
VAST: A Decentralized Open-Source Publish/Subscribe
Architecture

Victory Opeolu∗
25818198@sun.ac.za

Electrical & Electronic Engineering Stellenbosch
University

21571767@sun.ac.za, Western Cape, South Africa

Shun-Yun Hu
Imonology Inc.

Taiwan
syhu@imonology.com

Charl Marais
Electrical & Electronic Engineering Stellenbosch

University
Stellenbosch, Western Cape, South Africa

21571767@sun.ac.za

Prof. Herman Engelbrecht
Electrical & Electronic Engineering Stellenbosch

University
Stellenbosch, Western Cape, South Africa

hebrecht@sun.ac.za

ABSTRACT
Publish/Subscribe (pub/sub) systems have been widely adopted in
highly scalable environments. We see this especially with IoT/IIoT
applications, an environment where low bandwidth and high la-
tency is ideal. The projected growth of Iot/IIoT network nodes are
in the billions in the next few years and as such, there is a need
for network communication standards that can adapt to the ever-
growing nature of this industry. While current pub/sub standards
have produced positive results so far, they all adopt a "topic" based
pub/sub approach. They do not leverage off modern devices having
spatial information. Current open-source standards also focus heav-
ily on centralized brokering of information. This makes the broker
in this system a potential bottleneck as it means if that broker goes
down, the entire network goes down. We have developed a new,
unique and innovative open-source pub/sub standard called VAST
that leverages spatial information of modern network devices to
perform message communication. It uses a unique concept called
Spatial Publish/Subscribe (SPS). It is built on a peer-to-peer net-
work to enable high scalability. In addition to this, it provides a
Voronoi Overlay to efficiently distribute the messages, ensuring
that network brokers are not overloaded with requests and ensures
the network self-organizes itself if one or more brokers break down.
It also has a forwarding algorithm to eliminate redundancies in
the network. We will demonstrate this concept with a simulator
we developed. We will show how the simulator works and how
to use it. We believe that with this simulator, we will help encour-
age researchers adopt this technology for their spatial applications.
An example of such is Massively Multi-user Virtual Environments
(MMVEs), where there is a need for a high number of spatial net-
work nodes in virtual environments.

MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0148-1/23/06.
https://doi.org/10.1145/3587819.3592554

CCS CONCEPTS
• Computer systems organization → Client-server architec-
tures;Peer-to-peer architectures; Self-organizing autonomic com-
puting; • Networks→ Data path algorithms; Network performance
modeling; • Computing methodologies → Self-organization.

KEYWORDS
open-source, publish/subscribe, pub/sub, Spatial publish/subscribe,
VAST, Voronoi Partitioning, MQTT, IoT, IIoT, MMVE
ACM Reference Format:
Victory Opeolu, Shun-Yun Hu, Charl Marais, and Prof. Herman Engelbrecht.
2023. VAST: A Decentralized Open-Source Publish/Subscribe Architecture.
In Proceedings of the 14th ACM Multimedia Systems Conference (MMSys ’23),
June 7–10, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3587819.3592554

1 INTRODUCTION
Publish/Subscribe (pub/sub) architecture is a common theme across
scalability-driven environments [29]. It is a design pattern that
provides a framework for exchanging messages between publishers
and subscribers.

With Machine-to-Machine (M2M) communication, pub/sub al-
gorithms have been proven extensively to be scalable, flexible and
highly efficient [34]. The IoT space is growing at exponential rates,
with projections of 100 billion connected IoT devices by 2025 [37].
We see a similar trajectory with Massively Multi-user Virtual Envi-
ronments (MMVEs) [25]. This growth combined with the constant
evolving needs of industry means pub/sub protocols are faced with
newer challenges and communication requirements.

The aim of this paper is to showcase a new pub/sub standard
we call VAST. VAST is a multilayered pub/sub algorithm, built
with a distributed architecture, a self-organizing Voronoi Overlay
Network (VON) Partition to effectively distributemessages sent, and
a forwarding algorithm to eliminate redundancy. VAST is a 20+ year
ongoing research project [20], and we are designing this algorithm
to be robust enough to support arbitrary data (i.e. any application
that has some form of spatial data involved). We discuss how it
works with a unique concept called Spatial Publish/Subscribe. We
will also demonstrate how it workswith the simulator we developed,
with relevant links to access the resources required.

423

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-8528-7092
https://doi.org/10.1145/3587819.3592554
https://doi.org/10.1145/3587819.3592554
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587819.3592554&domain=pdf&date_stamp=2023-06-08


MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada Opeolu et al.

