
FleXR: A System Enabling Flexibly Distributed Extended Reality
Jin Heo

Georgia Institute of Technology
Atlanta, Georgia, USA
jheo33@gatech.edu

Ketan Bhardwaj
Georgia Institute of Technology

Atlanta, Georgia, USA
ketanbj@gatech.edu

Ada Gavrilovska
Georgia Institute of Technology

Atlanta, Georgia, USA
ada@cc.gatech.edu

ABSTRACT
Extended reality (XR) applications require computationally demand-
ing functionalities with low end-to-end latency and high through-
put. To enable XR on commodity devices, a number of distributed
systems solutions enable offloading of XR workloads on remote
servers. However, they make a priori decisions regarding the of-
floaded functionalities based on assumptions about operating fac-
tors, and their benefits are restricted to specific deployment con-
texts. To realize the benefits of offloading in various distributed
environments, we present a distributed stream processing system,
FleXR, which is specialized for real-time and interactive workloads
and enables flexible distributions of XR functionalities. In building
FleXR, we identified and resolved several issues of presenting XR
functionalities as distributed pipelines. FleXR provides a framework
for flexible distribution of XR pipelines while streamlining devel-
opment and deployment phases. We evaluate FleXR with three XR
use cases in four different distribution scenarios. In the results, the
best-case distribution scenario shows up to 50% less end-to-end
latency and 3.9× pipeline throughput compared to alternatives.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies; Parallel computing methodologies; • Computer sys-
tems organization → Real-time systems.

KEYWORDS
distributed stream processing, extended reality, edge computing,
augmented reality, virtual reality

ACM Reference Format:
Jin Heo, Ketan Bhardwaj, and Ada Gavrilovska. 2023. FleXR: A System
Enabling Flexibly Distributed Extended Reality. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Extended reality (XR), including augmented reality (AR) and virtual
reality (VR), involves computationally intensive functionalities such
as object detection, localization and mapping, and 3D graphics ren-
dering. Given the low-latency and high-throughput requirements of
XR applications [39, 53], their associated high computing costs limit
the XR experiences that can be supported on resource-constrained
mobile devices.

To address this, there have been a number of efforts for dis-
tributed XR systems [19, 21, 30, 33–38, 41, 49, 63]. A common thread
across them is to predetermine the functionalities that are offloaded
to the server, based on assumptions about environmental factors:
the client device capacities, network conditions, and workloads.
They provide support for offloading fixed functional components

of perceptions or rendering, and their benefits can be realized only
in specific deployment contexts.

However, we argue that the distribution contexts will differ vastly
in terms of the capabilities of the user devices and offload servers,
the connectivity among them, and the XR workloads. In such sce-
narios, current solutions will be limited in their ability to provide
effective server assistance in various contexts. Applications would
need to rely on combinations of existing techniques to leverage
the server in assisting with different functionalities. It will require
significant additional development and configuration efforts.

Currently, flexibility in XR workload distribution is missing due
to a lack of adequate systems support. There are previous offload-
ing systems for flexible function migration [10, 12, 29], but it is
hard to extend their benefits to XR due to their design limitation of
function-level offloading (see §2 for more details). Existing stream
processing (SP) libraries can potentially enable flexible workload
distribution by creating a pipeline at runtime.While they are used in
use cases similar to XR, e.g., multimedia streaming [20] and percep-
tion pipelines [4, 44], the current SP frameworks lack some of the
necessary features to adapt distributed stream processing (DSP) for
use in XR. As described in §3, a DSP system for XR should support
efficient local communication for collocated pipeline components
and blocking and non-blocking communication semantics to ex-
press the pipeline dependencies and synchronization. Moreover,
it should provide queue size management and multiple network
protocol supports for data freshness requirements of distributed
XR pipelines, which are not available in existing solutions.

Simply adding the missing features to existing SP libraries is not
sufficient to enable the flexible distribution of XR pipelines. Even
if the SP libraries are extended with those DSP features, there are
still issues about how to provide the features properly across the
development and deployment phases. Specifically, in existing SP li-
braries, a pipeline can be created at runtime, and it requires a user to
connect pipeline components (compute kernels) via the developer-
specified communication ports. However, since the communication
attributes among compute kernels are determined under the user’s
pipeline context, the user (not the developer of the kernel) should
configure the communication attributes of the connection ports
when creating a distributed pipeline.

In response, we present FleXR – an open-source, flexibly config-
urable, and high-performance system for distributed XR. To bring
flexibility, we design FleXR as a DSP system specialized for XR.
With FleXR, XR pipelines can be flexibly created for various distri-
bution scenarios at runtime by a user, without requiring any code
modification in pipeline kernels. We identify the key issues in using
DSP systems for XR (§3.1) and describe our design decisions which
provide the necessary DSP features and address them (§3.2). FleXR
provides a framework to enable the flexible distribution of XR func-
tionalities, streamlining the development and deployment phases.

ar
X

iv
:2

30
7.

15
57

4v
1

 [
cs

.D
C

]
 2

8
Ju

l 2
02

3

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Jin, et al.

The developers write their kernels without considering how and
where each kernel runs in user pipelines. The user can configure
the communication attributes of the given components without any
change. This feature is realized by the FleXR’s kernel design with
its port abstractions and interfaces (§4.2). Once the developer writes
a FleXR compute kernel, it can be flexibly deployed and executed
in diverse distribution scenarios, per user configuration.

We demonstrate the effectiveness of FleXR through experimental
evaluation with three typical XR use cases and four distribution
scenarios (§6). Compared to the existing distributed XR systems [8,
19, 30, 33, 34, 49, 63], FleXR is shown to support all distribution
scenarios by creating distributed pipelines with given kernels at
runtime. Our evaluation results show that the offloading effect
of each scenario is different based on the workloads, offloading
overheads, and device capacity, which support the importance of
flexibility in XR workload distributions. Overall, this paper makes
the following contributions:
• We describe the limitations of existing distributed XR systems
with respect to the need for flexibility, and identify the required
features for applying DSP to XR.

• We present FleXR, a DSP system specialized for distributed XR,
which addresses the design issues of DSP for XR and enables
flexible distributions of XR pipelines. Our evaluation in differ-
ent distribution scenarios demonstrates that FleXR practically
delivers on the promise of flexibility and performance.

• We fully open-source FleXR, hoping that it would reduce the
barriers for further research in the area of distributed XR1.

2 RELATEDWORK AND MOTIVATION
Previous Work and Limitations. Flexibility in XR workload dis-
tribution is not currently supported despite extensive prior research
and commercial solutions to offload XR functionalities on remote
servers. Table 1 summarizes a number of the existing technologies
and what they support to be offloaded. For VR, graphics operations
are usually offloaded for providing realistic experiences via high-
quality rendering. Some studies make use of the characteristics of
linear perspective in 3D graphics and split the foreground and back-
ground rendering to reuse a hardly changing background [30, 36].
For AR, full and partial offloading of perception modules and graph-
ics rendering have been explored [19, 33, 49]. However, their bene-
fits can be effective only in specific deployment contexts with their
static workload distributions.

Flexibility is necessary because the complexities of XR work-
loads are not the same for each use case, e.g., AR or VR, and vary
based on concrete algorithms and applications. Figure 1 shows the
normalized execution time for the three different AR and VR appli-
cations used later in our evaluation. They are chosen to represent
XR use cases with different complexities, which incorporate dif-
ferent algorithms and application frameworks (more detail in §6.2
and Figure 5). They run on NVIDIA Jetson AGX [40] with 15W and
30W power modes, which corresponds to the client device in our
testbed in §6.1. These results show each use case has different com-
plexities for its functionalities, and that the dominant functionality
– rendering or perception (or both) – depends on the workload and

1https://github.com/gt-flexr/FleXR

Table 1: The existing technologies’ server-side workloads of
their distributed architectures.

Technologies
Server-side Workload Full Offloading Perceptions Application Rendering

Marvel [8] ✓

Glimpse [9] ✓

OpenRiST [19] ✓

ISAR [21] ✓

Furion [30] ✓

Liu et al. [33] ✓

Liu et al. [34] ✓

FireFly [35] ✓

Azure Custom Vision [37] ✓

Azure Remote Rendering [38] ✓

Nvidia CloudXR™ [41] ✓

Schneider et al. [49] ✓

Zhang et al. [63] ✓

AR1-Jet15W

AR1-Jet30W

AR2-Jet15W

AR2-Jet30W

VR-Jet15W

VR-Jet30W
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

70.5% 77.0%
61.2%

52.0%
64.5% 61.3%

29.5% 23.0%
38.8%

48.0%
35.5% 38.7%

Perception Rendering+App

Figure 1: The normalized execution time of our AR and VR
examples in different device power modes.

the device capacity, making flexibility in offloading an important
consideration in distributed XR.

