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ABSTRACT

We analyse the low latency performance of the three Adaptive Bi-
trate (ABR) algorithms in the dash. js Dynamic Adaptive Stream-
ing over HTTP (DASH) player with respect to a range of latency
targets and configuration options. We perform experiments on
our DASH Testbed which allows for testing with a range of real
world derived network profiles. Our experiments enable a bet-
ter understanding of how latency targets affect quality of expe-
rience (QoE), and how well the different algorithms adhere to their
targets. We find that with dash. js v4.5.0 the default Dynamic algo-
rithm achieves the best overall QoE. We show that whilst the other
algorithms can achieve higher video quality at lower latencies, they
do so only at the expense of increased stalling. We analyse the
poor performance of L2A-LL in our tests and develop modifications
which demonstrate significant improvements. We also highlight
how some low latency configuration settings can be detrimental to
performance.
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1 INTRODUCTION

For live content being distributed via both traditional broadcast
and IP streaming, it would be desirable for IP services to at least
match the latency of broadcast. There are a number of approaches
to provide for such low latency IP streaming but their performance
at different latency targets is not well studied. It is important to
understand the appropriate compromise between delivery latency
and QoE.

In this paper we analyse the low latency performance of the
widely used web-based DASH player, dash. js [6], examining a
range of latency targets and configuration options, across its three
ABR algorithms. The default ABR algorithm, known as Dynamic[14],
is a hybrid utilising its Throughput algorithm, which is based upon
measured throughput, when the playback buffer is short, and utilis-
ing its Buffer Occupancy-based Lyapunov Algorithm (BOLA)[15]
at other times.

The Learn2Adapt Low Latency (L2A-LL) [7] algorithm uses con-
vex optimisation to predict the best option for future segment repre-
sentations based on the impact the previous segment had on latency.
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The Low on Latency (LoL+) [2, 9] algorithm provides a QoE max-
imisation decision making solution which utilises both a heuristic
predictive model and a learning model based on self-organising
maps. Each segment boundary is used as an opportunity to derive
a predicted highest QoE option out of the given representations,
based on an internally defined weighted QoE model.

Through a series of experiments on our DASH Testbed, we elu-
cidate the trade-offs that may be made between Latency and QoE
when operating low latency streaming. Our Testbed allows for
metrics collection with trace driven network emulation between
a browser based player and a low latency streaming server, using
chunked transfer mode with 3.84s segments. The metrics allow
us to analyse the performance with respect to the factors such la-
tency, video quality, and stalls. We employ the ITU-T P.1203 QoE
model and implementation [12] to generate an overall QoE score.
We also examine the effect of other configuration options such as
the FastSwitching algorithm [14] which controls whether a player
will try to obtain a replacement higher quality segment.

Whilst other analyses have focussed on achieving as low a la-
tency as possible we find that at lower latencies (~3s) the QoE is
significantly lower than at higher latencies, but begins to level out
around 8s. We make the following contributions:

o A latency target based comparison of dash. js’s three low-
latency algorithms.

e Find that with dash. js v4.5.0 default Dynamic algorithm
achieves the best overall QoE and adherence to its latency
targets.

o Show that the default enabled FastSwitching algorithm wastes
bandwidth and does not generally improve the overall QoE.

¢ Elucidate the poor behaviour of the L2A-LL algorithm and
demonstrate the benefits of our developed improvements.

e Demonstrate that Dash.js versions exhibit notable perfor-
mance differences.

Other work has mainly studied the performance of individual low
latency ABR algorithms at fixed low latencies, tending to focus on
the lowest possible latency without consideration for performance
at higher latencies [7, 9]. Also there are not many studies comparing
dash. js’s three low latency ABR algorithms. One recent study
[17] performs a comparison but does not examine differing latency
targets.

