
Investigating Student Errors in Code Refactoring
Eduardo Oliveira
Utrecht University
The Netherlands

e.carneirodeoliveira@uu.nl

ABSTRACT
Learning to develop code of good quality is challenging. One way
to improve code quality is through code refactoring. Students make
several mistakes when refactoring code. This research project aims
to comprehend student errors in code refactoring, as well as to eval-
uate how the use of automated tools can help students remediate
these errors.

CCS CONCEPTS
• Social and professional topics → Computing education;
Software engineering education.

KEYWORDS
code refactoring; code quality; refactoring misconceptions; student
refactoring errors; refactoring tools; programming education
ACM Reference Format:
Eduardo Oliveira. 2023. Investigating Student Errors in Code Refactoring. In
Proceedings of the 2023 Conference on Innovation and Technology in Computer
Science Education V. 2 (ITiCSE 2023), July 8–12, 2023, Turku, Finland. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3587103.3594146

1 CONTEXT AND MOTIVATION
Writing code of good quality is a challenge for students. Code refac-
toring is a common approach to support the development of high
quality code. Refactoring code may contribute in different ways to
software development, such as an increase in code maintainability
and comprehension. When refactoring code, students take various
incorrect refactoring steps. These errors might be caused by mis-
conceptions that students hold. Previous studies in code refactoring
mostly focus on other topics, such as the use of automated tools for
teaching, but little has been investigated on the errors that students
make when refactoring code. The present research project aims to
address this gap, as well as to evaluate how the use of automated
tools can help with the remediation of student refactoring errors.

2 BACKGROUND
Stegeman et al. [9] describe code quality as "an aspect of software
quality that concerns directly observable properties of code", such as
the organization of the control flow, use of expressions and code
structure in terms of decomposition and modularization. Recent
ITiCSE working groups have investigated the perception of code

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE 2023, July 8–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0139-9/23/07.
https://doi.org/10.1145/3587103.3594146

quality from the perspective of students, educators and professional
developers [2], as well as the quality of example programs used in
textbooks from CS1 courses [1].

One way to address code quality in programming courses is
through the teaching of code refactoring. Fowler [3] defines refac-
toring as a "change made to the internal structure of a software (...)
without changing its observable behavior". Due to the potential bene-
fits that refactoring code may bring to programmers, such as better
code comprehension and bug detection [3], educators have taught
code refactoring to novice CS students.

Professional tools have been used to support the teaching of
refactoring. However, using such tools for code refactoring may
be hard for students, since these tools are often too advanced for
novices and not designed to support learning [5]. The recent emerge
and dissemination of AI models in education, such as ChatGPT and
Copilot, may help students with code refactoring. However, this
still needs to be investigated.

Another approach is the development of educational tools and
resources for code refactoring. For instance, Ureel II and Wallace
[10] have designed a tool that assists with the detection of student
programming antipatterns while attempting to salvage promising
portions of their code. Izu et al. [4] have proposed a resource to
help students identify and refactor code smells when writing condi-
tional statements. Keuning et al. [7] have developed the Refactoring
Programming Tutor (RPT)1, a tutoring system that helps students
improve functionally correct code.

In another study, Keuning et al. [6] performed an experiment in
which 133 students improved code of six programming exercises
present in RPT. Their analysis include general aspects of student
refactoring behavior when using the system, including the number
of students who completed each exercise or asked for hints to solve
a specific code quality issue. The study does not address specific
aspects of student refactoring steps, such as student errors when
refactoring code.

3 PROBLEM STATEMENT
Currently, there is little known about how students approach refac-
toring, such as the steps to remove code smells and the errors
that students make. It is also unclear how the use of supporting
tools can contribute to the student learning of code refactoring and
remediation of refactoring errors.

4 RESEARCH GOALS
The main goals of this research project are to explore student errors
when refactoring code and develop supporting tools to remediate
these errors. The research questions that guide this project are:

1http://hkeuning.nl/rpt

605

https://doi.org/10.1145/3587103.3594146
https://doi.org/10.1145/3587103.3594146
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587103.3594146&domain=pdf&date_stamp=2023-06-29


ITiCSE 2023, July 8–12, 2023, Turku, Finland Eduardo Oliveira

● Defining the concept of
refactoring misconception (RM)

● Identifying RMs in student code

● Investigating student reasoning
behind code refactoring

● Improving the set of RMs

● Incorporating RMs into RPT

● Analyzing the usefulness of RPT
for teaching code refactoring

● Extending the study of RMs to
object-level refactorings

● Investigating the use of AI
models for teaching refactoring

Phase 1 (RQ1)

July 2023

Phase 2 (RQ2) Phase 3 (RQ3) Future Phases (RQ4, RQ5)

Figure 1: Research Project Plan

RQ1: What are the common refactoring misconceptions that
students hold when refactoring simple programs? To which code
quality issues are they connected?

