
COMPUTING
PRACTICES

Software Engineering for the Cobol
Environment

Michael Evans
Skandinaviska Enskilda Banken

1. Introduction
Skandinaviska Enskilda Banken

(S-E-Banken) began programming
in Cobol relatively late. By learning
from the experiences of other Cobol
installations, a number of modern
methods were incorporated into the
programming environment. This en-
vironment has been in use for 16
months.

2. Background
In 1969 S-E-Banken decided to

develop online banking applications
using assembler language in order to
use the hardware then available ef-
ficiently. The 1970 vintage hardware
was used until 1980.

While application development
languages, report generators, and
similar products are said to give great
improvements in programmer pro-
ductivity [18], these tools cannot be
used for all programs. Therefore, a
"safety net" language was needed to
take care of the exceptions. In Sep-
tember 1980, the bank decided to use

CR Categories and Subject Descriptors: D.2.6
[Software Engineering]: Programming Envi-
ronments
Additional Key Words and Phrases: Cobol
tools, business programming, commercial pro-
gramming
Author's present address: M. Evans, Skandi-
naviska Enskilda Banken, AC/System, Mar-
knad, Datateknik, HK, S-106 40 Stockholm,
Sweden.
Permission to copy without fee all or part of
this material is granted provided that the cop-
ies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to
republish, requires a fee and/or specific per-
mission.
© 1982 ACM 0001-0782/82/1200-0874 75¢

874

SUMMARY: In an attempt to improve the productivity of their
70 development staff, Skandinaviska Enskilda Banken has
built an integrated set of manual and automatic tools for the
implementation of Cobol programs. It was possible to use a
number of modern programming techniques, including soft-
ware engineering methods, in a Cobol environment. The proj-
ect required 31 person-months; the aims, current status, and
initial results are reported.

Cobol as its basic programming lan-
guage.

2.1 Project Limitations
The Jackson Structured Pro-

gramming [14] technique for pro-
gram design was already being used.
Therefore the "Cobol Programming
Environment" (CPE) project only
affected the coding and later system
development phases.

Limited personnel resources were
available for the project. (See "CPE
Project Costs," 5.1). This precluded
the development of all tools from
scratch; instead, software was bought
where possible. Project effort was
concentrated on integrating the var-
ious products plus producing tools
which were not available elsewhere.

2.2 CPE Project Goals
The main goals of the Cobol Pro-

gramming Environment project were
to:

(1) assist programmers in producing
programs which are more reliable
and easier to maintain;
(2) provide a language which is ap-
plication rather than machine ori-
ented;

Communications
of
the ACM

(3) take advantage of the methods
developed in software engineering
during the past l0 years;
(4) produce an educational package
which could be used as required;
(5) make the tools for Cobol pro-
gram development available at the
touch of a key;
(6) provide good self-help facilities.

Business programmers often ignore
methods which have been available
for many years, complaining that ac-
ademic results are too theoretical and
cannot affect their daily work. We
wanted to use software engineering
methods in a Cobol environment.

As the conversion of program de-
velopment from assembler to Cobol
will take a number of years, pro-
grammers must be able to learn
Cobol when they are to use it. This
led to the need for a self-study pack-
age combined with course documen-
tation.

The burden on programmers can
be eased if various standards are
checked automatically or if certain
documentation is generated in a skel-
eton form. In addition, a note from
a tool saying that a particular se-
quence of statements is inefficient

December 1982
Volume 25
Number 12

http://crossmark.crossref.org/dialog/?doi=10.1145%2F358728.358732&domain=pdf&date_stamp=1982-12-01

overcomes the psychological barrier
which clever assembler programmers
feel when confronted with the new
Cobol language.

The assembler programming en-
vironment in use had been built up
during the past 10 years. If a conver-
sion to Cobol was to be successful,
the Cobol environment had to be at
least as easy to use as was the assem-
bler one.

3. Manual Techniques
Programming involves manual

activities which are also part of the
programming environment. The
CPE project addressed some of these,
with the programming language it-
self an important factor.

3.1 Cobol Weaknesses
Fosdick [7] identified a number

of weaknesses with the Cobol lan-
guage. The most important of these:

(1) Lack of block structure makes
structured programming difficult. If
pure Cobol is used for structured
programming some code which
ought to be inline is forced out of
line.
(2) Cobol is verbose.
(3) Local data items cannot be de-
fined.
(4) The syntax for internal and ex-
ternal procedure calls is different.
(5) Cobol does not use functions.
(6) Most mathematical functions are
not available.
(7) Various systems programming
functions such as bit manipulation,
subtasking, and exception handling,
are not present.