Before then, we provide a bit of background as to pub/sub stan-
dards used in IoT/IIoT applications in the next section. We will also
touch on Massively Multi-user Virtual Environments (MMVEs), an
application we believe this algorithm can prove to be useful.

2 BACKGROUND & THEORY
In this section, we discuss in more detail how pub/sub works, some
standards that are being used, and a short introduction to a pub/sub
library called VAST. We will also discuss Massively Multi-user
Virtual Environments (MMVEs) briefly as it is a field that the VAST
library can be extended further to support.

2.1 Publish/Subscribe Architecture
This architecture is an interaction pattern that characterizes the
exchange of messages between publishing and subscribing clients
[26]. It involves a messaging pattern where senders of messages
(publishers) are not programmed to send messages directly to spe-
cific receivers (subscribers). Instead, the messages are categorized
into classes by a “broker”, ensuring the subscribers do not have the
knowledge of their publishers and vice-versa. Subscribers gener-
ally show interest in receiving specific messages and publishers
simply publish messages without specifying the destination client
for a message. These classes are generally referred to as topics or
channels [8, 36].

This pattern is used primarily because it provides better network
scalability and a more dynamic network topology. It is also used
to enable event-driven architectures, or decouple applications to
improve overall performance, reliability and scalability [26].

Fig. 1 illustrates the working of a channel-based pub/sub.

Figure 1: Standard pub/sub architecture [40]

With IoT/IIoT’s, there are a few standards used employ the
pub/sub architecture. They include (and not limited to):

• Message Queuing Telemetry Transport (MQTT) [33]
• Zero Overhead Network Protocol (Zenoh) [2]
• Constrained Application Protocol (CoAP) [1]
• Advanced Message Queuing Protocol (AMQP) [42]
• Extensible Messaging and Presence Protocol (XMPP) [9]

A survey by [34] documents and does a quality review towards
these various pub/sub standards. We will however discuss MQTT
and Zenoh standards briefly. We discuss MQTT because it is widely
used as a pub/sub standard in IoT applications and Zenoh because
the core tech is slightly related to what we are demonstrating. We
will also briefly talk about MMVEs and why they are relevant to
this research.

2.1.1 MessageQueuing Telemetry Transport (MQTT). MQTT is the
most widely used communication protocol for IoT networks that
utilizes a standardised topic/channel based pub/sub protocol [5].
It was designed for use in constrained environments where small
code footprints are required and network bandwidth is limited. It is
a lightweight pub/sub messaging protocol ideal for low-bandwidth
and high-latency environments [33].

Each published message must be associated with a topic, and
the MQTT broker broadcasts the message to all clients subscribed
to that topic. This is illustrated in Fig. 2. In this case, temperature
sensors become the "publishers", different PCs becomes the "sub-
scribers", and you have a server in the form of a "Broker" facilitating
the exchange of messages.

Figure 2: MQTT pub/sub architecture [35]

2.1.2 Zero Overhead Network Protocol (Zenoh). Zenoh is a pub/sub
protocol unifying data in motion, data at rest and computations [2].
It combines traditional pub/sub algorithms with geo-distributed
storage, queries and computations, while retaining a level of time
and space efficiency that is well beyond any of the mainstream
stacks [2, 9].

Zenoh was designed to be efficient and robust with respect to
asymmetric systems and varying interaction models, such as device
on duty cycles, especially with edge1 applications [2]. The Zenoh
protocol enables efficient scalability (scaling up and down). This
scalable flexibility means it can be used for applications such as
microservices, to seamlessly reach Internet-scale. While Zenoh
provides a distributed open-source pub/sub architecture, it does
not have an network overlay partition.

2.1.3 Massively Multi-user Virtual Environments (MMVEs). Mas-
sively Multi-user Virtual Environments (MMVEs) are online virtual
worlds where a vast number of users can interact with each other
and the environment in real-time [41]. A key feature of MMVEs
is the use of event-driven mechanisms to manage communication
between users. Users can send messages to each other and the vir-
tual environment, triggering events that other users can respond to.
This allows for a more dynamic and interactive experience, where
users can collaborate and coordinate their actions.

