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ABSTRACT
Preventing the spread of misinformation is challenging. The detec-
tion of misleading content presents a significant hurdle due to its
extreme linguistic and domain variability. Content-based models
have managed to identify deceptive language by learning repre-
sentations from textual data such as social media posts and web
articles. However, aggregating representative samples of this het-
erogeneous phenomenon and implementing effective real-world ap-
plications is still elusive. Based on analytical work on the language
of misinformation, this paper analyzes the linguistic attributes that
characterize this phenomenon and how representative of such fea-
tures some of the most popular misinformation datasets are. We
demonstrate that the appropriate use of pertinent symbolic knowl-
edge in combination with neural language models is helpful in
detecting misleading content. Our results achieve state-of-the-art
performance in misinformation datasets across the board, showing
that our approach offers a valid and robust alternative to multi-task
transfer learning without requiring any additional training data.
Furthermore, our results show evidence that structured knowledge
can provide the extra boost required to address a complex and
unpredictable real-world problem like misinformation detection,
not only in terms of accuracy but also time efficiency and resource
utilization.
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1 INTRODUCTION
Online misinformation is one of the biggest challenges societies
are facing nowadays, even though the story of this phenomenon is
as old as the world [12]. Online communication and social media
amplify the circulation of false information to a scale and speed
never seen in history [3]. Moreover, misinformation spreads six
times faster than factual information exposing internet users to the
construction of false beliefs, difficult to contrast and eradicate [44].
Over the years, researchers have joined efforts to implement mod-
els that attempt to detect deceptive content and thereby mitigate
and reduce the spread of online misinformation [17]. Despite the
remarkable capabilities unveiled by recent advancements in natural
language processing for the classification and analysis of written
texts [24], this phenomenon remains intricate and far from resolved
[30]. The challenges of heterogeneity [5] and cross-modality [27]
make it exceedingly difficult to observe this phenomenon at the
necessary volume and variety required to curate annotated datasets
essential for training effective and generalizable models through
supervised approaches. Nevertheless, the progress in generative
large language models such as GPT-3 [4] and PaLM [28], disclosed
alarming scenarios in the automatic generation of misleading con-
tent, becoming a possible undesirable tool in the hands of mala fide
actors [45]. The research questions we address in this paper are the
following:

• RQ1: What are the main attributes of the datasets currently
adopted by the community of researchers to characterize the
misinformation problem?

• RQ2: Taking into account existing work on linguistic and
psychological drivers of misinformation, are the linguistic
attributes they propose predictive?

• RQ3: Considering the heterogeneity of this phenomenon,
could structured features proposed by social science studies,
as captured by a collection of pre-existing symbolic mod-
els, enhance the development of more robust content-based
misinformation detection models?

To address these questions, we first analyze datasets used nowa-
days in the community and collected with the intention of repre-
senting the diversity of the misinformation. We extract specific
features that are supposed to characterize misinforming texts and
confirm the representativeness of such data. Next, using feature se-
lection methods, we demonstrate the predictability of these features
and briefly analyze the patterns that emerge across the different
training data sources. Finally, we experiment with combining these
features with neural language models to explore the utility of these
resources in building machine learning models for content-based
misinformation detection. We hypothesize that incorporating these
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features can improve the models’ robustness in terms of generaliz-
ability and the capability to withstand domain shifting.

2 RELATEDWORK
We review the related work on misinformation concerning our
main contributions to (i) the characterization of content spread
by this phenomenon and (ii) the models developed to detect such
content. In this work, we adopt the definition of misinformation
presented in [46], or rather, an umbrella term to include all false or
inaccurate information that is spread online, such as rumor, clickbait
or fake news, among others [5, 23, 46], intentionally or uninten-
tionally propagated. Moreover, we only consider content-based
classification models, which rely exclusively on textual data from
various misleading online sources, such as web articles or social me-
dia posts, supporting content pre-bunking [12]. We do not consider
models that leverage additional sources such social-data basedmeth-
ods [1] nor models that make use of external sources for content
debunking such as evidence-based methods [11].

2.1 Analysis of Misleading Contents
Several works over the years have been investigating the language
of misleading content spread by misinformation. Recent social stud-
ies analyzing linguistic and psychological drivers of misinformation
identify the relevance of specific linguistic features in the charac-
terization of misleading content. In [5], the author investigates
the distinctions between reliable sources and untrustworthy ones
concerning cognitive effort and emotional appeal, highlighting the
importance of text attributes such as its readability, sentiment, or
social identity among others. Authors in [12] emphasize the impor-
tance of emotions in the formation of false beliefs, while previous
research [20], similarly, reveals the importance of sentiment infor-
mation as indicators of deceptive content. A higher level of abstrac-
tion is considered in [36], where the authors identify systematic
differences between deceptive and truthful content in rhetorical
structures. Analogously, thematic content analysis is investigated
in [15], in which a set of narratives and rhetorical patterns define
intents spread by such content.

