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ABSTRACT
A Flying Light Speck, FLS, is a miniature sized drone configured
with light sources. Swarms of FLSs will illuminate an object in
a 3D volume, an FLS display. These illuminations and their data
models are the novel contributions of this paper. We introduce a
conceptual model of drone flight paths to render static, slide, and
motion illuminations. We describe a physical implementation of the
conceptual model using bag files. We evaluate this implementation
using different lossless compression techniques. A key finding is
that our bag file implementation is very compact when compared
with the original point clouds. While compression reduces the size
of a bag file, a combination that includes the use of both internal
bag file compression (lz4 with chunks) and Gzip is not necessarily
the most compact representation. We open source our software and
its point cloud sequence data for use by the scientific community,
see https://github.com/flyinglightspeck/FLSbagfile.
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1 INTRODUCTION
An FLS is a miniature sized drone equipped with one or more light
sources to generate different colors and textures with adjustable
brightness. Synchronized swarms of FLSs will illuminate virtual
objects in a pre-specified 3D volume, an FLS display [4–6]. An FLS
display may be a cuboid that sits on a table or hangs on a wall, the
dashboard of a self-driving vehicle, a room, etc.

An FLS display may render three different types of illuminations.
A static illumination renders one point cloud. A slide illumination
renders a sequence of point clouds [19]. A motion illumination also
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Figure 1: Four point clouds of the rose with a falling petal.

renders a sequence of point clouds, however, its point clouds are
designed to generate the illusion of motion, e.g., a running man [3],
the rose with a falling petal [5], etc.

A point cloud is the basis of different illuminations. A point
dictates the spatial coordinate of an FLS. The point may include
attributes such as color, opacity, reflectance, etc. Dynamic content
may render a sequence of point clouds at a pre-specified rate to
fool the human perception to observe 3D motion. They are used
in diverse applications including animation and entertainment,
immersive telepresence, cultural heritage archives [7, 16] to name
a few. Figure 1 shows four point clouds of a sequence consisting
of 115 point clouds. It is an animated rose with a falling petal. Its
display time is 4.8 seconds when rendered at 24 point clouds per
second, e.g., see https://youtu.be/zaZwAiCsZUU.

A challenge is to compute FLS flight paths that are either collision
free [12, 19] or detect possible collisions that are avoided when
FLSs render an illumination [5, 8, 9, 20]. Both are time consuming
and computationally expensive operations. For sequences that are
illuminated repeatedly, one may perform the computation once and
store the results in a file. Subsequent illuminations may read the
file instead of performing the expensive computation. In addition,
these files eliminate the overhead of computing flight paths with
simulation studies (e.g., AirSim [17], Gazebo [10]) that investigate
alternative architectures for an FLS display [5], lighting designs for
FLSs, and algorithms for FLS failure handling and battery charging.
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The contributions of this study are several folds. First, it presents
a conceptual model of FLS flight paths that render scenes of an
animated sequence. Each scene is a motion illumination and corre-
sponds to a sequence of point clouds. While the intra-scene1 point
cloud changes may be smooth, the inter-scene2 point cloud changes
may be drastic. It may be comparable to a slide show switching
from one point cloud to the next. With both, the model describes
the FLS flight paths and other attributes such as 3D coordinates
visited and colors rendered at each coordinate.

Second, we implement a subset of the conceptual model using
bag files [13]. Bag files are a customizable format used by the Robot
Operating System, ROS [14]. FLSs as drones are a category of robots.
Moreover, bag files are extensible. This means both our model
and the resulting bag file implementation can be extended with
additional features, see Section 6. In addition, software for reading
and writing bag files is readily available with different platforms
and packages, e.g., MATLAB [11], Python [21], ROS [15], etc. Hence,
the bag file implementation of FLS flight paths enables different
systems to inter-operate.

Third, we open source our software and the rose point cloud
sequence as a bag file. See https://github.com/flyinglightspeck/
FLSbagfile.

To the best of our knowledge, our conceptual and physical mod-
els of FLS flight paths are novel and have not been described else-
where. The rest of this paper is organized as follows. Section 2
presents a conceptual design of FLS flight paths. While Section 3
introduces the bag file format, Section 4 presents an implementa-
tion of the conceptual model using this format. We evaluate this
implementation in Section 5. Brief words of future research are
offered in Section 6.