However, as the number of users in MMVEs grow, especially
on a global scale, MMVEs can become expensive to maintain [20].
1Edge computing is a new computing paradigm that performs computing at the edge
of the network i.e. It takes computing closer to the source of the data[4]

424



VAST: A Decentralized Open-Source Publish/Subscribe Architecture MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada

We see this especially in server-client architectures, which is what
a lot of MMVEs are built on. The sheer volume of messages ex-
changed between users can strain the system’s resources and result
in slower response times. This has led to a need for new standards
and technologies to help MMVEs adapt to the growing market.
This event-driven design of MMVEs makes it a good platform to
implement a pub/sub algorithm to facilitate message exchanges.

There has been some early testing of VAST in virtual environ-
ments [17]. The most recent being by Miguel Smith [38], who was
able to extend the VAST library to support Minecraft. Each time,
VAST demonstrated itself to be a highly scalable algorithm. In the
past however, these concepts were usually demonstrated with iso-
lated layers of the library. For example, Spatial pub/sub and Voronoi
Overlay Network were the layers used at the time it was extended
to support Minecraft. VAST has however been updated since then.
The algorithm’s key functionalities are discussed in further detail
in section 3.

2.2 Publish/Subscribe Architecture Limitations
There are various publications that speak to the limitations of
pub/sub standards likeMQTT. They include payload limits, message
deliverability, security concerns, performance issues that come with
added security layers, etc [13, 39]. The issues we see our research
solving are discussed below.

• The first is that most pub/sub systems make use of chan-
nel/topic based messaging i.e. publishers send a message and
subscribers "subscribe" to specific topics that the broker uses
to disseminate information. They do not cater for applica-
tions with spatial requirements. There are some that have
geo-support like geoMQTT [14, 15] and even Zenoh. How-
ever, it is limited to geo-location and does not necessarily
support generic spatial locations. It is also limited to MQTT
applications, meaning it is not robust to extend to fields
that have spatial pub/sub requirements e.g. Massively Multi-
user Virtual Environments (MMVEs). We have observed that
more and more network devices are being built with some
spatial capability [24, 32]. As such, it raises the need for more
robust pub/sub protocols that can cater to and leverage off
this capability.

• Another issue we observed is that there is not a lot of sup-
port for distributed/decentralized systems. The few that do
are usually missing a partitioning overlay network to man-
age server loads or they don’t have an efficient algorithm
for message forwarding. The topic-based approach used in
pub/sub means there is an increased need for computing
power on the broker, thus a need for distributed architec-
tures. There are publications that made an attempt to solving
this with varying results [7, 12, 28] but there has not been a
drive to create an open-source industry standard. We high-
light this as a concern because decentralized and distributed
architectures have been proven to enable high scalability
[3, 21, 30]. A distributed/decentralized pub/sub architecture
will enable hyper-scalability. It would combine the best of
both pub/sub and decentralized scaling capability. By mak-
ing it open-source, it facilitates accelerated growth because

it will provide a platform to collaborate with multiple re-
searchers and developers.

We have introduced a unique and innovative concept called
spatial publish/subscribe (or spatial pub/sub). Simply put, it is an
approach that leverages spatial data to perform communication. So
rather than a broker matching publishers and subscribers based
on their topics, it brokers that communication dynamic using the
spatial location. This concept is encompassed in our network library
called VAST. We discuss VAST in more detail in the next section.

3 SPATIAL PUBLISH/SUBSCRIBE
ARCHITECTURE (SPS)

The spatial pub/sub architecture [17] is an extension of the channel-
based pub/sub design architecture. The key difference is how the
architecture matches and filters messages and subscriptions. Stan-
dard pub/sub systems performs a match based on the “channel”
(topic) while spatial pub/sub performs its match based on the inter-
section between subscription and publishing areas [19].

SPS is a scheme whereby subscriptions and publications are
associated with a point, an area or volume in a spatial or virtual
environment. As illustrated in Fig. 3, for two-dimensional environ-
ments, there are four key SPS operations:

• An area subscription specifies the intent to receive all point
publications that fall within the specified subscription area
and all area publications that overlap with the subscription
area.

• A point subscription specifies the intent to receive all area
publications that cover the specified point.

• An area publication sends a message to an area and is re-
ceived by any point subscriptions within the area and area
subscriptions that overlap with it.

• Apoint publication sends amessage to a point and is received
by all area subscriptions that cover the point.

Note that each area is defined by the coordinates 𝑥,𝑦, 𝑟 , where 𝑥
and 𝑦 denote the Cartesian coordinates of the center point of the
area, and 𝑟 denotes the radius of the area.

Figure 3: Spatial Publish/Subscribe: Area and Point Publica-
tions and Subscriptions

425



MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada Opeolu et al.