Various studies delve into more granular levels of linguistic
analysis. In [16], a framework is introduced, which employs gram-
matical patterns to distinguish between authentic and deceptive
news. Similarly, in [35], the authors identify lexical indicators for
this purpose. A work that tries to combine lexical, psychological,
as well as more complex structural features is presented in [19], in
which the authors combine different levels of analysis to extract
common patterns in fake news content.

Valuable insights arise from all of these works. Typically, mis-
leading content displays negative sentiment, employs emotional ap-
peals, and incorporates first or second-person references. It adheres
to particular rhetorical structures and narratives. These character-
istics contribute to the content’s accessibility and resonance with
the audience. In our study, we conduct a comprehensive layered lin-
guistic analysis of misleading content. This analysis encompasses
both fine-grained and coarse-grained traits, spanning from lexical
to discourse attributes, including all language aspects identified in
related research [5, 12, 19, 20, 35, 36].

2.2 Content-based Misinformation Detection
The use of linguistic features to classify misleading content has
been experimented extensively with traditional machine learning
algorithms. In [34] a Bayes classifier has been used to detect mis-
informing rumors in microblogs, while Bayes, Decision tree and
SVM classifiers have been implemented in [6] to assess the credi-
bility of tweets. The importance of features related to upper layers
of language analysis has been explored in [36], in which the au-
thors leverage the vectorization of rhetoric information to cluster a
dataset of personal stories, divided between truthful and deceptive.

The use of neural network models in combination with symbolic
features has also been investigated across various studies. LSTM
models to detect misinforming articles have been explored in differ-
ent works [14, 35]. These models leverage the combination of word
embeddings with linguistic features, such as the EmoCred system,
which experiments with the use of lexical resources and attention-
based methods taking advantage of emotional signals from texts.
A work that extends the use of EmoCred with the transformers
[42] is presented in [21]. The exploration of model generalizability
across various misinformation data sources has been pursued by
employing transformers in multi-task learning [29] and transfer
learning [23] contexts.

Previous research provides robust evidence supporting the ef-
ficacy of linguistic features extracted from multiple language lay-
ers in predicting deceptive content. Some studies underscore the
benefits of combining these resources with advanced language
representations, such as neural embeddings, proposing effective
integration methodologies. Nonetheless, a systematic investigation
that leverages all these features concurrently and offers comprehen-
sive validation across diverse misinformation sources is currently
lacking. In this work, we build on the findings of previous stud-
ies and conduct additional experiments to address the remaining
challenges.

3 RESOURCES
In this section, we introduce the data and linguistic resources to be
employed in this study, considering the insights from the related
work discussed in Section 2.

3.1 Data
We select datasets from [23], which consolidates various forms of
misinformation, domains, and text structures, providing a compre-
hensive representation of the phenomenon. This list employs 9
datasets, divided into 2 main groups, that have undergone manual
annotation in contrast to distantly supervised data used in other
research [5, 35]. The first group, summarized in Table 1, has been
used by the authors to fully finetune a RoBERTa large model [25]
in a multitask learning scenario [8], where each task refers to a
different type of misinformation. The second group, summarized
in Table 2, has been used by the authors to evaluate model gener-
alizability on new unknown tasks in a few-shot learning scenario
[40].

3.2 Symbolic Models
Based on the analysis performed in section 2.1 on the formal and
semantic aspects of the language of misinformation suggested by
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Table 1: Summary of the 4 misinformation datasets used to train model in fully finetuning scenario.

Dataset Name Task Granularity Labels (Positive/Negative) Dataset Size Positive Class Size

BASIL [13] NewsBias sentence contains-bias/no-bias 7,959 1,624
Webis [33] FakeNews article fake/true 1,604 355
PHEME [47] Rumor tweet True/False 1,685 1,058
Clickbait [32] Clickbait headline is-clickbait/not-clickbait 19,038 4,318

Table 2: Summary of the 4 misinformation datasets used to train model in fewshot learning scenario.

Dataset Name Task Granularity Labels (Positive/Negative) Dataset Size Positive Class Size

PropagandaTC [9] Propaganda article has_propaganda/no_propaganda 1,594 816
PolitiFact [38] Fake News Article article fake/real 202 91
BuzzFeed [38] Fake News Title headline fake/real 170 80

CovidTwitterQ1 [2] Covid Check-worthy Twitter tweet yes/no 504 305
CovidTwitterQ2 [2] Covid False Twitter Claim tweet contains_false/no_false 260 37

prior studies, we select a collection of symbolic models that capture
such linguistic attributes. Below, we introduce the selected models,
organized from lower to higher linguistic layers of analysis that
include formal, semantic, and discourse analysis.
Writeprint 1 This model is capable of extracting basic linguistic

attributes, such as stylometric traits or text statistics, and cal-
culating widely used readability indexes that are employed
to assess the cognitive effort required for writing and com-
prehending texts.