3.1.1 Macro Cobol

We use assembler macros to
package a series of machine instruc-
tions; Cobol statements need to be
packaged in the same way. The
MetaCobol macro processor [2] was
chosen to support this facility. The
Cobol code is maintained at the high
macro level and translated to pure
Cobol at compile time using
MetaCobol. The generated Cobol
code is not used by programmers,
but is treated with as much disdain
as the generated assembler code
which Cobol compilers can be forced
to list.

PRO& 6RE DIVISION.
A-NONSENSE-MAIN-ROUTINE.

* GETS *
* NO SPECIAL PARAMETERS *

* DOES *

* READS WHOLE FILE PROCESSING ACCORDING TO *
* TRANSACTION CODE # *

* GIVES *
* FILE UPDATED (INDIRECTLY) *

DO B-INITIALISATION

LOOP

DO RA-READ-INFILE

WHILE NOT F-EOF-INFILE
SELECT FIRST ACTION FOR II-TRANS-CODE
WHEN K-UPDATE-CODE

DO C-UPDATE-RECORD
WHEN K-ADD-CODE

DO D-ADD-RECORD-TO-FILE

WHEN K-DELETE-CODE

DO E-DELETE-RECORD
WHEN NONE

DO XA-ERROR-TRANS-CODE

ENDSELECT

ENDLOOP

DO N-CLOSE-DOWN

GOBACK.

Fig. 1. A sample of SEBOL source code (Part 1 of 2).

A MetaCobol macro package [3]
removes the first three of the above
weaknesses by, among other things,
implementing control structures for
structured programming. This allows
the Cobol programmer to have the
benefit of a more modern program-
ming language. See [20] for further
suggestions on how Cobol may be
improved.

3.1.2 Cobol Extensions

Interfaces to such service mod-
ules as database handlers can be
packaged using macros. This allows
the call to be written as a Cobol-like
verb with operands which may be
checked at compile time, instead of
just a call statement with parameters
[16]. This use of macros was a natural
continuation of our previous assem-
bler macros.

The combination of the above
items resulted in the definition
within S-E-Banken of SEBOL (Skan-

dinaviska Enskilda Banken Oriented
Language) as:

an unofficial subset of ANSI 74
Cobol

+ the control structures required
by JSP

+ verb level interface to IMS (In-
formation Management Sys-
tem), IBM's database handler

+ S-E-Banken's extension verbs
which, for example, validate
check digits

An example of SEBOL code is shown
in Figures 1 and 2.

Each ANSI Cobol verb is catego-
rized as:
Recommended. Verbs within the

limited subset which are taught
in the course. The majority of
administrative data processing
problems can be solved using
these verbs.

Allowed. Verbs which are accept-
able but which may cause main-
tenance problems.

875 Communications
of
the ACM

December 1982
Volume 25
Number 12

COMPUTING
PRACTICES

Forbidden. Verbs which cause se-
rious problems or which are due
to be dropped from the CODASYL
standard.

The Cobol programming handbook
contains the complete syntax of al-
lowed Cobol verbs, including the
structured extensions, in the form of
a reference card which can easily be
taken out and used by programmers.

3.2 Code Skeletons
In order to simplify the writing

of new programs, a series of skeleton
modules are available in the main
source library. Skeletons are pro-
vided for the following categories of
programs:

Batch updating--ordinary files
and databases

TP transaction
Data area definition coPY member
Various logical read or write mod-

ules
List program

New skeletons have been added as
soon as suitable standard solutions
for regularly recurring problems
have been found. Instead of each
programmer having a favorite, pos-
sibly erroneous, module, all use the
same skeleton, thus spreading stan-
dard solutions throughout the com-
pany. Each skeleton contains a num-
ber of text strings which are changed
as the new module is created. These
strings are documented at the begin-
ning of each module, as in Figure 3.

3.3 Program Inspections
The technique of inspecting code

to fred errors has been available for
some time. Although we cannot see
measurable results, we think that ap-
plying the technique to our new
Cobol projects will have three ad-
vantages:
(1) Fewer errors in delivered pro-
grams [8].
(2) Experience of Cobol program-
ming spread quickly throughout the
development department.

C-UPDATE-RECORD.

* GETS *
* RECORD READ INTO II-RECORD *

* DOES *
* UPDATE RECORD WITH TODAY'S DATE *
* (MONTH AND DAY ONLY) *
* GIVES *
* UPDATED RECORD WRITTEN *

START DATA
01 LC-LOCAL-DATA.