RQ2:What are the student reasonings behind their refactoring
misconceptions?

RQ3: How can the findings on code refactoring misconceptions
be incorporated into a refactoring tool?

RQ4: What are the common refactoring misconceptions that
students hold regarding object-level refactorings?

RQ5: How can the use of AI models impact the teaching and
learning of code refactoring?

5 METHOD
Figure 1 summarizes the research project plan. For RQ1, we ana-
lyzed the dataset from Keuning et al.’s [6] experiment. This dataset
contains program snapshots of students working on refactoring
exercises from RPT. In our analysis, we used grounded theory to
identify and categorize incorrect refactoring steps student took
when refactoring code. We define such an error as a refactoring
misconception [8]: A refactoring misconception (RM) is an error
made by a programmer when refactoring semantically correct code
resulting in incorrect code. The error shows an inadequate understand-
ing of a particular programming concept. As a result of the analysis,
we have identified 25 code refactoring misconceptions.

The first phase of our research project focused on what are the
students’ incorrect refactoring steps. However, we still need to
comprehend why students take particular steps. To answer this
question (RQ2) and to extend our set of RMs, we have recently
carried out a think-aloud experiment with 12 CS students working
on five refactoring exercises. Each exercise was functionally correct,
but contained a number of code quality issues. The student task
was to remove these issues with code refactoring while verbalizing
their ideas. Data analysis for this study involves grounded theory
and is currently in progress.

From the think-aloud study, we envision to better comprehend
student reasoning when taking incorrect refactoring steps. This
understanding may help us with the next phases, which involves
incorporating the refactoring misconceptions into RPT. Currently,
the tutoring system cannot recognize these misconceptions. We
plan to make RPT detect the most common misconceptions, as well
as to offer adequate hints and feedback concerning these miscon-
ceptions. Thereafter for RQ3, we plan to verify the usefulness of
these changes in RPT for students working on refactoring exercises.

Possible future directions for this research project include extend-
ing the study of code refactoring misconceptions to more advanced
programming topics, such as object-level design. Another direction
could be the investigation of the use of AI models, such as ChatGPT
or Copilot, for the teaching and learning of code refactoring.

6 CONTRIBUTIONS
Our current contributions are the introduction of a formal definition
for the concept of refactoring misconceptions and the development
of a structured collection of such refactoring misconceptions. A full
description of the RMs and code examples can be found online.2 As
future contributions, we first expect to obtain an insight into the
underlying reasonings behind student RMs. Later, we foresee to
improve an existing refactoring tutoring system to identify those
misconceptions, as well as to investigate the effects for students
using such a tool for learning code refactoring.

REFERENCES
[1] Jürgen Börstler, Mark S Hall, Marie Nordström, James H Paterson, Kate Sanders,

Carsten Schulte, and Lynda Thomas. 2010. An evaluation of object oriented
example programs in introductory programming textbooks. SIGCSE Bulletin
(2010).

[2] Jürgen Börstler, Harald Störrle, Daniel Toll, Jelle Van Assema, Rodrigo Duran,
Sara Hooshangi, Johan Jeuring, Hieke Keuning, Carsten Kleiner, and Bonnie
MacKellar. 2018. " I know it when I see it" Perceptions of Code Quality: ITiCSE’17
Working Group Report. In ITiCSE.

[3] Martin Fowler. 2018. Refactoring: improving the design of existing code.
[4] Cruz Izu, Paul Denny, and Sayoni Roy. 2022. A Resource to Support Novices

Refactoring Conditional Statements. In ITiCSE.
[5] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code quality issues in

student programs. In ITiCSE.
[6] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2020. Student refactoring

behaviour in a programming tutor. In Koli Calling.
[7] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2021. A tutoring system to

learn code refactoring. In SIGCSE.
[8] Eduardo Oliveira, Hieke Keuning, and Johan Jeuring. 2023. Student Code Refac-

toring Misconceptions. In ITiCSE (Forthcoming).
[9] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. 2016. Designing a rubric

for feedback on code quality in programming courses. In Koli Calling.
[10] Leo C Ureel II and Charles Wallace. 2019. Automated critique of early program-

ming antipatterns. In SIGCSE.

2https://sites.google.com/view/refactoring-misconceptions

606


	Abstract
	1 Context and Motivation
	2 Background
	3 Problem Statement
	4 Research Goals
	5 Method
	6 Contributions
	References



