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ABSTRACT
Chronic hepatitis B virus (HBV) infection is still a global health
problem, with over 296 million chronically HBV-infected individ-
uals worldwide. The merging data about clinical parameters, im-
mune phenotyping data, and genetic information, together with
AI models reliant on this integrated information, holds promise
in effectively predicting the likelihood of functional cure in HBV-
infected patients. Yet, the limited size of multidimensional datasets
and characteristic of HBV cases poses a challenge for machine learn-
ing (ML) systems that typically require substantial data for pattern
recognition. This paper addresses this challenge by introducing
HyAI, a hybrid AI framework. HyAI employs knowledge graphs
(KGs) and inductive learning to unearth meaningful patterns. HyAI
relies on KG embedding models to learn a numerical representation
of the HyAI KG in a 𝑘-dimensional vector space. Through commu-
nity detection methods, closely related HBV patients are clustered
using similarity metrics formulated from the acquired embeddings.
HyAI is studied in a population of HBV patients integrated with
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multidimensional datasets. Our empirical analysis shows that HyAI
uncovers immune markers that, together with clinical and demo-
graphic parameters, correspond to good predictors for forecasting
the cure of chronic HBV infection.
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1 INTRODUCTION
Chronic hepatitis B virus (HBV) infection is a global health con-
cern. Worldwide, more than 296 million people are chronically
infected with HBV, leading to 820,000 deaths annually 1. Treat-
ment with nucleos(t)ide analogues (NA) or interferon alpha inhibits
HBV replication in chronically infected patients and slows disease
progression to hepatocellular carcinoma (HCC). Functional cure,
defined as hepatitis B surface antigen (HBsAg) loss, is the goal

1https://www.who.int/news-room/fact-sheets/detail/hepatitis-b
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(a) Hepatitis-B Patient

- Prediction of HBV functional cure or non-cure
- Uncovering clinical and immune phenotyping marker

Each patient is associated with
clinical parameters: 
- Viral markers: antibody titer,       
   antigen titer, viral load, viral       
   genotype
- Liver function data
- Complete blood count (CBC)

Each patient is associated
with Immune cell response:
- Innate immune response
- Adaptive immune response

Each patient is associated with
genomic factors:
- HLA-typing

Each patient could be associated
with:
- HBV treatment

(b) Diagnosis/Clinical Records

Clinical Data

(c) Patient Holistic Profile (d) Knowledge Graph (e) Computational Methods and their Analysis

Immune Phenotyping Data

HLA Alleles

HBV Treatment

Figure 1: Motivating scenario with data scattered across heterogeneous data sources (clinical data, immune phenotyping data,
HLA alleles, HBV treatments), preventing a holistic analysis of HBV patients. A knowledge graph represents factual statements
facilitating inductive learning to uncover patterns and to enhance the understanding of parameters impacting HBV outcomes.

of HBV treatment, but is rarely achieved in these patients (≤ 1%
per year), and lifelong treatment is often required. Chronic HBV
is a very heterogeneous disease, divided in different phases based
on various clinical parameters, e.g., HBsAg, hepatitis B envelope
antigen (HBeAg), HBV deoxyribonucleic (HBV DNA) and alanine
aminotransferase (ALT) levels [9]. It is shown that the immune
system is important to control HBV infection [15]. However, it is
still not fully understood which parameters and its combinations
are associated with achieving HBV functional cure. Thus, a deep
understanding of clinical and immune parameters is required.
Knowledge graphs (KGs) and machine learning (ML) techniques
have demonstrated significant potential in capturing intricate pat-
terns. These patterns, when harnessed, can greatly enhance our
comprehension of various diseases, leading to more precise ad-
vancements in diagnosis, personalized treatment recommendations,
and accurate outcome predictions [22, 23]. Notably, ML models
have demonstrated notable accuracy in addressing HBV-related is-
sues, such as early detection [1], risk assessment for HBV [12], and
predicting HBsAg seroclearance [28]. While ML techniques hold
significant promise, achieving precise model training and repro-
ducibility often requires substantial population sizes [29]. Transfer
learning (TL) has demonstrated effectiveness in scenarios with lim-
ited training data. However, its implementation demands intricate
configurations and hyperparameter tuning, which may not always
be feasible, particularly when dealing with small datasets. This
situation was investigated using a small and unique HBV dataset re-
sulting from the integration of clinical, demographic, and immune
phenotyping data from HBV-infected patients.
ProblemStatement:This paper addresses the problem of partition-
ing a set of data points, wherein these data points are represented
as entities within a knowledge graph (KG). The primary objective
is to devise a partitioning strategy that optimizes the cohesion of
related entities within the same partition, thereby maximizing their
interrelatedness. Simultaneously, the strategy aims to minimize
the connections between entities situated in different partitions,
consequently reducing their overall inter-partition relatedness.
Proposed Solution: We present HyAI, a hybrid AI system that

