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I. Introduction 

A major  goal of  this article is to provide a f ramework 
for describing users' knowledge of  calculator language, 
i.e., users' intuitions concerning the underlying logic of  
a simple four-function calculator when a series of  buttons 
are pressed. Another  goal is to use this technique for 
pinpointing some of  the differences among actual users 
in their knowledge of  calculator language. The first 
section of  this paper  provides a rationale and a brief  
literature review. The second section describes the trans- 
action approach for analyzing calculator language. The 
third section summarizes a study of  individual differ- 
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ences among users in their knowledge of  calculator lan- 
guage. The final section provides a summary  and a set 
of  tentative recommendations.  

II. Rationale 

A. Performance vs Competence 
The traditional distinction between performance and 

competence can and should be applied to users' learning 
of  calculator language. Performance, of  course, refers to 
what the user can do, such as compute answers for a 
class of  problems; competence refers to what the user 
knows, such as the user's mental  model of  the calculator. 

It is possible for two users to give identical answers 
to simple arithmetic computat ion problems but possess 
vastly different underlying knowledge of  calculator lan- 

• guage. We found that a subject would claim that to find 
the answer for 22 × 114, the calculator simply "looks 
up"  the answer for that problem in its memory.  Another 
subject assumed that the calculator used "internal regis- 
ters," and followed certain "control procedures." For  22 
x 114, the calculator would store the numbers 22 and 
114 in memory  and would use the multiplication algo- 
r i thm to work on them. These two subjects seem to have 
had different "mental  models" for the calculator. Thus, 
for a complete description of  "what is learned" by dif- 
ferent users, we must be able to describe the users' 
competence as well as their performance. Similarly, 
Greeno [3] has argued for emphasis on cognitive objec- 
tives of  instruction rather than focusing solely on behav- 
ioral objectives of  instruction. 

B. Black Box vs Glass Box 
A second important  distinction concerns learning by 

memorizing vs learning by understanding [15]. When we 
apply this distinction to the learning of  calculator lan- 
guage, we can point to the difference between the "black 
box approach"  and the "glass box approach." In the 
black box approach to learning calculator language, the 
user focuses only on the external features of  calculator 
l anguage- -you  put in a sequence of  key presses and out 
comes the answer as if  by magic. The operations inside 
the calculator are hidden from the user, forcing the user 
to treat the calculator as a black box that cannot be 
understood. A user who learns by the black box method 
is forced to memorize sequences of  key presses for each 
type of  problem, without understanding what the key 
presses actually mean. For  example, some manuals  de- 
scribe how to use a constant. Let us say you want to 
multiply a set o f  numbers by 2.3. The manual  may 
instruct you to enter the sequence 2.3 x x; then, for any 
number  you want multiplied by 2.3 you just enter that 
number  followed by an equals (- ').  Although memorized 
procedures, such as the constant sequence, may work in 
the sense that they generate the desired answer, the user 
is not able to relate the sequence of  key strokes to an 
understanding of  what goes on inside the calculator. 
DuBoulay and O'Shea [1] have noted a similar phenom- 
enon with respect to children learning LOGO;  some 
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users act as if the internal operations of the machine are 
hidden and not understandable. 

In the glass box approach [2], the user is able to see 
how a sequence of key strokes is related to changes in 
the internal state of the calculator and how these changes 
are related to the fmal answer. Each command--in this 
case, each key stroke--results in some change inside the 
calculator, and these changes can be described and un- 
derstood. The user who learns by the glass box approach 
may be able to describe why the constant procedure 
works by describing the nature of internal displays and 
incrementing operations. 

The level of description of events in the glass box 
approach need not, indeed, should not, be at the "blood 
and guts" level. By this we mean that users need not 
become electronics experts. There is an appropriate level 
of description that Young [16] refers to as the user's 
mental model of the calculator: "For an interactive sys- 
tem to be satisfactory, it is important that its intended 
users be able to form a model of the system which 
enables them to predict its behavior." 

DuBoulay, O'Shea, and Monk [2] have suggested 
that novices be exposed to a notational machine, i.e., 
" . . . a n  idealized model of the computer implied by the 
constraints of the programming languages.. ." and which 
is analogous to " . . .o ther  mechanisms with which the 
novice is more familiar . . . .  " As an example, DuBoulay 
and O'Shea [1] have developed a "LOGO machine" to 
represent the internal actions that occur for LOGO 
statements. Further, DuBoulay, O'Shea, and Monk [2] 
have offered two important properties for selecting a 
model that clarifies the hidden operations of a language: 
(1) simplicity--there should be a "small number of parts 
that interact in ways that can be easily understood," and 
(2) visibility--novices should be able to see "selected 
parts and processes of this notational machine in action." 

As an example, let us suppose that we want students 
to learn how to solve simple arithmetic problems with a 
calculator. We could give them plenty of hands-on ex- 
perience, without any guidance as to what goes on inside 
the calculator until they were all able to solve simple 
problems. However, Scandura, Lowerre, Veneski, and 
Scandura [13] found that students who taught themselves 
to use calculators often developed bizarre intuitions; one 
student, for example, concluded that the plus (+) and 
equals (=) keys did nothing since they caused no visible 
change in the display. Instruction that emphasizes the 
understanding of how the machine operates on a se- 
quence of button presses might provide a better base on 
which to build further computer concepts. 

What are the benefits of instruction that foster glass 
box learning rather than black box learning? Past re- 
search by Gestalt psychologists [ 15] suggests that learn- 
ing by understanding, such as in the glass box procedure, 
leads to superior long-term retention and superior trans- 
fer to novel problems. In addition, the glass box approach 
may influence attitudes concerning the understandability 
of computers and calculators. Although there is promis- 
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ing support for these assertions in studies of how novices 
learn simple programming languages [4-7,9], much more 
research is needed concerning the role of glass box 
instruction for calculators. 

