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Deep Neural Networks (DNNs) are widely used for computer vision tasks. However, it has been shown that deep
models are vulnerable to adversarial attacks, i.e., their performances drop when imperceptible perturbations are
made to the original inputs, which may further degrade the following visual tasks or introduce new problems
such as data and privacy security. Hence, metrics for evaluating the robustness of deep models against adversarial
attacks are desired. However, previous metrics are mainly proposed for evaluating the adversarial robustness
of shallow networks on the small-scale datasets. Although the Cross Lipschitz Extreme Value for nEtwork
Robustness (CLEVER) metric has been proposed for large-scale datasets (e.g., the ImageNet dataset), it is
computationally expensive and its performance relies on a tractable number of samples. In this paper, we propose
the Adversarial Converging Time Score (ACTS), an attack-dependent metric that quantifies the adversarial
robustness of a DNN on a specific input. Our key observation is that local neighborhoods on a DNN’s output
surface would have different shapes given different inputs. Hence, given different inputs, it requires different
time for converging to an adversarial sample. Based on this geometry meaning, ACTS measures the converging
time as an adversarial robustness metric. We validate the effectiveness and generalization of the proposed
ACTS metric against different adversarial attacks on the large-scale ImageNet dataset using state-of-the-art deep
networks. Extensive experiments show that our ACTS metric is an efficient and effective adversarial metric over
the previous CLEVER metric.
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1 INTRODUCTION
In recent years, deep learning (DL) has widely impacted computer vision tasks, such as object
detection, visual tracking and image editing. Despite their outstanding performances, recent studies [2,
3, 8, 12, 29, 35, 48, 58] have shown that deep methods can be easily cheated by the adversarial inputs:
inputs with human imperceptible perturbations to force an algorithm to produce adversary-selected
outputs. The vulnerability of deep models to adversarial inputs is getting significant attention as they
are used in various security and human safety applications. Hence, a robust adversarial performance
evaluation method is needed for existing deep learning models. The 𝑙𝑝 norm-ball theory may be used
to indicate the adversarial robustness of neural networks. Specifically, this theory suggests that there
should exist a perturbation radius 𝑙𝑝 -distortion Δ𝑝 = ∥𝛿𝑥 ∥𝑝 [51], where any sample point 𝑥 within this
radius would be correctly classified as true samples, and others would be regarded as adversarial ones.
In other words, the smallest radius Δ𝑝 (i.e., minimum adversarial perturbation Δ𝑝,𝑚𝑖𝑛) can be used as a
metric to evaluate the robustness: a model with larger radius indicates that it is more robust. However,
determining the Δ𝑝,𝑚𝑖𝑛 has been proven in [25, 45] as an NP-complete problem. Existing methods
mainly focused on estimating the lower and upper bounds of Δ𝑝,𝑚𝑖𝑛. While estimating the upper
bound [7, 21, 26] is typically attack-dependent, easy-to-implement and computational lightweight, it
often suffers poor generalization and accuracy. On the contrary, estimating the lower bound [50, 56]
can be attack-independent but computational heavy. Moreover, the lower bound estimation often
provides little clues for interpreting the prevalence of adversarial examples [17, 19, 39, 56].

To address the above limitations, this paper presents a novel instance-specific adversarial robustness
metric, the Adversarial Converging Time Score (ACTS). Unlike CLEVER [51], ACTS does not use
an exact lower bound of minimum adversarial perturbation as a robustness metric. Instead, ACTS
estimates the desired robustness based on the Δ𝑝,𝑚𝑖𝑛 in the direction guided by an adversarial attack.
ACTS is resilient, which means if an attack method can deliver a Δ𝑝,𝑚𝑖𝑛 attack, then the estimated
robustness by ACTS reflects the fact. The insight behind the proposed ACTS is the geometrical
characteristics of a DNN-based classifier’s output manifold. Specifically, given a 𝑀-dimensional
input, each output element can be regarded as a point on a 𝑀 + 1 dimensional hypersurface. Adding
adversarial perturbations can be regarded as forcing the original output elements to move to new
positions on those hypersurfaces. The movement driven by effective perturbations should push all
output elements to a converging curve (i.e., the intersection of two or more hypersurfaces), where
a clean input is converted to an adversarial one. Since the local areas around different points on
hypersurfaces have different curvatures, different clean samples require different time to be converged
to adversarial examples. The proposed ACTS measures the converging time and use the time as the
adversarial robustness metric. To summarize, this paper has the following contributions. We propose
a novel Adversarial Converging Time Score (ACTS) method for measuring the adversarial robustness
of deep neural networks. Our method leverages the geometry characteristics of a DNN’s output
manifolds, so it is effective, efficient and easy to understand. We provide mathematical analysis to
justify the correctness of the proposed ACTS and extensive experiments to demonstrate its superiority
under different adversarial attacks.