In many situations it is desirable to have a common latency
across delivery mechanisms, platforms and devices, rather than
the lowest latency achievable. This is important to viewers who
might end up overhearing cheers for an event in a sports match. It
also helps ensure that reaction on social media is similarly timed
for everyone. Since latency, reliability and quality are interrelated,
seeking minimum latency inevitably reduces reliability or quality or
both so it is important to consider what latency is actually needed
for a given situation and not go further than is necessary.
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Figure 1: DASH Testbed architecture

The remainder of this paper is structured as follows: first, in §2
we present details of our experimental testbed and methodology,
next, in §3 we present our results, and in §4 we provide further
analysis and recommendations. We summarise related work in §5,
and finally, we conclude with our key findings and provide potential
avenues for future research in §6.

2 EXPERIMENTS

We evaluated the performance of dash. js using our DASH Testbed
[1]. We chose to develop our own testbed, as opposed to using
others, so we had full control over all aspects of its behaviour. We
ran a series of experiments with four different network profiles,
emulating a range of network conditions, enabling us to compare
the performance of the three ABR algorithms.

2.1 DASH Testbed

Figure 1 displays the overall architecture of the DASH Testbed. At
the heart of the Testbed sits the TestController, which is responsible
for queueing and running sets of tests. A web based UI allows for
submission of test sets to the TestController in a JSON file, which
describes each set of tests to be run. This JSON file allows for control
over the configuration of the Testbed. Firstly, it allows specification
of the stream to use in the test: whether it’s a live or on-demand
stream, what combination of audio/video/subtitle components it
has and its duration. Secondly, it configures which DASH player
software to use in the test and how that player should be configured.
The Testbed currently supports players based around the dash.js
JavaScript DASH implementation and the GStreamer media toolkit.
In our case we were utilising the Google Chrome browser running
dash. js. Thirdly, one can set the number of sessions of that test to

run. And finally it allows specification of the network profile that
should be applied during the running of each test session.

When the TestController runs a test from within a test set, it
farms out the individual sessions of that test to a pool of Executors,
which are each responsible for running a single session at a time.
Each of the Executors is a separate physical Linux machine so all
the tests are fully independent of one another. We use the traffic
control facilities built into the Linux kernel to throttle the data
rate of its network interface according to the particular network
profile selected for that test and we ensured that the interfaces
utilise the usual Maximum Transmission Unit (MTU) of 1500 bytes.
The Executor configures and launches the player identified in the
test description, which will play the test stream in real time and
report metrics about its performance back to the MetricStore.

Metrics are obtained from both the in-built dash.js DVB DASH
metric reporting capabilities and from custom JavaScript functions.
Generally metric data types can be categorised into two groups:
event based, and periodic. Event based metrics are reported at the
time they occur typically with additional context, such as: HTTP
transactions, rebuffering periods, and representation switches. The
number of event-based metrics per run can therefore vary, and
in some cases be zero. Periodic reporting is used to monitor cer-
tain metrics, such as buffer levels and latencies. Periodic reporting
provides values of a parameter at regular intervals, typically 500
milliseconds, as set by the Testbed. These metrics typically have
the same number of entries per run. All metrics are time-stamped.

The available video representations within the manifest can be
seen in Table 1, which are representative of those used in the indus-
try. The segments use Common Media Application Format (CMAF)
and have a length of 3.84 seconds, consisting of four 0.96 second
chunks. The content consists of a subsection of news footage which
has been encoded as H.264 Constant Bitrate (CBR) streams and
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Resolution 192x108 256x144 384x216 512x288 704x396 896x504 704x396 960x540 1280x720
Bitrate (Kbps) 86 156 281 437 827 1,374 1,570 2,811 5,468
Frame Rate 25 25 25 25 50 25 50 50 50
Table 1: The video bitrate ladder used for our experiments
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Figure 2: Network Profiles (with bitrate ladder)

repackaged for use in the Testbed media server as live low latency
encoded media. The test stream also includes a single 128kbps
audio representation. The QoE measure we utilise is not content
dependent so the content genre used has no bearing on the results.

The network profiles in Figure 2 used in the test runs were
derived from data captured from BBC iPlayer streaming sessions.
The orange lines indicate the bitrates of the tested representations,
illustrating how these compare to the throughput in the various
network profiles.