C. Computer literacy 
The previous sections have presented two ways of 

describing what is learned (i.e., performance vs compe- 
tence) and two ways of teaching the use of calculators 
(i.e., black box vs glass box). Why is it important to focus 
on how students learn and represent knowledge about 
calculators? The reason is that calculators (as well as 
electronic games) usually involve a user's first exposure 
to a computational machine and a language. Thus, cal- 
culators provide the first step in the development of a 
user's computer literacy--the understanding of how to 
interact with computational machines. 

In addition, calculators have become a part of society, 
infiltrating the home, work, and school lives of ordinary 
people [10]. Teachers [11] have recognized calculators as 
necessary tools in our society: "The National Council of 
Teachers of Mathematics recommends that mathematics 
programs take full advantage of the power of calculators 
and computers at all grade levels." However, in spite of 
the potential for using calculators as the first step towards 
computer literacy, there is also the potential that they 
will be used as tools whose operations must be blindly 
memorized. For example, DuBoulay, O'Shea, and Monk 
[2] recently pointed out: "The manuals accompanying 
certain makes of pocket calculators make no attempt to 
explain the reason why given sequences of button presses 
carry out the given computations. The user must follow 
the manual's instructions blindly because it is difficult 
for him to imagine what kind of underlying machine 
could be inside that demands these particular sequences 
of presses. During the course of a calculation, he has to 
guess the current state of the device. . ,  because the 
device gives little or no external indications of its internal 
state." 

Unfortunately, the research community has been 
very slow in providing information that would be useful 
in this impending calculator-curriculum revolution. For 
example, most experimental studies have been concerned 
with whether using calculators in the classroom affects 
overall achievement and/or attitude in mathematics (see 
[12, 14]); but as Roberts [12] recently concluded, " . . . t he  
research literature offers no guidance.. ." concerning 
how to incorporate calculators into school curricula. 

The development of a theory of how users concep- 
tualize calculator language has implications for the de- 
sign of calculator languages, for instructional procedures, 
and for integration of calculators into school curricula. 
This paper is based on the idea that calculators are here 
to stay, that large numbers of ordinary (nonprogram- 
mers) people will be using them, and that calculators 
provide most users with their first introduction to com- 
puter concepts. Such users will inevitably develop atti- 
tudes and approaches to human/computer interaction in 
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Table I. Sixteen Elementary Calculator Commands. 

Name Command Example Description 

P1 # after # 2 3 
P2 # after + + 3 
P3 # after = = 3 
P4 + after # 2 + 
P5 + after + + + 
P6 + after = = + 
P7 = after # 3 = 
P8 = after + + = 
P9 = after = = = 
Pl0 # after x × 3 
P 11 × after # 2 × 
P12 = after × × = 
P13 × after = = × 
P14 × after × × x 
PI5 + after X x + 
P 16 × after + + × 

Pressing a number key after pressing a number key 
Pressing a number key after pressing a plus key 
Pressing a number key after pressing an equals key 
Pressing a plus key after pressing a number key 
Pressing a plus key after pressing a plus key 
Pressing a plus key after pressing an equals key 
Pressing an equals key after pressing a number key 
Pressing an equals key after pressing a plus key 
Pressing an equals key after pressing an equals key 
Pressing a number key after pressing a times key 
Pressing a times key after pressing a number key 
Pressing an equals key after pressing a times key 
Pressing a times key after pressing an equals key 
Pressing a times key after pressing a times key 
Pressing a plus key after pressing a times key 
Pressing a times key after pressing a plus key 

the course o f  learning to use their calculator even if  the 
users are self-taught. This paper  provides some infor- 
mat ion  that m a y  be relevant to unders tanding what  
intuitions individual  users have about  calculators. 

III. A Transaction Analysis of Calculator Language 

The goal o f  this section is to develop an appropria te  
level o f  describing what  happens  inside the calculator for 
each type o f  key press, based on DuBoulay ,  O 'Shea,  and 
Monk ' s  [2] criteria o f  simplicity and visibility. In  partic- 
ular, the transaction approach  is applied to the operat ing 
system 1 o f  electronic calculators, or  to what  can be called 
calculator language.  The  goal is not  to provide a formal, 
mathemat ica l  representat ion o f  the calculator 's  operat ing 
system, but  to provide an idealized model  o f  the calcu- 
lator that  can be used to describe users' knowledge and  
to help novices unders tand calculator language. It  should 
be pointed out  that  the transaction approach  m ay  serve 
both  as ( l)  a descriptive model  o f  the users' knowledge 
o f  calculator language, and (2) a prescriptive model  for 
curr iculum development .  This paper  presents data  con- 
cerning the first implementa t ion but also suggests impli- 
cations concerning the second. 

For  the purposes o f  this analysis we assume that  each 
user's concept ion o f  calculator language can be specified 
as a set o f  productions,  or  condi t ion-ac t ion  pairs. The  
condi t ion refers to some key press (i.e., some c o m m a n d )  
and the action refers to one or  more  transactions (i.e., an 
operat ion applied to an object at a location in the cal- 
culator). Thus,  the transaction approach  involves locat- 
ing the transaction (or list o f  transactions) that  a user 
associates with a given command .  

A previous paper  [6] summarized  a conceptual  anal- 
ysis o f  BASIC that  emphasized "transact ions" for describ- 

We use the term "operating system" to refer to a program that 
establishes the mode of user-machine interaction and provides for 
efficient control of system components. Thus, in the present article, the 
terms "control program" or "instruction set" could be substituted for 
operating system. The term in this article does not fit the strict 
definition of "operating system", i.e., a system for mediating among 
the demands of multiple users in a time sharing system. 
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ing the language in a simple and visible way. A model  
was constructed that  consisted o f  a ticket window to 
represent the input  function, a note pad to represent the 
output  function, a m e m o r y  scoreboard to represent the 
m e m o r y  function, a scratch pad to represent the logic 
and ari thmetic function, a shopping list with pointer  
ar row to represent executive control. Each  e lementary 
BASIC statement was described as a list o f  transactions, 
and each transaction consisted o f  some operation applied 
to some object at some location in the computer .  Using 
a small collection o f  transactions it was possible to 
describe each o f  the e lementary BASIC statements. Fur-  
ther, there is substantial  evidence that instruction in 
BASIC which emphasizes the t ransact ion level o f  descrip- 
t ion results in superior per formance  in creative p rogram 
writing and interpreting written programs [4, 5, 7, 9]. 