Sentiment analysis 2 This is a type of document analysis that
determines how positive or negative the tone of the text is.

Emotional traits 3 Classify documents in terms of the feelings
expressed in the text. They can recognize different emotional
traits such as joy, surprise, irritation, etc.

Behavioral traits 4 Identify references to personality traits men-
tioned in the text, such as curiosity, honesty, negativity, etc.

Hate speech 5 This model is designed to both extract the single
instances of offensive and violent language and categorize
each instance according to different hate speech categories.

Radicalization Narratives [10] Helps to capture wider discourse
intents and strategic radicalization narratives that can be
exploited to promote radical ideologies by any radical group.

To encompass the insights that have arisen from related work
analysis, we apply the writeprint model to extract fundamental
language attributes, including text statistics and stylometric traits,
and to compute readability indices to assess the necessary cog-
nitive effort required to process texts. To capture the emotional
appeals and negative sentiment usually present in misinforming
content, we utilize emotional traits, behavioral traits, hate speech,
and sentiment analysis models. Finally, we utilize the radicalization

1https://docs.expert.ai/nlapi/latest/reference/output/detection/writeprint/
2https://docs.expert.ai/nlapi/latest/guide/sentiment-analysis/
3https://docs.expert.ai/nlapi/latest/guide/classification/emotional-traits/
4https://docs.expert.ai/nlapi/latest/guide/classification/behavioral-traits/
5https://docs.expert.ai/nlapi/latest/reference/output/detection/hate-speech/

narratives model to detect broader discourse intentions influenced
by structural and rhetorical aspects of texts.

We use a collection of expert.ai’s symbolic, rule-based models6 to
extract features that can be used to enhance machine learning clas-
sification algorithms. We opt for off-the-shelf models for linguistic
analysis,7 classification,8 and information detection,9 designed to
encompass both fine-grained as well as course-grained features.
Models are designed to assign weighted scores that quantify the
relevance of such extracted features. The expert.ai API10 offers free
easy access to all symbolic models, and they are available for quick
testing using the online demo11.

4 FEATURE SELECTION
In this work, with the aim of capturing the optimal subset of fea-
tures that exhibit predictive capability, we make use of feature
selection methods [43]. Typically, this process uses statistical meth-
ods to estimate relationships between input variables and the target
variable, aiding in selecting features with stronger associations.
For our analysis, we employ the univariate linear regression tests
leveraging Pearson correlation [43], where each input variable is
tested separately as a single regressor.

let 𝐷 be a dataset containing 𝑁 text instances, let𝑀 be a collec-
tion of𝐾 different symbolic models where each model𝑀𝐾 assigns a
set of features𝑉 to each instance in 𝐷 .𝑉 can be represented as a set
of features {𝑥1, 𝑥2, . . . , 𝑥𝑖 }, where 𝑥𝑖 represents an input variable
of vector 𝑉 (𝐾 )

𝑁
. The process comprises the calculation of the Per-

son correlation coefficient (𝑟 ) subsequently converted to F-statistics
(𝐹𝑠𝑡𝑎𝑡𝑠 ) and p-value (𝑝) as follows:

6https://www.expert.ai/blog/symbolic-approach-nlp-models/
7https://docs.expert.ai/nlapi/latest/guide/linguistic-analysis/
8https://docs.expert.ai/nlapi/latest/guide/classification/
9https://docs.expert.ai/nlapi/latest/guide/detection/
10https://github.com/therealexpertai/nlapi-python
11https://try.expert.ai/

https://docs.expert.ai/nlapi/latest/reference/output/detection/writeprint/
https://docs.expert.ai/nlapi/latest/guide/sentiment-analysis/
https://docs.expert.ai/nlapi/latest/guide/classification/emotional-traits/
https://docs.expert.ai/nlapi/latest/guide/classification/behavioral-traits/
https://docs.expert.ai/nlapi/latest/reference/output/detection/hate-speech/
https://www.expert.ai/blog/symbolic-approach-nlp-models/
https://docs.expert.ai/nlapi/latest/guide/linguistic-analysis/
https://docs.expert.ai/nlapi/latest/guide/classification/
https://docs.expert.ai/nlapi/latest/guide/detection/
https://github.com/therealexpertai/nlapi-python
https://try.expert.ai/
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𝑟 =

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)√︃∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥)2
√︃∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦)2
(1)

𝐹𝑠𝑡𝑎𝑡𝑠 =
𝑟2

1 − 𝑟2 × 𝑛 − 2
1

(2)