2.2 Methodology

As the primary comparison for live IP streaming, typical terrestrial
broadcast (DVB-T) latencies were used as a basis for selecting la-
tency targets to be tested. This comparison is important for mass
adoption, as users/consumers will expect a comparable product to
the existing medium.

A variety of latency targets were selected to overlap the existing
latency range on DVB-T, which is typically between 6 - 8 seconds.
The values chosen were 3, 5.5, 8, and 15 seconds. These first three
values are equally spaced apart to provide measurement points
across the range. The target of 15 seconds was also chosen to be
used as a relatively stable operation point, which would also allow
for a comparison with traditional (non-low-latency) live streaming.

The version of dash. js used was v4.5.0, released in September
2022. The configuration parameters for dash.js were mostly kept to
default values. Certain parameters were changed to effect particular
functionality, utilise existing playback choices, or to vary the test

scenarios. We set the maxDrift to 5s and playbackRate to 0.17. The
playback rate was set such that at maximum rate, the stream would
catch up approximately 5 seconds within a 30 second window.

The catchup mechanism employed was set to the default option
for the test cases utilising Dynamic, and L2A-LL ABR algorithms.
The LoL+ algorithm utilises its own custom catchup mechanism so
that was selected for its test cases only.

For the throughput estimation technique the default "moof" pars-
ing method was used, as opposed to the older data-chunks method.
Sliding window was selected as the moving average technique,
which is also the default method.

To ensure each run would provide results independent of pre-
vious tests we set both lastBitrateCachinglnfo and lastMediaSet-
tingsCachingInfo to false. In normal use enabling these parameters
can improve the start-up performance of a session as they allow
for the use of previously acquired throughput estimation and rep-
resentation selections as factors for deciding initial representation
requests.

We ran all tests apart from the configuration comparison test
with the FastSwitching feature disabled as it was found to adversely
affect the performance (see Section 4.2).

A test scenario is defined by a specific latency target, with one
of the three ABR algorithms, operating on one of the four network
profiles. The Testbed was configured with an round-trip time (RTT)
of 50ms. Each test scenario would run for 1497.6 seconds (24 minutes
and 57.6 seconds). This particular duration comes from the number
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Figure 3: Stall Heatmap (Profile A)

of segments that would be used, 390, assuming continuous playback
at 1x playback rate of 3.84s duration segments.

Each test scenario was run twenty times. This was to ensure any
averages calculated would have a sufficient level of confidence.

3 RESULTS

In this section we provide an analysis of our core experiments using
dash. js v4.5.0. First, we break it down according to the key metrics
we examined, then consider the overall QoE.

3.1 Rebuffering

The negative impact of rebuffering on QoE is widely acknowledged
for video on-demand (VOD)[4, 5, 8]. In a low-latency context the
negative impact of time spent rebuffering on QoE is greater than
in a VOD setting[5] as it increases the playback latency.

The amount of stalling each ABR algorithm experiences varies
considerably between the three, in both number of stalls, and the
duration of rebuffering that follows.

Figure 3, which shows a heatmap of the stalling, utilises a set of
coloured bars indicating the stalls for each ABR algorithm overlaid
onto the network profile. The Dynamic algorithm performs the best
of three in this regard, with the least number of stalls and shortest
time overall spent rebuffering. LoL+ follows with an increase in
both metrics, and L2A-LL performs the worst of the three, by a
considerable margin.

Increasing the target latency does lead to reduced stalling levels
as the larger buffer provides a greater period of time for the algo-
rithms to adapt. These are reflected in their improving QoE scores
which may be found in Section 3.4.

Whilst we do not have the space to show the other scenarios we
see a similar trends across the different network profiles.

We expect that less time rebuffering enables clients to stay closer
to the live-latency target, a measure that is evaluated next.

3.2 Latency

In this section we explore the performance at the range of tested
latency targets. We explore how well the different algorithms adhere
to their targets.

The measure of latency used here is the delay between when
content has been made available at the origin to when it is rendered
at the client. In low-latency streaming, a live-latency target is se-
lected by the content provider and usually configured in a Media
Presentation Description (MPD). Clients should stay at or close to
the target so that the experience of viewing events on the screen
is not pre-empted by social media, or neighbours reacting to the
same event moments earlier. The live latency values are retrieved
from the dash. js client at 500ms intervals.