There have been prior works on flexible offloading to a remote
server, but they have limited applicability for XR. MAUI [12] pro-
posed fine-grained function offloading with the common language
runtime (CLR) of the .NET framework. By having CLR on the client
and server and requiring developers to specify offloadable functions
in application codes, the functions are executed flexibly between
the client and server. CloneCloud [10] and ThinkAir [29] leveraged
OS supports to migrate the execution context of threads running
application functions to the server’s virtual machines (VM); the
server VM provides an environment identical to the client, and the
thread execution becomes migratable.

Although these techniques offer some flexibility, their benefit for
distributed XR is limited. In their design approach, devices interact
with offloaded functions via client-server interfaces, and the applica-
tion execution flow is preserved. Since XR applications require the
processing of multimedia data across multiple functionalities, this
can introduce multiple network round trips and compromise the

https://github.com/gt-flexr/FleXR

FleXR: A System Enabling Flexibly Distributed Extended Reality Conference’17, July 2017, Washington, DC, USA

benefits of reduced processing time due to offloading. In addition,
preserving the execution flow limits the opportunities to achieve
task parallelism. ThinkAir [29] provides parallelism by cloning VMs,
but allows only for data parallelism. Lastly, since these systems run
the application codes on a server with the same environment as the
client, they cannot benefit from hardware resources only available
on the server.

Offloading XR functionalities requires additional operations such
as data compression and network transmissions. When distributing
XR workloads, both overheads from those auxiliary operations and
the costs of the XR functionalities should be considered. Flexibility
in reconfiguration thus requires not just techniques which provide
transparent function offload, but also systems support to properly
configure and deploy the auxiliary functionality.
Motivation for FleXR. These observations motivate us to build
FleXR based on the stream processing (SP) design. SP structures an
application as a pipeline of components and provides modularity
and task parallelism to the application. A pipeline component (a
compute kernel) is the implementation of a functionality. Kernels
are pipelined via data communication ports and executed in par-
allel with dataflow. The ports are used to transmit the input and
output between the connected kernels. This modularity makes SP
extensible to distributed stream processing (DSP) in a straightfor-
ward manner; kernels can be connected via remote communication
ports. Additionally, SP provides an advantage in heterogeneous
server environments [46] since kernels can be specialized to utilize
available heterogeneous resources such as hardware accelerators.

3 DESIGN CHALLENGES FOR FLEXR
There are intuitive advantages of building an XR system as an SP
system. An XR system processes inputs as data streams from de-
vice sensors such as cameras, inertial measurement units, etc., and
provides output as data streams such as field of view content in
VR and graphic overlay in AR. The SP design provides benefits of
high throughput with pipeline parallelism and distributed compu-
tation with its modularity, but the application of SP in XR presents
non-trivial issues. In this section, we present the design space explo-
ration we conducted to address those issues when building FleXR.

3.1 Issues with Stream Processing for XR
We use an example AR pipeline in Figure 2, to articulate the is-
sues when applying SP to an XR system. The application renderer
overlays virtual objects on the camera frame based on the result
from the object detector. The objects can be manipulated using key
inputs, and the AR scene with the overlaid objects is displayed to
the end user. Using this pipeline, we discuss the main issues below.
I1: Communication Cost. As shown in Figure 2, there are a num-
ber of components in the pipeline across which data transmissions
must occur. Those data transfers need to be performed with least la-
tency because high latency lowers the application’s responsiveness
and causes discrepancies between the real and virtual worlds. How-
ever, the SP design increases the end-to-end latency as it requires
data movement across the ports of the pipelined kernels [3, 28].
Since XR functionalities process and produce large multimedia data,
the overhead of the cross-kernel communications is significant and
must be addressed in order to meet the latency constraints of XR.

Cam er a

Object
Detector

App
Render er

Send

Receive

Send
Receive

Keyboar d
Send

Receive
Display

Send

Receive

Figure 2: The example pipeline of an AR use case.

I2: Communication Semantics. In Figure 2, the downstream
kernels, i.e., the renderer, has input dependencies with the upstream
kernels. Some of those dependencies are hard, i.e., an input must be
received for the downstream kernel to execute, as is the case with
the camera and renderer. Other dependencies are soft, meaning
an input is not required from the particular upstream kernel, as is
the case with the keyboard or detector and renderer. This property
has implications on whether the execution of the upstream kernels
should be synchronized with the downstream kernels in terms of
their invocation frequencies. In short, the type of dependency is
specific to the functionalities that are connected, and this semantic
information must be expressed by the application and adequately
handled by the underlying system via support for appropriate com-
munication semantics.
I3: Data Recency. If the camera frames in Figure 2 are delayed due
to queuing delays when the frame data is transmitted, its freshness
decreases. As a result, the placement of the AR object would be
off, thus lowering the quality of the AR experience, which is also
established by prior work that stale data deteriorates the quality
of XR experiences [31]. Generally, as data is transmitted across
kernels of different frequencies and execution times, it may result
in queuing delays if the data is queued at any of the port buffers in a
pipeline. When the data contains real-world contexts from sensors,
e.g., camera frames, it is critical to ensure that it remains fresh with
all pipeline components that process it. Thus, the SP system for XR
must provide a way to manage data recency.

3.2 Design Decisions for The Issues
FleXR as a specialized DSP system for XR, incorporates solutions
to address the issues raised in the previous section.
D1: Efficient Local Communication. The remote communica-
tion cost is unavoidable even with data compression, but the local
communication should be efficient for low overheads. We evalu-
ated the suitability of several existing SP libraries in terms of their
communication costs: RaftLib [4], GStreamer [20], Python pipeline
libraries [11, 57], and the robot operating system (ROS) [44].

Wemeasure the communication costs with two locally connected
kernels and raw RGB frames of different resolutions. Table 2 shows
the transmission latencies of the frames. ROS and Python libraries

Conference’17, July 2017, Washington, DC, USA Jin, et al.

Table 2: The local communication latencies between two kernels
in milliseconds.

Libraries
Resolution 720p 1080p 1440p 2160p

ROS Pub/Sub[44] 3.4 6.9 7.1 12.5
ROS Shm Pub/Sub [62] 2.2 4.3 5.9 10.2
Python Queue [11, 57] 14.3 24.1 30.4 52.1
Python Pipe [11, 57] 9.3 17.1 29.5 52.1
Python Shm [16] 3.0 8.6 14.8 32.3
GStreamer [20] 0.1 0.1 0.1 0.1
RaftLib [4] 0.1 0.1 0.1 0.1

provide process-level SP, where each kernel runs as a separate pro-
cess and the processes communicate via interprocess communica-
tion (IPC) channels. Based on our results, the local communication
in process-level SP is hardly efficient for large multimedia data even
with shared memory channels [16, 62]. While the shared memory
channel reduces the number of data copies, the data still needs to be
copied between the shared memory and process memory regions.

GStreamer and RaftLib provide thread-level SP with zero-copy
communication ports. As kernel functions are threads in the same
address space, local communication can be done without copy. A
DSP system for XR should leverage a thread-level SP for efficient local
communication of collocated kernels, and extend its communication
with support for remote communication.
D2: Blocking and Non-blocking Semantics. To handle the hard
and soft dependencies and synchronize the kernel executions in a
pipeline, providing the proper communication semantics (block-
ing and non-blocking) for the local and remote communication
primitives (send and receive) is essential [13]. The design of FleXR
handles this as a first-order concern when executing XR pipelines.

The send semantics of an output port is for synchronizing the ker-
nel execution. A blocking send blocks the execution of an upstream
kernel function when the downstream kernel’s queue is full, and
this backpressure leads to flow control and implicitly synchronizes
the upstream to downstream kernels. For non-blocking semantics,
the upstream kernel continues when the downstream kernel can-
not receive data on its input port. The output port requires both
blocking and non-blocking send semantics in XR pipelines. In the
example AR pipeline of Figure 2, if only blocking semantics are
supported, the camera kernel is synchronized to the longest path
of object detection (blue line). Even if the app renderer does not
require the results from the object detector for every camera frame,
the frame stream (green line) is blocked by the object detector.