The  relevant condit ions (or commands )  for the pres- 
ent analysis are based on pressing keys on the calculator 's  
keyboard.  The  keys relevant to a very simple four-func-  
tion calculator are n u m b e r  keys (i.e., 0, l, 2, 3, 4, 5, 6, 7, 
8, 9), operat ion keys (i.e., +,  - ,  x ,  +),  equals key (--), 
decimal  key (.), and  clear key (CLR).  We  assumed that  
the calculator  used ari thmetic logic (rather than algebraic 
or  reverse Polish notation),  and we focused on only three 
n u m b e r  keys (i.e., 2, 3, and 7), two operat ion keys (i.e., 
+ and x),  and the equals key (=). 

Thus,  at first blush it seems the basic condit ions are 
each o f  the single key presses, such as pressing a n u m b e r  
key, pressing an operat ion key, and so on. However,  
interviews with users suggest that  key presses have dif- 
ferent meanings  depending on the immediate ly  preced- 
ing key press; for example, pressing a plus key after 
pressing a n u m b e r  key has a different effect than  pressing 
a plus key after pressing an equals key, for some users. 
Thus,  the condit ions (or user commands )  can be listed as 
some key being pressed given that  some key was pressed 
immedia te ly  before. For  example, typical c o m m a n d s  in 
the present analysis are listed in Table  I. There  are 
certainly m a n y  other  possible commands ,  but we have 
focused on this set o f  16 elementary calculator c o m m a n d s  
as an  example. 
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To describe the actions that occur for any command, 
the transaction approach [6] requires that we specify the 
triplet of  location, object, and operation. The possible 
locations within the calculator are as follows: 

(1) Display. The external display normally consists of  
at least eight spaces, where a place can hold one 
digit. The display fills from the right. 

(2) Register. An internal register is inside the calcu- 
lator and consists of  a series of  subregisters that 
hold individual numbers and operators. Expres- 
sions are held in the order of  input, with the first 
number  of  the left, followed by first operator, and 
with new numbers and operators entered to the 
right of  existed filled subregisters. 

(3) Keyboard. The external set of  keys includes num- 
ber, operation, and equals keys. 

The possible objects include: 

(1) Number. A number is any single or multiple digit 
sequence such as 2, 14, or 156. 

(2) Operation. An operation is a mathematical symbol 
for some arithmetic computation such as addition 
(+) or multiplication (x).  

(3) Expression. An expression is a sequence consisting 
of  numbers and operators such as 2 + 3 or 2 + or 
2 + 3 × 7 .  

Some operations that are relevant to computer language 
are as follows: 

(1) Find. Locate a particular object; e.g., t'md a num- 
ber that was just entered from the keyboard. 

(2) Destroy. A number or expression is erased from 
the display or register; e.g., when you press the 
equals key the previous number  in the display is 
erased (and replaced with a new one). 

(3) Create. A number or expression is placed in a 
display or register; e.g., when you press a number 
key that number  appears in the display. 

(4) Evaluation. An expression from the register is con- 
verted into a single number  using the rules of  
arithmetic; e.g., the evaluation of  3 + 2 is 5. (For 
the current discussion, evaluation of  a number or 
numbers followed by an operation is the number; 
i.e., evaluation of  3 is 3 or evaluation of  3 + is 3). 
It is also possible to evaluate expressions from the 
register and display together; for example, the 
evaluation of  2 + in the register and 3 in the 
display may be 5. 

Table II gives a summary of  some typical actions that 
might occur with the calculator. Each is expressed as a 
list of  transactions; for example, D = R consists of  four 
separate transactions, while D = D requires only one. A 
user's conception of  what a particular command means 
can be expressed as a production; for example, the 
production, 

P2 I f #  after + Then D = # and R = "R + # "  

means that when the number key is pressed after a plus 
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key, the user assumes that the calculator executes the 
four transactions for D = # and the three transactions 
for R = "R + # "  as listed in Table II. Thus, for the 
sequence 7 + 3, when the 3 key is pressed, the display is 
changed to 3 and the register's expression is changed to 
"7 + 3". A user's intuitions concerning calculation lan- 
guage can thus be expressed as a list of  productions such 
as the one given above. 

IV. Empirical Studies 

There has not been adequate research concerning 
how students come to understand the operation of  cal- 
culators. As noted earlier, almost all behavioral research 
concerning calculators has been directed at the gross 
issue of  whether the availability of  calculators in the 
classroom has any effect on mathematics achievement or 
attitude (see[ll ,  14]). The present study addresses a 
different issue, namely, what types of  hypotheses do 
people have concerning how calculators operate? The 
goal of  this research is to determine whether the trans- 
action approach can be successfully used as a framework 
for describing differences in users' knowledge. The goal 
of  these studies is not to test the transaction approach as 
a "theory," since it is used here only as a framework for 
describing what is learned. For  more detail concerning 
the methodology and data analyses, see Mayer and 
Bayman [8]. 

A. Method 
Our study involved 33 college students who had no 

computer programming experience ("novices") and 33 
college students who were enrolled in advanced pro- 
gramming courses ("experts"). 2 Subjects participated in 
order to fulltill a course requirement. Each student was 
given a four page questionnaire with 88 problems. Each 
problem listed a series of  key presses and asked the 
student to predict what number would be in the display, 
assuming a standard four-function calculator.was being 
used. In addition, subjects were given a questionnaire 
asking how many hours a week they used a calculator, 
how many years they had been using a calculator, what 
kind of  calculators they knew, and which calculator 
model(s) they owned, if any. 