employs inductive learning to identify a partitioning of nodes
within a KG. This partitioning addresses the problem of maximizing
intra-community similarity while minimizing similarity between
entities in separate communities. HyAI seamlessly integrates self-
supervised and unsupervised learning. The self-supervisedmethods
involve KG embedding models that transform entities and relations
from the input KG into 𝑘-dimensional vectors, thereby preserving
their structural information. These embeddings are then utilized to
quantify the relatedness between entities using a similarity metric.
These similarity values serve as the foundation for the subsequent
unsupervised learning models, which identify the communities
within the partitioned entities. Following the methodology pro-
posed by van Bekkum et al. [25] to design hybrid AI systems, HyAI
is specified using a design pattern that integrates the process of
KG creation, with the design patterns of the KGE and community
detection models. We demonstrate HyAI in the context of HBV to
uncover patterns fulfilled by patients experiencing functional cure.
Evaluation:We have empirically studied the performance of HyAI
over a KG that represents holistic profiles of 87 chroncially HBV in-
fected patients, created from the integration of heterogeneous data
sources comprising demographic (e.g., sex and age), clinical (e.g.,
HBcrAg, HBeAg, and HBsAg) and immune phenotyping parameters.
The results put into perspective the benefits of capturing knowl-
edge from different data sources into a KG. Moreover, the analysis
of the communities’ quality detected by HyAI enables uncovering
patterns that provide evidence of the importance of parameters
like age, HBsAg levels, and immune cells in forecasting HBsAg
loss. Contributions: This work presents the following contribu-
tions: (1) HyAI : We introduce HyAI, a hybrid AI system designed to
enhance community detection algorithms by leveraging the knowl-
edge captured within the low-dimensional representation of KG. (2)
Problem Modeling: We formulate the problem of identifying mark-
ers associated with HBV functional cure (specifically, HBsAg loss).
(3) Empirical Evaluation: Our approach is empirically evaluated
using real-world data from 87 HBV-infected patients, incorporating
their diverse and multidimensional datasets.
The rest of the paper is structured as follows: Section 2 presents
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Figure 2: Design patterns describing HyAI

basic concepts and a motivating example. Section 3 defines our pro-
posed approach and solution, and illustrates HyAI in the context of
HBV. Results of the empirical evaluation are reported in Section 4
and the state of the art is briefly analyzed in Section 5. Finally, we
close with the conclusion and future work in Section 6.

2 PRELIMINARIES AND MOTIVATION
Knowledge Graphs: A knowledge graph (KG) is a directed edge-
labeled graph𝐾𝐺 = (𝑉 , 𝐸, 𝐿), where i) nodes in𝑉 and labels in 𝐿 are
subsets of a set countable infinite constants; and ii) edges in 𝐸 cor-
respond to the subset of𝑉 ×𝐿×𝑉 . In the HyAI KG, nodes represent
patients and the values of the parameters, while edges represent pa-
rameters and markers (e.g., hasAge, sufferFromDisorder). A 𝐾𝐺 can
be defined as a data integration system 𝐷𝐼𝑆𝐾𝐺 = ⟨𝑂, 𝑆,𝑀⟩, where,
𝑂 is a unified schema comprising classes and properties, 𝑆 is a set
of data sources, and𝑀 corresponds to mapping rules formulated
as conjunctive queries over the sources in 𝑆 . Rules in 𝑀 can be
declaratively specified in mapping languages, e.g., RML2.
Knowledge Graph Embedding (KGE) Representation: A KGE
model learns functions 𝜖 and 𝜌 , which respectively map nodes in
𝐸 and edges in 𝑉 to 𝑘-dimensional vector representations. These
vectors are constituents of the set T. A plausibility score function
𝜙 comes into play, acting as a partial function T × T × T → R;
it is used to assess the credibility of a given triple. Given a triple
𝑡 = (𝑠, 𝑝, 𝑜) ∈ 𝑉 × 𝐿 × 𝑉 , the evaluation of 𝜙 (𝜖 (𝑠), 𝜌 (𝑝), 𝜖 (𝑜))
computes the plausibility of the triple 𝑡 . The functions 𝜖 and 𝜌
have the role of capturing the inherent structural relationships
within the knowledge graph, as outlined in the KG literature by
[7]. State-of-the-art KGE models include TransE [7], TransH [27],
RESCAL [18], and ERMLP [10]. These KGE models leverage dis-
tinct scoring functions to effectively encode knowledge graphs into
vector representations within the space T.
Community Detection: Methods aimed at community detec-
tion involve the partitioning of a KG into subgraphs comprised
of densely connected and similar nodes. Leading-edge techniques
in this field encompass SemEP [19], METIS [14], and KMeans [6].