The receive semantics of an input port is for kernel dependencies.
A blocking receive waits for the message from a port, and a non-
blocking continues when there is no message. So, when the kernel
is written, the primary inputs on which the kernel depends (e.g.,
camera frame for a kernel performing frame processing) should be
specified with blocking semantics. For inputs generated by other
sources (e.g., other sensors or user events), which can impact or steer
the kernel processing but are only optionally used, the semantics
should be with non-blocking to handle them.

When only a blocking receive is available, all input streams of a
kernel are forced as mandatory. The kernel execution and pipeline
throughput are restricted by the lowest frequency input. In Figure 2,

the renderer is blocked until the key input arrives from the user
(red line). Even without the key input, the renderer execution is
governed by the object detector, and the pipeline throughput is
limited by the path with the highest latency (blue line).

Supporting both blocking and non-blocking primitives for the in-
put and output ports makes it possible to correctly describe stream
dependencies and synchronize kernel executions in XR pipelines.
D3: Queuing Management and Network Protocols. Since poor
data freshness causes discrepancies between the real and virtual
worlds, it is crucial to manage data recency in XR pipelines. This can
be achieved by minimizing the queuing delays of a pipeline [32].

For local communication, it is possible to bound the queuing
delay by limiting the number of outstanding data entries in the port
buffer. For remote communication, recency management becomes
challenging because there is no way to control the queuing mech-
anisms of unknown middleboxes across the backend network. In
this situation, recency management can be enabled by compromis-
ing communication reliability. Reliable network protocols such as
TCP [52] guarantee in-order message delivery via retransmission
and acknowledgment mechanisms. However, in cases where recent
data is prioritized (e.g., the object detection result on a live camera
frame), the reliable protocols are inappropriate, and should be re-
placed with protocols favoring data timeliness over reliability even
with data loss, e.g., RTP [50] and RTSP [51] over UDP.

Thus, the DSP system for XR should provide knobs for data recency
management via queue size management and support for multiple
network protocols for local and remote kernel communications.

4 FLEXR
4.1 Overview
To bring flexibility to XR workload distribution, we built FleXR as
a DSP system specialized for XR, taking the design benefits of mod-
ularity and task parallelism. Driven by our design decisions, FleXR
is built on top of a thread-level SP library, RaftLib [4], and pro-
vides the benefit of efficient local communication for the collocated
kernels (D1). For the communication semantics to enable kernel
synchronization and dependencies of XR pipelines, we extend the
semantics of the RaftLib port with support for non-blocking and
for remote communication (D2). For recency management of local
and remote communication, FleXR allows setting the maximum
number of messages in the local port buffer and specifying network
protocols for remote ports at runtime (D3).

Evenwith the necessary DSP features for XR, there are still issues
about providing these features properly to the system stakehold-
ers: developers writing kernels and users requesting distributed
pipelines with given kernels. FleXR enables flexibility in configuring
XR pipelines via its kernel abstraction with interfaces separating
development- and deployment-time concerns. While the developer
implements an XR kernel function and knows its input dependen-
cies, the user creates a distributed XR pipeline and configures the
connectivity of kernels (local or remote), output-port semantics,
and recency management mechanism of the pipeline context. In
addition, there can be a case where the user needs to connect an
output of a kernel into multiple downstream kernels.

Our kernel abstraction provides the interfaces allowing the devel-
oper to register input and output ports and use the registered ports

FleXR: A System Enabling Flexibly Distributed Extended Reality Conference’17, July 2017, Washington, DC, USA

in the kernel function regardless of how they will be configured
by a user. The behavior of the registered ports becomes different
based on the user-specified communication attributes at runtime.
The user can also branch dynamically an output port with different
communication attributes and flexibly create distributed pipelines
with various topologies without modifying the kernels.

Figure 3 shows the high-level design of FleXR and how it oper-
ates. 1 The developers write kernels with our kernel abstractions
for implementing their XR functionalities or incorporating exist-
ing functionality implementations by wrapping them in kernel
functions. 2 With given kernels, the user requests a distributed
pipeline as a YAML recipe describing pipelined kernels and their
communication attributes. 3 The recipe parser parses the recipe
and generates pipeline metadata of the kernels and connection in-
formation. 4 The local pipeline metadata is passed to the pipeline
manager, and it creates a local pipeline by instantiating the kernels
and configuring port connections. 5 The part of the recipe about
the remote pipeline is sent to the request listener on the server. 6
The server’s recipe parser parses the received recipe and generates
pipeline metadata. If the pipeline works with external applications,
it starts the applications. 7 Then, the server’s pipeline manager
also creates the server-side pipeline, and the remote ports of local
and remote pipelines are connected. 8 The pipelines, distributed
across the client and server, run with dataflow.

4.2 Kernel Design
In SP, the compute kernel is a pipeline component, which includes
an execution function and communication ports. To provide the
necessary DSP features for flexible configuration of the communica-
tion attributes, we design a FleXR kernel with two abstractions: the
FleXR port and port manager. They abstract the different commu-
nication channels for local and remote operation of a FleXR kernel,
allowing the developer to write kernels without specifying the
communication attributes and the user to configure the connection
at runtime without modifying kernels. A developer registers the
input and output ports of the kernel with tags via the port manager
interface, and the registered ports are instantiated and configured
by the port manager based on the user recipe.

Figure 4 shows our kernel design. Each kernel has its ID, logger,
frequency manager, execution function, and port manager. The ID
is used for the recipe parser and pipeline manager in Figure 3. The
frequency manager adjusts the execution frequency when a kernel
should run at a stable frequency, and the logger is for the developer
to log the kernel events. The execution function processes data
from the input ports and sends out the result to the output port.
Port Manager.When kernels are instantiated, the port manager
of each kernel activates and dynamically branches the FleXR ports
based on the pipeline metadata. In addition, it provides developers
with interfaces to use the FleXR ports without considering how the
ports will be configured by a user.

The port manager design is shown in Figure 4. The manager
has input and output port maps. These port maps have the map-
ping information of the port tags registered by a developer and
the FleXR ports activated with the communication attributes by a
user. A kernel function can get inputs and send outputs via the port
manager interfaces with the tag. The branched port map contains

the ports branched from the registered output port. When a regis-
tered output port needs to be connected into multiple downstream
ports with different communication attributes, the port manager
activates the branched ports and keeps their mapping information
to the registered port. When a kernel function sends an output to
the registered port, it is also sent through the branched ports by
using this mapping information.

Listing 1 shows the codes of an example kernel which a developer
implements (1 in Figure 3). In Line 4-6, the developer registers
the input and output ports with the tags. The registered ports are
used in Line 10-16 without specifying their connection types and
branching states. The port manager hides the complexities of using
the dynamically instantiated ports from developers.

1 class ExampleKernel: public FleXRKernel {
2 public:
3 ExampleKernel() {
4 portManager.registerInPortTag("in1", PortSemantics::

BLOCKING);
5 portManager.registerInPortTag("in2", PortSemantics::

NONBLOCKING);
6 portManager.registerOutPortTag("out");
7 }
8
9 raft::kstatus run() {
10 MsgType *in1=portManager.getInput<MsgType>("in1");
11 MsgType *in2=portManager.getInput<MsgType>("in2");
12 MsgType *out=portManager.getOutputPlaceholder<MsgType>("out

");
13
14 /* Kernel Functionality ... */
15
16 portManager.sendOutput("out", out);
17 }
18 }

Listing 1: An example kernel with two input and one output ports
registered by a developer.

FleXR Port abstracts different local and remote communication
ports and exposes a unified interface to the port manager. When
the pipeline manager creates a pipeline (4 and 7 in Figure 3), a
kernel is instantiated and its ports are configured by the port man-
ager with user-specified port connectivity, semantics, and recency
management mechanism. Since these communication attributes are
determined by the contexts of the requested pipeline, the operation
of a FleXR port should differ based on the attributes given at run-
time. We design the FleXR port abstraction as a state machine with
the integrated interfaces.

The design of a FleXR port is shown in Figure 4. Each FleXR port
has the port semantics, connection state, and local and remote ports.
The port semantics is for specifying the communication semantics:
blocking and non-blocking. The connection state indicates whether
it is local or remote, and the network protocol for the remote. The
local and remote ports are the actual communication channels
internally used and interfaced by the FleXR port abstraction. Since
the FleXR port is an abstraction for different communication ports,
it is extensible. New network protocols and local channels can be
seamlessly integrated into distributed XR pipelines.