B. Standard Sequences: When to Evaluate 
Our subjects differed greatly with respect to when 

The main  difference between experts and novices is that all the 
experts had  formal instruction in computer  p rogramming  and had  
some introduction to operating systems, while none o f  the novices did. 
As might  be expected, there were other demographic  differences be- 
tween the groups: experts were older, t(60) = 2.66, p < 0.01, and  experts 
scored higher in SAT-Mathematics ,  t (44) = 4.67, p < 0.001. Thus,  
while the ma in  comparison was between "liberal arts" students who 
had  no formal programming experience and "engineering" students 
who had  formal training in programming,  any comparisons between 
the two groups mus t  be made  in light o f  other group differences such 
as age and  SAT scores. Individual analysis o f  the performance o f  
novices who scored high on the SAT revealed that they did not  perform 
any more like the experts than  did the novices who scored low on the 
SAT. 
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Table II. Some Possible Transactions in Computer Language. 

Transaction Location Object Operation Description 

D = D display number no change 
D = 3 display number find 

display number destroy 
keyboard number find 
display number create 

D = R display number f'md 
display number destroy 
register number find 

D = eval (R) 

D = eval (D + R) 

R = R  

R = #  

R = "R +"  

R = " R  + # "  

R = eval (R) 

R = eval (D + R) 

R = eval (R + R) 

R = O  

display number create 
display number fred 
display number destroy 
register expression fmd 
register expression evaluate 

display number create 
display number fmd 
register number find 

register expression evaluate 
display number create 
register expression no change 
register expression fmd 
register expression destroy 
keyboard number fmd 
register number create 
register expression fred 
register operator create 

register expression find 
keyboard number find 

register number create 

register expression find 
register expression evaluate 
register expression destroy 
register number create 

display 
register 
register 
register 
register 
register 
register 
register 
register 
register 
re lster 

number fmd 
number fmd 
expression evaluate 
number create 
number find 
expression evaluate 
number destroy 
number create 
expression find 
expression destroy 
number create 

No change in the display 
Find the old number in the display 
Erase it 
Find the number that has been entered in the keyboard 
Put new number in display 
Find the old number in the display 
Erase it 
Find the number currently in the register (but do not 
destroy it) 
Copy the number from the register into the display 
Find the old number in the display 
Erase it 
Find the expression in the register 
Evaluate the expression in the register (but do not 
destroy it) 
Put the evaluated value of the register in the display 
Find the number currently in the display 
Find the number currently in the register (but do not 
alter it) 
Evaluate the value of the display plus the register 
Put the new sum in the display 
No change in the register 
Find the old expression in the register 
Erase the old expression from the register 
Find the number that has been entered in the keyboard 
Put the new number from the keyboard in the register 
Retain the existing expression that is in the register 
Place a plus sign to the right of the expression in the 
register 
Retain the existing expression that is in the register 
Find the number that has just been entered in the 
keyboard 
Place the number to the right of the expression in the 
register 
Find the current expression or number in the register 
Evaluate the expression or number 
Erase the expression from the register 
Replace it with the evaluation of the old number or 
expression 
Find the number currently in the display 
Find the number currently in the register 
Add them together 
Replace it with the sum 
Find the number in the register 
Add the number to itself 
Erase the old number from the register 
Replace it with the new sum 
Find the existing number or expression in the register 
Erase that expression or number 
Replace it with zero 

they thought an expression should be evaluated. For  
example, consider the sequence 2 + 3. Some subjects 
answered "3" and some answered "5". Those who gave 
5 seem to be using what we called " immediate  evalua- 
tion" for # after +. Whenever  a number  key is pressed 
after a plus key, the entire expression is evaluated and 
displayed. However, those who gave 3 as an answer seem 
to be using "delayed evaluation" for # after +. They 
wait for some other key press (such as an equals or a 
plus or a multiply) before they evaluate and display. 
How would a subject predict the calculator would re- 
spond to 2 + 3 + 7 ? The answer was 12 for the 
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immediate evaluators and 7 for the subjects who relied 
on delayed evaluation for # after +. Our subjects were 
very consistent, although experts were significantly more 
consistent than novices in such judgments.  

Now consider the problem 2 + 3 +. Some subjects 
gave 5 as the answer while others gave 3. Those who 
gave 3 act as if  there is delayed evaluation for + after 3. 
For  those who gave 5 as an answer, if  they also gave 5 
as an answer to problems like 2 + 3, they are not 
evaluating for + after # either; however, if  they gave 3 
as an answer for 2 + 3, then they seem to opt for 
" immediate  evaluation" for + after # .  Similarly, a se- 
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Table III. Three Major Conceptions of When to Evaluate An Table IV. Five Conceptions of How to Evaluate an Arithmetic 
Expression. Chain. 

Proportion of  sub- 
Example jects 

Conception Problem Answer Novices Experts 

Evaluate as soon as 2 + 3 5 
a number key is 2 + 3 + 5 0.21 0.06 
pressed 2 + 3 = 5 

Evaluate as soon as 2 + 3 3 
an operation key 2 + 3 + 5 0.39 0.73 
is pressed 2 + 3 = 5 

Evaluate as soon as 2 + 3 3 
an equals key is 2 + 3 + 3 0.39 0.21 
pressed 2 + 3 = 5 

For 2 x 2 contingency table, X 2 = 7.44, df = 1, p < 0.01 

quence like 2 x 3 + results in 6 for subjects who rely on 
immediate evaluation for + after # but in 3 for those 
who rely on delayed evaluation for + after # .  (Note that 
if  our  subject relies on immediate evaluation for # after 
x,  then the answer will also be 6.) 

Finally, consider the problem 2 + 3 =. All subjects 
gave 5 as an answer. Or consider the problem 2 + 3 + 7 
=. All subjects gave 12 as an answer. However, if  our 
subjects were using delayed evaluation for # after + and 
delayed evaluation for + after # ,  then we know they 
were waiting for an equals sign before they evaluate; 
thus, these subjects would opt for immediate evaluation 
for = after # .  