𝑝 = 1 − sf𝐹𝑠𝑡𝑎𝑡𝑠 (𝐹𝑠𝑡𝑎𝑡𝑠 , 1, 𝑛 − 2) (3)

where sf𝐹𝑠𝑡𝑎𝑡𝑠 is the survival function of the F-distribution. Finally,
let be 𝐹 (𝐾 ) a set of features assigned by model𝑀𝐾 . To select the pre-
dictive features for each model-task pair we calculate the reduced
set of feature 𝐹 ′(𝐾 ) , obtained by considering only those features
𝑓
(𝐾 )
𝑗

, the 𝑗-th feature assigned by the 𝐾-th model where 𝑓 ∈ 𝐹 (𝐾 ) ,

for which the p-value 𝑝 (𝐾 )
𝑗

from the test is less than or equal to 𝛼 ,
a predetermined significance level that we set to 0.05:

𝐹 ′(𝐾 ) = {𝑓 (𝐾 )
𝑗

| 𝑝 (𝐾 )
𝑗

≤ 𝛼} (4)

5 PROPOSED MODEL
We employ RoBERTa large for our misinformation content-based
classifier, as in [23]. We use adapters fine-tuning with the Pfeiffer
architecture [31] and adapter drop method [37] to efficiently man-
age multiple dataset training, avoiding full model fine-tuning. We
integrate insights from symbolic models presented in section 3.2
using a knowledge combination mechanism inspired by previous
works [14, 21]. We create a unified feature vector representation
incorporating multiple models’ information as follows. Given a set
𝑆 of text samples for a misinformation task and a set𝑀 representing
different models used for feature extraction, we compute vectors
𝑣𝑠,𝑀𝑖

for each text sample 𝑠 ∈ 𝑆 using model𝑀𝑖 . Starting with 𝑣𝑠,𝑀𝑖
,

we derive a condensed feature vector 𝑣 ′
𝑠,𝑀𝑖

by isolating statistically
significant features, as detailed in section 4. Concatenating these re-
duced feature vectors yields a unique representation, 𝑣 ′𝑠,𝑐𝑜𝑛𝑐𝑎𝑡 . that
contains the information from all the different models for sample 𝑠 :

𝑣 ′𝑠,𝑐𝑜𝑛𝑐𝑎𝑡 = 𝑣
′
𝑠,𝑀1

⊕ 𝑣 ′𝑠,𝑀2
⊕ . . . ⊕ 𝑣 ′𝑠,𝑀𝑛

(5)

where ⊕ stands for concatenation. This vector is then fed to the
classification head along with the RoBERTa embedding previously
passed through a mean pooling layer. To weigh contributions com-
ing from both representations, the feature vector and the trans-
former embedding are passed through normalized linear layers.
These layers are subsequently concatenated, followed by the ap-
plication of a Softmax function to calculate the prominence of the
two representations:

𝑓𝑗 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑊𝐹 , 𝑓𝑗 + 𝑏 𝑓 )

𝑒 𝑗 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑊𝐸 , 𝑒 𝑗 + 𝑏𝑒 ) (6)

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓𝑗 ⊕ 𝑒 𝑗 )

Element-wise product is successively computed between those
weighted values and the original vectors before moving to a two-
classification layer. A detailed overview of the model architecture
is presented in Figure 1.

Figure 1: Architecture of the proposed model.

6 EXPERIMENTS
In this section, we present the experimental design of our study and
the results of our analyses, which address the research questions
that we posed in the introduction.12

6.1 Characterization of Misinformation
Datasets

We answer RQ1 by investigating the characterization of the datasets
introduced in section 3.1, Table 1 and Table 2, and verifying their
alignment with the representations outlined in social science stud-
ies, as discussed in section 2.1. This process offers an assessment of
the data’s representativeness and furnishes valuable insights into
their similarities provided by the application of symbolic models
discussed in section 3.2. Given the same formalism presented in
section 4, a dataset can be represented as:

𝐷 = {(𝑉 (1)
1 ,𝑉

(2)
1 , . . . ,𝑉

(𝐾 )
1 ), . . . , (𝑉 (1)

𝑁
,𝑉

(2)
𝑁

, . . . ,𝑉
(𝐾 )
𝑁

)} (7)

where𝑉 (𝐾 )
𝑁

represents the feature vector assigned by model𝑀𝐾 to
each𝑁 -th instance of𝐷 and previously described as a set of features
{𝑥1, 𝑥2, . . . , 𝑥𝑖 }. To understand the magnitude of each feature 𝑥𝑖
across the feature vectors 𝑉 (𝐾 )

𝑁
, we compute the average of such

vectors assigned by model𝑀𝐾 to each text 𝑁 -th instance of 𝐷 as
follows:

𝑉 (𝐾 ) =
1
𝑁

𝑁∑︁
𝑗=1

𝑉
(𝐾 )
𝑗

(8)