Listing 2 is part of an example pipeline recipe which a user
provides (2 in Figure 3). The user creates a pipeline by specifying
the kernels, their port attributes in Line 5, 7-8, 11-12, and 14-15

Conference’17, July 2017, Washington, DC, USA Jin, et al.

FleXR

Device Platform

Cl ient
Ser ver

Recipe
Parser

Pipeline Manager

Pipelines

Kernel
Map

Connection
Topology

Users
Pipeline
Recipe

Recipe
Parser

Pipeline Manager

Pipelines

Kernel
Map

Connection
Topology

Request
Listener

FleXR
Plugins

FleXR
Plugins

Applications

Kernels
 (Off l ine)Developers

Kernels

Kernels

FleXR

?

?

? ?
? ?

?

?

?

Figure 3: The high-level overview of FleXR.

FleXR Kernel

Execution
Function

Kernel
ID

Frequency
Manager

Por t Manager

Input Por t Map

Output Por t Map

Branched Por t Map

Logger

Flexr Por t

Por t Tag
Semantics:
 {BLOCK, NONBLOCK}
Por t Connection State:
 {LOCAL, REMOTE_PROTOCOLS}
Local Por t:
 {RaftLib Por t, Shm Por t}
Remote Por t:
 {TCP Por t, RTP Por t}

Figure 4: FleXR kernel design with port abstractions.

and connections in Line 17-22. When the pipeline is created, the
port manager activates the FleXR port. The activation instantiates
an underlying channel corresponding to the specified attributes,
and the channel is interfaced via the FleXR port. The FleXR port
provides uniform interfaces to the port manager while behaving
differently based on the underlying channel.

4.3 Communication Semantics and Data
Recency Management

To express the relationships among kernels and their dependencies
and synchronization requirements, both blocking and non-blocking
semantics are necessary for the local and remote communication
primitives. FleXR supports the required semantics. The local com-
munication in FleXR is based on the RaftLib port. Since the send
and receive primitives of the vanilla RaftLib port are only with

1 - kernel : ExampleKernel
2 id : example_kernel1
3 input :
4 - port_name: in1
5 connection_type: local
6 - port_name: in2
7 connection_type: remote
8 remote_info: [RTP, 14802]
9 output :
10 - port_name: out
11 connection_type: local
12 semantics: blocking
13 - port_name: branched_out
14 connection_type: remote
15 remote_info : [127.0.0.1, 14805, TCP]
16 branched_from: out
17 - local_connections:
18 - send_kernel: example_kernel1
19 send_port_name: out
20 recv_kernel: example_kernel2
21 recv_port_name: input
22 queue_size: 1

Listing 2: A part of the pipeline recipe for the example kernel in
Listing 1 and a connection.

blocking semantics, we extend them with non-blocking semantics
by checking the queue buffer of the connected RaftLib ports. A
non-blocking send does not wait and continues when the queue
connected to the downstream kernel is full. A non-blocking receive
continues without waiting when the queue to the upstream ker-
nel is empty. For remote communications, the socket and protocol

FleXR: A System Enabling Flexibly Distributed Extended Reality Conference’17, July 2017, Washington, DC, USA

implementations have interfaces with different semantics, and we
map the underlying port interfaces to the FleXR port.

The data recency management mechanism in FleXR is to prevent
data from aging in the pipeline queues. For local, FleXR provides
recency management by limiting the number of messages in the
queue buffer, which puts a bound on the maximum queuing de-
lay [32]. The recency management for remote communication is
done by supporting different network protocols, currently support-
ing TCP and RTP over UDP. For TCP connection, the in-order and
reliable delivery may lead to lower data timeliness due to its retrans-
mission and acknowledgment mechanisms. RTP over UDP has the
advantage for data recency at the cost of data loss. By supporting
these different protocols and queue size management, the recency
management is achieved for remote and local communications.

4.4 Register-Activation Interface and Port-level
Configuration

We embody the necessary DSP features for XR in the FleXR kernel,
but these features should be provided properly to the stakeholders
for supporting the runtime flexibility in distributed XR pipelines.
The kernel developers know the input dependencies of their kernel
functions, but it is unknown to them how their kernels are used in a
pipeline which a user creates. When requesting a pipeline, the user
arranges the pipeline structure with the kernel communication at-
tributes. So, the user determines how the kernels operate within the
pipeline. To provide the features to the proper stakeholder, FleXR
has register-activation interfaces of the port manager at a port gran-
ularity, which streamline the development and deployment phases
but clearly separate the features provided to each phase.

Based on the information available to the development and de-
ployment phases, we identify the proper stakeholder for each fea-
ture and make the interfaces expose it. Table 3 summarizes the
provided interfaces to each stakeholder. The developers register
ports and set the input-port dependencies as they know the kernel
functionalities. The connection type, branching outstream, out-
put semantics, and recency management are specified by the user
recipe because these attributes should be configured when the port
manager activates FleXR ports by the metadata of the user pipeline.

The register-activation interfaces are enabled by the FleXR port
and port manager, and the stakeholders use the FleXR features
through them. When the developer registers the ports, the seman-
tics of input ports are set via the port manager as shown in Line 4-5
of Listing 1. The connection types, recency management, and out-
put semantics are specified by the user recipe as shown in Listing 2.
The user can branch a single registered port with separate attributes
in Line 13-16 of Listing 2. When the pipeline manager instantiates
the pipeline kernels, the user-specified attributes and branching
are set for each port by the port manager.

5 IMPLEMENTATION
The current version of FleXR is implemented and tested on Ubuntu
20.04. It is written in C++ with STL, and on-node kernel manage-
ment and communication rely on RaftLib v0.7 [4]. For remote com-
munication, FleXR supports TCP using ZeroMQ [23], and RTP com-
munication using uvgRTP [2] which is based on the RFC 3550 spec-
ifications [50]. For the application functionalities, we use several

Table 3: FleXR interface availability for the stakeholders to manip-
ulate the features to resolve the DSP issues in §3.

Feature
Stakeholder Developer User

Port registration ✓

Port activation ✓

Output branching ✓

Input semantics ✓

Output semantics ✓

Recency management ✓

components. For object detectors in the AR applications, we use the
ArUco [47] and ORB keypoint detection algorithm of OpenCV4 [55].
Pose estimation in the VR application is implemented using ORB
SLAM3 [7] and the EuRoC dataset [6]. FleXR supports the Unreal En-
gine 5 (UE5) [17] and Unity 3D [56] game engines, which interface
with the FleXR runtime via plugins. The FleXR plugins are compat-
ible with the shared memory port in Figure 4 and make it possible
to run external applications with FleXR pipelines. The graphics
rendering in our examples uses the Mesa implementation [27] of
OpenGL [26], EGL [24], and Vulkan [25]. For hardware-accelerated
encoding and decoding of H.264 [59], we use FFmpeg [14], NVIDIA
Video Codec [42] on the server, and NVIDIA L4T [43] on Jetson.

6 EVALUATION
The main objective of FleXR is to bring flexibility in distributed
XR for realizing effective server assistance to XR use cases. For
evaluation, we implement three XR use cases in Figure 5 and set
four distribution scenarios in Figure 6 and 7. We compare FleXR to
the existing distributed XR platforms in the supportability to our
distribution scenarios. Then, we evaluate the offloading impacts in
the scenarios in terms of pipeline latency and throughput. Addi-
tionally, we evaluate the benefit of the FleXR design compared to
the thread-level SP frameworks: GStreamer [20] and RaftLib [4].

6.1 Experimental Testbed
In our setup, the client is NVIDIA Jetson AGX Xavier [40] with 8
core ARMv8 CPU, Volta GPU, and 32 GB memory shared by CPU
and GPU. The Jetson runs in 15W and 30W power modes (Jet15W
using 4 cores and Jet30W using 8 cores). The server has Intel Core
i7-10700, 32 GB memory, and NVIDIA RTX 2070 of 8 GB GDDR6
memory. The server and client are connected via Gigabit Ethernet
of 1 Gbps bandwidth with round-trip time (RTT) of 1.5 ms.