Based on a systematic analysis of  our subjects' 
performance,  we noted three basic strategies for deter- 
mining when to evaluate an expression: for a number  
key, for an operation key, or for an equals key. These 
concepts are summarized in Table III.  The consensus of  
the experts is that a calculator should evaluate when an 
o p e r a t i o n  k e y  is p r e s s e d  a f t e r  a n u m b e r ,  a s  is c o m m o n  

in most but not all calculators. Novices tend to have 
much more diverse conceptions which are significantly 
different from experts, a It may  also be pointed out that 
we found no relation between the conceptions of  our 
subjects and the operating systems of  their own calcula- 
tors, nor between the conceptions of  our subjects and the 
amount  of  t ime spent each week with a calculator. 4 

C. Standard Sequences: Chains of Arithmetic 
How would you predict a calculator would'answer 

2 + 3 x 7 = ? How about the problem 2 x 3 + 7 = ? Our 
subjects varied with respect to how they evaluated a 

Proportion of 
Example subjects 

Conception Problem Answer Novices Experts 

Evaluate in order 2 + 3 x 7 = 35 0.88 0.70 
from left to right 2 x 3 + 7 = 13 

Evaluate backwards 2 + 3 x 7 = 23 0.03 0.00 
from right to left 2 × 3 + 7 = 20 

Evaluate only the 2 + 3 × 7 = 21 0.03 0.00 
last computation 2 x 3 + 7 = 10 

Evaluate multiplica- 2 + 3 x 7 = 23 0.03 0.30 
tion before addi- 2 x 3 + 7 =  13 
tion 

Evaluate addition 2 + 3 × 7 = 35 0.03 0.00 
before multiplica- 2 x 3 + 7 = 20 
tion 

For 2 x 2 contingency table, X 2 = 6.98, df = 1, p < 0.01 

chain of  arithmetic. The vast majority of  subjects exe- 
cuted the operations in order from left to right, yielding 
answers of  35 and 13, respectively, for the above prob- 
lems. Some subjects tended to opt for multiplication 
being carried out before addition, yielding answers of  23 
and 13, respectively. Some subjects tended to opt for 
addition being carried out before multiplication, yielding 
35 and 20, respectively. Some subjects opted for carrying 
out the second operation first, yielding 23 and 20, re- 
spectively. Finally, some subjects simply ignored all but 
the last computation, yielding 21 and 10, respectively. 
Table IV summarizes the major strategies for evaluating 
a chain, based on an analysis of  each subject's perform- 
ance on several problems. As can be seen, most subjects 
opted for left-to-right evaluation of  a chain, although a 
substantial minority of  experts assumed multiplications 
were carried out before addition. This procedure is char- 
acteristic of  some sophisticated calculators and computer 
commands. 

D. Nonstandard Sequences: Equals after Operator 
The foregoing two sections demonstrated that there 

are considerable differences among subjects' interpreta- 
tions of  calculator operations even for standard se- 
quences of  key strokes. A standard sequence is defined 
as one that begins with a number  and in which an 
operator (like + or ×) or equals (=) may  only follow a 
number.  In the present section we explore subjects' con- 
ceptions of  how the calculator responds to nonstandard 

3 The categorization of subjects, as indicated in Tables III  through 
VII, was based on an analysis of all the problems (i.e, 88 responses) 
rather than just the few examples given in the text of  this report. 
Subjects were classified using a forced choice procedure, so that each 
subject was placed in the category that was most consistent with the 
data that he or she provided us with. Chi square tests were conducted 
on the data in each of  the Tables III  through VII, using a 2 x 2 
contitlgency table and Yates corrective. The expected frequencies were 
based on the overall mean for each category and tested the null 
hypothesis that there was no difference between experts and novices in 
the pattern of  category frequencies. 

4 For example, the most frequently owned calculators were Texas 
Instruments, Rockwell, and Sharp. The answers given by each of these 

calculators for each of the 88 problems were compared to the answers 
given by each subject. Difference scores were computed by counting 
the number of  times that the subject gave an answer that was different 
from a given brand. For novices who owned TI calculators the differ- 
ence score was the lowest for TI (8.0) and the highest for the Rockwell 
(20.0), Sharp (14.1) models being in between. However, for students 
who owned calculators other than TIs the same pattern was obtained, 
with the lowest difference score for TI (9.8) and higher scores for 
Rockwell (2.16) and Sharp (15.8). A similar pattern was obtained 
among experts: for TI owners and nonowners, their predictions most 
closely corresponded to the performance of a TI calculator rather than 
other brands. Analyses of  variance indicated no differences between 
TI owners and owners of  other brands. 
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T a b l e  V. Three  M a j o r  Concep t ions  of  H o w  to E v a l u a t e  E q u a l s  After  T a b l e  VI. Three  Ma jo r  Concep t ions  o f  H o w  to E v a l u a t e  Two  
Opera tor .  Consecu t ive  Operators .  

P ropor t ion  o f  
E x a m p l e  subjects  

P ropor t ion  of  
E x a m p l e  subjects  

Concep t ion  P rob lem A n s w e r  Novices  Exper t s  Concep t ion  P rob l em A n s w e r  Novices  Exper t s  

Ignore  the non-  7 + = 7 0.82 0.76 
s t andard  se- 7 × = 7 

quence  
Reset the  d i sp lay  7 + = 0 0.09 0.06 

7 x =  0 

Inc remen t  the dis-  7 + = 14 0.09 0.18 
p lay  7 × = 49 

Fo r  2 x 2 con t ingency  table,  X 2 = 0 . 5 2 , d f  = 1, p = n . s .  

sequences of  key strokes. A nonstandard sequence vio- 
lates the above "grammatical  rule of  arithmetic" by 
having two or more operators (+ or x )  and /o r  equal sign 
(--) in sequence. Users' predictions concerning nonstand- 
ard sequences are useful because they allow us to diag- 
nose users' conceptions of  the internal operation of  the 
calculator. 