We provide the results of the analysis in Table 3 and Table 4.
Specifically, Table 3 shows the top 3 feature values, or classes,
captured from each 𝑉 (𝐾 ) . Across the datasets, the predominant
classes consistently confirm the highly emotional nature of de-
ceptive content, often characterized by negative and aggressive
emotions. These emotions are well-represented by labels such as
Hatred,Anger, Violence, Extremism,Discrimination, Isolation, Racism,
Threat and Violence, Personal Insult among others. It is also note-
worthy that classes detected by the Radicalization Narratives model
include Legitimacy of ideology, Group’s achievements, Promote group
ideology and Homophily that clearly promote partisan narratives

12A repository containing both resources and the experimental code is accessi-
ble at https://github.com/expertailab/Capturing-Pertinent-Symbolic-Features-for-
Enhanced-Content-Based-Misinformation-Detection

https://github.com/expertailab/Capturing-Pertinent-Symbolic-Features-for-Enhanced-Content-Based-Misinformation-Detection
https://github.com/expertailab/Capturing-Pertinent-Symbolic-Features-for-Enhanced-Content-Based-Misinformation-Detection
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Table 3: Frequency values of the top 3 detected classes within the misinformation datasets by each expert.ai symbolic model.

Dataset Name Emotional Traits Behavioural Traits Hate Speech Radicalization Narratives

BASIL
Hatred (9.63%)
Love (8.03%)
Worry (8.02%)

Initiative (10.96%)
Violence (7.86%)
Rejection (7.69%)

Threat and Violence (45.8%)
Ableism (13.94%)

Religious Hatred (10.08%)

Legitimacy of ideology (97.05%)
Homophily (1.2%)

Group’s achievements (0.85%)

Webis
Hatred (10.7%)
Fear (8.3%)
Anger (7.2%)

Violence (14.17%)
Extremism (6.76%)
Initiative (6.51%)

Threat and Violence (33.17%)
Racism (21.07%)

Personal Insult (15.57%)

Legitimacy of ideology (96.24%)
Group’s achievements (1.19%)

Homophily (0.99%)

PHEME
Fear (27.48%)
Anger (11.97%)
Hatred (10.12%)

Violence (54.54%)
Extremism (10.77%)
Unlawfulness (6.1%)

Threat and Violence (47.59%)
Racism (33.95%)
Ableism (11.07%)

Legitimacy of ideology (75.0%)
Homophily (13.89%)

Group’s achievements (11.11%)

Clickbait
Love (10.35%)
Fear (8.14%)
Anger (7.78%)

Violence (14.71%)
Unlawfulness (8.92%)
Initiative (8.68%)

Threat and Violence (39.26%)
Racism (26.16%)

Personal Insult (10.07%)

Legitimacy of ideology (82.64%)
Homophily (9.99%)

Group’s achievements (5.3%)

PropagandaTC
Hatred (15.88%)
Fear (11.98%)

Well-Being (8.05%)

Violence (18.01%)
Initiative (9.85%)

Unlawfulness (7.33%)

Threat and Violence (28.56%)
Racism (19.01%)

Religious Hatred (14.18%)

Legitimacy of ideology (83.64%)
Group’s achievements (8.39%)

Homophily (3.5%)

PolitiFact
Anger (12.0%)
Hatred (8.67%)
Love (8.6%)

Violence (13.06%)
Initiative (10.14%)
Rejection (5.32%)

Threat and Violence (37.93%)
Racism (22.06%)

Personal Insult (14.61%)

Legitimacy of ideology (90.71%)
Group’s achievements (3.42%)

Homophily (2.1%)

BuzzFeed
Hatred (20.21%)
Anger (10.45%)
Disgust (10.45%)

Extremism (20.5%)
Unlawfulness (10.93%)
Discrimination (9.68%)

Personal Insult (50.0%)
Racism (24.1%)

Threat and Violence (24.1%)

Legitimacy of ideology (100.0%)
-
-

CovidTwitterQ1
Guilt (20.06%)
Anger (17.38%)
Hatred (9.74%)

Isolation (11.46%)
Initiative (7.52%)

Unawareness (5.96%)

Threat and Violence (29.51%)
Personal Insult (27.66%)

Racism (16.38%)

Legitimacy of ideology (75.0%)
Homophily (15.62%)

Promote group ideology (9.38%)

CovidTwitterQ2
Guilt (32.84%)
Fear (9.66%)

Hatred (9.14%)

Isolation (13.91%)
Initiative (10.82%)
Rejection (6.8%)

Threat and Violence (29.59%)
Personal Insult (26.53%)
Body Shaming (18.37%)

Legitimacy of ideology (70.59%)
Homophily (29.41%)

-

Table 4: Sentiment and Writeprint analysis performed by expert.ai symbolic models on the misinformation datasets.