2https://rml.io/

The evaluation of detected communities relies on assessment met-
rics such as Conductance [11], Coverage [11], and Total Cut [8],
are used to check the quality of detected communities.
Motivating Scenario: Clinical research indicates that the progres-
sion of HBV infection is influenced by both the duration of infection
and the level of HBsAg [9]. Recent assessments have also high-
lighted the insufficiency of relying on isolated factors for accurately
predicting HBV functional cure. Therefore, there is a compelling
need to gather comprehensive information regarding the clinical
and immunological parameters that characterize an HBV patient,
as this is pivotal for predicting HBV functional cure. However, this
disease related data often exists across multiple sources (depicted in
Figure 1a), encompassing demographics, clinical records, immune
phenotyping data, HBV treatments, HLA alleles, and other rele-
vant datasets from diverse healthcare facilities. Consequently, there
arises a requirement for creating holistic profiles of HBV patients,
as depicted in Figure 1b) and 1c). HBV patient profiles might consist
of differing parameters, preventing, thus, the adoption of a fixed
schema, where all patients are characterized by uniform features.
This semi-structured nature of HBV patient profiles results in a
substantial number of missing values, if represented as a universal
relational table. A more effective representation can be achieved
by portraying them as factual statements within a KG framework,
as shown in Figure 1d). This shift would enable inductive learning
methods to encode individual profiles and unveil patterns facilitat-
ing the identification of viral markers, cell markers, and predictions
regarding HBV functional cured or non-cured patients, as depicted
in Figure 1e). This paper introduces an AI framework designed to
seamlessly combine data from diverse sources, while presenting the
merged information in two distinct forms: factual statements and a
low-dimensional continuous vector space. Symbolic and numerical
representations serve as fundamental components for modeling
relationships between entities within the KG. They are building
blocks for unraveling patterns through advanced community detec-
tion techniques. The goal is to leverage these patterns to shed light
on features that elucidate the conditions of HBV cured patients.
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Figure 3: The pipeline of HyAI framework, tackles the problem of predicting the impact of the immune system in the functional
cure and non-cure of chronic HBV patients. HyAI seamlessly integrates selfsupervised learning involves knowledge graph
embedding models and unsupervised learning, which identifies the communities based on similarity values.

3 HYAI- OUR APPROACH
In this section, we formalize the problem tackled in this work and
present the architecture of our proposed solution.
Problem Statement: We tackle the problem of detecting com-
munities of nodes in a knowledge graph 𝐾𝐺 , such that the nodes
inside the same community are very related, while nodes in differ-
ent communities are not. Let 𝐾𝐺 = (𝑉 , 𝐸, 𝐿) be a knowledge graph
and let S be the space of all the partitions into communities of the
nodes in 𝑉 . Let Quality:S → R be a utility function that captures
both the cohesion within communities and the separation between
communities of the input partition of the nodes in𝑉 . The goal is to
find the partitioning 𝐶∗ ∈ S that maximizes Quality(.).