In Figure 4 we can see how the different algorithm adhere to their
latency targets, using boxplots, where the median is marked by an
orange line, with the whiskers extending to 1.5 x interquartile range.
We use a log scale; where no median is shown it is zero in Figure 4(b).
We observe that Dynamic provides the smallest deviation from the
target in both scenarios. Figure 4(a) shows the performance on the
most challenging scenario, and the trend remains largely similar up
to the least challenging profile, in Figure 4(b), though the confidence
intervals narrow and the time delta decreases. We notice that there
seems to be a small systematic increase in the delta for LoL+.
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Figure 5: Mean Video Bitrates

3.3 Video Quality

The selected video bitrate is regarded as quite influential at pre-
dicting user satisfaction for video-on-demand [5]. We first evaluate
this measure, and follow with further results that suggest bitrate,
alone, may be misleading or incomplete measure in the context of
live-streaming.

As we can see from Figure 5, where we plot the mean across
the 20 runs and the shaded area is defined by the 5th and 95th per-
centiles, they vary significantly between the algorithms. In the most
challenging scenario, in Figure 5(a), they all struggle to maintain a
rate higher than 1000Kbps, whilst with the least challenging situa-
tion, in Figure 5(b), the bitrates of the three algorithms generally
fluctuate significantly between each latency target, with Dynamic
providing the most stable but lower bitrate, whilst L2A-LL and LoL+
reach a higher bitrate.

We calculate the mean video bitrate (B) using Equation 1. We
remove any duplicate requests from the representation download
count.

segment_duration 720

- i

B= total pla_back time Z (NR > Br) W
~prayvack_ R=108p25

Where R = Representation
Ng = Number of times R downloaded
Bgr = Bitrate of Representation

3.4 Quality of Experience

We utilised ITU-T Rec. P.1203, a more comprehensive quantitative
measure of overall QoE, which provides for parametric and machine
learning bitstream-based quality assessment of adaptive audiovisual
streaming services over reliable transports. We used the reference
implementation [12] to generate an overall QoE score, in the form
of a Mean Opinion Score (MOS), using the Mode 0 which is based
upon stream metadata. We employ this QoE measure as it has been
extensively trained and validated with subjective tests on over a
thousand audiovisual sequences containing HAS-typical effects
(such as stalling, representation switches) and it is independent
of absolute latency, though it does respond to changes in latency
through its stalling measure. In contrast the low latency specific
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QoFE measures used in other work [2, 16] lack a basis in subjective
user testing and also contain a latency factor which rewards them
according their lower absolute latency, as opposed to how well an
algorithm adheres to its latency target.

In Figure 6 we plot the P.1023 QoE overall results with the points
indicating the mean across the 20 runs and the shaded area is
defined by the 5th and 95th percentiles. Whilst the results are all
quite low with Profile A, in Figure 6(a), we see that Dynamic is on
top, but with Profiles C, Figure 6(b), and D, Figure 6(c), the Dynamic
algorithm out performs the other algorithms at all latency targets
until they all converge at the top 15s target.

4 FURTHER ANALYSIS

In this section, we explore some features of our results and dis-
cuss why they arise, proposing improvements to dash. js where
appropriate.

4.1 L2A-LL analysis and improvements

We took a closer look at why L2A-LL was performing so poorly
below the 15s target (in Figure 6(c)) and discovered that a combina-
tion of factors were coming to into play. Since we are testing with
chunk durations of 960ms dash. js spends more time waiting for
the segments to become available than with shorter chunks, and in
low latency mode the scheduler has a timeout of 300ms so the ABR
algorithms can be called multiple times before the new segment
becomes available. This is doesn’t appear to be a problem for the
other algorithms but with L2A-LL it can lead to the algorithm’s state

