and using machine learning to 

detect oddities [11], or similarly to allow resubmission for higher 
scores and detecting oddities in that history [12]. 

We focus on modifying the lab assignment itself to reduce 
coincidental similarity. Our approach introduces variability-
inducing requirements to a lab: requirements that give students 
more implementation choices, yet don’t make the program 
substantially harder. More solution flexibility yields fewer 
coincidentally-similar solutions, meaning the remaining similar 
pairs may be more likely to instances of copying. 

This paper describes our efforts to introduce variability-inducing 
requirements in early week labs in a class. Our experiments 
showed that the number of highly-similar pairs of students 
decreased, while scores stayed about the same, though time spent 
did increase. Instructors can follow a similar procedure in their 
classes to enable more effective similarity checking on their labs 
too. 

2 ADDING VARIABILITY-INDUCING 
REQUIREMENTS INTO OUR CS1 CLASS’S LABS 

For years, we were frustrated by not being able to effectively use 
similarity checking in the early weeks of our introductory 
programming (CS1) class, due to excessively-long similarity lists. 
Our CS1 is offered every 10-week quarter at a large public state 
university. The class has 300-500 students (half computing majors, 
half in other science/engineering majors that require CS1), with 
two instructor-led 80-min lecture sessions and one teaching-
assistant-led 110-minute lab session per week, in C++. The class 
had 329 students in Winter 2022 and 539 students in Fall 2022, 
which are the terms compared below. The class uses a zyBook 
[13], with weekly: before-lecture interactive readings having ~100 
questions (Participation Activities or PAs), ~20 code reading or 
writing homework problems (Challenge Activities or CAs), and 5-
8 weekly programming assignments (Lab Activities or LAs). All 
are auto-graded with auto-feedback, partial credit, and unlimited 
resubmissions. The course grade is typically 10% PAs, 10% CAs, 
20% LAs, 5% class participation, and the remaining 50-60% from a 
midterm exam and final exam, taken in-person, half multiple-
choice and half code-writing.  

We examined our past CS1 offering from Winter 2022. Many labs 
in Weeks 1-5 had similarity lists so long that we could not cheat 
check those labs. Week 1 and 2 labs are relatively easy, covering 
input/output, variables, assignments, and math functions. So we 
focused on Weeks 3, 4, and 5, which covered Branches (3), While 
Loops (4), and For Loops / Strings (5). Those topics tend to be more 
challenging than in Weeks 1 and 2, and thus copying becomes 
more likely. Table 1 summarizes the 5 labs we chose. Labs 1 and 2 
are from Week 3, Lab 3 from Week 4, and Labs 4 and 5 from Week 
5.  
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Table 1: The 5 selected labs, and the added variability-
inducing requirements. 

Lab summary Added requirements 
Lab 1: Largest number: Output the 
largest number given three integers 

Output the instances of the 
largest number 

Lab 2: Leap year: Given year, write 
a function returning whether leap 
year 

Output whether the year is 
also a century year (evenly 
divisible by 400) 

Lab 3: Countdown until matching 
digits: Given an integer, countdown 
until both digits are identical 

Output the distance from 
the start and end number 

Lab 4: Count input length: Output 
number of characters excluding 
periods, exclamation marks, or 
question marks 

Output the number of end-
of-sentence punctuation 
characters found 

Lab 5: Output inclusive/exclusive 
range: Given two numbers, output 
every number in the range 

Based on one more input, 
include or exclude the high 
/ low bounds in the range 

The table also summarizes the variability-inducing requirements 
that we added to each lab, in our Fall 2022 CS1 offering. 

For example, Lab 3’s original requirements asked students to read 
an input number 11-100, and countdown until digits match, as in 
input 46 yielding 46 45 44. Some student solutions were shown 
earlier in Figure 2. In our roughly 300-student class, that lab had 
490 pairs of students with a similarity score greater than 9.0, 
which is generally the threshold above which copying students 
may appear. Not only is that number of pairs too many for us to 
examine, but we usually could not determine cheating by looking 
at pairs because the similarity could have been coincidental. To 
induce variability in the solution, we added a requirement that the 
program also output the distance from the start to end numbers. 
This simple added requirement has various implementations. 
Figure 3 shows, via underlining, how Students A and C (from 
Figure 2) chose two different implementations of the new 
requirement. 

Student A used an in-line arithmetic operation to output the 
distance between start and end numbers, whereas Student C 
initialized a counter and incremented the counter in the while 
loop. Those two solutions drop the similarity score from 10.0 to 
8.8. Note that more possible solution approaches exist, such as 
incrementing using “count += 1” or “count = count + 1” or 
increasing the counter before decrementing in the while loop. 
Also, students could choose to calculate the distance in an 
intermediate variable before outputting. 

Ideally, the additional variability-inducing requirements should 
not make the lab substantially more difficult. For Lab 3 above, 
students already had labs using arithmetic operations in cout 
statements, and already learned the concept of counters and how 
to increment by 1. 