In a spatial pub/sub scenario, a node may send a message to its
specified publication area, which will then be delivered to all nodes
whose subscription area overlaps with the publication area. These
pub/sub areas are then allowed to be updated continuously with
node movements. Publication and subscription requests are sent
from a participating node to an interest matcher, whose respon-
sibility is to record the requests and match a published message
with subscribers that are interested in the message (i.e. interest
management of the publishers and the subscribers) [17].

Using Fig. 2 as a reference, SPS in this case means that a client
will be subscribed to temperature messages originating from a
spatial location. Temperature messages will also be published to a
specific spatial point or area. At this point, interest management
is still centralized. This means that the performance of the system
is limited to the available resources of the broker. i.e. the overall
performance of the interest matching is limited by how powerful
the broker is.

To perform scalable SPS, the system load must be distributed
between multiple brokers, with each broker managing clients, sub-
scriptions, and publications that fall within its spatial region. VAST
is a lightweight network library that is able to perform this role in
SPS. VAST is discussed in further detail in the next section.

3.1 VAST Architecture
A key component of this research is the VAST library. VAST has
a peer-to-peer network layer and a SPS architecture that utilises
Voronoi partitioning to distribute loads between multiple SPS bro-
kers (we refer to them as matchers). Each matcher has a position
in a virtual environment and a Voronoi region and is responsible
for all clients within its associated region. It also has a forwarding
algorithm we call VoroCast, which eliminates redundancies in the
network. This concept is illustrated in Fig. 4.

We believe VAST can become a new standard in pub/sub com-
munication. This library is designed to be robust, highly scalable
and can potentially support multiple applications where there is
some form of spatial data requirement.

3.1.1 P2P Network. The network component of the library was
built using a decentralized peer-to-peer (P2P) approach. It was de-
signed such that nodes can JOIN the network, LEAVE the network,
as well as MOVE their spatial locations within the network [16]. A
P2P architecture means there is no single point of failure, and thus
local message dissemination will continue without interruption
if a node unexpectedly leaves for some technical reason. A key
advantage of using P2P networks is system reliability & security
[10]. If one component is compromised, the rest of the network is
not compromised and will remain operational. Even if a cyberattack
did breach a single node in the system, there is no guarantee that
it would contain the valuable data the attackers are hoping to find
and exploit.

3.1.2 VON (Voronoi Overlay Network) Partitioning. The Voronoi
Overlay Network partitioning is designed to manage the spatial
partitioning of the brokers. This is to ensure nodes are not over-
loaded or underutilized as clients and/or matchers JOIN, MOVE, or
LEAVE the network. This approach takes the spatial relationship
into consideration and not the physical proximity. This layer makes

Figure 4: VASTBreakdown.Note that the layers are all in one
library.We separate them into 3 for simplicity. (a) This illus-
trates the P2P network, where clients aremanaged by differ-
ent broker in closest proximity. (b) illustrates the Voronoi
partitioning on top of the P2P network and (c) illustrates
brokers/matchers exchanging messages over subscription
and publishing areas. Note that this happens through a for-
warding algorithm and it is discussed further, later in this
section.

use of the Voronoi partitioning concept, one that has been well
researched [11]. This partitioning allows for the identification of
enclosing and boundary neighbors for a given site. The enclosing
neighbors are defined as neighbors whose regions share a common
edge with a given node’s own region while the boundary neighbors
are defined as the nodes whose regions overlap with the node’s
Area of Interest (AOI) boundary. This concept is illustrated in Fig.
5. Note that there are scenarios where an enclosing neighbor may
also be a boundary neighbor.

3.1.3 VON Spatial Forwarding. We describe VoroCast, a spatial
forwarding algorithm that utilises the concept of selecting children
based on tree-root distances as proposed in [27]. VoroCast is an
algorithm that constructs a spanning tree across all matcher neigh-
bors using data from the VON layer, allowing messages to be sent
without redundancy. It basically performs greedy forwarding using
a spanning tree from information gathered from the VON layer
(neighbor identities and positions). The spanning tree is designed
to identify the most efficient pathway to the destination.