2 CONCEPTUAL MODEL AND LOGICAL
OPERATIONS

We use the entity-relationship (ER) data model [1, 18] to represent
animations, slide shows, point clouds and the FLS flight path data
conceptually [1, 18]. This data model consists of entity sets (rectan-
gles) and relationship sets (diamonds), see Figure 2. Both may have
attributes denoted as ovals. A multi-valued attribute is represented
as a double oval, e.g., Interval attribute of the Flight-Paths. Two
or more entity sets may participate in a relationship set. This is
denoted as a line from a rectangle to a diamond. A double line
denotes total participation. This means all entities must participate
in a relationship. One may use an aggregated entity set (dotted
rectangle) with a relationship as its member. This aggregated entity
set may participate in a relationship with other entity sets.

Figure 2 shows the ER diagram of FLS flight paths consisting of
eight entity sets (rectangles) and four relationship sets (diamonds).
It shows an Animation entity set consists of scenes. Each scene con-
sists of point clouds. A Slide Show may also consist of point clouds.
The many-to-many "Consists of" relationship between scenes (slide
shows) and the point clouds identifies the sequence of point clouds.
We aggregate each such a relationship as an entity that participates
in the relationship set "Flight Paths". There is also a line from the

1Changes from one point cloud to the next point cloud of a scene.
2Changes from the last point cloud of Scene 𝑖 to the first point cloud of Scene 𝑖 + 1.

Figure 2: A conceptual (ER) model of FLS flight paths.

Point Clouds entity set to "Flight Paths", describing the illumination
of a point cloud. Next, we detail the "Flight Paths" relationship set.

Flight-Paths is a many-to-many relationship set. It requires total
participation of the following entity sets: Flying Light Specks (FLSs),
3D Coordinates, Colors, and Objects. The FLSs entity set describes
the velocity model of an FLS (v), its flight time on a fully charged
battery (𝛽), and the time to charge its battery (Ω). There may be a
large number of FLSs with similar characteristics. An ID attribute is
used to uniquely identify each FLS. The 3D Coordinates entity set
identifies the Length 𝐿, Height 𝐻 , and Depth 𝐷 coordinate3 for an
FLS. The Colors entity set identifies the intensity of different lights
that the FLS must render. We are using the Red, Green, Blue, and
Alpha (RGBA) color model in Figure 2. An FLS at its assigned 3D
coordinate may be dark with no color. This is a special case with
different interpretations by different applications. For example, an
application may interpret dark as the color black, i.e., (0,0,0,0) with
the RGBA color model. (The Objects entity set is a place holder for
future work and described in Section 6.)

The interval attribute of Flight-Paths describes how long an FLS
renders a color at a 3D coordinate. It may describe the duration
either in time or point cloud ids. The latter identifies the start and
end point cloud ids that identify a sub-sequence in a sequence. A
system may translate from time to point cloud ids and vice versa
given the number of point clouds rendered per second.

Interval is multi-valued (double ellipsoid) because an FLS may
be required to render the same color at the same 3D coordinate
at different times (or point cloud sub-sequences). An example is a
rotating earth where the same positions and colors may be required
for multiple rotations of the globe.

Definition 2.1. A closed interval [s, e] specifies the start and
end time of an FLS rendering a color at a 3D coordinate. Values
of s and e may identify the point cloud ids in the sequence that
contains the point illuminated by the FLS. Alternatively, they may
represent the start and end time relative to the start of a sequence.
One may translate between the two using the number of point
clouds rendered per unit of time.

Definition 2.2. An FLS flight path consists of at least three at-
tributes: the 3D coordinates visited by the FLS, the color(s) rendered
at a coordinate, and an interval for this rendering.

3We do not use the X, Y, Z coordinate system because there is no consensus between
mathematicians and the motion industry on depth. It is trivial to convert from 𝐿, 𝐻 ,
𝐷 to either definition.
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The model and its bag file implementation are designed to sup-
port the following logical operations:

(1) Retrieve the flight path of FLSs to render a point cloud in a
scene.

(2) Retrieve the flight path of FLSs to render a scene.
(3) Retrieve the flight path of FLSs to render a range of point

clouds in a scene.
(4) Retrieve a point cloud given its id in a scene.