Sentiment Writeprint

Dataset Name Positivity Negativity Overall Coleman-Liau Gulpease Automated Readability

BASIL 2.1 -4.4 -2.3 10.3 58.1 13.2
Webis 2.4 -5.6 -3.1 9.9 56.9 11.8
PHEME 1.5 -10.1 -8.6 18.3 55.9 14.5
Clickbait 4.1 -7.9 -3.7 9.8 69.4 7.3

PropagandaTC 1.9 -7.4 -5.4 8.4 74.0 10.9
PolitiFact 2.6 -5.9 -3.1 9.5 58.9 10.3
BuzzFeed 1.6 -15.4 -13.8 9.5 72.3 6.7

CovidTwitterQ1 2.3 -8.8 -6.4 11.4 63.7 10.7
CovidTwitterQ2 2.3 -8.7 -6.3 11.4 61.3 10.9

and perspectives, omitting discussion, complexity, and diversity of
thought.

Table 4 shows instead the output of Sentiment analysis and
Writeprint models. On average, the information extracted from the
datasets undeniably highlights the predominantly negative senti-
ment. As confirmed by other studies [18, 41, 44], it seems a common
pattern in the spread of misinformation where negative polarity has
been demonstrated to be more related to virality. Concerning the
writeprint indexes, when values are below 14 for the Coleman-Liau

[7] and Automated Readability [39] indexes, it typically indicates
that the texts are easy to process. Conversely, values exceeding
40 for the Gulpease index [26], often denote highly complex texts.
Consequently, all the writeprint index values suggest that the texts
are relatively easy for the audience to read and comprehend, con-
tributing to the content’s virality.

The results of the analysis, conducted subsequent to the data
characterization, reveal that the attributes within these datasets
align with research pertaining to misinformation. However, it is
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Table 5: The top 3 features with their corresponding p-values obtained through univariate linear regression within the
misinformation tasks for each expert.ai symbolic model. P-values ≤ 0.05 indicate significance. The lower the value, the bigger
the confidence.

Task Emotioanl Traits Behavioural Traits Hate Speech Radicalization Narratives Sentiment Writeprint

NewsBias
Worry (0.0)
Shame (0.0)
Offence (0.0)

Impoliteness (0.0)
Calmness (0.0)
Rejection (0.0)

-
-
-

Group’s achievements (0.05)
-
-

negativity (0.0)
overall (0.0)

positivity (0.0)

Gulpease (0.0)
Automated Readability (0.0)
adjectivesPerSentence (0.0)

FakeNews
Worry (0.01)

Satisfaction (0.01)
Hatred (0.03)

Initiative (0.0)
Progressiveness (0.0)
Competence (0.0)

Religious Hatred (0.0)
Classism (0.01)

-

Legitimacy of ideology (0.0)
Discredit enemy (0.01)

Attack as self-defense (0.01)

negativity (0.0)
overall (0.0)

positivity (0.0)

Coleman-Liau (0.0)
Gulpease (0.0)

Automated Readability (0.0)

Rumor
Surprise (0.0)

Disappointment (0.02)
Hatred (0.04)

Bias (0.0)
Violence (0.0)
Humour (0.02)

Racism (0.01)
-
-

Homophily (0.01)
-
-

negativity (0.0)
overall (0.0)

positivity (0.02)

Coleman-Liau (0.0)
Gulpease (0.0)

Automated Readability (0.0)

Clickbait
Surprise (0.0)
Happiness (0.0)
Amusement (0.0)

Seriousness (0.0)
Humour (0.0)

Pleasantness (0.0)

Racism (0.0)
-
-

Legitimacy of ideology (0.0)
Discredit enemy (0.05)

-

negativity (0.0)
overall (0.0)

positivity (0.0)

Coleman-Liau (0.0)
Gulpease (0.0)

Automated Readability (0.0)

Propaganda
Hatred (0.01)
Disgust (0.02)
Offence (0.05)

Violence (0.0)
Extremism (0.0)

Disagreement (0.01)

Religious Hatred (0.0)
-
-

Legitimacy of ideology (0.0)
Discredit enemy (0.02)

-

negativity (0.0)
overall (0.0)

-

Coleman-Liau (0.0)
Gulpease (0.0)

Automated Readability (0.0)

Fake News Article
Surprise (0.0)
Hatred (0.04)

-

Addiction (0.01)
Impoliteness (0.03)
Organization (0.03)

Racism (0.01)
Sexism (0.03)

-

Legitimacy of ideology (0.0)
-
-

negativity (0.05)
-
-

auxiliariesPerSentence (0.0)
commasPerSentence (0.0)

doubleQuotationMarksPerSentence (0.0)

Fake News Title
-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

colonsPerSentence (0.0)
exclamationMarksPerSentence (0.0)

sentences (0.0)

Covid Check-worthy Twitter
-
-
-

Initiative (0.02)
Apprehension (0.04)
Emotionality (0.05)

-
-
-

-
-
-

-
-
-

Gulpease (0.0)
capitalFirstLetterSentences (0.0)
charactersPerSentence (0.0)

Covid False Twitter Claim
Anger (0.01)
Anxiety (0.01)
Worry (0.01)

Sexuality (0.01)
Unawareness (0.02)
Discrimination (0.04)

-
-
-

-
-
-

-
-
-

tokens (0.0)
emoticonsPerSentence (0.01)
Automated Readability (0.03)

important to acknowledge that these attributes might not suffice
for the development of an effective classifier for misleading content.
Therefore, our next step involves evaluating the predictive capacity
of these features for the study’s tasks.