05 LC-YYMMDD.
10 LC-YY PIC XX.
10 LC-MMDD PIC X(4).

05 FLAG LC-DATE-REFORMATTED IS FALSE.
END DATA

*

IF LC-DATE-REFORMATTED IS FALSE
MOVE W-TODAYS-DATE TO LC-YYMMDD
SET-TRUE LC-DATE-REFORMATTED

ENDIF
MOVE LC-MMDD TO II-LATEST-DATE
DO RC-WRITE-FROM-INPUT

Fig. 2. AsampleofSEBOLsourcecode(Pad2of2).

(3) Feedback to the Cobol support
group. By collecting statistics on the
number and type of errors found as
suggested in [6], parts of the environ-
ment may be improved.

3.4 Education of Present
Programmers

A four-week course has been
written to "convert" assembler pro-
grammers to Cobol. The documen-
tation may be used for self-study. It
is recommended, however, that all
students attend the classroom ses-
sions as soon as possible in order to
clear up misunderstandings.

The main emphasis in the course
is on the practical application of
Cobol. About half the time is used to
produce a Cobol program, initially a
simple "desk calculator" program.
New features are added to it as Cobol
verbs are introduced in the course.
Writing and modifying this program
helps programmers feel happy with
Cobol and with using the develop-
ment techniques.

4. Automatic Tools
Programmers must use certain

automatic tools, e.g. compilers. Other

tools may be available but their use
is optional and o f t en depends on
whether they are easily invoked.
Ease of use is one of the CPE project
goals.

4.1 Compilation
A normal SEBOL compilation con-

sists of the following steps:
(1) MetaCobol's expansion of the
various non-Cobol verbs and control
structures to ANSI 74 Cobol. See Fig-
ures 4 and 5 for examples of the
expanded Cobol code.
(2) A Cobol compiler [11].
(3) An optional optimizer step [5]
which also performs a static control
flow analysis of the Procedure Divi-
sion. It flags conditions which in
reality are unconditional and code
which cannot be executed.
(4) A post processor which merges
the high level SEBOL source listing
from the input to step 1 and the
compiler information from steps 2 or
3 to one useful listing. This processor
was developed during the CPE proj-
ect because the compiler listing rep-
resents the program and should
therefore be easily readable. Among

876 Communications
of
the ACM

December 1982
Volume 25
Number 12

other things, the compiler output is
altered to refer to the source input
line numbers instead of to the gen-
erated code. Optionally, the listing
may be complemented with a short
note showing which Cobol verbs ex-
panded from the SEBOL line.

Although the above sounds compli-
cated, compilation is invoked simply
through one display panel. Normally
only the module name, and possibly
a compiler option, must be input in
order to initiate a compile. The run's
complexity is hidden from the pro-
grammer.

4.2 Standards Checking
A MetaCobol macro package

[1], modified to work with S-E-Ban-
ken's standards, can check each
module for violation of standards.
Forbidden verbs are flagged. Warn-
ings are output for functions which
are not recommended, for example
ACCEPT and DISPLAY. Code which is
inefficient is flagged. This provides
self-help for experienced as well as
inexperienced Cobol programmers.

The prettyprinter, which is an-
other version of the same package,
indents code in the Procedure Divi-
sion to show the control structure.
Level numbers in the Data Division
are standardized and the definitions
of numeric items are tidied up.

IDENTIFICATION DIVISION.
* XX
* X
* L I S T- P R OGR AM X
* X

* VARIABLES FOR "FIND" AND "CHANGE" : X
* X

* %MOD MODULE NAME X
* %IOMI I/O-MODULE NAME INPUT FILE X
* %IOML I/O-MODULE NAME LIST FILE X
* X

* %PROG PROGRAMMER NAME X
* %DAT YEAR AND MONTH FOR CODING X
* FORMAT YYYY-MM X
* X

* %? EVERYWHERE WHERE COMMENTS MUST X
* WRITTEN OR NAMES OR PREFIXES X

* SUPPLIED X
* X

* REMOVE THIS BOX WHEN ALL CHANGES HAVE BEEN MADE X
* X

*XX
PROGRAM-ID. %MOD.

* MODULE %MOD *
* %? TEXT DESCRIPTION *

* FUNCTION %? *

* CODED %DAT *

* CODED BY %PROG *

*

/
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
SPECIAL-NAMES. DECIMAL-POINT IS COMMA.

/
DATA DIVISION.

Fig. 3. Introduction to the list program skeleton.

4.3 Interactive Debug

An interactive debug product [12]
is available. It contains the following
commands:

List fields
Change (most) fields
Set conditional or unconditional

breakpoints
Trace execution
List source statements

The module being tested must first
be compiled with a special option.
The compiler outputs symbol tables
and a copy of the module source
code, which are then input to the
debug monitor. The details of which
compiler tables the monitor requires
are hidden from the programmer be-
hind a single panel invocation,
greatly simplifying the use of this
tool.