being unintentionally updated many times in quick succession for
each segment. This is compounded by an issue specific to L2A-LL
where it utilises the most recent segment’s throughput estimate as
an input to the algorithm but fails to exclude measurements derived
from initialisation segments. The problem with initialisation seg-
ments is that the throughput estimates are generally very low due
to their small size (~900 bytes) and difficulty in accurately measur-
ing their delivery time - indeed they are excluded from dash. js’s
throughput history. For the streams below the 15s target it is these
problems that act together which leads L2A-LL to get stuck in a low
state: When it first tries to switch up to a higher bitrate Represen-
tation, this first causes an initialisation segment to be downloaded.
When dash.js then tries to obtain the next media segment, it is yet to
become available and the problems described mean that the L2A-LL
algorithm is run again, this time using the initialisation segment’s
low throughput estimate. This drives the algorithm to switch down
again, giving poor a quality of experience. The situation is different
in the case of the 15s target as it exceeds the default 12s value of
the configuration parameter stableBufferTime which limits the size
of the buffer that dash. js builds when it is not at the top quality.
In this case it is requesting segments behind the leading edge when
they are fully available and any throughput estimates from initial-
isation segments are replaced with representative measurements
from media segments before the L2A-LL algorithm runs.

We developed modifications to the L2A-LL algorithm to address
the problems we highlighted by limiting the algorithm to only up-
date its state if the throughput estimate comes from a segment that
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3s Latency Target

5.5s Latency Target

8s Latency Target 15s Latency  Target

Dynamic L2A-LL LoL+ Dynamic L2A-LL LoL+ Dynamic L2A-LL LoL+ Dynamic L2A-LL  LoL+
Mean unique segments  391.4 124.5 3912 392.0 392.0 392.6 385.6 3924 3939 393.6 393.6
Mean total segments 391.4 126.6 391.2  392.0 392.0 3973 484.7 436.0 394.7 425.8 424.0
Rerequest percentage 0.0% 1.63% 0.0% 0.0% 0.0% 0.0% 1.1% 20.4% 10.0% 0.2% 7.5% 7.1%

Table 2: Segment requests with FastSwitching enabled on Profile D

it hasn’t used before and is not an initialisation segment. In other
cases, it returns its previously calculated representation quality
switch decision. As can be seen in Figure 7(a) the modified L2A-
LL implementation performs significantly better at all latency tar-
gets. These modifications will be contributed back to the dash. js
project.

4.2 Configuration Options

We studied the effect of other configuration options including the
FastSwitching algorithm [14] which controls whether a player will
try to obtain a replacement higher quality segment.

To understand the behaviour of this feature we examined the
requests for segments, comparing the ratio of unique segments
with the total expected number of segments (390, as explained
in Section 2.2) to the percentage of time during a session which
playback wasn’t stalled. Since these are tests with a live stream,
within a specified time limit (1497.2s), if they undergo sufficient
stalling not all the segments will be requested, and some cases there
can be slightly more segments requested due to good performance
and playback speed increases. We utilise the HT TP transactions list,
from the DASH metric reports, to identify the number of segments
for a run and the number of unique segments downloaded.

When the FastSwitching feature is enabled, which it has been
by default since dash. js v4.0, it was expected that the algorithms
would look to switch up to a higher bitrate representation, if the
buffer is larger than the threshold and there is sufficient network
throughput, replacing the previously downloaded segment before
it is played. This was expected to only affect a small number of
segments during a session, and mostly in higher latency target
scenarios, where a large buffer increases the download-to-playout
time.

With FastSwitching enabled the buffer threshold level is set to
1.5 X segment_duration! so the mechanism only activates for the
8s and 15s latency targets as may be seen in Figure 7(b). Table 2
shows that there are a significant number of re-requests which
consume more bandwidth but don’t generally increase the QoE
as may be seen in Figure 7(b). We note that whilst the feature
shows some benefit for the original L2A-LL algorithm at the 8s
latency target (though with a much larger variance), there are some
duplicate requests even at the 3s target as its buffer temporarily
increases beyond the threshold. It also only manages to request
124.5 segments out of the 390 total, meaning it spent a significant
portion of the time stalled.

We recommend that FastSwitching be avoided in low latency
streaming.