6.2 Predictiveness of Symbolic Features
To explore the question raised in RQ2 about the validity of sym-
bolic resources, we employ the feature selection method outlined
in section 4. This method aids us in evaluating the predictiveness of
information captured by symbolic models discussed in section 3.2.
For each specific task, Table 5 shows the top 3 features selected by
each symbolic model. The tables reveal that the smaller the number
of samples per task, the smaller the number of predictive features,
and this is especially true when the scarcity of samples is associated
with smaller types of text such as tweets or headlines. While the
most frequent features in Table 3 may be indicative of misinforma-
tion, they are not always predictive in classification. For example,
the hatred and racism classes, preserve the ability to be distinctive
across most of the tasks, whereas, distinct features beyond the most
commonly occurring classes, such as Religious Hatred and Discredit
enemy, unveil stronger association with the target variables. Tasks
with fewer data samples tend to exhibit stronger associations with
basic stylometric traits such as charactersPerSentence and emoti-
consPerSentence, whereas larger datasets exhibit more pronounced
connections with complex readability indexes.

Feature selection analysis revealed that the majority of the tasks
can be effectively represented by attributes in line with social sci-
ence studies discussed in section 2.1. Nevertheless, the most pre-
dictive features do not necessarily align with the most frequent

ones and the next crucial step is to assess their effectiveness in the
implementation of misinformation classifiers.

6.3 Content-based Misinformation
Classification

In this section, we address the question presented in RQ3 by im-
plementing a content-based misinformation classifier enhanced
with symbolic features that exhibit some predictability across mis-
information tasks and evaluate their effectiveness considering the
heterogeneity of this phenomenon.

6.3.1 Baseline. We opted for the two RoBERTa large models pre-
sented in [23]. The first underwent task-specific fine-tuning for
each misinformation typology. The second, the UnifiedM2 model,
is trained in a multi-task learning environment aiming to unify
different misinformation types and build richer representations.
This last model achieved state-of-the-art results across all tasks.

6.3.2 Experimental Settings. The experimentation is conducted on
a server equipped with 32GB of RAM and a single NVIDIA GeForce
GTX 1080 Ti GPU. Adapter models are implemented using adapter-
transformers library13, trained for 30 epochs with Adam optimizer
[22]. We set a learning rate of 1e-4, early stopping patience to 10,
a maximum sequence length of 128, a batch size of 32, a dropout
of 0.1, and a layer normalization eps of 1e-12, added for numerical
stability, following RobERTa’s standard hyperparameters.

6.3.3 Results. We replicate the experiments presented in [23] by
training the model we propose in two distinct manners. The first
13https://adapterhub.ml/

https://adapterhub.ml/
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Table 6: Macro accuracy and F1 score values over test sets of misinformation tasks using full training set capacity.

Baseline Ours

RoBERTa UNIFIEDM2 AdapterV AdapterF

Task Acc F1 Acc F1 Acc F1 Acc F1

NewsBias 72.8% 65.5% 81.0% 70.2% 81.9% 69.8% 81.9% 69.4%
FakeNews 84.3% 74.9% 85.4% 73.9% 85.0% 74.4% 85.0% 75.2%
Rumor 87.6% 86.9% 92.9% 92.5% 92.4% 91.5% 93.6% 93.0%
Clickbait 84.4% 77.4% 86.3% 78.7% 85.3% 77.9% 86.3% 80.5%

Average 82.2% 76.1% 86.4% 78.8% 86.1% 78.4% 86.7% 79.5%

Table 7: Macro F1 score values over misinformation test sets in fewshot training scenario.

10 examples 25 examples 50 examples

Baseline Ours Baseline Ours Baseline Ours

Task UNIFIEDM2 AdapterV AdapterF UNIFIEDM2 AdapterV AdapterF UNIFIEDM2 AdapterV AdapterF

Propaganda 56.1% 38.4% 60.2% 62.5% 50.9% 63.3% 72.9% 63.5% 68.6%
Fake News Article 42,4% 69.9% 71.0% 53.1% 76.3% 82.0% 74.2% 78.4% 74.9%
Fake News Title 55.3% 33.6% 35.4% 67.0% 77.5% 74.9% 71.4% 77.8% 76.8%
Covid Check-worthy Twitter 61.7% 67.6% 68.0% 64.4% 58.2% 70% 73.2% 70.0% 74.9%
Covid False Twitter Claim 54.2% 45.6% 45.6% 56.3% 45.9% 45.9% 59.7% 45.9% 71.5%