4.4 Database Simulator

The execution time interface to
IMS, IBM's database product, is
complex. This interface may be sim-
ulated [10] during program develop-
ment, allowing transactions to be
built up, database calls to be traced,
and program execution monitored.
Although this product may be used
for all programming languages, it is
required for the development of
database programs and must there-
fore be integrated into the Cobol pro-
gramming environment

4.5 Execution Profile
Optimizer III [5] collects execu-

tion profile information as counts

and/or timings. A number of runs
for one module may be combined to
report a total execution profile. This
allows the programmer to see the
degree of test coverage, although the
coverage measure, e.g., CO or C1, is
not reported explicitly.

In addition, one report lists all
statements which are executed the
same number of times, for example,
per transaction or master record. The
program's logical structure can be
seen from this information.

4.6 Update Log
A menu option is provided to

compare old and new versions of the
same module, listing the total

877 Communicat ions
of
the A C M

December 1982
Volume 25
Number 12

COMPUTING
PRACTICES

changes made between them. A
modified version of the Compare
program [19] is used. This ignores
line sequence numbers and only
compares the Cobol A and B mar-
gins character by character. At pres-
ent, Cobol syntax information is not
used, so that lines containing addi-
tional blank characters are regarded
as changed although they are syn-
tactically identical.

4.7 Data Area Listing
The listing of common, coPved,

data areas is suppressed during com-
pilation. Only the area's text descrip-
tion and version number are put into
the compiler listing. The Cobol def-
inition and compiler data map for an
area may be listed by a separate run
which is only needed once per pro-
gram instead of the information ap-
pearing in every compiler listing.

4.8 Procedure Hierarchy
The MetaCobol structured pro-

gramming package uses internal
Cobol p rocedures - -pa ragraphs
which are PERFORMed. A documen-
tor cross-references PFRFORMS to pro-
cedures and then lists the complete
PERFORM tree. We have added an-
other report showing each procedure
with its PERFORMS. Figures 6 and 7
include examples of these reports
which provide an automatic equiva-
lent to hand-drawn tree diagrams.
The mechanical listings may be pro-
duced as required and are always up
to date

4.9 Implementation
All tools are available through

SPF [13], the menu oriented display
monitor which is used for normal
program editing. Panels, menus, and
the links between them may be cus-
tomized.

All tools are listed according to
the results produced, not the pro-
gram products involved. The pro-
grammer does not need to know
which specific programs are used to
produce each result. This means we

878

WORKINC-STORAGE SECTION

01 62LOCAL-DATA
0S LC-YYMMDD.

i0 LC-YY PIC XX.
I0 LC-MMDD PIC X(4).

05 ZSPP-LC-DATE-REFORMATTED PICTURE X VALUE 'F'
88 LC-DATE-REFORMATTED VALUE 'T'.

PROCEDURE DIVISION.
A-NONSENSE-MAIN-ROUTINE.

PERFORM B-INITIALISATION THRU B-INITIALISATION-EXIT.
A-NONSENSE-MAIN-ROUT-LP-I.

PERFORM RA-READ-INFILE THRU RA-READ-INFILE-EXIT
IF NOT F-EOF-INFILE
NEXT SENTENCE ELSE
GO TO A-NONSENSE-MAIN-ROUT-LX-I.
IF II-TRANS-CODE = K-UPDATE-CODE
NEXT SENTENCE ELSE
GO TO A-NONSENSE-MAIN-ROUT-SC-2-101.
PERFORM C-UPDATE-RECORD THRU C-UPDATE-RECORD-EXIT
GO TO A-NONSENSE-MAIN-ROUT-SS-2.

A-NONSENSE-MAIN-ROUT-SC-2-101.
IF II-TRANS-CODE = K-ADD-CODE
NEXT SENTENCE ELSE
GO TO A-NONSENSE-MAIN-ROUT-SC-2-102.
PERFORM D-ADD-RECORD-TO-FILE THRU
D-ADD-RECORD-TO-FILE-EXIT
GO TO A-NONSENSE-MAIN-ROUT-SS-2.

A-NONSENSE-MAIN-ROUT-SC-2-102.
IF II-TRANS-CODE = K-DELETE-CODE
NEXT SENTENCE ELSE
GO TO A-NONSENSE-MAIN-ROUT-SC-2-103.
PERFORM E-DELETE-RECORD THRU E-DELETE-RECORD-EXIT
GO TO A-NONSENSE-MAIN-ROUT-SS-2.