For  example, consider the sequences 7 + -- or 7 X 
=. How do subjects interpret the calculators' operations? 
Some subjects assume that a nonstandard sequence re- 
suits in the display being reset; for example, if  resetting 
the display means setting it to zero, then subjects give 0 
as the answer to the above problems. Another  version of  
the reset strategy is to assume that the calculator will 
show an E in the display, or that it will flash on and off. 
A second group of  subjects act as if  the calculator simply 
ignores the nonstandard sequence; in this case, the cal- 
culator display has 7 in it for each of  the above sequences. 
Finally, a third major  group acts as i f a  number  has been 
inserted between the operator and the display; for ex- 
ample, they treat 7 + = as 7 + 7 = and give an answer 
of  14, or they treat 7 x = as 7 x 7 = and give an answer 
of  49. We call these subjects "incrementing display" 
subjects because they act as if  the number  in the display 
is added to the number  in the internal register. There are 
several variations on the incrementing display strategy; 
for example, 2 + 3 + = can result in 10 or in 8 depending 
on the subject's conception of  when evaluation occurs. 

Table V summarizes these three major  concepts of  
what happens when equals follows an operation; as can 
be seen, the strategy of  ignoring the nonstandard se- 
quence is the most common,  but experts are far more 
likely to opt for the incrementing display conceptuali- 
zation. The incrementing procedure is a feature of  some 
more sophisticated calculators and reflects a more so- 
phisticated understanding of  internal registers. 

E. Nonstandard Sequences: Two Consecutive Operators 
Another nonstandard sequence is to have two con- 

secutive operators, such as 2 + + -- and 2 x x =. The 
same strategies were obtained as in the previous section. 
One subject thought the display would be reset, for 
example, the answers would be 0 for each problem. Some 
subjects ignored the nonstandard sequence; thus, the 
display would say 2 for each problem. For  example, 2 
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Ignore  the non-  2 + +  = 2 0.85 0.73 
s t anda rd  se- 2 x ×  = 2 

quence  
Rese t  the d i sp lay  2 + +  = 0 0.03 0.00 

2 x x =  0 
I n c r e m e n t  the dis- 2 + +  = 6 or 8 0.12 0.27 

p lay  2 x x  = 8 or 16 

Fo r  2 x 2 con t ingency  table,  X 2 = 1.53, d f  = 1, p = n . s .  

+ + was treated as if  it were 2 + and hence 2 would be 
displayed. Finally, some subjects used an incrementing 
strategy; for example, 2 + +  = could be interpreted as 2 
+ 2 + 2 ----, thus yielding an answer of  6, and 2 × x = 
could be interpreted as 2 × 2 x 2 - ,  yielding an answer 
of  8. A variation of  this strategy is to treat 2 + + = as 2 
+ 2 = 4 and 4 + 4 = 8 yielding an answer of  8; similarly, 
2 × × = is treated as 2 × 2 = 4 and 4 × 4 = 16 yielding 
an answer of  16. These differences may be formalized in 
terms of  how the internal registers are evaluated and 
used (see Mayer and Bayman,  [8]). Table VI summarizes 
these strategies and shows that most subjects opted for 
ignoring the nonstandard sequence, but experts were far 
more likely to conceive of  incrementing operations. Since 
incrementing is a feature of  more sophisticated operating 
systems, this difference between experts and novices is 
sensible. 

Similar results were obtained for sequences such as 
2 x + 3 ---- and 2 + x 3 =. Most subjects ignored the first 
operator, yielding answers of  5 and 6, respectively. Some 
subjects reset the display, often yielding an answer of  0 
for each problem. Some subjects used the incrementing 
strategy, for example, with answers of  7 and 12, respec- 
tively. There was also a subject who ignored the second 
operator, yielding answers of  6 and 5, respectively; and 
there was a subject who preferred multiplication to ad- 
dition, yielding answers of  6 to both problems. The 
proportions of  ignore, reset, and increment conceptions 
for novices and experts were quite similar to those shown 
in Table VI. 

F. Nonstandard Sequences: Operator after Equals 
Suppose the following key strokes were entered; 2 x 

= x.  Subjects who use the ignore conception of  non- 
standard sequences act as if this sequence is 2 x,  thus 
the answer is 2. Subjects who use the reset strategy give 
0 as an answer. Subjects who use an increment strategy 
give answers such as 8, 16, or 4 depending on the 
particular kind of  incrementing system and the subject's 
conception of  when an expression is evaluated. Table 
VII  summarizes these three strategies and shows that 
while most subjects rely on the ignore conception, a 
substantial minority of  experts rely on increment strate- 
gies and a substantial minority of  novices rely on a reset 
strategy. 
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Table VII. Three Major Conceptions of  How to Evaluate Operation 
Following Equals. 

Example Proportion o f  
subjects 

Conception Problem Answer Novices Experts 

Ignore the non-  2 × = x 2 0.85 0.82 
s tandard se- 
quence  

Reset the display 2 × = x 0 0.15 0.00 
Increment  the dis- 2 X = × 4 or 8 or 0.00 0.18 

play 16 

For 2 × 2 contingency table, X 2 = 4.58, d f  = 1, p < 0.05 

G. Production Systems 
One goal of  t ~  study was to formally describe the 

intuitions of  each subject as a list of  13 productions, i.e., 
13 condition-action pairs)  The left side of  Table VIII 
(or IX) lists the 13 conditions that were present in the 88 
problems we asked subjects to solve. For  example, # 
after + means "pressing a number key after pressing an 
equals key" such as the last two keystrokes in the se- 
quence 2 + 3. The preceding sections have summarized 
the different possible actions in general terms. The right 
side of  Table VIII (or IX) gives the actions that may be 
associated with each condition. Actions are indicated as 
changes in the display (represented as D) or in the 
register (represented as R). 