𝐶∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝐶∈S𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝐶)

Proposed Solution: We propose HyAI, a hybrid AI system that
solves the problem of detecting communities on the knowledge graph
𝐾𝐺 = (𝑉 , 𝐸, 𝐿) that integrates heterogeneous data sources. In addi-
tion to the symbolic representation of the entities in 𝑉 and their
relationships in 𝐸 provided by the factual statements of 𝐾𝐺 , a KG
embedding model generates their numerical representation in a
𝑘-dimensional vector space T in terms of a score function 𝜙 . Using
a similarity metric 𝜈 , these numerical representations are utilized
to determine relatedness between entities in 𝑉 . Values of similarity
provide the basis for creating a partition 𝐶 in the space S that
corresponds to a solution of problem of detecting communities. Com-
munities in 𝐶 are explored to identify intra- or inter-community
properties, and uncover shared patterns.
HyAI is conceptualized following the design principles outlined
by Bekkhum et al. [25]; a basic vocabulary allows for representing
the components of these patterns: actor (indigo triangle), input and
output (white rectangle), process (blue oval rectangle), and models
(yellow hexagon). Figure 2 depicts HyAI ; it comprises four design
patterns describing the sub-systems that implement the tasks men-
tioned above towards solving problem of detecting communities.
Ontology and KG: In this pattern, actors (e.g., domain experts or
knowledge engineers) design a data integration system 𝐷𝐼𝑆𝐾𝐺 =
⟨𝑂, 𝑆,𝑀⟩ composed by a unified schema 𝑂 , input data sources 𝑆 ,
and mapping rules𝑀 ; it is given as input to the process of Knowl-
edge Graph Creation which performs a bottom-up evaluation of the
mapping rules in𝑀 on the sources in 𝑆 to generate the HyAI KG.

KG Embedding: This pattern represents the system that learns the
𝑘-dimensional vector representations of entities in 𝑉 (i.e., 𝜖 (.))
and labels of properties in 𝐸 (i.e., 𝜌 (.)). Using a particular KGE
model, a score function 𝜙 is followed to learn the encoding of
triples 𝑡 = (𝑠, 𝑝, 𝑜) where 𝜙 (𝜖 (𝑠), 𝜌 (𝑝), 𝜖 (𝑜)) is maximized. The 𝑘-
dimensional vectors are utilized to compute values of relatedness
for entities in𝑉 and labels of properties in 𝐸. A similarity metric 𝜈 is
computed pair-widely in 𝐸 and in labels of 𝑉 . This system outputs
both the embedding representations and the similarity values.
Pattern Detection: This system follows a community detection algo-
rithm to partition 𝑉 into a set of communities 𝐶 , in a way that the
values of a utility function Quality(𝐶) are maximized. Entities in
each community 𝐶𝑖 in 𝐶 are described in terms of the subgraphs of
the HyAI KG reachable from each of them; they provide the basis
for the profiling and analysis of the entities in 𝑉 .
Pattern Analysis and Explanation: This pattern designs a system for
explaining knowledge captured by the detected communities using
statistical and symbolic statements. A semantic based model on top
of SPARQL engines enables the traversal of the HyAI KG.
Use Case (Understanding HBV Patients): HyAI is used to un-
cover parameters (clinical, demographic, or immune phenotyping
data) that may characterize HBV patients with functional cure.
Figure 3 shows the implementation of HyAI using state-of-the-art
tools and techniques. Data acquisition captured heterogeneous data
from 87 chronic HBV patients, including age, sex, 18 clinical ob-
servational parameters, 45 immune phenotyping parameters, and
HBV treatment (depicted in Figure 3). The Ontology and KG sys-
tem receives 𝐷𝐼𝑆𝐾𝐺 = ⟨𝑂, 𝑆,𝑀⟩ composed of a unified schema 𝑂
with 66 classes and 185 properties, five data sources in 𝑆 , and 559
RML mapping assertions in𝑀 . As a result of executing 𝐷𝐼𝑆𝐾𝐺 , the
HyAI KG is created; it comprises 32,964 RDF triples, 5,208 entities,
82 labels (Tables in Figure 3). A KG Embedding model transforms
87 holistic profiles of HBV patients into vector representations
of 154 dimensions; a vector-based similarity metric (e.g., cosine
similarity, inverse of Euclidean or Manhattan distances) enables
the computation of the relatedness between HBV patients. The
Pattern Detection system utilizes community detection algorithms
to identify groups of closely interconnected HBV patients. This
process helps in distinguishing between cured and non-cured HBV
patients by partitioning them into distinct categories based on their
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Figure 4: Quality of the generated communities. Communities are evaluated in terms of three quality metrics: Inverse Conduc-
tance (InvC), Inverse Total Cut (InvTC), and Coverage (Co), using the SemEP, METIS, and KMeans algorithms. In this case,
higher values are better. Figures 4b, 4c, 4d, and 4e, assess HyAI, and Figure 4a shows the behavior of the baseline. We can observe
that the communities’ quality generated by HyAI performs better than the baseline.