To illustrate the utility of these operations, consider an animated
sequence consisting of S scenes. A wall mounted display may illu-
minate the first point cloud of each scene. A user may select one
of these illuminations to render the corresponding scene. These
are made possible by Operations 1 and 2, respectively. With Opera-
tion 1, the system fetches the FLS attributes such as flight path and
color from the bag file for the 1st point cloud of each scene. Once
the user selects a scene, the system fetches the FLS attributes for
the entire scene to render the scene, Operation 2.

To render a scene, a point cloud, or a range of point clouds, the
system fetches the FLS attributes such as flight path and color from
the bag file. This information is used by the FLSs to illuminate the
requested data.

Fetching a point cloud, Operation 4, enables a system designer
to troubleshoot an illumination that does not look correct. By re-
constructing the point cloud from the FLS flight paths, the designer
may compare the point cloud with its original. If they do not match
then the computed flight paths for the FLSs are erroneous and the
software that generated the paths must be debugged. If they match
then the original point cloud must be analyzed in the context of
FLSs rendering them and re-drawn/adjusted as necessary.

3 OVERVIEW OF BAG FORMATTED FILES
A ROS bag file consists of a sequence of records. Each record has a
header and data portion. The header identifies the record as either
a bag header, chunk, connection, message data, index data, or
chunk-info. This header is followed by the data for the record. We
describe the different record types in turn using the verbatim font
to highlight its name.

The bag header stores information about the entire bag, such as
the offset to the first index data record, and the number of chunks
and connections. A bag file has one bag header record and it is the
first record in the file.

A chunk data consists of message data and connection records.
These may be compressed using the method specified in the chunk
record header.

A connection record header describes the topic on which the
messages are stored. With ROS, topics are named communication
lines for processes to implement publish/subscribe semantics. One
or more processes subscribe to a topic to receive messages. A pro-
cess publishes messages on the topic. The connection header also
includes a unique connection ID.

A message data header specifies a connection ID and the time
the message was received. Its data is the serialized message data.

An index data header specifies its connection ID and the number
of index entries I. Its data consists of I repeated occurrences of times-
tamps, chunk record offsets, and message offsets. Each occurrence
is an index entry.

Finally, chunk-info header specifies the offset of the chunk
record, the start and end timestamps of the first and last message
in the chunk, and the number of connections (C) in the chunk. Its
data consists of C repeated occurrences of connection ID and the
number of messages that arrived on this connection.

4 BAG FILE IMPLEMENTATION
This section describes a simple implementation of a subset of the ER
model of Figure 2 using bag files and the algorithms that implement
the logical operations of Section 2.

Our current implementation consists of records of chunk type
for scenes and message records that store flight path of FLSs. A
chunk may contain FLS flight paths (i.e., messages) for either one
or multiple scenes. This is because the bag file format supports a
chunk storing messages belonging to different topics.

Records of type message store the flight path of an FLS that
renders a scene or a slide show, including its visited coordinates
and rendered colors. Their header contains the identity of the scene,
slide show, or point cloud rendered by the FLS. The FLS may or
may not render a color at a coordinate. It is also possible for the FLS
to stay at a 3D coordinate and render different colors. This informa-
tion is stored in the record’s body using the following simple data
structures: An array of 3D coordinates, an array of colors, an array
of intervals, and an array of bytes that indicates what information
is present (WiP). The WiP array may contain the following three
possible ascii values:
• ‘B’: The FLS flies to a new 3D coordinate and renders a new
color. Both the 3D coordinate and color array elements are
present.
• ‘D’: The FLS flies to a new 3D coordinate and renders the
same color as in the previous location. Only the 3D coordi-
nate array element is present.
• ‘C’: The FLS remains at the same 3D location and renders a
new color. Only the color array element is present.

TheWiP array de-duplicates the 3D coordinate and the color arrays,
preventing them from repeating the same coordinate or color. The
interval array identifies the duration of time an FLS is at a 3D
coordinate and renders a certain color.
Mapping to the ER model: The message record corresponds to the
Flight-Paths relationship set, and Colors and 3D Coordinates entity
sets in Figure 2. The number of FLSs required to render a scene is
the number of message records in its topic. An implementation of
the rest of concepts shown in Figure 2 is future work. See Section 6.