6.2 XR Applications and Distribution Scenarios
ExampleXRApplications.We evaluate the effectiveness of FleXR
with 2 AR and 1 VR applications as shown in Figure 5. All the
applications generate rendered frames of 1080p and provide Full
HD (FHD) experiences. The AR use cases have the same pipeline
structure in Figure 6a taking 1080p camera frames, butwith different
workload characteristics. The camera frames are branched to the
object detector and renderer because the camera frame needs to be
rendered as a background. The renderer receives the background
frame in a blocking manner. The connection for the object pose
detector is non-blocking as an object might not be detected.

Conference’17, July 2017, Washington, DC, USA Jin, et al.

(a) The first AR use case (AR1). (b) The second AR use case (AR2). (c) The VR use case (VR).

Figure 5: The screenshots of the example use cases.

Cam er a

Object
Detector

App
Render er

Keyboar d

Display

(a) Local: the pipeline runs locally.

Cam er a
Encoder

App
Render erKeyboar d Display

Decoder

Object
Detector

(b) Perception: the perception ker-
nels run on the server.

Cam er a

Encoder

DecoderKeyboar d Display

Decoder

App
Render er

Object
Detector

Encoder

(c) Rendering+App: the application
and rendering run on the server.

Cam er a Encoder
App

Render er

Keyboar d Display

Decoder
Object

Detector

Encoder

Decoder

(d) Full Offloading: all functionali-
ties run on the server.

Figure 6: The distribution scenarios of AR use cases (blue parts on the server).

Cam er a

Pose
Est im ator

App
Render er

Keyboar d

Display

IMU

(a) Local: the pipeline runs locally.

Cam er a

Pose
Est im ator

App
Render erKeyboar d Display

IMU

Decoder

Encoder

(b) Perception: the perception ker-
nels run on the server.

Cam er a

Pose
Est im ator

App
Render er

Keyboar d

Encoder
IMU

DisplayDecoder

(c) Rendering+App: the application
and rendering run on the server.

Cam er a

Pose
Est im ator

App
Render er

Keyboar d

Encoder
IMU

Decoder

DisplayDecoder

Encoder

(d) Full Offloading: all functionali-
ties run on the server.

Figure 7: The distribution scenarios of VR use case (blue parts on the server).

For the first AR case (AR1) in Figure 5a, the object detection is
done by the local feature matching processes: ORB feature extrac-
tion [48], k-nearest neighbor (KNN) descriptor matcher, homogra-
phy and transformation estimations via a perspective-n-point (PnP)
random sample consensus (RANSAC) solver [15]. The second AR
case (AR2) in Figure 5b uses the ArUco algorithm [18] for detecting
the fiducial markers. While AR2 has a less complex perception than
AR1, the application and rendering are more intensive in AR2 as
the application is implemented as a separate process by UE5 of the
physics and shaders. On the other hand, AR1 rendering is a pipeline
kernel and uses only low-level 3D graphics APIs.

For the VR use case in Figure 5c, the pose estimator gets 480p
camera frames and inertial measurement unit (IMU) data and gener-
ates the current user pose as shown in Figure 7a. The pose estimator
of the monocular-inertial SLAM has the primary input of IMU and
the camera input is optional. The renderer shows the 3D scene
captured from the estimated user pose. For all example use cases,
the user can interact with the virtual objects via keyboard inputs,
and this interaction is done by non-blocking receives because the
key event happens arbitrarily by the user.

Table 4: The supportability of the existing frameworks and FleXR
to our distribution scenarios in Figure 6 and 7.

Local Perceptions Rendering+App Full Offloading

Marvel [8] ✗ ✓ ✗ ✗

OpenRiST [19] ✗ ✗ ✗ ✓

Furion [30] ✗ ✗ ✓ ✗

Liu et al. [33] ✗ ✓ ✗ ✗

Liu et al. [34] ✗ ✗ ✓ ✗

Schneider et al. [49] ✗ ✗ ✗ ✓

Zhang et al. [63] ✗ ✗ ✓ ✗

FleXR ✓ ✓ ✓ ✓

Distribution Scenarios. We set up four distribution scenarios for
the three use cases: Local (L), Perception (P), Rendering+App
(R), and Full Offloading (P+R). The canonical XR applications
consist of perception and graphics rendering functionalities. As
summarized in Table 1, the existing distributed XR systems can be
categorized into one of our scenarios by their offloading supporta-
bility. With our scenarios, we show the flexibility benefit of FleXR
compared to the existing systems.

In Local (L), all functionalities run local on the client device
only. In Perception (P), only the perception kernels are offloaded

FleXR: A System Enabling Flexibly Distributed Extended Reality Conference’17, July 2017, Washington, DC, USA

1 2 4 8
of Remote Connections

110
120
130
140
150
160
170
180
190
200

En
er

gy
 C

on
su

m
pt

io
ns

 (J
) GStreamer

RaftLib
FleXR

(a) Energy usage results on the server
machine.

1 2 4 8
of Remote Connections

16

19

22

25

28

31

34

En
er

gy
 C

on
su

m
pt

io
ns

 (J
) GStreamer (Jetson)

RaftLib (Jetson)
FleXR (Jetson)

(b) Energy usage results on Jetson
30W.

Figure 8: Energy consumption to send 1000 messages of 512 Bytes
every 10 ms to remote kernels on our server and Jetson 30W.

to the server, and in Rendering+App (R) the application rendering
are offloaded. In Full Offloading (P+R), the client only sends
the sensor data and receives the final rendered frame. Figures 6
and 7 show the configurations for the AR1/2 and VR scenarios.
Compared to existing work which targets specific distributed XR
configurations, FleXR can enable all distribution scenarios flexibly,
as shown in Table 4.

For the distributed configurations of AR1/2 and VR, the camera
and rendered frames and IMUs are transferred with RTP over UDP
for application responsiveness while the user input from the key-
board is with TCP for reliable delivery. When the sensor data is
moved via local connections, its queue size is set as 1 to minimize
the queuing delay for the data recency.

6.3 Design Benefit of FleXR
As shown in Table 2, GStreamer and RaftLib provide efficient lo-
cal communication. Instead of using FleXR, a distributed pipeline
can be supported by implementing auxiliary kernels for remote
communications, branching, and synchronization. However, sup-
porting a distributed pipeline with the auxiliary kernels introduces
inefficiencies because each kernel, including the auxiliary ones, is
a separate execution unit that is parallelly scheduled and managed.

Figure 8 shows the overheads of the auxiliary kernels on our
testbed. We create a kernel sending output to multiple remote ker-
nels, and measure the energy consumption for the transmissions.
GStreamer and RaftLib need the additional kernels for remote mes-
saging and output branching; for sending output to 8 remote kernels,
9 auxiliary kernels are required (1 for branching and 8 for remote
messaging). The energy consumption with the auxiliary kernels
increases with their number. In contrast, with the FleXR kernel
design and interface, the output port registered by a developer can
be branched and configured for remote connections with different
protocols as specified by a user, not requiring additional kernels. In
FleXR, the developers also don’t need to implement these auxiliary
kernels to make their kernels operate flexibly.

Table 5: The number of kernels required to support the distributed
configurations of AR1 in Figure 6.

Local Perceptions Rendering+App Full Offloading

GStreamer [20] 7 13 19 17
RaftLib [4] 6 12 18 16
FleXR 5 7 9 9

L (15W)
P (15W)

R (15W)
P+R (15W)

L (30W)
P (30W)

R (30W)
P+R (30W)

Distributed Scenarios (Power Mode)

0

50

100

150

200

250

300

Pi
pe

lin
e

La
te

nc
y

(m
s)

Detector
Renderer
Display
Encoding
Decoding
Network

(a) The latency breakdowns of the pipeline
components.

0 3 6 9 12 15 18 21 24
Pipeline Throughput

L (15W)

P (15W)

R (15W)

P+R (15W)

L (30W)

P (30W)

R (30W)

P+R (30W)

Di
st

rib
ut

ed
 S

ce
na

rio
s (

Po
we

r M
od

e)

(b) The pipeline throughputs.

Figure 9: The pipeline latencies and throughputs of AR1 in our
distribution scenarios.

L (15W)
P (15W)

R (15W)
P+R (15W)

L (30W)
P (30W)

R (30W)
P+R (30W)

Distributed Scenarios (Power Mode)

0

50

100

150

200

250

300

Pi
pe

lin
e

La
te

nc
y

(m
s)

Detector
Renderer
Display
Encoding
Decoding
Network

(a) The latency breakdowns of the pipeline
components.