This paper is organized as follows. We first review the related work in Section 2. In Section 3, we
describe the proposed method. Results from comparative experiments for different architectures and
adversarial attack approaches are then given in Section 4. And we make the conclusions and envision
the future work in Section 5.

2 RELATED WORK
2.1 Adversarial Attacks
Over the past few years, extensive efforts have been made in developing new methods to generate
adversarial samples [9, 13, 20, 33, 36, 53, 55, 57]. Szegedy et al. [48] proposed L-BFGS algorithm
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to craft adversarial samples and showed the transferability property of these samples. Goodfellow et
al. [21] proposed Fast Gradient Sign Method (FGSM), a fast approach for generating adversarial
samples by adding perturbation proportional to the sign of the cost functions gradient. Rather than
adding perturbation over the entire image, Papernot et al. [40] proposed Jacobian Saliency Map
Approach (JSMA), which utilized the adversarial saliency maps to perturb the most sensitive input
components. Kurakin et al. [26] extended the FGSM algorithm as the Basic Iterative Method (BIM),
which recurrently adds smaller adversarial noises.Madry et al. [34] proposed the attack Projected
Gradient Descent (PGD) method by extending the BIM with random start point.Carlini et al. [7]
proposed an efficient method (i.e., CW attack) to compute good approximations while keeping low
computational cost of perturbing examples. It further defined three similar targeted attacks based on
different distortion measures (𝐿0, 𝐿2, and 𝐿∞). It is to be noted that all the above mentioned attacks
are white-box attacks that craft adversarial examples based on the input gradient. In the classical
black-box attack, the adversarial algorithm has no knowledge of the architectural choices made to
design the original architecture. There are different ways to generate adversarial samples [6, 10, 14–
16, 23, 30, 54] under black-box schemes. Since this paper focuses on the white-box attacks, for more
detailed information, readers may refer to [1].

2.2 Adversarial Defenses
This line of works focus on developing robust deep models to defend against adversarial attacks [18,
28, 49]. Goodfellow et al. [21] proposed the first adversarial defence method that uses adversarial
training, in which the model is re-trained with both adversarial images and the original clean dataset.
A series of work [24, 34, 57] follow this adversarial training, but investigate different adversarial
attacks to generate different adversarial data. Pappernot et al. [38] extended defensive distillation [41]
(which is one of the mechanisms proposed to mitigate adversarial examples), to address its limitation.
They revisited the defensive distillation approach and used soft labels to train the distilled model. The
resultant model was robust to attacks. Liang et al. [31] proposed a method where the perturbation
to the input images are regarded as a kind of noise and the noise reduction techniques are used to
reduce the adversarial effect. In their method, classical image processing operations such as scalar
quantization and smoothing spatial filters were used to reduce the effect of perturbations. Bhagoji et
al. [5] proposed dimensionality reduction as a defense against attacks on different machine learning
classifiers. Another effective defense strategy in practice is to construct an ensemble of individual
models [27]. Following this idea, Liu et al. [32] proposed the random self-ensemble method to
defend the attacks by averaging the predictions over random noises injected to the model. Pang et
al. [37] proposed to promote the diversity among the predictions of different models by introducing
an adaptive diversity-promoting regularizer. However, these methods do not have an ideal robustness
metric to help them correctly evaluate and improve their performance.

2.3 Robustness Metrics
With the development of adversarial attacks, there is a need for a robustness metric that quantifies the
performance of a DNN against adversarial samples. A straightforward method is to use a specific
attack method to find the adversarial examples, and use the distortions of adversarial examples (i.e.,
upper bound of Δ𝑝,𝑚𝑖𝑛) as the model robustness metric. For example, Bastani et al. [4] proposed a
linear programming formulation to find adversarial examples and directly use the 𝑙𝑝−distortion as
the robustness metric. Moosavi-Dezfooli et al. [36] proposed to compute a minimal perturbation
for a given image in an iterative manner, in order to find the minimal adversarial samples across the
boundary. They then define all the minimal perturbation expectation over the distribution of data as
the robustness metric. Other methods focus on estimating the lower bound of Δ𝑝,𝑚𝑖𝑛 and use it as the
evaluation metric. Weng et al. [50] exploited the ReLU property to bound the activation function
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(or the local Lipschitz constant) and provided two efficient algorithms (Fast-Lin and Fast-Lip) for
computing a certified lower bound. Zhang et al. [56] proposed a general framework CROWN for
computing a certified lower bound of minimum adversarial distortion and showed that Fast-Lin
algorithm is a special case under the CROWN framework. Recently, a robustness metric called
CLEVER [51] was developed, which first estimates local Lipschitz constant using extreme value
theory and then computes an attack-agnostic robustness score based on first order Lipschitz continuity
condition. It can be scaled to deep networks and large datasets. However, the lower bound estimation
of CLEVER is often incorrect and is time-consuming. Therefore, it is hard to be a robust and effective
adversarial robustness metric.