4.1 Processing of Bag Files
Algorithm 1 implements the first 3 logical operations of Section 2.
The fourth operation is implemented by Algorithm 2. We describe
them in turn. Their complexity is presented in Section 5.

Algorithm 1 retrieves the FLS flight paths to render a sequence
of point clouds in a scene. In addition to a bag file and a scene
id, its inputs include start and end point cloud ids, spid and epid.
Values of latter may fetch flight paths to render the entire scene,
a point cloud in a scene, or a sequence of point clouds in a scene.
Algorithm 1 fetches the FLS flight paths from the messages in the
relevant chunks and generates an array of FLS flight paths for the
specified range. Its output is an array of message records where
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Algorithm 1 sliceFLSFlightPath
Require: Bag file 𝑓 , Scene id 𝑠𝑖𝑑 , starting and ending point cloud

𝑠𝑝𝑖𝑑 , 𝑒𝑝𝑖𝑑
Ensure: One array of messages, each message is a FLS and its

flight path
1: 𝑆 ← Topic of bag file 𝑓 corresponding to sid
2: 𝑛 ← Number of messages in 𝑆 ⊲ This is the number of FLSs
3: 𝑀 ← []
4: for 𝑖 ← 1 to 𝑛 do
5: Set𝑊𝑖𝑃,𝐶𝑜𝑜𝑟𝑑𝑠,𝐶𝑜𝑙𝑜𝑟𝑠, 𝐷𝑢𝑟𝑠 arrays to those in message

(FLS) 𝑖
6: Initialize 𝑛𝑒𝑤𝑊𝑖𝑃, 𝑛𝑒𝑤𝐶𝑜𝑜𝑟𝑑𝑠, 𝑛𝑒𝑤𝐶𝑜𝑙𝑜𝑟𝑠, 𝑛𝑒𝑤𝐷𝑢𝑟𝑠 to an

empty array
7: for 𝑗 ← 1 to length of 𝐷𝑢𝑟𝑠 do
8: if NOT 𝑖𝑠𝐶𝑙𝑖𝑝𝑆𝑡𝑎𝑟𝑡𝑒𝑑 then
9: maintain 𝑙𝑎𝑠𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 and 𝑙𝑎𝑠𝑡𝐶𝑜𝑙𝑜𝑟 same as Al-

gorithm 2 (11-18)
10: if 𝐷𝑢𝑟𝑠 [ 𝑗] .𝑠𝑡𝑎𝑟𝑡 ≤ 𝑖𝑑 < 𝐷𝑢𝑟𝑠 [ 𝑗] .𝑒𝑛𝑑 then
11: 𝑖𝑠𝐶𝑙𝑖𝑝𝑆𝑡𝑎𝑟𝑡𝑒𝑑 ← 𝑡𝑟𝑢𝑒

12: append ’B’ to 𝑛𝑒𝑤𝑊𝑖𝑃

13: append 𝑙𝑎𝑠𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 to 𝑛𝑒𝑤𝐶𝑜𝑜𝑟𝑑𝑠
14: append 𝑙𝑎𝑠𝑡𝐶𝑜𝑙𝑜𝑟 to 𝑛𝑒𝑤𝐶𝑜𝑙𝑜𝑟𝑠
15: if 𝐷𝑢𝑟𝑠 [ 𝑗] .𝑠𝑡𝑎𝑟𝑡 ≤ 𝑒𝑝𝑖𝑑 < 𝐷𝑢𝑟𝑠 [ 𝑗] .𝑒𝑛𝑑 then
16: append 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑠𝑝𝑖𝑑, 𝑒𝑝𝑖𝑑) to 𝑛𝑒𝑤𝐷𝑢𝑟𝑠

17: break
18: else
19: append 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑠𝑝𝑖𝑑, 𝐷𝑢𝑟𝑠 [ 𝑗] .𝑒𝑛𝑑) to