It utilizes parent and child node rules, such that after a matcher
has been made a “parent”, the matcher notifies its immediate neigh-
bors of the status so that no other node can become a parent of the

426



VAST: A Decentralized Open-Source Publish/Subscribe Architecture MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada

Figure 5: Voronoi Overlap Partitioning where S indicates an
area, pink squares indicate the enclosing neighbors and the
green squares indicate the boundary neighbors [18]

same neighbor thus eliminating repetitive forwarding. We use this
approach because it has been tested and proven to be a much better
forwarding model compared to standard peer-to-peer models. This
model is designed to account for moving matchers as well, making
it a useful tool for dynamic cases. VoroCast is well documented
in [27], with results showing the scalability capabilities. To under-
stand this further, interested readers are encouraged to consult this
paper by Charl [31]. He addresses concepts like the neighbors, how
they are chosen, its limitations and so on.

4 VAST SIMULATOR
Before we go into how the simulator works, we first breakdown
the key terminology to using the simulator.

4.1 Relevant Terminology
• Gateway Matcher: This is the entry point to the network
for all new clients. The gateway matcher is the entry point
to the VON for all new matchers. Currently, there may only
be a single gateway on both layers, but clients are able to
re-enter the network from any matcher. While support for
multiple gateways is achievable, it has not been implemented
yet.

• Matcher: The matchers are responsible for all subscription
handling and publication forwarding. Matchers differ from
traditional brokers in that they participate in a Voronoi Over-
lay Network (VON) and take ownership of any clients posi-
tioned within their own Voronoi cell.

• Simulator: Simulator.js is an implementation of a discrete
event simulator specifically for VAST. The simulator inter-
prets instructions from a text file, instantiating matchers and
clients on the local machine. Subscription, publication, and
other events may be triggered and the results captured in
a special log file. These logs may then be interpreted and
visualised in the “visualiser.html" tool.

• Visualizer: The visualizer loads the events logs generated
by matchers, typically for the results of a simulator test.

• Instruction File: This is a text file that contains the instruc-
tions for the simulator. In this file, users are able to create
nodes in the form of a gateway, multiple matchers and mul-
tiple clients. It is in this file that different case scenarios are
developed to run on the simulator.

4.2 Using the Simulator
To use the simulator, these are the steps that need to be taken:

(1) Clone the repository from GitHub at [23]. The codebase is
readily available. Be sure to work from the “dev" branch and
ensure all the dependencies are installed.

(2) Setup the instruction file to execute your instructions. Note
that there must be at least one Gateway Matcher to start the
system. In this paper, we setup the configuration based on
example script in the core library. The script file contains one
Gateway Matcher, two “standard" Matchers and two clients
publishing and subscribing to specific regions and topics at
specific time intervals.
To simulate the instruction file, run this command in termi-
nal.

node simulator.js example_script.txt

After running the simulator, the different results are stored as
log files in a “logs_and_events" folder. The log files are then
loaded in the visualizer to see how the nodes subscription
and publication areas overlap and exchange messages.

(3) Next, run the “visualizer.html" file.
A tutorial explaining running the simulator and visualizer can

be found at [22].

4.3 Visualizer Results
In this section, we will show what the results look like. We illustrate
the current state of the simulator and the visualizer.

As discussed earlier, the simulator logs every event that occurs
after execution and the visualizer displays the results in a virtual
2D Plane. These results are illustrated in the figures below.

Figure 6: Matcher Logs

427



MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada Opeolu et al.

Figure 7: Client Logs

Figure 8: Simulator Logs

Figure 9: Visualizer showing simulated nodes with their sub-
scription and publication areas as they overlap

Fig. 6 shows the logs captured by the matcher. The data captured
includes the unique ID, the time the type of matcher (i.e. a Gateway
Matcher or a Standard Matcher), the Area of Interest (AOI) 2 and
2An Area of Interest (AOI) is a defined region within a virtual environment or MMVE
where a users attention is focused or where a significant event is occurring [6].

its position. It also captures every pub/sub request it receives from
the network nodes it manages.

The client log contains the events captured by the client(s) during
simulation. The format follows the illustration in Fig. 7 It includes
pub/sub requests sent and/or received, when the requests were sent
and when they join or leave the network.

Fig. 8 shows the Simulator logs. This log documents the sequence
of events for every instruction executed by the matcher(s) and
client(s).

Fig. 9 shows the front-end display when you run the visualizer
with the generated log files.

Note that these logs are captured independently and as such,
there is a need for a tool that measures the correctness and perfor-
mance of the VAST library. This is on a roadmap to be implemented
in the immediate future. The details of this work are captured in
the next section.

5 CONCLUSION AND FUTUREWORK
To summarize, we aim to demonstrate a decentralized open-source
library called VAST. This library uses a concept called spatial pub-
lish/subscribe (SPS), one that leverages the spatial data of network
devices to perform communication. VAST is built on a P2P archi-
tecture and has a forwarding algorithm to ensure messages are not
duplicated when delivered.