3 METHODOLOGY

(a) 3D Hypersurface (b) Intuitions behind ACTS

Fig. 1. (a) An example of 3D hypersurface, (b) intuition behind our ACTS.

3.1 Adversarial Converging Time Score
Adversarial Attacks in Image Classification Given an 𝑀 dimensional input 𝑥 ∈ R𝑀 and a K-class
classification loss function 𝐷 : R𝑀 → R𝐾 , the predicted class label 𝑡 of the input 𝑥 is defined as:

𝑡 = 𝐶 (𝑥) = argmin
𝑗

{𝑦 𝑗 | 𝑦 𝑗 ∈ R1}, (1)

where 𝑦 𝑗 is the 𝑗 th element of the 𝐾-dimensional output of 𝐷 (𝑥). From geometrical point of view, 𝑦 𝑗
can be regarded as a point on a 𝑀 + 1 dimensional hypersurface𝑚 𝑗 (See Fig. 1 (a)).

Since DNN-based classifiers are typically non-linear systems, which is true for all state-of-the-art
DNN models. In this case, the hypersurfaces𝑚 defined by 𝐷 are also non-linear systems. Thus, local
areas around different points on a hypersurface𝑚 𝑗 have different curvatures, which results in that
different inputs would have different sensitivity to the same added noise 𝛿𝑥 . As shown in Fig. 1
(a), the changes on a hypersurface𝑚 𝑗 driven by the same 𝛿𝑥 are significantly different in terms of
magnitude. Inspired by this insight, we propose a novel Adversarial Converging Time Score (ACTS)
as an instance-specific adversarial robustness metric. The key to the proposed ACTS is that the
sensitivity is mapped to the “time” required to reach the converging curve (i.e., decision boundary)
where a clean sample is converted to an adversarial sample. We first introduce the proposed ACTS in
detail. Then, we provide a toy-example to validate the proposed approach.
Adversarial Converging Time Score (ACTS) To easily convey the intuitive idea of the proposed
ACTS, we use 1D input domain and 2D hypersurface (i.e., lines). Fig. 1 (b) shows our idea intuitively.
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As we can see, based on Eq. 1, the original input 𝑥 is classified as 𝑡 th class since 𝑦𝑡 is in a lower
position than 𝑦 𝑗 in the loss domain. Although adding a noise 𝛿𝑥 to 𝑥 results in two new positions 𝑦′𝑡
and 𝑦′𝑗 , the predicted label of 𝑥 + 𝛿𝑥 is not changed (still 𝑡). If 𝑥 + 𝛿𝑥 passes the converging point,
the predicted label of 𝑥 + 𝛿𝑥 changes to 𝑗 . From this point of view, the robustness of an input can
be reflected by the magnitude of the added 𝛿𝑥 for reaching the converging point. For a DNN-based
classifier, the collection of converging points forms the decision boundary. However, such decision
boundary is extremely hard to be estimated, especially in a high-dimensional space. Instead, we can
look at the converging point from the perspective of loss domain, where the distance between 𝑦′𝑗
and 𝑦′𝑡 is 0. In other words, the robustness of an input can be reflected by the time used to cover the
distance 𝑦 𝑗 −𝑦𝑡 , i.e., the less time it requires, the less robust it is. Compared to the decision boundary
estimation, estimating the distance 𝑦 𝑗 − 𝑦𝑡 is much easier. Hence, we propose the ACTS to estimate
such time, which takes the following form:

𝐴𝐶𝑇𝑆 := argmin
𝑗

(𝑓 (
𝑦 𝑗 − 𝑦𝑡
𝑠𝑡 − 𝑠 𝑗

)) 𝑗 ∈ 1 . . . 𝐾, 𝑗 ≠ 𝑡, (2)