relatedness. Finally, the HyAI KG and the computed communities
are analyzed to uncover patterns among demographic (e.g., sex and
age), clinical (e.g., HBsAg), and immune phenotypic parameters
(e.g.,𝐶𝐷8+ T cells,𝐶𝐷8+ TCM cells, and𝐶𝐷4+ TCM cells) that may
characterize cured and non-cured HBV patients.

4 EXPERIMENTAL STUDY
We assess the effectiveness of HyAI to capture knowledge encoded
in chronic HBV infected patients. In particular, we aim to answer the
following research questions:RQ1)What is the impact of capturing
knowledge from the data integration system and knowledge graph
creation on predicting functional HBV cure? RQ2) What is the
effect of combining distinct embedding techniques and community
detection algorithms in detecting functional cured and non-cured
HBV patients? RQ3) Can HyAI capture meaningful patterns for the
HBV-domain experts or reported in the literature? The following
experimental configuration is set up to answer these questions.
Benchmark: We conduct our evaluation over the HyAI KG. This
KG consists of observational data describing 87 real-world HBV
patients in everyday routine care. The experiments are carried out
with observational data where all patients have measured clinical
and immune phenotyping parameters for a specific time point called
Day0 3. All patients in that observational data cohort are non-cured

3Day0 is the observational data point in which patients have been measured for both
clinical and immune phenotyping parameters in a specific time and date.

at the time of data collection. The data cohort integrated into the
HyAI KG involves demographic parameters, sex and age with cate-
gorical values female andmale, and𝑌𝑜𝑢𝑛𝑔 < 40, 40 ≤ 𝑀𝑖𝑑𝑑𝑙𝑒 ≤ 49,
and 𝑂𝑙𝑑 > 49, respectively. In addition, the HyAI KG describes the
HBV patients in terms of clinical parameters with categorical val-
ues: HBsAg with four categories values ≤ 99, 100 ≤ HBsAg levels
≤ 999, 1000 ≤ HBsAg levels ≤ 9999, and HBsAg levels ≥ 10000
(IU/mL). Others including albumin, ALT, AST, bilirubin, CRP, GGT,
leukocyte, lymphocyte, neutrophil and thrombocyte counts, Quick-
Test, INR, HBV-DNA, HBcrAg, HBeAg, Anti-HCV and Fibroscan as
well as patient’s treatment information. Furthermore, the HyAI KG
comprises 45 immune phenotyping parameters with continuous
values generated by the Department for Gastroenterology, Hepatol-
ogy, Infectious Diseases, and Endocrinology at Hannover Medical
School to analyze and characterize immune cells with the emphasis
on HBV-specific T cell responses. We aim to identify communities
of patients who can achieve a functional HBV cure and validate
whether HyAI identifies predictors of functional HBV cure.
Gold Standard: The goal standard (𝐺) partitioning corresponds to
the partition of the 87 HBV patients into two groups of patients: 14
HBV cured and 73 HBV non-cured patients 4. The categorization of
HBV patients into these two groups is determined by their final reg-
istered status as indicated in the clinical records. We can appreciate
the imbalance between the two groups of HBV patients, which is
4These 14 HBV cured and 73 HBV non-cured patients are considered at the last
observational data point.
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Figure 5: Quality of the communities is based on the gold standard. Metrics CS and J assess the baseline andHyAI. The reported
results of HyAI are obtained with the RESCAL embedding model. We can observe that HyAI for the three community detection
algorithms, Figure 5a and Figure 5b, outperforms the baseline for both CS and J .