A-NONSENSE-MAIN-ROUT-SC-2-103.
PERFORM XA-ERROR-TRANS-CODE THRU
XA-ERROR-TRANS-CODE-EXIT.

A-NONSENSE-MAIN-ROUT-SS-2.
GO TO A-NONSENSE-MAIN-ROUT-LP-I.

A-NONSENSE-MAIN-ROUT-LX-I.

PERFORM N-CLOSE-DOWN THRU N-CLOSE-DOWN-EXIT.
A-NONSENSE-MAIN-ROUTINE-EXIT.

GOBACK.

Fig. 4. CobolcodegeneratedbytheaboveSEBOLcode(Part l of 2).

/
C-UPDATE-RECORD.

IF'LC-DATE-REFORMATTED
GO TO C-UPDATE-RECORD-IF-I-100.
MOVE W-TODAYS-DATE TO LC-YYMMDD
MOVE 'T' TO ZSPP-LC-DATE-REFORMATTED.

C-UPDATE-RECORD-IF-I-100.
MOVE LC-MMDD TO II-LATEST-DATE

PERFORM RC-WRITE-FROM-INPUT THRU
RC-WRITE-FROM-INPUT-EXIT.

C-UPDATE-RECORD-EXIT.

Fig. 5. Cobol code generated by the above SEBOL code (Part 2 of 2).

Communications December 1982
of Volume 25
the ACM Number 12

Table I. Functions available under the
COBOL menu.

o Coding
Prettyprinting
Compilation
Standards checker
Link edit

o Test
Interactive debug
Execution profile analysis

o Documentation
Procedure hierarchy within module
Source code comparison
Listing of COPYed data areas

o Miscellaneous
Generate SCHEMA

NONSENSE P R O C E D U R E H I E R A R C H Y

01 A-NONSENSE-MAIN-ROUTINE
02 B-INITIALISATION
02 RA-READ-INFILE
02 C-UPDATE-RECORD

03 RC-WRITE-FROM-INPUT
02 D-ADD-RECORD-TO-FILE
02 E-DELETE-RECORD
02 XA-ERROR-TRANS-CODE
02 N-CLOSE-DOWN

Fig. 6. Full procedure hierarchy listing: Note that C-UPDATE-RECORD is expanded
to include the PERFORM of RC-WRITE-FROM-IN-PUT.

NONSENSE C A L L
DEFINITION

S T R U C T U R E
REFERENCE

Table II. Resources required to develop
the major tools and aids.

Tool person-
months

Handbook 4.0
Course 5.3
Skeleton modules 0.6
Menus, panels 2.5
SEBOL macros (MetaCOBOL) 7.5
Listing postprocessor 2.0
Standards checker and pretty- 2.0

printer

A-NONSENSE-MAIN-ROUTINE

C-UPDATE-RECORD

B-INITIALISATION
D-ADD-RECORD-TO-FILE
E-DELETE-RECORD
N-CLOSE-DOWN
RA-READ-INFILE
RC-~'~ITE-FROM-INPUT
XA-ERROR-TRANS-CODE

B-INITIALISATION
C-UPDATE-RECORD
D-ADD-RECORD-TO-FILE
E-DELETE-RECORD
N-CLOSE-DOWN
RA-READ-INFILE
XA-ERROR-TRANS-CODE

RC-WRITE-FROM-INPUT

Fig. 7. PERFORMs per procedure.

can add an extra listing to the pro-
cedure hierarchy run without having
to tell everyone how to produce the
listing.

All available functions are pre-
sented on a basic Cobol menu (Table
I). This reminds the programmer
which facilities are available. The
number of parameters needed to run
each function is minimized because
SPF remembers often-used values
and sets intelligent defaults. An ex-
ample of the parameters needed to
perform a standards check is in Fig-
ure 8. Behind each menu option is a
series of tutorial screens, telling the
programmer what the function does
and which parameters are required.

5. Experience Thus Far

This programming environment
has been used regularly since April
1981. The development costs and ex-
perience gained while using it are
reported below.

SEBOL Standard Checker

Source Library:
Project ===> SE
Library ===> TEST
Type ===> SOURCE
Member ===>

Schema Library (for IMS):
Project ===> SE
Library ===> COB
Type ===> SCHEMA

IMS-module ? => Y (Y/N)

LIST id ===>
SYSOUT class ===> *

TERM listing desired ===> N (Y/N)

PROBLEM? press the 'HELP' key

Fig. 8. Panel for standards check: As shown to the programmer. Only member name
must be supplied in order run the function. All other values have been previously
supplied by this programmer, but may be altered if desired. The new values are
then saved.