0 3 6 9 12 15 18 21 24 27
Pipeline Throughput

L (15W)

P (15W)

R (15W)

P+R (15W)

L (30W)

P (30W)

R (30W)

P+R (30W)

Di
st

rib
ut

ed
 S

ce
na

rio
s (

Po
we

r M
od

e)

(b) The pipeline throughputs.

Figure 10: The pipeline latencies and throughputs of AR2 in our
distribution scenarios.

L (15W)
P (15W)

R (15W)
P+R (15W)

L (30W)
P (30W)

R (30W)
P+R (30W)

Distributed Scenarios (Power Mode)

0

50

100

150

200

250

300

350

Pi
pe

lin
e

La
te

nc
y

(m
s)

Detector
Renderer
Display
Encoding
Decoding
Network

(a) The latency breakdowns of the pipeline
components.

0 3 6 9 12 15 18 21 24 27 30
Pipeline Throughput

L (15W)

P (15W)

R (15W)

P+R (15W)

L (30W)

P (30W)

R (30W)

P+R (30W)

Di
st

rib
ut

ed
 S

ce
na

rio
s (

Po
we

r M
od

e)

(b) The pipeline throughputs.

Figure 11: The pipeline latencies and throughputs of VR in our
distribution scenarios.

Table 5 shows the number of kernels for GStreamer, RaftLib, and
FleXR to support AR1 in the different scenarios. GStreamer and
RaftLib need auxiliary kernels as local SP libraries. GStreamer, as
a multimedia framework, imposes strict synchronization across
streams based on their internal timestamps and requires all kernels
to have a single synchronized stream for input and output [54].
Since RaftLib does not require such strict synchronization, it re-
quires fewer kernels. GStreamer requires two kernels for branching
the camera stream and synchronizing streams for the renderer,
while RaftLib only needs a branching kernel. For the distributed set-
tings, both need additional messaging kernels: 4 for Perceptions,
8 for Rendering+App, and 6 for Full Offloading. In FleXR, these
auxiliary kernels are not required because each port can be con-
figured for different usage, which enables the various scenarios
flexibly without the system overheads from the auxiliary kernels.

Conference’17, July 2017, Washington, DC, USA Jin, et al.

6.4 Evaluation of Example Applications
We run the example applications on our testbed of Jetson 15W and
30W with the four distribution scenarios to emulate the situations
where the client has little or moderate device capacity. We measure
the average pipeline latency and throughput of the three examples
with the scenarios, and demonstrate that the flexibility enabled by
FleXR makes it possible to achieve effective server offloading.
Costs for XR Pipeline Distribution. Distributing XR pipelines
incurs additional costs: multimedia data compression, displaying
the rendered scene from a server, and network transmission. Trans-
mitting the large multimedia data without compression causes high
bandwidth usage with backend network delays and consumes the
battery of the user device [58, 60]. Therefore, data (de)compression
is necessary for both the client and server. Another cost is for the
client to display the rendered scene from the server. When the scene
is rendered on the server, it should be fetched from GPU memory,
sent to the client, and displayed.

The results in Figures 9-11, show a breakdown of the average end-
to-end latency and average throughput. The display latency on the
client is shown separately from the rendering latency. The compres-
sion cost is split as encoding and decoding latencies, which include
the server- and client-side compression latencies. The network
transmission latency is measured on the client when it receives the
result of the timestamped message from the server.
Pipeline Latency and Throughput. Figures 9-11 show the la-
tency and throughput results of AR1/2 and VR in the distribution
scenarios (L, P, R, and P+R). Latency is measured as how long the
pipeline takes to reflect the real-world context, and throughput is
how frequently the real-world context is reflected to the rendered
scene per second.

For AR1 (Figure 9), P shows the lowest latencies in 15W and
30W. For throughputs, P has the highest throughput in 15W while
P+R does in 30W. Since the pipeline throughput is bound by the
dominant functionality, it is possible to have lower throughput
even with lower latency. Compared to L, the throughputs can be
improved 2.1× (15W) and 1.7× (30W), and the latencies reduced by
28% (15W) and 14% (30W).

For P, the perception on the server takes 11 ms; it takes 121 ms
(15W) and 70 ms (30W) of L on the client. Rendering on the client
takes 54 ms (15W) and 19 ms (30W). P requires the client to encode
1080p camera frames, which takes 57 ms (15W) and 47 ms (30W).
Decoding on the server takes 1.8 ms. The throughputs of P in 15W
and 30W are bound by the encoding latency.

For P+R, since all rendering and perception run on the server,
requires client-side displaying, encoding, and decoding. On Jet15W,
it takes 59 ms for displaying the received FHD scene from the server,
57 ms for encoding camera frames, 12 ms for decoding the received
scene. On Jet30W, it takes 20 ms for displaying, 40 ms for encoding,
6 ms for decoding. On the server, it takes 14 ms for perception, 5
ms for rendering, 1.7 ms for decoding the received camera frame,
and 5 ms for encoding the rendered scene. So, the throughput of
P+R (15W) is bound by client-side displaying while the throughput
of P+R (30W) is bound by client encoding.

For AR2 (Figure 10), P+R shows the highest throughputs while
P (15W) and L (30W) present the lowest latencies. The throughput

of P+R is 1.5× of P (15W) and 1.3× of L (30W), but it has increase
in latencies of 15% (15W) and 8% (30W).

For P (15W), the perception takes 7 ms on the server while it
does 122 ms of L (15W), and the rendering takes 81 ms. In addition,
it takes 52 ms for client encoding and 1.8 ms for server decoding.
For L (30W), it takes 51 ms for perception and 47 ms for rendering.

ForP+R, on Jet15W, it takes 54ms for encoding the camera, 13ms
for decoding the rendered scene, and 57 ms displaying the received
scenes while taking 14ms for perception and 20ms rendering on the
server. On Jet30W, it takes 40 ms for encoding, 7 ms for decoding,
and 18 ms displaying. While the throughputs of P (15W) and L
(30W) are bound by rendering and perception each, the throughputs
of P+R in 15W and 30W are bound by the client encoding.

In Figure 11 of VR, P+R (15W) and P (30W) present the lowest
latencies. P+R shows the highest throughputs in 15W and 30W.
Compared to L, the throughputs can be 3.9× (15W) and 2.7× (30W),
and the latencies are 50% less (15W) and 29% less (30W).

For P, on Jet30W, it takes 54 ms for rendering, 24 ms for encoding
480p camera frames. On the server, it takes 33 ms for perception and
1.5 ms for decoding the received camera frames. On Jet15W, it takes
150 ms for rendering and 33 ms for encoding. The throughputs of
P in 15W and 30W are bound by the rendering. Since the rendering
is so challenging for Jet15W, it dominates throughput and latency.

For P+R, on Jet15W, it takes 57 ms for displaying the scene from
the server, 31 ms for encoding camera frames, 15 ms for decoding
the received scene. On Jet30W, it takes 18 ms for displaying, 20 ms
for encoding, 7 ms for decoding. On the server, it takes 36 ms for
perception, 31 ms for rendering, 1.7 ms for decoding the received
camera frame, and 5 ms for encoding the rendered scene.

For Jet15W, rendering and perception are challenging, andP+R is
beneficial in terms of latency and throughput. In the case of Jet30W,
even though P+R introduces additional overheads for the client-
side decoding and displaying, the pipeline bottleneck of rendering
is relieved compared to P (30W), enabling higher throughput.
Result Analysis. In the results in Figure 9, the optimal distribution
scenario can vary in terms of the latency and throughput even with
the same workloads by the client capacity: P and P+R in 15W and
30W. For higher throughput, it is crucial to offload the pipeline
bottleneck. There are cases where the distribution overheads are
larger than the benefits, ending up with worse performance than
the local-only scenario (e.g., R (15W) and (30W) of AR1 and AR2
in Figure 9 and 10). The server and client device capacities should
be considered because the kernels are parallelized and can cause
resource contention. For instance, the perception latencies of P+R
in AR1, AR2, and VR increase on the server compared to P. More-
over, although AR1 and AR2 are with the same pipeline structure of
Figure 6, the ideal distribution is different based on the perception
and rendering complexities of each application.

Based on our results, the effectiveness of offloading depends on
the given workloads, server and client capacities, and offloading
overheads. FleXR allows each user to configure the workload dis-
tribution flexibly at runtime and enables the optimal distribution
of an XR application for various distribution scenarios.

FleXR: A System Enabling Flexibly Distributed Extended Reality Conference’17, July 2017, Washington, DC, USA

7 DISCUSSION
FleXR offers flexibility in how an XR workload is distributed across
a device and offload server(s). This opens up several opportunities
for innovation and new research directions.