 
Figure 3: Code solutions for Lab 3, with a variability-
inducing requirement introduced. Student C, who did not 
copy from A, chose a different solution approach, receiving 
a similarity score of 8.8, dropping C’s similarity with A 
below 9.0. 
 
But now the program has many different solutions, and the odds 
of coincidentally-similar solutions is reduced. As such, the added 
requirement greatly reduces the size of the similarity list; for 
example, Figure 4 shows that the similarity list from Figure 1 was 
reduced from 490 pairs down to 103 pairs. Copying students 
would be easier to detect in that smaller list. 

Figure 4: Similarity detector output list, with variability-
inducing requirements added, is much shorter. 
 
As another example, Lab 1 originally asked the student to output 
the max of three input numbers. We added the requirement that 
the student also output the number of times that the largest 
number appeared in those three numbers. That additional 
requirement logically is itself easier than the original problem, but 
can be done in different ways as seen in Figure 5. For example, a 
student could, at the program’s end, use a counter to count how 
many times the largest value matched one of the inputs. Or they 
could count as the max was being determined. There are several 
other ways. 

For most labs, we only introduced one new variability-inducing 
requirement, but Lab 5 also altered an existing requirement. 
Previously, the lab asked for a range in “increments of 10.” 
However, to increase the number of possible solutions, we altered 
the range to increment by 1, allowing for increment operators 
such as “i++” and “++i” in addition to “i += 1” and “i = i + 1”. 
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Figure 5: Code solutions for Lab 1. Student A uses a counter 
at the end of the program, but student C increments the 
counter while checking for max. C has a similarity score of 
8.1 vs A. 
 
As with other labs, we added a new variability-inducing 
requirement in Lab 5 wherein a third input, which could be 0 or 1, 
would indicate whether the range would be inclusive or exclusive 
of its low/high bounds. Again, many solution approaches exist. 
Figure 6 shows two such approaches; Student A introduced new 
variables for the bounds, and set those variables according to the 
third input, whereas Student C modified the for loop’s 
initialization by adding the fourth input, and modified the for 
loop’s ending condition by subtracting the fourth input. More 
choices exist as well. The inclusive/exclusive approach adds a bit 
of difficulty but not much. 

Figure 6: Code solutions for Lab 5. Student C has a similarity 
with A score of 8.5. 

Labs 1, 2, 3, and 5 all used variations of an approach that adds 
simple requirements to the existing ones, where the added 
requirement has multiple implementation choices. Lab 4 was 
somewhat unique, in that we generalized an existing requirement. 
Previously, it asked to check for “periods, exclamation marks, and 
question marks”, leading to nearly all students creating an 
expression with the checks in that same order: if (c == ‘.’ || c == ‘!’ 
|| c == ‘?’). We generalized by merely asking for “end-of-sentence 
punctuation characters”, such that students tended to use 
different orders. Figure 7 shows two examples provided in the lab 
specifications to clarify what “end-of-sentence punction 
characters” should be included. To avoid implying an order, the 
first example used an exclamation point followed by a period, 
while the second example used a question mark, then a period, 
then an exclamation point. 

 
Figure 7: Two example sentences for Lab 4. 

3 RESULTS 
Figure 8 provides similarity results of our adding variability-
inducing requirements to labs, comparing the original 5 labs from 
Winter 2022 vs. those labs in the Fall 2022 term with the new 
requirements added. The number of pairs above 9.0 similarity, 
with 9.0 chosen from our past cheating investigation experience, 
dropped from an average of 687 pairs per lab to 135 pairs per lab, 
for an 80% reduction (p = 0.0056, using a two-sample equal-
variance one-tailed t test). 

 
Figure 8: # of pairs of students with similarity score >= 9.0. 
 
We have also begun doing cheat checking not just by seeking out 
the highest code pairs, but by seeking the students who have high 
similarity (above 9.0) with classmates. This is especially useful to 
focus our limited time on students who seem to be copying on 
many labs. Thus, Figure 9 shows the % of students on each lab who 
have at least one above-9.0 similarity with any other student. 
Whereas originally 65% of all Winter 2022 students were involved 
in a high-similarity pair, after adding the variability-inducing 
requirements, only 22% were found in Fall 2022 -- a 66% reduction 
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(p = 0.0005). Note: The figure only considers students who actually 
submitted the lab, as that is most proper in determining the %, 
though that value is close to the same as considering all students 
since most students did all five labs in both terms. 

Figure 9: % of submitted students with similarity score >= 
9.0. 
 
To determine whether adding variability-inducing requirements 
made the labs harder for students, we examined the average lab 
scores and time spent. Figure 10 shows students receiving on 
average score of  98% in Winter 2022 and 96% in Fall 2022, with 
that small difference not being statistically significant (p = 0.174, 
using a two-sample unequal-variance one-tailed t test). 

Figure 10: Average lab scores (%). 