𝑛𝑒𝑤𝐷𝑢𝑟𝑠

20: end if
21: end if
22: else
23: append𝑊𝑖𝑃 [ 𝑗] to 𝑛𝑒𝑤𝑊𝑖𝑃

24: append 𝐶𝑜𝑜𝑟𝑑𝑠 [ 𝑗] to 𝑛𝑒𝑤𝐶𝑜𝑜𝑟𝑑𝑠
25: append 𝐶𝑜𝑙𝑜𝑟𝑠 [ 𝑗] to 𝑛𝑒𝑤𝐶𝑜𝑙𝑜𝑟𝑠
26: if 𝐷𝑢𝑟𝑠 [ 𝑗] .𝑠𝑡𝑎𝑟𝑡 ≤ 𝑒𝑝𝑖𝑑 < 𝐷𝑢𝑟𝑠 [ 𝑗] .𝑒𝑛𝑑 then
27: append 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝐷𝑢𝑟𝑠 [ 𝑗] .𝑠𝑡𝑎𝑟𝑡, 𝑒𝑝𝑖𝑑) to

𝑛𝑒𝑤𝐷𝑢𝑟𝑠

28: break
29: else
30: append 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝐷𝑢𝑟𝑠 [ 𝑗] .𝑠𝑡𝑎𝑟𝑡, 𝐷𝑢𝑟𝑠 [ 𝑗] .𝑒𝑛𝑑)

to 𝑛𝑒𝑤𝐷𝑢𝑟𝑠

31: end if
32: end if
33: end for
34: 𝑚 ← generate a ROS msg with newWiP, newCoords, new-

Colors, newDurs
35: append𝑚 to𝑀
36: end for
37: return𝑀

each record is a FLS flight path, i.e., WiP, 3D coordinates, and color
arrays. One may adjust this design and its implementation to be an
iterator to produce the qualifying message records one at a time [2].

.
Algorithm 2 processes a bag file to retrieve a single point cloud.

Its inputs are a bag file, the identity of a scene, and the id of a point

Algorithm 2 getPointCloud
Require: Bag file 𝑓 , Scene id 𝑠𝑖𝑑 , and 𝑖𝑑 of a point cloud
Ensure: One point cloud
1: 𝑆 ← Topic of bag file 𝑓 corresponding to sid
2: 𝑛 ← Number of messages in 𝑆 ⊲ Number of FLSs
3: 𝑃𝑡𝐶𝑙𝑑 ← {}
4: for 𝑖 ← 1 to 𝑛 do
5: 𝑊𝑖𝑃 ← array of What-is-Present of scene S and FLS 𝑖
6: 𝐶𝑜𝑜𝑟𝑑𝑠 ← array of coordinates of scene S and FLS 𝑖
7: 𝐶𝑜𝑙𝑜𝑟𝑠 ← array of colors of scene S and FLS 𝑖
8: 𝐷𝑢𝑟𝑠 ← array of duration intervals of scene S and FLS 𝑖
9: 𝑝𝑡 ← []
10: for 𝑗 ← 1 to length of 𝐷𝑢𝑟𝑠 do
11: if𝑊𝑖𝑃 [ 𝑗 ] is ’B’ then
12: 𝑙𝑎𝑠𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 ← 𝐶𝑜𝑜𝑟𝑑𝑠 [ 𝑗 ]
13: 𝑙𝑎𝑠𝑡𝐶𝑜𝑙𝑜𝑟 ← 𝐶𝑜𝑙𝑜𝑟𝑠 [ 𝑗 ]
14: else if𝑊𝑖𝑃 [ 𝑗 ] is ’C’ then
15: 𝑙𝑎𝑠𝑡𝐶𝑜𝑙𝑜𝑟 ← 𝐶𝑜𝑙𝑜𝑟𝑠 [ 𝑗 ]
16: else
17: 𝑙𝑎𝑠𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 ← 𝐶𝑜𝑜𝑟𝑑𝑠 [ 𝑗 ]
18: end if
19: if 𝐷𝑢𝑟𝑠 [ 𝑗 ] .𝑠𝑡𝑎𝑟𝑡 ≤ 𝑖𝑑 < 𝐷𝑢𝑟𝑠 [ 𝑗 ] .𝑒𝑛𝑑 then
20: append 𝑙𝑎𝑠𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 to 𝑝𝑡
21: append 𝑙𝑎𝑠𝑡𝐶𝑜𝑙𝑜𝑟 to 𝑝𝑡
22: break
23: end if
24: end for
25: add 𝑝𝑡 to 𝑃𝑡𝐶𝑙𝑑
26: end for
27: return 𝑃𝑡𝐶𝑙𝑑

cloud in that scene. A scene is identified by its topic and assigned a
unique connection ID. Either may be used with Algorithm 2.