5.1 CPE Project Costs
The project lasted six months.

Eight people were involved, spend-
ing a total of 31 person-months
working on it. (Table II shows activ-
ities on which the most time was
spent.) Seven of the people had a
programming background, although

only four of them had previously
actually programmed in Cobol. Pro-
gram products were bought and
rented from various suppliers for
about US $60,000.

The continuing implementation
of Cobol at S-E-BankeD requires one
person full-time. Most of this time is

879 Communications
of
the ACM

December 1982
Volume 25
Number 12

COMPUTING
PRACTICES

used for holding courses and con-
suiting about application projects.

5 . 2 E d u c a t i o n

The first two courses were held
with classroom lessons in a tradi-
tional manner. Later courses have
used more time for self-study with
only five hours spent in the class-
room.

Thus far, 37 programmers have
completed the Cobol course and are
able to produce working programs.
The educational package fulfills the
project goal of teaching Cobol to
assembler programmers.

5.3 Programming Environment
Statistics

Statistics are kept on how often
some of the automatic tools are used.
The results of the first 16 months'
production programming in Cobol
are shown in Table III.

Both the prettyprinter and the
standards checker contain severe
limitations which prevent their being
used on modules which access data-
bases. This is reflected in their lim-
ited use thus far. However, program-
mers feel that similar tools which
work correctly would be useful
(Table IV).

The procedure hierarchy is used
as modules reach production status,
to obtain part of the final documen-
tation. It is not normally used during
development.

We have not been able to obtain
statistics about the manual parts of
the environment; for example, which
are the most common errors found
during code inspections. A survey
was conducted among those who
have completed the Cobol course
(Table V). Most programmers who
have previously used assembler feel
that the programming environment
for Cobol is more helpful.

880

Table III. Use of the automatic tools: For all production projects during April 1981 to
August 1982. Compilation errors are only those detected during macro expansion.
Errors detected by the COBOL compiler are not reported.

% Runs
Tool Modules Runs

in er ror

Compiler 213 6,712 18
Prettyprinter 26 136 52
Standards check 28 56 5
Procedure hierarchy 41 164 52
Data area listing 20 233 13

Table IV. Usability of the various COBOL tools: Result of a survey among S-E-Banken's
COBOL programmers.

Used in Potential
Perceived

% of usage %
errors

modules of modules

Course documentation 73 some 77
COBOL handbook 69 some 85
Code inspections 27 some 94
Compiler listing 95 few 94
Prettyprinter 31 many 45 *
Standards checker 19 many 59*
Dynamic flow analysis 14 some 45
Interactive test 28 many 67
Database simulator 39 few 55
Procedure call hierarchy 52 few 70
COPY area listing 8 some 63
Compare old vs new 1 none 64*

* indicates tools where the potential usage is very different for new development and for maintenance. The
other tools are equaUy usable for development and maintenance.

Table V. Usabil i ty of the COBOL environment: Results of a survey answered by those
with COBOL and assembler experience.

Assembler environment COBOL environment

much better better equal better much better
Answers 0 2 0 4 2

Note. The two people who found the assembler environment easier to use commented that this was probably
due to their limited experience with COBOL.

5.4 Problems
The main problems encountered

thus far can be divided into two
groups:
(1) the connection between the gen-
erated pure Cobol that is input to the
various tools and the high level SE-
BOL code which programmers main-
tain; and
(2) integration of the various pro-
gram products.

Communications
of
tha A C M

5.4.1 Relationship of SEBOL to
Cobol

As the programmer maintains
code at the SEBOL level all references
to statements ought to refer to this
code. This is possible if the generated
Cobol code can be matched with the
appropriate SEnOL line. However,
certain tools renumber their output
without regard for the input se-
quence numbers, making it very dif-

December 1982
Volume 25
Number 12

ficult to refer the reports they pro-
duce to the input Cobol module, let
alone to the original SF.BOL module.
Also, coPYing area definitions, either
explicitly or automatically through
database calls, generates many
Cobol lines which have no equiva-
lent in the SEBOL source code. Iden-
tifying and removing these lines has
caused problems in the compilation
post processor and the prettyprinter.

5.4.2 Integration of Various
Products

Although the various products
contain functions which are re-
quired, it has proved difficult to pro-
vide all functions at all times.

Examples of the problems:
eThe interactive test package re-

quires a very special execution envi-
ronment. For example, functions to
obtain a profile of paths executed
cannot be used while testing inter-
actively.

eThe database simulator and the
interactive debugger did not work
together despite their coming from
the same supplier. Much effort was
expended in solving this problem.

cAll modules must be recompiled
between being tested interactively
and being run in production.

eThe prettyprinter formats data-
base calls and parameters incor-
rectly.