Table VIII represents one of  our novices. 6 The subject 
evaluates only when an equals key is pressed (as indi- 
cated by P7), but does not evaluate an expression when 
a number  key is pressed (as in P2 and P10) nor when an 
operation key is pressed (as in P4 and P11). The subject 
evaluates an arithmetic chain in the order from left-to- 
right; thus, for each action involving eval the procedure 
is left-to-right. The subject ignores all nonstandard se- 
quences (as indicated in P5, P6, P8, P12, P13, P14, P15, 
P16). For  example, on the problem 2 + 3 + 7 --, the 
subject begins by setting D -- 2, R -- 2. Then for the + 
key, P4 says that D = 2, and R -- 2 +. For  the 3 key, P2 
says that D = 3 and R = 2 + 3. For  +, P4 says D = 3, 
R = 2 + 3 +. For  7, P2 says that D = 7 and R = 2 + 3 
+ 7. Finally, when = is pressed, P7 says D = 12 and R 
-- 12. As another example, consider the problem 7 + + 
- - ,  

First, D -- 7 and R = 7. Then when the first + is 
pressed, P4 results in D -- 7 and R = 7 +. Then, when 
the second + is pressed, P5 results in no change, so D 
= 7 and R = 7 +. Finally, when = is pressed, P8 results 
in evaluation of  7 + which is 7; thus, D = 7 and R -- 7. 

Table IX represents one of  our experts. The subject 
evaluates when an operation or an equals key is pressed 
(as in P4 and P1 l) rather than waiting for an equal key 
to be pressed (as in P7), but does not evaluate for pressing 
a number key (as in P2 and P10). The subject evaluates 

There are 13, rather than  16, productions because productions 
PI, P3, and P9 were never incorporated into the 88 test problems. 

6 Tables VIII and IX describe production systems for actual indi- 
vidual subjects rather than  composites. 
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an arithmetic chain by performing multiplication before 
addition; thus for each action involving eval the proce- 
dure is multiply before add. The subject uses an incre- 
menting procedure for most nonstandard sequences (as 
indicated in PS, P6, P8, P12, P13, P14, PlS, P16). For 
example, on the problem 2 + 3 + 7 =, the subject begins 
by setting D = 2 and R = 2. Then for the + key, P4 says 
that D = 2 and R = 2 +, After 3 is pressed, P2 says D 
= 3, R = 2 + 3. After + is pressed, P4 says that D -- 5 
and R = 5 +. For  7, P2 yields D = 7, R --- 5 + 7. Finally, 
when = is pressed P7 yields D -- 12, R = 12. As another 
example, consider the problem 7 + + =. 

First, we begin with D = 7 and R = 7. For  the first 
+, P4 results in 12t = 7 and R = 7 +. For  the second +, 
the number in the display (7) is added to the value in the 
register (7) to yield a value of  14 so D = 14 and R -- 7. 
For  the equals, the number  in the display (14) is added 
to the number  in the register (7) to yield 14 so D = 21 
and R = 7. 

V. General Summary and Recommendations 

The results show that even though people are able to 
use their calculators to solve arithmetic problems, there 
are important individual differences in people's under- 
standing of  calculator language. In this paper, we have 
summarized differences in people's conceptions of  when 
to evaluate an expression (immediately when a number  
key is pressed, when an operation key is pressed, or when 
an equals key is pressed), how to evaluate an arithmetic 
chain (left-to-right, multiplication-before-addition, etc.), 
and how to evaluate nonstandard sequences (ignore, 
reset, and increment). 

In addition, there was a tendency for experts to differ 
from novices in the" following ways. (1) Experts were 
more consistent than novices. (2) Experts tended to 
evaluate expressions when an operator key was pressed 
more than novices. (3) Experts tended to evaluate mul- 
tiplication-before-addition in a chain more than novices. 
(4) Experts tended to increment the display for nonstand- 
ard sequences more than novices. Thus, the present 
paper provides some evidence that it is possible tO de- 
scribe user's concept of  how calculator language works; 
in fact, in another paper [8] we provide production model 
representations for each subject. The fact that people 
have different conceptions of  calculator operation, and 
that experts tend to develop more sophisticated ideas 
than novices, has implications for the design of  calculator 
operating systems and instruction. 

In a sense, this paper has been a plea for the use of  
cognitive objectives as well as behavioral objectives in 
users' learning o f  calculator languages. We need to be 
able to specify what we want the user to know about how 
the language works, as well as what we want the user to 
be able to do. The transaction approach provides a 
technique for describing the knowledge that a user cur- 
rently possesses and the knowledge that we would like 
the user to acquire. One implication of  this approach 
that warrants further study is that explicit training in the 
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Table VIII. Production System for Subject N. 

Production 
Number  Condition Action Description 

P2 If # after + then Set D = # ,  Set R = " R + # "  
P4 If + after # . then Set D=D, Set R=eval (R)+ 
P5 If  + after + then Set D=D,  Set R + = R +  
P6 If  + after = then Set D=D,  Set R = R +  
P7 If  = after # then Set D=eval  (R), Set R=eval  (R) 
P8 If  = after + then Set D=eval (R), Set R=eval (R) 
PI0 I f #  after x then Set D = # ,  R = " R * # "  
P11 If  x after # then Set D=D,  Set R=eval (R)* 
P12 If  = after x then Set D=eval (R), Set R=eval  (R) 
P13 If X after = then  Set D=D,  Set R=R*  
PI4 If  X after x then Set D=D,  Set R=R* 
PI5 If  + after × then Set D=D, Set R * = R +  
P16 If x after + then set D=D,  Set R + = R *  

Delayed evaluation and display 
Delayed display and immediately evaluated register 
No change in display or register 
No change in display, plus added to register 
Immediate evaluation and display 
Immediate evaluation and display 
Delayed evaluation and display 
Delayed display and immediately evaluated register 
Immediate evaluation and display 
Delayed evaluation and display 
No change in display or register 
Set register sign to add 
Set register sign to multiply 

Subject evaluates for equals sign only; subject ignores nonstandard sequences. Quote marks on the fight side of  an equality means that the entire 
expression is held in the register; eval (R) on the fight side of  an equals means that a single value is substituted for the expression previously in the 
register. 

objects, locations, and operations (perhaps using a con- 
crete model of  the calculator) will enhance development 
of  our cognitive objectives. The data presented in this 
paper are preliminary, but they provide clear evidence 
that people's knowledge can be described (based on 
simple prediction tests) and that there are large individ- 
ual differences among users in what they "know" about 
calculator language. 