5 AN EVALUATION
The number of disk (SSD) block reads dominates the execution time
of Algorithms 1 and 2. The number of blocks to read messages that
constitute a scene is dictated by the number of fetchedmessages and
their size. Lossless compression technique enhance performance
by maximizing the amount of data stored in a block.

The bag file implementation may use a lossless compression
technique in a variety of ways: lz4 with chunks, Gzip for the entire
file, or both together. This section quantifies their tradeoffs. An
interesting find is that bag+lz+gzip does not result in the smallest
file size. See discussions of Tables 1 and 2. As a comparison yardstick,
we use the archival tool TAR with and without Gzip. We evaluate
the following alternatives:

(1) TAR: An archive of the directory of point cloud files from
the rose point cloud sequence. The directory consists of a
fixed number of point cloud files.

(2) TAR+Gzip: Compress tar archive file of the point cloud di-
rectory of Experiment 1 using Lempel-Ziv coding LZ77.

(3) Bag: Implementation of the model described in this paper,
see Sections 2 and 3.

(4) Bag+lz4: Compress chunks of the bag file from Experiment 3
using lz4.

(5) Bag+Gzip: Compress the bag file of Experiment 3 using
Lempel-Zip coding LZ77.
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Table 1: Size of alternative physical representations in Megabytes.

# of
Point TAR TAR+Gzip Bag Bag+lz4 Bag+Gzip Bag+lz4+Gzip
Clouds
10 28.1 10.3 8.0 2.3 1.3 1.4
20 56.1 20.6 8.5 2.6 1.6 1.7
40 112.1 41.1 9.5 3.2 2.1 2.2
80 224.3 82.2 11.5 4.4 3.2 3.2
100 280.3 102.8 12.5 5.1 3.7 3.8
110 308.3 113.1 13.0 5.4 4.0 4.1
115 322.3 118.2 13.1 5.5 4.0 4.1

Table 2: Compression ratios.

# of
Point 𝑇𝐴𝑅

𝐵𝑎𝑔
𝑇𝐴𝑅

𝐵𝑎𝑔+𝑙𝑧4
𝑇𝐴𝑅+𝐺𝑧𝑖𝑝

𝐵𝑎𝑔

𝑇𝐴𝑅+𝐺𝑧𝑖𝑝

𝐵𝑎𝑔+𝑙𝑧4
𝑇𝐴𝑅+𝐺𝑧𝑖𝑝

𝐵𝑎𝑔+𝐺𝑧𝑖𝑝

𝑇𝐴𝑅+𝐺𝑧𝑖𝑝

𝐵𝑎𝑔+𝑙𝑧4+𝐺𝑧𝑖𝑝

Clouds
10 3.5 12.2 1.3 4.5 7.9 7.36
20 6.6 21.6 2.4 7.9 12.9 12.12
40 11.8 35.0 4.3 12.8 19.6 18.68
80 19.5 51.0 7.1 18.7 25.7 25.69
100 22.4 55.0 8.2 20.2 27.8 27.05
110 23.7 57.1 8.7 20.9 28.3 27.59
115 24.6 58.6 9.0 21.5 29.6 28.83

(6) Bag+lz4+Gzip: Compress the bag file of Experiment 4 using
Lempel-Zip coding LZ77.

Each experiment produces a single file as a function of the number
of point clouds from the rose point cloud sequence. The size of
this file is reported in Table 1. The columns of this table name the
experiments. The rows of this table identify the number of point
clouds from the rose point cloud sequence. This sequence consists
of 115 point clouds which is the last row of Table 1.

Obtained results highlight the following lessons. Bag files are
more compact than the original point cloud sequence. They repre-
sent flight path of FLSs. When an FLS stays in the same location
for multiple point clouds then it is represented with one coordinate
and an interval. The point cloud sequence repeats this coordinate,
resulting in a larger size.

With the rose point cloud sequence, the size of the bag file in-
creases insignificantly (< 2x) as we increase the number of point
clouds more than 10x, from 10 to 115. Each point cloud consists of
65K points. 2009 points change from one point cloud to the next.
These changes dictate the increase in flight path of FLSs and the
size of the bag file as a function of the number of point clouds.