Average 53.9% 51.0% 56.0% 60.6% 61.7% 67.2% 70.2% 67.1% 73.3%

involves the fine-tuning of task-specific adapters on each dataset
presented in Table 1, repeated 3 times with different seeds, using
10% of the data for development and 15% of the data for testing. The
second manner concerns assessing the generalizability of models in
a few-shot learning scenario, where each dataset reported in Table
2, is trained using 10, 25, and 50 samples which we further divide
into 80% training and 20% validation, employing the remaining part
for testing. With AdapterV, we refer to a RoBERTa Pfeiffer adapter
with a vanilla classification head, whereas, with AdapterF, we refer
to our proposed model, or rather, a RoBERTa Pfeiffer adapter with a
custom head in which we integrate features from symbolic models.

Fine-tuning. We report the findings of the first part of the ex-
periments in Table 6. As highlighted in the table, our AdapterF
outperforms other models in terms of both macro F1 and accuracy
across the four diverse dataset/task. These results suggest the ability
of symbolic models to integrate crucial knowledge for misinforma-
tion classification and overcome information that can be acquired
by multi-task training. These results prove the predictive power
of layered linguistic features across misinformation heterogeneity.
Furthermore, our method alleviates the time and resource-intensive
process of acquiring additional resources for domain shifting.

Few-shot. To assess our approach’s generalizability, we conduct
few-shot learning experiments with unknown topics, the results of
which are reported in Table 7. Once more, comparing our proposed
model with the baseline showcases its consistent superiority across
the selected metric. These results underscore the model’s strength
and competitiveness for state-of-the-art content-based misinforma-
tion detection across various domains and resource constraints.

7 DISCUSSION
This research work is grounded in the literature of social sciences,
with the primary objective of defining the phenomenon of mis-
information and its inherent characteristics. By drawing insights
from both recent and older works, we have effectively character-
ized this phenomenon and assessed the compatibility of the data
employed by the research community to develop automated models
for detecting content-based misinformation.

A distinguishing characteristic of this paper is its exploration of
the various layers of linguistic analysis that have evolved through
years of research in the field of misinformation language. It employs
a multi-layered approach that involves the use of tools designed
to address these distinct characteristics. For the first time, this
work shows the value of effectively infusing pre-existing symbolic
knowledge in a language model architecture for content-based mis-
information detection, producing models with SotA performance
at a fraction of the cost. To accomplish this, we have utilized propri-
etary tools that are readily available for use, while also remaining
receptive to the possibility of replacing these tools with a variety of
open resources made available by the research community. These
include models for extracting sentiment from texts, dictionaries tai-
lored for detecting emotions, and models for identifying rhetorical
structures or stylometric indexes among others. Any symbolic fea-
ture vector can be fed into the proposed network architecture. The
combined use of these resources has yielded favorable outcomes in
our series of experiments, particularly within the context of knowl-
edge transfer. This highlights how the concurrent application of



K-CAP ’23, December 5–7, 2023, Pensacola, FL, USA Merenda and Gómez-Pérez

these stratified resources can establish a framework that offers a
comprehensive representation of the phenomenon in question.

Regarding the fusion of symbolic and neural models, we have ex-
plored diverse methodologies, spanning from simple concatenation
to the selective application of task-specific symbolic models via
attention systems, as well as the automation of feature selection by
the model itself. Among these methodologies, the model introduced
in this study has demonstrated its superiority in both results and
efficiency, solidifying its position as the preferred model for this
research. The process of infusing knowledge into a language model
is an intriguing aspect that we intend to further explore in various
contexts, employing different existing methodologies.

8 CONCLUSION AND FUTUREWORK
In this study, we propose harnessing symbolic linguistic resources
inspired by insights from social science research to automate the
detection of misinformation based on its content. Our experiments
leverage a suite of off-the-shelf freely available symbolic models
tailored to identify layered linguistic attributes. To ensure the effec-
tiveness of our method, we employ feature selection techniques to
identify the optimal feature set for each specific dataset. This infor-
mation is subsequently combined with the capabilities of language
models. Our method is validated across a range of datasets, carefully
selected and analyzed to represent the heterogeneous misinforma-
tion phenomenon. The outcomes of our research illustrate that, in
the ever-evolving real-world context where text topics, domains,
and structures constantly evolve, embracing structured knowledge
offers substantial advantages. This approach significantly enhances
accuracy, efficiency, and resource utilization, ultimately achieving
state-of-the-art performance levels. Our approach showcases re-
markable generalizability, thereby enhancing its robustness against
domain shifts. Our future research will explore injecting this ex-
tra knowledge into language models, aiming to grant them the
adaptability and generalizability seen in symbolic models in this
study.
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