challenging to obtain communities close to the gold standard.
Metrics: We resort to two types of metrics. The first group mea-
sures the quality of a partition’s communities. While the second
group quantifies the quality of partitioning concerning a gold stan-
dard. All the metrics are normalized in the range [0,1]; the inverse
scores are reported to ensure that all values are higher is better.
Quantifying theQuality of theCommunities. a) Conductance:
measures relatedness of entities in a community, and how different
they are to entities outside the community [11]. Inverse (InvC) is
reported. b) Total Cut: sums up all similarities among entities in
different communities [8]. Inverse (InvTC) is reported. c) Cover-
age (Co): compares the fraction of intra-community similarities
between entities to the sum of all similarities between entities [11].
Quantifying the Quality of a Partition. The utility function
Quality(.) is implemented with two metrics: Jaccard Clustering
Index (J ) and Average Category-based Score (CS). J (𝐶1,𝐶2) is
computed by the number of pair that are in both𝐶1 and𝐶2 divided
by the same numerator plus the pair that are in 𝐶1 or 𝐶2, and not
in both. J is defined as follows, where the numerator is computed
by the number of two combinations of a set with cardinality 𝑛:

J (𝐶1,𝐶2) =

(
|𝐶1 ∩𝐶2 |

2

)
(
|𝐶1 |
2

)
+
(
|𝐶2 |
2

)
−
(
|𝐶1 ∩𝐶2 |

2

)
J (𝐶1,𝐶2) = 1.0 if the pairs of patients that appear in 𝐶1 are the
same as the pairs of community 𝐶2 and J (𝐶1,𝐶2) = 0.0 if there
are not pairs of patients that appear together in both communities.
CS compares the gold standard, with the communities generated
by the community detection algorithms. Given a community 𝐶1,
the Average Category-based Score, CS(𝐶1), corresponds to the
average of the ‘Category-based’ measure for each pair of patients
in the community𝐶1. A value equal to 0.0 indicates that there is no
intersection between the pairs of patients in community𝐶1 and the
gold standard, whereas a value close to 1.0 represents that almost
all the pairs of patients in each community share exactly the same

response that the gold standard. CS(𝐶1) is defined as follows:

CS(𝐶1) =

∑ |𝐺 |
𝑖

(
|𝐶1 ∩𝐺𝑖 |

2

)
(
|𝐶1 |
2

)
Baseline: In our evaluation, we establish a baseline using the HBV
data in its relational form. This baseline dataset consists of 87 rows,
representing individual HBV patients, along with 154 columns that
collectively define their attributes within the same observational
data cohort as the HyAI KG. Representing heterogeneous data as a
relational structure leads to the presence of null values, contribut-
ing to a null value rate of 35.1% within the baseline dataset. Our
objective is to ascertain whether the inclusion of Ontology & KG,
along with KG embeddings, can lead to enhancements in the accu-
racy of the resolution of the problem of community detection.
Implementation: HyAI is implemented in Python 3.9 and exe-
cuted on a GPU NVIDIA GeForce RTX 3060 and Intel Xeon CPUs.
The implementation combines self-supervised and unsupervised
learning following the hybrid design pattern in Figure 2. HyAI re-
sorts to SDM-RDFIzer [13] for transforming HBV data sources into
RDF triples executing RML mapping rules in the set𝑀 of the data
integration system 𝐷𝐼𝑆𝐾𝐺 = ⟨𝑂, 𝑆,𝑀⟩. A KGE model computes the
𝑘-dimensional vector representations of the HyAI KG’s entities and
properties. The following KGE models–from PyKEEN library [4]–
are included in the current version ofHyAI : TransE [7], TransH [27],
RESCAL [18], and ERMLP [10]. The cosine similarity is computed
on the vectors created by the KGE models. Moreover, the state-of-
the-art community detection solvers SemEP, METIS, and KMeans
are used to implement the system described by the pattern Pat-
tern Detection. Finally, the communities detected are analyzed and
explained, making the process transparent and understandable to
the user. The KGE models are configured to produce vectors of 154
dimensions, adhering to the default hyperparameters proposed by
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the PyKEEN library 5. METIS and KMeans are set up to create two
clusters, mirroring the number of cluster found by SemEP and the
ones in the goal standard. HyAI is available at 6.