6. Future Plans
Three directions for the future

development of the Cobol program-
ming environment can be seen. They
are:
(1) further integration of the avail-
able tools;
(2) the use of a data dictionary
which is being introduced into sys-
tems development activities and
which will also affect programming
in Cobol; and
(3) the development of new tools.

6.1 Integration of Tools
We intend to increase the use of

the high level SEBOL code where this
is economically feasible. This will
probably be done with filters [15]
which reformat listings in much the
same way that the compiler post
processor does now.

881

6.2 Interface with a Data
Dictionary

We are collecting information
about our data and programs for a
data dictionary [17], which is to be
an active tool for systems develop-
ment. This agrees with [9] which
points out the need for a "software
engineering database." S-E-Banken
has decided that our data dictionary
is to be that database.

Once information is entered into
the dictionary it can be extracted in
various useful ways. For Cobol pro-
grammers, this means that cop'," area
descriptions for records, database
segments, and internal work areas
may be produced automatically.
In addition, an interface between
MetaCobol and Datamanager [4] al-
lows individual field definitions to
be retrieved from the dictionary at
compile time. The dictionary can be
updated from the module's source
code [4] using information about
which fields, records, and files are
used and how.

6.3 New Tools

Further information is available
in the Cobol source code. We have
defined three reports which would
be useful:
(1) a cross-reference of chosen data
areas across a number of modules;
(2) a module hierarchy within a pro-
gram; and
(3) inconsistent parameters across a
CALL statement.

6.3.1 Cross-reference
Between a Number
of Modules

One data area, for example a
database segment or a program com-
munication area, is often used in a
number of different modules. A com-
bined cross-reference listing of the
usage of this area in all modules
would be beneficial. This may be
obtained directly from the source
code or, as suggested in [9], from the
data dictionary.

6.3.2 Module Hierarchy Within
the Program

Information about which mod-
ules call other modules is available
within the linked executable pro-

Communications
of
the ACM

gram. This information can be ex-
tracted, reformatted, and used to up-
date the data dictionary, from which
it can be reported in the same format
as the procedure call hierarchy. The
resulting documentation would show
the actual program structure, remov-
ing the need for hand-drawn tree
diagrams.

6.3.3 Checking of Call
Parameters

Cobol does not check the consis-
tency of parameters passed between
modules. Details of the parameters
are, however, available in the source
code. In the future they will be vali-
dated and put into the data diction-
ary.

7. Summary

With a reasonable amount of ef-
fort, a number of useful software
engineering tehniques can be imple-
mented in a Cobol programming en-
vironment. The main considerations
when doing this follow:

eAvailability. Much of the infor-
mation required may already be
available in another form. Look for
it.

cEase of use. Programmers must
regard the new tools as a positive
addition to their working environ-
ment.

*Integration of the various pro-
gram products within a Cobol pro-
gramming environment. The tools
must cooperate, not oppose each
other.

eFollow-up on tool usage. Build
in a method of logging when and
how each tool is executed.

eWhich departures from ANSI
Cobol are accepted by company pol-
icy?

Acknowledgments
The author wishes to acknowl-

edge the efforts of all the other mem-
bers of the CPE project team in con-
verting many odd ideas into a useful
set of tools: Ann-Sofie Dean-the
standards checker and prettyprinter;
Anna Ekelin-educational material;
Gunnar Pira-compiler listing post
processor; Thomas Risberg-stan-
dards and handbook; Lars-Anders

December 1982
Volume 25
Number 12

COMPUTING
PRACTICES

Rolfhamre-the interactive panels
which made the whole system usable;
and Marianne Larsson for helping us
to get the documentation into human
readable form.

References
1. Applied Data Research. COBOL/QDM
utility procedures guide. Form no. SM2G-
07-00, Applied Data Research, Princeton
N.J., 1979. Describes the MetaCobol package
for quality control of Cobol programs. This
package includes standards checking, flag-
ging of inefficient code and tidying the Data
Division.

2. Applied Data Research. MetaCOBOL
user guide. Form no. SM2G-00-10, Applied
Data Research, Princeton N.J., 1979. A gen-
eral description of the functions provided by
the MetaCobol macro translator.

3. Applied Data Research. Toward
COBOL structured programming. Form no.
SM IG-51-00, Applied Data Research,
Princeton N.J., 1976. A summary of the de-
sign principles behind the MetaCobol struc-
tured programming package and an over-
view of the Cobol extensions which it sup-
ports.

4. Bjergis, L. MetaCOBOL Interface to a
data dictionary. Spadab, Stockholm, Sweden,
1982.The description of a two-way interface
between MetaCobol and Datamanager, im-
plemented as MetaCobol macros plus an exit
routine. The interface may be used to l)
fetch data item definitions from the diction-
ary at compile time and 2) update the dic-
tionary with information from the Cobol
source code.