This library is new andwe believe it to be an innovative approach
to solving for scalability in modern network systems (e.g. IoT/IIoTs
and MMVEs). As such, we have developed a simulator to demon-
strate this concept. We hope that this helps to drive early adoption
from researchers or industries who may be looking to try new tech-
nology or scale their existing technology. We demonstrated the
tool, how to use it, and the type of results it generates. The library
is designed to fit any network applications that require large-scale
message exchanging and have some form of spatial application.

Here are some of the things that are currently ongoing and
planned for the immediate future.

(1) Develop a testing framework (e.g. an emulator) thatmeasures
the correctness and performance of the SPS library. The
testing framework must also include tools to measure for
measuring latency, throughput as well of the scalability of
the SPS communication library:
• Throughput. We will showcase how much of the mes-
sages actually get delivered when sent during exchanges
between clients and matchers. This will be measured in %.
(% of packets that get delivered and/or lost).

• Latency. The goal here is to understand how quickly or
slowly communication occurs between the clients and the
matchers. We will measure this in milliseconds (ms).

• Scalability. We will evaluate the performance over a long
period of time. (e.g. 3 days). This way, we can observe if the
performance quality (latency and message deliverability)
appreciates, depreciates, or stays the same over a period
of time. This will also be measured using latency as a
reference.

(2) Enable the current library to run as independent nodes on
network devices (physical and virtual). At the moment, the
nodes are simulated with the localhost on a local computer.

428



VAST: A Decentralized Open-Source Publish/Subscribe Architecture MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada

The aim is to enable seamless deployment of VAST on net-
work devices or virtual machines like Docker, making it easy
to deploy for researchers.

REFERENCES
[1] Fahd A Alhaidari and Ebtesam J Alqahtani. 2020. Securing Communication

between Fog Computing and IoT Using Constrained Application Protocol (CoAP):
A Survey. J. Commun. 15, 1 (2020), 14–30.

[2] Gabriele Baldoni, Julien Loudet, Luca Cominardi, Angelo Corsaro, and Yong He.
2021. Facilitating Distributed Data-Flow Programming with Eclipse Zenoh: The
ERDOS Case. In Proceedings of the 1st Workshop on Serverless Mobile Networking
for 6G Communications (Virtual, WI, USA) (MobileServerless’21). Association for
Computing Machinery, New York, NY, USA, 13–18. https://doi.org/10.1145/
3469263.3469858

[3] Balázs Bodó, Jaya Klara Brekke, and Jaap-Henk Hoepman. 2021. Decentralisation:
A multidisciplinary perspective. Internet Policy Review 10, 2 (2021), 1–21.

[4] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. 2020. An overview on
edge computing research. IEEE access 8 (2020), 85714–85728.

[5] Fu Chen, Yujia Huo, Jianming Zhu, and Dan Fan. 2020. A review on the study on
MQTT security challenge. In 2020 IEEE International Conference on Smart Cloud
(SmartCloud). IEEE, 128–133.

[6] Ravi Dubey, Yu Li, and Jie Zhang. 2019. Area-of-Interest based optimization for
real-time rendering in large-scale MMVEs. J. Parallel and Distrib. Comput. 127
(2019), 1–16.

[7] Eli Fidler, Hans-Arno Jacobsen, Guoli Li, and SergeMankovski. 2005. The PADRES
Distributed Publish/Subscribe System.. In FIW. Citeseer, 12–30.

[8] Nikos Fotiou, Dirk Trossen, and George C Polyzos. 2012. Illustrating a publish-
subscribe internet architecture. Telecommunication Systems 51 (2012), 233–245.

[9] Eclipse Foundation. [n. d.]. Zenoh - The Zero Overhead, Pub/Sub, Store, Query,
and Compute Protocol. https://zenoh.io/

[10] Fox Geoffrey. 2001. PEER-TO-PEER NETWORKS. COMPUTING IN SCIENCE
ENGINEERING 3 (2001), 75 – 77. https://doi.org/10.1109/5992.919270

[11] Leonidas Guibas and Jorge Stolfi. 1985. Primitives for theManipulation of General
Subdivisions and the Computation of Voronoi. ACM Transactions on Graphics
(TOG) 4 (1985), 74–123. Issue 2. https://doi.org/10.1145/282918.282923

[12] Abhishek Gupta, Ozgur D Sahin, Divyakant Agrawal, and Amr El Abbadi. 2004.
Meghdoot: content-based publish/subscribe over p2p networks. In Middleware
2004: ACM/IFIP/USENIX International Middleware Conference, Toronto, Canada,
October 18-22, 2004. Proceedings 5. Springer, 254–273.