First, while with FleXR the XR configuration can be tuned to
the specifics of the deployment context to realize optimal workload
distributions, currently, this requires manual effort from the system
users. To fully realize the potential of FleXR, future research is
needed on automated deployment and resource management. New
methods are needed to consider factors such as kernel costs, client
and server capacity, network state, and offloading overheads, as well
as to enable dynamic adaptation of the workload configurations.
Previous function offloading systems have used linear solvers and
resource profilers for offloading decisions with static analysis [10,
12], but this approach would be more complex in FleXR as the
kernel costs and offloading overheads are subject to change based
on user and server situations.

Second, by making it possible to integrate third-party compo-
nents and application frameworks with FleXR (e.g., the game en-
gines), we make it possible to consider a future landscape of XR
supported by distributed edge-cloud infrastructure, potentially with
different performance, quality, or other properties, that can be com-
bined in different ways to support complex future XR use cases.
This new landscape opens up new challenges for distributed orches-
tration for XR, and also promotes the reuse of service functionality
in different scenarios, thus enabling faster innovation.

Finally, while distributed service composition has been consid-
ered in other contexts [22, 61], several XR-specific aspects raise
new challenges and opportunities that future work should address.
These are related to performance/timeliness and quality tradeoffs
that exist at the application level, sharing and reuse across users
(e.g., as done for specific offload services in [45]), XR-specific trans-
port protocols [1, 5], new privacy concerns, etc. By creating and
open sourcing the FleXR infrastructure, we believe our work will
facilitate such research directions.

8 CONCLUSION
In this work, we describe the limitations of the existing distributed
XR systems by their predetermined architectures. We argue the
need of flexibility in XR workload distribution, and the lack of
flexibility in distributed XR is attributed to the absence of system
supports. For enabling such flexibility, we present FleXR – a DSP
system enabling the flexible distribution of XR pipelines at runtime.
We identify the issues of the DSP design for XR and resolve them
while building FleXR. In our experiments, FleXR efficiently enables
the four different distribution scenarios to three XR use cases. Our
results show the optimal workload distribution is relatively deter-
mined by environmental factors, and FleXR can realize the effective
server assistance for each XR use case in various environments.

ACKNOWLEDGMENT
We would like to thank the anonymous reviewers. This work has
been partially supported by NSF projects CCF-2217070 and CNS-
1909769, the Applications Driving Architectures (ADA) Research
Center, a JUMP Center co-sponsored by SRC and DARPA, and by
funding and equipment gifts from VMware and Intel.

REFERENCES
[1] Maha Abdallah, Carsten Griwodz, Kuan-Ta Chen, Gwendal Simon, Pin-Chun

Wang, and Cheng-Hsin Hsu. 2018. Delay-sensitive video computing in the cloud:
A survey. ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM) 14, 3s (2018), 1–29.

[2] Aaro Altonen, Joni Räsänen, Jaakko Laitinen, Marko Viitanen, and Jarno Vanne.
2020. Open-Source RTP Library for High-Speed 4K HEVC Video Streaming. In
2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP).
IEEE, 1–6.

[3] Pablo Basanta-Val, Norberto Fernandez-Garcia, Luis Sanchez-Fernandez, and
Jesus Arias-Fisteus. 2017. Patterns for distributed real-time stream processing.
IEEE Transactions on Parallel and Distributed Systems 28, 11 (2017), 3243–3257.

[4] Jonathan C Beard, Peng Li, and Roger D Chamberlain. 2017. RaftLib: a C++ tem-
plate library for high performance stream parallel processing. The International
Journal of High Performance Computing Applications 31, 5 (2017), 391–404.

[5] Tristan Braud, Farshid Hassani Bijarbooneh, Dimitris Chatzopoulos, and Pan
Hui. 2017. Future networking challenges: The case of mobile augmented reality.
In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 1796–1807.

[6] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder,
Sammy Omari, Markus W Achtelik, and Roland Siegwart. 2016. The EuRoC
micro aerial vehicle datasets. The International Journal of Robotics Research 35,
10 (2016), 1157–1163.

[7] Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José MM Montiel, and
Juan D Tardós. 2021. Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam. IEEE Transactions on Robotics 37, 6 (2021),
1874–1890.

[8] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E Culler, and Randy H Katz. 2018.
Marvel: Enabling mobile augmented reality with low energy and low latency. In
Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems.
292–304.

[9] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. 2015. Glimpse: Continuous, real-time object recognition on mobile
devices. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems. 155–168.

[10] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. 2011. Clonecloud: elastic execution between mobile device and cloud. In
Proceedings of the sixth conference on Computer systems. 301–314.

[11] Cristian Garcia. 2018. Pypeln, A simple yet powerful Python library for creating
concurrent data pipelines. https://cgarciae.github.io/pypeln/.

[12] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. Maui: making smartphones
last longer with code offload. In Proceedings of the 8th international conference on
Mobile systems, applications, and services. 49–62.

[13] Robert Cypher and Eric Leu. 1994. The semantics of blocking and nonblocking
send and receive primitives. In Proceedings of 8th International Parallel Processing
Symposium. IEEE, 729–735.

[14] FFmpeg team. 2021. FFmpeg, A complete, cross-platform solution to record,
convert and stream audio and video. https://www.ffmpeg.org/.

[15] Martin A Fischler and Robert C Bolles. 1981. Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. Commun. ACM 24, 6 (1981), 381–395.

[16] Python Software Foundation. 2021. multiprocessing.shared mem-
ory, Provides shared memory for direct access across processes.
https://docs.python.org/3/library/multiprocessing.sharedmemory.html.

[17] Epic Games. 2022. Unreal Engine: The most powerful real-time 3D creation
platform. https://www.unrealengine.com.

[18] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco José Madrid-Cuevas,
and Manuel Jesús Marín-Jiménez. 2014. Automatic generation and detection of
highly reliable fiducial markers under occlusion. Pattern Recognition 47, 6 (2014),
2280–2292.

[19] Shilpa George, Thomas Eiszler, Roger Iyengar, Haithem Turki, Ziqiang Feng, Jun-
jue Wang, Padmanabhan Pillai, and Mahadev Satyanarayanan. 2020. OpenRTiST:
End-to-End Benchmarking for Edge Computing. IEEE Pervasive Computing 19, 4
(2020), 10–18.

[20] GStreamer Team. 2001. GStreamer: a flexible, fast and multiplatform multimedia
framework. https://gstreamer.freedesktop.org/.

[21] Holo-Light. 2020. ISAR SDK – XR Streaming. https://holo-light.com/products/
isar-sdk/.

[22] Songlin Hu, Vinod Muthusamy, Guoli Li, and Hans-Arno Jacobsen. 2008. Dis-
tributed Automatic Service Composition in Large-Scale Systems. In Proceedings
of the Second International Conference on Distributed Event-Based Systems (Rome,
Italy) (DEBS ’08). Association for Computing Machinery, New York, NY, USA,
233–244. https://doi.org/10.1145/1385989.1386019

[23] iMatix. 2021. ZeroMQ, An open-source universal messaging library. https:
//zeromq.org/.

https://cgarciae.github.io/pypeln/
https://www.ffmpeg.org/
https://www.unrealengine.com
https://gstreamer.freedesktop.org/
https://holo-light.com/products/isar-sdk/
https://holo-light.com/products/isar-sdk/
https://doi.org/10.1145/1385989.1386019
https://zeromq.org/
https://zeromq.org/

Conference’17, July 2017, Washington, DC, USA Jin, et al.

[24] The Khronos Group Inc. 2014. EGL, Native Platform Interface. https://www.
khronos.org/egl/.

[25] The Khronos Group Inc. 2016. Vulkan, Cross platform 3D Graphics. https:
//www.vulkan.org/.

[26] The Khronos Group Inc. 2017. OpenGL, The Industry’s Foundation for High
Performance Graphics. https://www.opengl.org/.

[27] VMware Intel, AMD. 2021. The Mesa 3D Graphics Library. https://www.mesa3d.
org/.

[28] Shweta Khare, Hongyang Sun, Julien Gascon-Samson, Kaiwen Zhang, Anirud-
dha Gokhale, Yogesh Barve, Anirban Bhattacharjee, and Xenofon Koutsoukos.
2019. Linearize, predict and place: minimizing the makespan for edge-based
stream processing of directed acyclic graphs. In Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing. 1–14.