5. Capex. "Optimizer III OS user guide."
Form no. SO3-1279-310. Capex Corp., Phoe-
nix, Ariz. 1980. The product description con-
sists of three parts: 1) compile time actions
including static control flow analysis, 2) test
monitoring and 3) test run analysis including
path coverage.

6. Fagan, M. Design and code inspections
to reduce errors in program development.

IBM Syst. J. 15, 3 (1976), 182-211. The code
inspection technique as applied to applica-
tion systems development is described. Spe-
cific check lists for inspections and examples
of the use of inspection results to improve
future work are included.

7. Fosdick, H. Opting for PL/1. Computer-
worm 14, 32 (Aug. 1 l, 1980), 27-30. The rel-
ative strengths and weaknesses of PL/I and
Cobol as languages for the development of
administrative programs are discussed.

8. Glass, R. Real time: The 'lost world' of
software debugging and testing. Comm.
ACM 23, 5 (May 1980), 264-271. A survey
of tools and techniques for testing real time
programs including conclusions about how
effective the tools are for finding errors.

9. Howden, W. Contemporary software de-
velopment environments. Comm. ACM 25, 5
(May 1982), 318-329. Examines the differ-
ences between software development envi-
ronments depending on investment, Func-
tions which should be present in more ad-
vanced environments are defined.

10. IBM. Batch terminal simulator II pro-
gram description, operation manual. Form
no. SH20-1844, IBM, Palo Alto, Calif., 1979.
A description of the data base simulator used
to test Information Management System
(IMS) programs.

11. IBM. COBOL compiler and library pro-
grammers guide. Form no. SC28-6483, IBM,
San Jose, Calif., 1979. A complete descrip-
tion of the optional processing available in
IBM's Cobol compiler, together with a guide
to the various compiler reports.

12. IBM. COBOL interactive debug terminal
user's guide and reference. Form no. SC28-
6465, IBM, San Jose, Calif., 1975. Lists the
facilities present in the interactive debugging
monitor for IBM Cobol and describes how
these are used.

13. IBM. System productivity facility dialog
management services. Form no. SC34-2036,
IBM, San Jose, Calif., 1980. Shows how
standard functions for handling CRT panels,
menus and tables may be used to provide a
customized programming development user
interface.

14. Jackson, M. Principles of program de-
sign. Academic Press, New York, 1975,
Chap. 4. A detailed description of the Jack-
son Structured Programming technique
which uses the input and output data struc-
tures to derive the program structure. The
technique is widely used in Europe for devel-
oping administrative programs.

15, Kernigham, B., and Plauger, P. Software
Tools. Addison-Wesley, Reading, Mass.,
1976, pp. 35-66. Shows how tools for pro-
gram development may be built by combin-
ing a limited number of basic building
blocks. One class of such building blocks is
the file tailoring filter.

16. Magee, P. Call statements are harmful
but can be controlled. ACM SIGPLAN No-
tices 16, 2 (Feb. 1981), 83-88. Explains how
interfacing errors in Cobol may be detected
earlier in the development cycle by using a
preprocessor which recognizes the interface
as a Cobol-like verb, instead of using a stan-
dard Cobol CALL statement with a number
of unverified parameters.

17. Management Systems and Programming.
Datamanager Fact Book. MSP, London,
England, 1979. A general description of the
data dictionary functions which are in the
Datamanager product.

18. Martin, J. Application Development with-
out Programmers. Savant Institute, Carn-
forth, England, 1980. Presents the results, in-
eluding productivity figures, of projects
which allowed end users to develop their sys-
tems using application generators and very
high level languages.

19. Miner, J. Software tools: S-1 compare.
Pascal News 13 (June 1978), 20-23. The Pas-
cal source code of a program which lists the
differences between two files, taking account
of inserted or deleted records.

20. Weinberg, G., Wright, S., Kauffman, R.,
and Goetz, M. High Level COBOL Program-
ming. Winthrop, Cambridge, Mass., 1977. A
discussion of the technical and business as-
pects of Cobol programming, resulting in
suggestions to extend the Cobol language in
order to ease program development. These
extension could easily be implemented using
a preprocessor.

Computing Practices readers are directed to this month's Technical Correspondence on
"Another Approach to Data Compression" by Martin Gorfmkel which refers to the paper
by Michael Pechura in the September issue, and "On Computer System Messages" by
H. Karmin referring to the Pracnique by Ben Shneiderman, in the September issue.

882 Communications December 1982
of Volume 25
the ACM Number 12