! The segment_duration factor was missing until v4.5.0 despite FastSwitching being
enabled since by default v4.0

4.3 Analysis of earlier dash.js versions

In the course of our studies we also analysed earlier versions of
dash. js, so for example when using v4.3.0 the results seen in Fig-
ure 7(c) (the 8s result was not available) shows clearer QoE improve-
ments for Dynamic. We observe that the performance results with
dash. js v4.5.0 are not as differentiated as prior versions, though
the ordering of the different algorithms is maintained. These results
underscore the importance of carrying out performance testing of
each version.

5 RELATED WORK

There is a large range of HTTP Adaptive Streaming (HAS) systems,
a good overview of which may be found in survey papers [3, 13].

There have been a number of studies of low latency HAS systems,
which have mainly examined the performance of individual low
latency ABR algorithms at fixed low latencies, tending to focus on
the lowest possible latency without consideration for performance
at higher latencies [7, 9].

One study [17] analysed various low latency streaming players
including the three ABR algorithms in the dash. js DASH player.
Their tests were performed with a single fixed latency default (3s
in the case of dash. js) target on the Mahimahi [11] network emu-
lator using two 4G network profiles. They showed that Dynamic
performed the best overall, although LoL and L2A-LL performed
better at minimising the live latency, with L2A-LL outperforming
LoL in average bitrate, but it experienced more rebuffering events.
However, the average bitrates of their network profiles were an or-
der of magnitude larger than their top test stream rendition bitrate
which meant that the tests were less challenging and explored a
more limited range of network conditions.

There is a range of existing approaches for testing HAS systems.
The Mahimahi [11] system, which has been utilised by a number of
studies [10, 17], implements its own user-level network emulation
environment which can be controlled by packet trace files. It utilises
Linux’s tunnel interfaces and network namespaces to provide for
session isolation. Sessions are hosted on virtual machines (VMs)
with virtual network interfaces connecting them to the Mahimahi
system. However, our approach utilises the Linux kernel traffic
control and full network isolation by running each experiment on
a separate physical machine.

Both Firefox and the Chrome based browsers contain network
throttling functionality as part of their developer tools (DevTools)
network module. The network throttling is performed at the appli-
cation level so it doesn’t allow for network level emulation, which
means it is less realistic than the approach we have taken. The
2020 ACM Multimedia Systems Conference’s Grand Challenge 2
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provided a framework based on the Chrome browser’s network
throttling functionality to provide for controlled network profiles.
These network profiles consisted of limited lists of speed and du-
ration, with a short number of throughput changes overall, which
aren’t such a good representation of the kind of fluctuations expe-
rienced on the public internet.

6 CONCLUSIONS

In this paper we investigated how differing latency targets can af-
fect the performance and QoE in the dash. js player. We explored
the performance across a range of realistic network profiles and dif-
ferent configuration settings. We found that with dash.js v4.5.0 the
default Dynamic algorithm achieves the best overall QoE, though
LoL and L2A-LL can achieve higher video quality at lower latencies,
but suffer increased stalling. The Dynamic algorithm also manages
to adhere to the target better than the other algorithms.

Further analysis of the poor performance of the L2A-LL al-
gorithm enabled us to develop modifications to the implementa-
tion which showed a significant improvement. We examined the
FastSwitching algorithm and found that for low latency it provides
no improvement in the overall QoE, and wastes bandwidth. Our
investigations also discovered that there can be notable perfor-
mance differences between software versions which highlights the
need for testing specific versions before deployment and potentially
before releases.

This paper helps to inform the selection of the appropriate la-
tency targets for low latency streaming with the current set of
algorithms. It provides evidence that aiming for too low a latency
target can impact QoE so providers need to find an appropriate
compromise between latency and QoE. Furthermore, we elucidate
examples that highlight the fact that providers need to perform suffi-
cient analysis on the specific version and configuration of dash. js
before deployment to ensure suitable QoE is attained.

In future we would like to explore more approaches to improve
the QoE of low latency streaming, including analysing further con-
figuration and algorithm improvements, and further exploring the
L2A-LL improvements. We are also interested to investigate how a
per-client optimum latency target can be determined which adapts
to its network and own capabilities.
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