4.1 Effectiveness of HyAI
Quality of the Detected Communities: We assess the effective-
ness ofHyAI based on the quality of the communities created on top
of the HyAI KG based on the knowledge captured by the KGE mod-
els and the applied similarity metrics. The quality of the generated
partitions is quantified using the three metrics: Inverse of Conduc-
tance, Total Cut, and Coverage (Co); their values were computed for
the partitions generated by SemEP, METIS, and KMeans over the
relational data of the baseline dataset, and the HyAI KG. Figure 4a
depicts the computed values in a radar plot. We can observe that
the HyAI results outperform the baseline, when the cosine simi-
larity metric is computed using the embeddings learned by KGE
models. This improvement concerning the baseline suggests that
these embeddings can encode the structural characteristics of the
integrated data, particularly in the case of missing values– which
correspond to 35.1% of the values of integrated parameters. They
also indicate that the system specified by Ontology and KG pattern
(Figure 2) allows HyAI to capture knowledge about the relatedness
of the HBV patients based on the representation of the integrated
clinical, demographic, and immune phenotyping parameters (RQ1).
The HBV dataset includes observational data collected at the data
point named Day0. Thus, the HBV patients have one value per
parameter and clinical protocol used to measure the parameter.
Moreover, all the relationships are modeled as binary relations, and
reverse triples are not modeled. As a result, the KG includes n-to-1
relations modeling that several HBV patients have the same value
for a given parameter. As shown by Akrami et al. [2], KGE models
like TransE. TransH extends TransE, and represents each relation
in a hyperplane, performing better than TransE in KGs comprising
n-to-1 [3]. Further, models like RESCAL represents each KG edge
as a weight matrix whose entries specify the interaction of latent
features, i.e., relationships learned by the KGE model through a
training process. This weight matrix representation might perform
well for n-to-1, as each entry in the matrix models the interaction
between latent features of entities [21]. Similarly, ERMLP relies on
a positive definite matrix that characterizes the geometry of the
relationship space. ERMLP employs metric learning techniques to
ensure the learned matrices reflect the desired relationship topology
[3]. These characteristics of the KGE models support the results re-
ported in Figure 4 where RESCAL, TransH, and ERMLP improve the
quality of communities computed by METIS, SemEP, and KMeans.
METIS and SemEP are known for their effectiveness in partition-
ing graphs and exploiting a KG connectivity [16, 24]. Contrary,
KMeans is designed for numerical data and not for graph structures
found in KGs. These features of the studied community detection
solvers justify the observed behavior of METIS and SemEP, par-
ticularly when computed on the embedding learned by RESCAL
(RQ2). Quality of Learned Partitions: We evaluate the gener-
ated communities against the gold standard using two metrics: the
Average Category-based Score (CS) and the Jaccard Clustering

5https://pykeen.readthedocs.io/en/stable/tutorial/running_hpo.html
6https://github.com/SDM-TIB/HyAI

Index (J ). Additionally, we expand the HyAI KG with four immune
system parameters: CD8+ TEM cells, CD8+ TCM cells, CD4+ TCM
cells, and CD8+ T cells. These parameters are assigned two categor-
ical values each: HighRange and LowRange. To establish category
thresholds, we rely on the observation that HBV-cured patients
typically exhibit high values for CD8+ TEM cells, CD8+ TCM cells,
and CD4+ TCM cells, while demonstrating low values for CD8+ T
cells. Incorporating these new properties aims to determine if they
enhance the models’ ability to create partitions that closely resem-
ble the gold standard. Figure 5a and Figure 5b report on the results
on the two metrics in the three settings when the cosine similarity
is computed using the embeddings learned by RESCAL. As shown
in Figure 4, solving the problem of community detection over the
HyAI KG empowers the community detection solvers with knowl-
edge about the HBV patients that more accurately captures their
relatedness. As a result, HyAI outperforms the baseline for both
Jaccard Clustering Index, Figure 5b, and Average Category-based
Score, Figure 5a. Moreover, the HyAI enhanced–including the four
categorical properties– enables the learning of embeddings that
facilitate METIS and SemEP to distinctly categorize non-cured pa-
tients within a singular cluster. This outcome consequently brings
the generated partitions closer to the established gold standard, as
illustrated in Figure 5. This alignment suggests that the categorical
representation of CD8+ TEM cells, CD8+ TCM cells, CD4+ TCM
cells, and CD8+ T cells represent pivotal immune system parame-
ters, enhancing the capacity to learn embeddings characterized by
more accurate values of the plausibility function 𝜙 (RQ2 and RQ3).
Analyzing Patterns of HBV Patients: RESCAL and SemEP di-
vides the entities of HBV patients into Community 1 and Community
2. The former only comprises entities representing HBV non-cured
patients, while the latter includes both cured and non-cured. Fig-
ure 6 describes the entities grouped into these two communities
based on the values of immune phenotyping parameters CD8+ (Fig-
ures 6a and 6b) and CD4+ (Figures 6c and 6d). The frequency of
high and low values for these parameters differ in non-cured and
cured patients. Specifically, HBV cured patients tend to have higher
values of the parameters CD8+ TEM cells, CD8+ TCM cells, and
CD4+ TCM cells, and lower values of CD8+ T cells. This observa-
tion represents a relevant finding that even requires further clinical
study, contributes to the enhancement of the understanding of the
role of the immune system in the functional HBV cure (RQ3).