[29] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang.
2012. Thinkair: Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading. In 2012 Proceedings IEEE Infocom. IEEE, 945–953.

[30] Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, Ningwei Dai, and Hung-Sheng
Lee. 2019. Furion: Engineering high-quality immersive virtual reality on today’s
mobile devices. IEEE Transactions on Mobile Computing 19, 7 (2019), 1586–1602.

[31] Mengtian Li, Yu-Xiong Wang, and Deva Ramanan. 2020. Towards streaming
perception. In European Conference on Computer Vision. Springer, 473–488.

[32] John DC Little. 1961. A proof for the queuing formula: L= 𝜆 W. Operations
research 9, 3 (1961), 383–387.

[33] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time
object detection for mobile augmented reality. In The 25th Annual International
Conference on Mobile Computing and Networking. 1–16.

[34] Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin Liu, Jiansong Zhang,
Lintao Zhang, and Marco Gruteser. 2018. Cutting the cord: Designing a high-
quality untethered vr system with low latency remote rendering. In Proceedings
of the 16th Annual International Conference on Mobile Systems, Applications, and
Services. 68–80.

[35] Xing Liu, Christina Vlachou, Feng Qian, Chendong Wang, and Kyu-Han Kim.
2020. Firefly: Untethered Multi-user VR for Commodity Mobile Devices. In 2020
USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association,
943–957. https://www.usenix.org/conference/atc20/presentation/liu-xing

[36] Jiayi Meng, Sibendu Paul, and Y Charlie Hu. 2020. Coterie: Exploiting frame
similarity to enable high-quality multiplayer vr on commodity mobile devices. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. 923–937.

[37] Microsoft. 2019. Azure Custom Vision. https://azure.microsoft.com/en-us/
services/cognitive-services/custom-vision-service.

[38] Microsoft. 2020. Azure Remote Rendering. https://azure.microsoft.com/en-
us/services/remote-rendering/.

[39] Diego González Morín, Pablo Pérez, and Ana García Armada. 2022. Toward the
Distributed Implementation of Immersive Augmented Reality Architectures on
5G Networks. IEEE Communications Magazine 60, 2 (2022), 46–52.

[40] Nvidia Corporation. 2018. Jetson AGX Xavier Developer Kit. https://developer.
nvidia.com/embedded/jetson-agx-xavier-developer-kit.

[41] Nvidia Corporation. 2020. NVIDIA CloudXR™ SDK. https://developer.nvidia.
com/nvidia-cloudxr-sdk.

[42] Nvidia Corporation. 2021. NVIDIA Video Codec SDK. https://developer.nvidia.
com/nvidia-video-codec-sdk.

[43] Nvidia Corporation. 2022. NVIDIA Jetson Linux Developer Guide : Introduction.
https://docs.nvidia.com/jetson/l4t.

[44] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3. Kobe, Japan, 5.

[45] Xukan Ran, Carter Slocum, Maria Gorlatova, and Jiasi Chen. 2019. ShareAR:
Communication-efficient multi-user mobile augmented reality. In Proceedings of
the 18th ACM Workshop on Hot Topics in Networks. 109–116.

[46] Henriette Röger, Sukanya Bhowmik, and Kurt Rothermel. 2019. Combining
it all: Cost minimal and low-latency stream processing across distributed het-
erogeneous infrastructures. In Proceedings of the 20th International Middleware
Conference. 255–267.

[47] Francisco J Romero-Ramirez, Rafael Muñoz-Salinas, and Rafael Medina-Carnicer.
2018. Speeded up detection of squared fiducial markers. Image and vision
Computing 76 (2018), 38–47.

[48] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An
efficient alternative to SIFT or SURF. In 2011 International conference on computer
vision. Ieee, 2564–2571.

[49] Michael Schneider, Jason Rambach, and Didier Stricker. 2017. Augmented reality
based on edge computing using the example of remote live support. In 2017 IEEE
International Conference on Industrial Technology (ICIT). IEEE, 1277–1282.

[50] Henning Schulzrinne, Steven Casner, R Frederick, and Van Jacobson. 2003.
RFC3550: RTP: A transport protocol for real-time applications.

[51] Henning Schulzrinne, Anup Rao, and Robert Lanphier. 1998. Real time streaming
protocol (RTSP). (1998).

[52] Wright Stevens et al. 1997. TCP slow start, congestion avoidance, fast retransmit,
and fast recovery algorithms. (1997).

[53] Tarik Taleb, Zinelaabidine Nadir, Hannu Flinck, and JaeSeung Song. 2021. Ex-
tremely interactive and low-latency services in 5G and beyond mobile systems.
IEEE Communications Standards Magazine 5, 2 (2021), 114–119.

[54] Wim Taymans, Steve Baker, Andy Wingo, Rondald S Bultje, and Stefan Kost.
2013. Gstreamer application development manual (1.2. 3). Publicado en la Web
(2013).

[55] OpenCV team. 2021. OpenCV 4.0. https://opencv.org/opencv-4-0/.
[56] Unity Technologies. 2021. Unity Real-Time Development Platform. https://unity.

com.
[57] Velimir Mlaker. 2018. MPipe, Multiprocess Pipeline Toolkit for Python. http:

//vmlaker.github.io/mpipe/index.html.
[58] Ekhiotz Jon Vergara and Simin Nadjm-Tehrani. 2013. EnergyBox: a trace-driven

tool for data transmission energy consumption studies. In European Conference
on Energy Efficiency in Large Scale Distributed Systems. Springer, 19–34.

[59] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. 2003.
Overview of the H. 264/AVC video coding standard. IEEE Transactions on circuits
and systems for video technology 13, 7 (2003), 560–576.

[60] Yu Xiao, Yong Cui, Petri Savolainen, Matti Siekkinen, An Wang, Liu Yang, Antti
Ylä-Jääski, and Sasu Tarkoma. 2013. Modeling energy consumption of data
transmission over Wi-Fi. IEEE Transactions on Mobile Computing 13, 8 (2013),
1760–1773.

[61] Xiaofei Xu, Xiao Wang, Hanchuan Xu, and Zhongjie Wang. 2021. Distributed
Service Composition in Internet of Services. In 2021 IEEE International Conference
on Services Computing (SCC). 274–284. https://doi.org/10.1109/SCC53864.2021.
00040

[62] Yu-Ping Wang. 2017. shm transport, The shared memory transport package.
http://wiki.ros.org/shm_transport.

[63] Lei Zhang, Andy Sun, Ryan Shea, Jiangchuan Liu, and Miao Zhang. 2019. Ren-
dering multi-party mobile augmented reality from edge. In Proceedings of the
29th ACM Workshop on Network and Operating Systems Support for Digital Audio
and Video. 67–72.

https://www.khronos.org/egl/
https://www.khronos.org/egl/
https://www.vulkan.org/
https://www.vulkan.org/
https://www.opengl.org/
https://www.mesa3d.org/
https://www.mesa3d.org/
https://www.usenix.org/conference/atc20/presentation/liu-xing
https://azure.microsoft.com/en-us/services/cognitive-services/custom-vision-service
https://azure.microsoft.com/en-us/services/cognitive-services/custom-vision-service
https://azure.microsoft.com/en-us/services/remote-rendering/
https://azure.microsoft.com/en-us/services/remote-rendering/
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/nvidia-cloudxr-sdk
https://developer.nvidia.com/nvidia-cloudxr-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk
https://docs.nvidia.com/jetson/l4t
https://opencv.org/opencv-4-0/
https://unity.com
https://unity.com
http://vmlaker.github.io/mpipe/index.html
http://vmlaker.github.io/mpipe/index.html
https://doi.org/10.1109/SCC53864.2021.00040
https://doi.org/10.1109/SCC53864.2021.00040
http://wiki.ros.org/shm_transport

	Abstract
	1 Introduction
	2 Related Work and Motivation
	3 Design Challenges for FleXR
	3.1 Issues with Stream Processing for XR
	3.2 Design Decisions for The Issues

	4 FleXR
	4.1 Overview
	4.2 Kernel Design
	4.3 Communication Semantics and Data Recency Management
	4.4 Register-Activation Interface and Port-level Configuration

	5 Implementation
	6 Evaluation
	6.1 Experimental Testbed
	6.2 XR Applications and Distribution Scenarios
	6.3 Design Benefit of FleXR
	6.4 Evaluation of Example Applications

	7 Discussion
	8 Conclusion
	References