[13] Daniel Happ and Adam Wolisz. 2017. Limitations of the Pub/Sub pattern for
cloud based IoT and their implications. 2016 Cloudification of the Internet of
Things, CIoT 2016 (2017). https://doi.org/10.1109/CIOT.2016.7872916

[14] Stefan Herle, Ralf Becker, and Jörg Blankenbach. 2016. Bridging GeoMQTT and
REST. In Proceedings of the Geospatial Sensor Webs Conference. 29–31.

[15] Stefan Herlé, Ralf Bill, and JörgManfred Blankenbach. 2019. AGeoEvent-driven ar-
chitecture based on GeoMQTT for the Geospatial IoT. Ph. D. Dissertation. Geodätis-
ches Institut, Rheinisch-Westfälische Technische Hochschule.

[16] Shun-Yun Hu. 2005. Scalable Peer-to-Peer Networked Virtual Environment.
[17] Shun-yun Hu. 2009. Spatial Publish Subscribe. IEEE Virtual Reality (IEEE VR)

(2009), 6. http://pap.vs.uni-due.de/MMVE09/papers/p8.pdf
[18] Shun-Yun Hu, Chen, and Tsu-Han Chen. 2006. VON: A Scalable Peer-to-Peer

Network for Virtual Environments. IEEE Network Magazine (2006).
[19] Shun-Yun Hu and Kuan-Ta Chen. 2011. VSO: Self-Organizing Spatial Publish

Subscribe. In 2011 IEEE Fifth International Conference on Self-Adaptive and Self-
Organizing Systems. 21–30. https://doi.org/10.1109/SASO.2011.13

[20] Shun Yun Hu and Guan Ming Liao. 2004. Scalable peer-to-peer networked virtual
environment. Proceedings of the ACM SIGCOMM Workshop on Network and
System Support for Games, NetGames’04 (2004), 129–133. https://doi.org/10.1145/
1016540.1016552

[21] Mats Ake Hugoson. 2008. Centralized versus Decentralized Information Sys-
tems: A Historical Flashback. IFIP Advances in Information and Communication
Technology 303 (2008), 106–115. https://doi.org/10.1007/978-3-642-03757-3_11

[22] Imonology Inc. [n. d.]. How to use VAST.js Simulator and Visualizer - YouTube.
https://www.youtube.com/watch?v=2_X-TwGXcRs

[23] Imonology Inc. [n. d.]. VAST.js. https://github.com/imonology/VAST.js/tree/
dev_CFM

[24] Yoshio Inoue. 2020. Satellite- and drone-based remote sensing of crops and soils
for smart farming – a review. Soil Science and Plant Nutrition 66, 6 (2020), 798–810.
https://doi.org/10.1080/00380768.2020.1738899

[25] Laura Itzel, Florian Heger, Gregor Schiele, and Christian Becker. 2011. The quest
for meaningful mobility in massively multi-user virtual environments. In 2011
10th Annual Workshop on Network and Systems Support for Games. IEEE, 1–2.

[26] Hans-Arno Jacobsen. 2009. Publish/Subscribe. Springer US, Boston, MA, 2208–
2211. https://doi.org/10.1007/978-0-387-39940-9_1181

[27] Jehn Ruey Jiang, Yu Li Huang, and Shun Yun Hu. 2009. Scalable AOI-cast for
peer-to-peer networked virtual environments. Journal of Internet Technology 10

(2009), 119–125. Issue 2.
[28] Reza Sherafat Kazemzadeh and Hans-Arno Jacobsen. 2009. Reliable and highly

available distributed publish/subscribe service. In 2009 28th IEEE International
Symposium on Reliable Distributed Systems. IEEE, 41–50.

[29] Dmitrij Lagutin, Kari Visala, and Sasu Tarkoma. 2010. Publish/subscribe for
internet: PSIRP perspective. Towards the Future Internet: Emerging Trends from
European Research 4 (2010), 75–84. https://doi.org/10.3233/978-1-60750-539-6-75

[30] Robin Jan Maly, Jan Mischke, Pascal Kurtansky, and Burkhard Stiller. 2003. Com-
parison of centralized (client-server) and decentralized (peer-to-peer) networking.
Semester thesis, ETH Zurich, Zurich, Switzerland (2003), 1–12.