The following recommendations are based on the 
idea that there should be as close a match as possible 
between the user's conception of  how the calculator 
should operate and the actual operating system of  the 
calculator. Each recommendation should be viewed as a 
tentative hypothesis that is subject to much future re- 
search, rather than as a fact that has been established 
through existing research. 

(1) Choose a calculator that corresponds to the intui- 
tions o f  the user The most obvious recommenda- 
tion is to choose a calculator that works the way 
that the user thinks a calculator should work, i.e., 
match the characteristics of  the machine to the 
intuitions of  the user. In our study of  33 novices 

and 33 experts, we found that Texas Instruments 
calculators gave answers that were most consistent 
with answers given by our subjects. However, there 
was disagreement between our subjects' answers 
and TI's answers on about 20 percent of  the prob- 
lems for both experts and novices. Rockwell and 
Sharp gave even poorer matches to our subjects' 
performance on the problems we used (see [8]). 
Far  more study is required using more problems, 
different types of  calculators, and more subjects 
before any definitive conclusions can be made 
concerning which calculators have the most intu- 
itive operating system. Thus, it is beyond the scope 
of  this paper to provide endorsements for specific 
calculators. However, the present study suggests 
that we cannot rely on choosing an "intuitive" 
calculator as the solution to all our problems, 
because even the best fitting calculator (i.e., in this 
case, TI) is considerably different in performance 
from what our subjects expect. Thus, there is need 
for instruction that helps produce user conceptions 
that are more consistent with the way calculators 
work. 

Table IX. Production System for Subject,E. 

Production 
Number Condition Action Description 

P2 If  # after + 
P4 If  + after # 
P5 If  + after + 
P6 If  + after = 
P7 If = after # 
P8 If  = after + 
P10 I f #  after x 
PI 1 If  x after # 
P12 If  = after x 
P13 If x after = 
P14 If  x after x 
P15 I f +  after x 
PI6 If  x after + 

then Set D = # ,  Set R = " R + # "  
then Set D=eval  (R), Set R=eval (R) 
then Set D=eval, (D+R), Set R = R  
then Set D=D, Set R = R +  
then Set D=eval  (R), Set R=eval  (R) 
then Set D=eval (D+R), Set R=eval  (D+R) 
then Set D = # ,  Set R = " R * # "  
then Set D=eval (R), Set R=eval (R)* 
then Set D=eval (D 'R) ,  Set R=eval (D 'R)  
then Set D=eval (D 'R) ,  Set R=eval  ( D ' R )  
then Set D=eval (D 'R) ,  Set R=eval (D 'R)*  
then Set D=D, Set R + = R *  
then Set D=D, Set R * = R +  

Same as subject N 
Immediate incrementing display 
Immediate incrementing display 
Same as subject N 
Same as subject N 
Immediate incrementing display and register 
Same as subject N 
Immediate evaluation and display 
Immediate incrementing display and register 
Immediate incrementing display and register 
Immediate incrementing display and register 
Same as subject N 
Same as subject N 

Subject evaluates for 
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operation or equals sign; subject increments for some nonstandard sequences. 
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(2) Instruct users in the concepts underlying calculator 
language. In particular, users should be able to 
relate each botton push to a series of transactions, 
i.e., to a description of events taking place in the 
display and registers. The transaction aPproach 
advocated earlier [6] for BASIC appears to apply 
equally well to calculator language. The locations 
should be made explicit and visible to the learner, 
perhaps by providing an erasable "scoreboard" for 
the display and internal registers. For each press, 
the learner should be able to alter the contents of 
the internal registers and display in accordance 
with the actual transactions. 

(3) Provide diagnostic tests and remediation based on 
the user's underlying concepts. The present study 
has shown that although two users may be equally 
proficient at using their calculators to solve stan- 
dard arithmetic problems, they may differ greatly 
in their conception of the calculator's operating 
system. Thus, a purely performance-based test of 
calculator skill does not tell a teacher what the 
user "knows". Instead, diagnostic tests should be 
carried out at the transaction level, for example, 
by asking the user to state what operations are 
applied to what objects at which locations in the 
calculator for each key press. Then remediation 
can be provided at the transaction level. For ex- 
ample, if a user indicates that the register is cleared 
to zero for any nonstandard sequence, this can be 
corrected by showing exactly what happens at a 
transaction level. Again, a concrete model (such as 
erasable display and registers scoreboard) could 
be used. 

(4) Challenge users to develop procedures for  complex 
problems. Once users have mastered the basics of 
calculator language and have developed appropri- 
ate conceptions of the underlying transactions, 
students should be encouraged to transfer their 
knowledge to more challenging problems. For ex- 
ample, a student who understands the transactions 
involved in "incrementing display" could be asked 
to figure a way to multiply a series of numbers, 
each by the same constant, or the user could be 
given a problem that involves a geometric pro- 
gression, etc. Many exercise books are available 
[10, 14], but few provide any training on the 
principles underlying successful performance on 
creative problems. 

(5) Build on calculator language as a means to teach 
other languages such as BASIC. Students have in- 
tuitions about how calculators work. This study 

(6) 

has shown that the intuitions of any individual 
user are fairly consistent. A teacher can build on 
these intuitions and use them for transfer to pro- 
grammable calculators, to BASIC and other lan- 
guages. 
Use the calculator as a starting point for  the devel- 
opment of  computer literacy. Through interactions 
with calculators, the user may develop either a 
black box or a glass box approach to computers. 
It is important to start early in helping children 
(and adults) to see that calculators can be under- 
stood, for such an attitude is likely to transfer to 
other human/machine interactions. Mastery of the 
concepts underlying calculators is just a first step 
down the road to computer literacy. 
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