When comparing lz4 with Gzip, Gzip produces smaller bag files,
compare Bag+lz4 and Bag+Gzip columns of Table 1. We evaluated
alternative explanations for this observation such as lz4 processing
a chunk versus Gzip processing an entire bag file, and the difference
in the algorithm used by Gzip (Lempel-Ziv coding LZ77) versus
lz4. To eliminate the first possibility, we repeated an experiment
by generating a bag with a 15 MB chunk size (instead of 768 KB
chunk size). A 15 MB chunk size enables a bag file to store the

messages of the 115 point cloud sequence in one chunk and apply
lz4 to all messages. The resulting bag file is slightly smaller when
compared with a 768 KB chunk size, 5,450,860 bytes with 15 MB
compared with 5,458,654 bytes with 768 KB. Both are significantly
larger than 4,030,024 bytes realized with Gzip. Hence, we conclude
the algorithm difference as the explanation for the smaller file size.

Use of both lz4 and Gzip is inferior to Gzip by itself, producing a
larger file size. Compare columns Bag+Gzip with Bag+Lz4+Gzip
of Table 1. However, using Gzip with lz4 results in a smaller file.
Compare columns Bag+lz4 and Bag+lz4+Gzip of Table 1.

One may consider an algorithm that generates the flight path of
FLSs as an application specific lossless compression technique for
point clouds. It produces a file that can be processed to retrieve the
points in a point cloud sequence, see Algorithm 2. Table 2 shows
the compression factors observed with the bag file when compared
with the original point cloud sequence. The bag file is significantly
smaller. 24.6x with the entire 115 point cloud sequence.

One may compress the archive containing the directory of the
point cloud sequence, TAR+Gzip. This representation is more com-
pact than the original archival file, TAR. The bag file is still more
compact. 9x with the entire 115 point clouds. One may also com-
press the bag file using Gzip, realizing 29.6x reduction in size when
compared with TAR+Gzip for the entire 115 point cloud sequence.

While the use of lz4 with a bag file is not as space efficient as Gzip,
lz4 is applied as a part of generating the bag file. Gzip is an extra
step that a user must perform to compact the bag file. Comparing
Bag+lz4 with TAR shows a 58.6 reduction in size for the entire 115
point cloud sequence.
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Figure 3: Future organization of bag file for Figure 2.

Use of lz4 with a bag file has the following advantage when com-
pared with Gzip. An algorithm may seek into the lz4 compressed
bag file, read a fraction of its data (say a message), decompress and
process the fetched data. With Gzip, the same algorithm must first
read the entire file and decompress it prior to seeking into it to
fetch the relevant data, reading more blocks than lz4.

6 CONCLUSIONS AND FUTURE RESEARCH
The bag file representation of FLS flight paths has enabled us to
inter-operate between software systems usingMATLAB and Python
programming languages. Several student groups have used them
with AirSim [17] to investigate alternative FLS lighting designs.

We are extending our current implementation to support a larger
number of concepts shown in Figure 2. A future bag file organization
is shown in Figure 3. Its metadata message record contains the
properties of an illumination. In addition, it includes the aggregation
of the Consists-Of relationship set between Scenes and the Point
Clouds entity sets, e.g., num_scenes, num_ptclds, etc. Similar to our
current implementation, its chunk records contain messages that
describe the flight path of FLSs to render an illumination. The 𝑛
connection records identify the 𝑛 different scene topics and their
unique connection IDs, conn_ids.

More longer term, we plan to extend the implementation to repre-
sent objects and characters that constitute a scene. The conceptual
data model of Figure 2 identifies an object entity set and the FLS
flight paths that render it in a scene. One approach to represent
this information is to extend message records describing FLS flight
paths to identify an object. It may maintain additional metadata to
identify the different objects and the starting offset of the chunk
that contains them in a scene.

In addition to bag files, we will explore alternative file formats
to represent the conceptual model of Figure 2. One possibility is a
simple key-value representation. It includes a key with themetadata
of a file as its value. This metadata identifies the different keys and
types of values. For example, a key may identify a scene, an FLS
flight path, an aggregation such as the number of scenes, etc. This
may be more intuitive than using bag file constructs. For example,
use of conn_id as the scene id may not be intuitive. A challenge
with a new file format is the requirement for software to read and
write its data with different programming languages, e.g., Python,
and frameworks, e.g., MATLAB. We will explore this possibility as
we implement a cuboid 3D display that renders a scene using FLSs.
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