[31] Charl Marais. 2021. Extending VAST to Support Distributed Spatial Publish and
Subscribe. www.eng.sun.ac.za

[32] Mario Marchese, Aya Moheddine, and Fabio Patrone. 2019. IoT and UAV In-
tegration in 5G Hybrid Terrestrial-Satellite Networks. Sensors 19, 17 (2019).
https://doi.org/10.3390/s19173704

[33] MQTT.org. [n. d.]. MQTT - The Standard for IoT Messaging. https://mqtt.org/
[34] Michael Nast, Hannes Raddatz, Benjamin Rother, Frank Golatowski, and Dirk

Timmermann. 2022. A Survey and Comparison of Publish/Subscribe Protocols for
the Industrial Internet of Things (IIoT). (2022). https://doi.org/10.1145/3567445.
3571107

[35] Paessler. [n. d.]. What is MQTT? Definition and Details. https://www.paessler.
com/it-explained/mqtt

[36] Matthew Riordan. 2020. Publish-Subscribe: Introduction to Scalable Messaging
– The New Stack. https://thenewstack.io/publish-subscribe-introduction-to-
scalable-messaging/

[37] Karen Rose, Scott Eldridge, and Lyman Chapin. [n. d.]. The Internet of Things:
An Overview Understanding the Issues and Challenges of a More Connected
World. ([n. d.]).

[38] Miguel Smith. 2020. VAST : a scalable spatial publish and subscribe system
integrated with Minecraft by. Issue March. http://hdl.handle.net/10019.1/108007

[39] Dipa Soni and Ashwin Makwana. 2017. A survey on mqtt: a protocol of internet
of things(IoT). International Conference on Telecommunication, Power Analysis
and Computing Techniques (Ictpact - 2017) (2017), 0–5. Issue April.

[40] Darius Suchojad. 2019. Publish/subscribe, Zato services and asynchronous API
integrations. https://zato.io/blog/posts/pubsub-service.html

[41] Richard Sueselbeck, Gregor Schiele, Sebastian Seitz, and Christian Becker. 2009.
Adaptive update propagation for low-latency massively multi-user virtual en-
vironments. In 2009 Proceedings of 18th International Conference on Computer
Communications and Networks. IEEE, 1–6.

[42] Steve Vinoski. 2006. Advanced message queuing protocol. IEEE Internet Comput-
ing 10, 6 (2006), 87–89.

429

https://doi.org/10.1145/3469263.3469858
https://doi.org/10.1145/3469263.3469858
https://zenoh.io/
https://doi.org/10.1109/5992.919270
https://doi.org/10.1145/282918.282923
https://doi.org/10.1109/CIOT.2016.7872916
http://pap.vs.uni-due.de/MMVE09/papers/p8.pdf
https://doi.org/10.1109/SASO.2011.13
https://doi.org/10.1145/1016540.1016552
https://doi.org/10.1145/1016540.1016552
https://doi.org/10.1007/978-3-642-03757-3_11
https://www.youtube.com/watch?v=2_X-TwGXcRs
https://github.com/imonology/VAST.js/tree/dev_CFM
https://github.com/imonology/VAST.js/tree/dev_CFM
https://doi.org/10.1080/00380768.2020.1738899
https://doi.org/10.1007/978-0-387-39940-9_1181
https://doi.org/10.3233/978-1-60750-539-6-75
www.eng.sun.ac.za
https://doi.org/10.3390/s19173704
https://mqtt.org/
https://doi.org/10.1145/3567445.3571107
https://doi.org/10.1145/3567445.3571107
https://www.paessler.com/it-explained/mqtt
https://www.paessler.com/it-explained/mqtt
https://thenewstack.io/publish-subscribe-introduction-to-scalable-messaging/
https://thenewstack.io/publish-subscribe-introduction-to-scalable-messaging/
http://hdl.handle.net/10019.1/108007
https://zato.io/blog/posts/pubsub-service.html

	Abstract
	1 Introduction
	2 Background & Theory
	2.1 Publish/Subscribe Architecture
	2.2 Publish/Subscribe Architecture Limitations

	3 Spatial Publish/Subscribe Architecture (SPS)
	3.1 VAST Architecture

	4 VAST Simulator
	4.1 Relevant Terminology
	4.2 Using the Simulator
	4.3 Visualizer Results

	5 Conclusion and Future Work
	References