5 RELATEDWORK
Traditional ML algorithms have been applied to leverage a data-
driven approach for predicting tasks related to hepatitis B and C-
infected patients using clinical information [26]. Tian X, et al. [28]
used different ML algorithms for predicting HBsAg seroclearance
using demographic and laboratory data of 2, 235 chronic HBV pa-
tients. Busayo I, et al. [1] proposed predictive models using ML
algorithms for identifying early detection of HBV infections on
an interrogate patients dataset of 916 individuals that consists of
hematology blood tests, results of HBsAg, and routine clinical test.
These approaches rely only on data-driven systems, missing the
essential part of capturing knowledge from HBV patients’ data
including demographic, clinical, and immune phenotyping data.
Knowledge-driven approaches targeting HBV patients’ data re-
sources with meaning (metadata) and external knowledge can be
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Figure 6: Immune phenotying values for HBV patients clustered by HyAI with RESCAL and SemEP into communities C1 and
C2. HBV- cure and non-cure patients have a different frequency distribution of CD8+ and CD4+ T cell subsets; cure patients
have higher values of CD8+ TEM cells, CD8+ TCM cells, and CD4+ TCM cells, and lower values of CD8+ T cells.

represented in structured graph models called KGs. These KGs can
offer several advantages and make them a powerful tool to orga-
nize, harmonize, integrate, and represent complex HBV data with
their knowledge. Yin Y, et al. [30] developed a questions-answering
system on top of a KG using real medical records and datasets about
Chinese medicine diagnosis and treatment of HBV patients. The
answers provided by systems used data and knowledge with respect
to HBV disease diagnosis, treatment, and patient self-care. More-
over, KGE has gained rapid advances in the design of analytical and
predictive tasks in the areas of biomedical and health sciences [5].
Mohamed, S. K, et al. [17] show the capabilities of KGE models in
the context of biological KGs and their predictive and analytical
capabilities in two use cases of (i) prediction of drug-target interac-
tions and (ii) polypharmacy side effects. A similar hybrid AI system
based on data and knowledge-driven approaches proposed by Rivas,
A. et, al. [20], which integrate symbolic and sub-symbolic systems
represented as deductive databases for link prediction tasks in the
use case of KG for lung cancer patients treatment effectiveness.
HyAI also implements a hybrid AI system and uniquely provides a
solution to the problem of discovering parameters that may play a
relevant role in the functional HBV cure.

6 CONCLUSIONS AND FUTUREWORK
HyAI implements hybrid AI framework combining KG, KGE, and
inductive learning to discover communities of related entities. HyAI
used KG embedding models to transform entities and relations of
KG into 𝑘-dimensional vector space by preserving their structure.

We used unsupervised learning methods to find similar relation-
ships between entities with the help of similaritymetrics. Hence, the
community detection algorithms (SemEP, METIS, KMeans) cluster
closely related chronic HBV patients via similarity metrics formu-
lated from the acquired embeddings. Our proposedHyAI framework
has been used in the multidimensional datasets of 87 chronic HBV
patients consisting of demographic, clinical, immune phenotyping,
and HBV treatment [9, 15]. The experimental analysis shows that
the addition of KG and KG embeddings leads to enhancement in
the accuracy of detected communities, using KGE models ERMLP,
TransE, TransH, and RESCAL, (depicted in Figures 4 and 5). In the
future, we are interested in the analysis and effectiveness of HyAI
in the chronic HBV patients’ multidimensional datasets at all time
points. We are also interested in using HyAI in different use cases
associated with human immune system studies.
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