 

Figure 11: Average time spent (minutes). 
Figure 11 shows students spending an average of 18 minutes in 
Winter 2022 vs 31 minutes in Fall 2022 (p = 0.0045, using a two-
sample equal-variance one-tailed t test). Thus, lab scores stayed 
relatively the same, but time spent increased after introducing 
variability-inducing requirements. This makes sense, because the 
new labs involved some more work to implement the variability-

inducing requirements, but that work wasn’t substantially more 
complex, yielding increased time but the same scores. 

4 HOW TO ADD VARIABILITY-INDUCING 
REQUIREMENTS 

Based on our experiences, we developed some general guidelines 
for adding variability-inducing requirements into labs that 
otherwise may yield numerous coincidentally-similar pairs. The 
main technique we used to add the new requirements centered 
around adding requirements simpler than the main ones for that 
lab, such as:  

• Adding a check for invalid input (divide by zero). Such checks 
can go in many different places.  

• Asking for output to be formatted more cleanly, such as 
outputting a comma separated list but saying that the last 
number should not have a comma. Such formatting can be 
done in various ways using output statements in different 
places.  

• Asking for complementary computations, such as asking not 
just for all numbers in a string but also for all non-numbers in 
a string. Many choices exist on how to get the complement, 
such as at the same time, or done separately afterwards.  

• Adding conditions in a for loop that only apply to the first or 
last item, which can be done via different initializations, by 
branches in the loop, and more.  

• Adding a counter or counting component, which can be done 
in many ways, either throughout the main solution, or near 
the end of the solution.  

Another technique we discovered was to generalize how a 
problem was stated, so that students wouldn’t all create the same 
ordering of items. The punctuation example above (Lab 4) was one 
example. Another was in how we wrote large equations; we can 
reformat them such that they look less like a program equation, 
so that there are many ways to convert the equation into a 
program.  

Another approach, which we did not use, is to teach multiple 
styles. For example, an instructor can tell students that they can 
use i++ or ++i in for loops, and then intentionally switch between 
the two styles while teaching. Or, an instructor could teach that 
variables can optionally be declared on the same line, as in “int x, 
y”. This can create even more variation in students’ solutions. We 
did not use this approach because we like to keep things simpler 
for the students initially, but we notice students tend to use 
different styles from our class (often when copying from online 
solutions), and copying students are more easily detected when 
they use the same style yet that style has variations across the 
class. 

5 DISCUSSION / THREATS TO VALIDITY 
In both terms, we showed students the power of the similarity 
checker, with our goal being to deter cheating. But this could help 
some students learn how to beat a similarity checking. Of course, 
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those students might not appear on the high-similarity list, but 
this is an issue to consider in any work involving a similarity 
checker. 

Fall 2022 had two instructors teaching the various sections, while 
Winter 2022 had only one of those instructors teaching all 
sections. We don’t believe this influenced results, as the two 
instructors coordinated closely and basically taught the same class 
that term (with identical labs, exams, schedules, policies, etc.), and 
because all students were treated as one large class that term for 
purposes of similarity checking, but we mention the fact for 
completeness.  

Fall 2022 experimented with a new late policy, allowing students 
to submit after a target date with a 1% per day penalty, up to 7 
days late. This could have some impact on cheating by reducing 
pressure around deadlines, but likely not nearly as large of an 
impact as seen in the data presented above. 

We only looked at labs in Weeks 3, 4, and 5. Ideally, this approach 
would be used in Week 2 as well, because we do end up finding 
some students cheating in Weeks 2 and even in Week 1, usually 
after catching them in a later week like Week 6, and then looking 
back at their earlier weeks. 

Reducing high similarity pairs is a key goal of this work.  But, a 
secondary benefit of the added requirements is that, even for pairs 
rated as highly similar by a similarity detection tool, the added 
requirements introduce some variability that an instructor might 
notice even if the similarity detection tool deems the code the 
same. This can help an instructor decide whether programs were 
copied or are coincidentally similar. 

Ideally, we want to analytically quantify the impact that a 
variability-inducing requirement has on a set of possible 
solutions. Future work will be looking at actual solutions to a lab 
before and after adding variability-inducing requirements and 
determining the probability of each possible solution appearing. 
This work would help with the development of a variability score 
that suggests what score is recommended to minimize the 
possibility that two students had the exact same code by chance. 

6 CONCLUSION 
Similarity detection remains a central technique for detecting 
cheating in programming classes. Having found similarity 
detection weak for certain labs due to excessively long similarity 
lists, especially in early weeks of a course and smaller programs, 

we intentionally introduced variability-inducing requirements 
into our lab requirements for certain labs. Doing so reduced the 
list sizes by 80%, by reducing the likelihood of coincidental 
similarity. These smaller lists can then be checked for copying by 
instructors. We described techniques that instructors can use to 
introduce such requirements into their labs; more surely exist as 
well. Our goal ultimately is to catch copying students early 
enough that, instead of giving them an F for cheating across many 
weeks, we can apply a smaller penalty and correct their behavior 
so that they can ultimately succeed in the course. 
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