𝑓 (𝑥) =
{
𝐶, 𝑥 ≤ 0
𝑥, 𝑥 > 0

where 𝑠 𝑗 and 𝑠𝑡 are the moving speeds in the loss domain, which are driven by the added noise 𝛿𝑥 .
However, the minus sign in the denominator may be a bit tricky. An ideal misclassification attack
should increase the target error value, results in a positive 𝑠𝑡 , and it should also decrease the error
value of the potential misclassified class, which gives a negative 𝑠 𝑗 (as shown in Fig. 1b). Hence,
the value of 𝑠𝑡 − 𝑠 𝑗 should always be positive. However, the 𝑠𝑡 − 𝑠 𝑗 could be a negative value in the
following situations: (a) 𝑠𝑡 decreases and 𝑠 𝑗 increases; (b) both of 𝑠𝑡 and 𝑠 𝑗 decrease, but 𝑠𝑡 decreases
faster; (c) both of 𝑠𝑡 and 𝑠 𝑗 increase, but 𝑠 𝑗 increases faster. If any of the above cases happen to an
input, it means it is impossible to deliver a successful attack, and hence the ACTS of the specific
input is a maximum score 𝐶. The 𝑓 (𝑥) used in the Eq. (2) is for this purpose. Since ACTS represents
the time to cover the distance 𝑦 𝑗 − 𝑦𝑡 with a speed 𝑠𝑡 − 𝑠 𝑗 , an input with a smaller ACTS is more
vulnerable to an adversarial attack, and vice-versa.

The key to the proposed ACTS is to estimate the moving speed. However, a local neighborhood
on an output hypersurface is non-linear. It is very challenging to estimate the moving speed directly.
To this end, we propose a novel 𝐷𝐽𝑀 based scheme to estimate the required moving speed, which
takes the non-linearity nature of an output hypersurface into account.
Data Jacobian Matrix Given an input 𝑥 , the Data Jacobian Matrix (DJM) of 𝐷 is defined as:

𝐷𝐽𝑀 (𝑥) = 𝜕𝐷 (𝑥)
𝜕𝑥

=

[
𝜕𝐷 𝑗 (𝑥 )
𝜕𝑥𝑖

]
𝑗∈1...𝐾,𝑖∈1...𝑀

(3)

On a hypersurface𝑚 𝑗 , the 𝐷𝐽𝑀 𝑗 (𝑥) (i.e., 𝑗 th row of 𝐷𝐽𝑀 (𝑥)) defines the best linear approximation
of 𝐷 for points close to point 𝑥 [52]. Therefore, with 𝐷𝐽𝑀 (𝑥), a small change 𝛿𝑥 in the input domain
of 𝐷 can be linearly mapped to the change on the hypersurfaces 𝑚 𝑗 . Mathematically, it can be
described as:

𝐷 (𝑥 + 𝛿𝑥) = 𝐷 (𝑥) + 𝐷𝐽𝑀 (𝑥) × 𝛿𝑥 + 𝛿𝑒, (4)

where 𝛿𝑒 ∈ 𝑅𝐾 is the approximation error. Essentially, the 𝐷𝐽𝑀 (𝑥) is very similar to the gra-
dient backpropagated through a DNN during a training process. The only difference is 𝐷𝐽𝑀 (𝑥)
differentiates with respect to the input 𝑥 rather than network parameters.
One-step attack Based on the Eq. (4), with an input 𝑥 and an added noise 𝛿𝑥 , the original point
𝑦 𝑗 (𝑎.𝑘.𝑎., 𝐷 𝑗 (𝑥)) is shifted to the point 𝑦′𝑗 on the hypersurface 𝑚 𝑗 , and the approximated shifted

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: March 2023.



6 Wang, et al.

(a) Model output (b) ACTS distribution

Fig. 2. (a) the output of the toy example AND gate model, (b) the ACTS distribution of the toy example
AND gate model for all input samples where 𝑥1 ∧ 𝑥2 = 1.

position of 𝑦′𝑗 can be estimated as (shown in Fig. 1 (b)):

𝑦′𝑗 ≈ 𝐷 𝑗 (𝑥) + 𝐷𝐽𝑀𝑗 (𝑥) × 𝛿𝑥, (5)

where 𝐷𝐽𝑀 𝑗 (𝑥) is the 𝑗 th row of the 𝐷𝐽𝑀 (𝑥). For one-step attack (e.g., FGSM), 𝛿𝑥 can be regarded
as a vector ®𝑑. The direction of ®𝑑 is fixed and only the length of ®𝑑 varies for delivering a successful
attack. Therefore, the moving speed 𝑠 𝑗 from point 𝑦 𝑗 to 𝑦′𝑗 on the surface𝑚 𝑗 driven by the shift 𝛿𝑥 in
the input domain can be estimated as:

𝑠 𝑗 =
𝑦′𝑗 − 𝑦 𝑗
∥𝛿𝑥 ∥ ≈

𝐷𝐽𝑀𝑗 (𝑋 ) × 𝛿𝑥
∥𝛿𝑥 ∥ 𝑗 ∈ 1 . . . 𝐾 . (6)

It is worth to mention that the 𝐷𝐽𝑀 is an linear approximation for a small 𝛿𝑥 . The approximation
accuracy decreases while 𝛿𝑥 increases.
Multi-step attack In a multi-step attack (e.g., BIM), each step changes the ®𝑑 (i.e., 𝛿𝑥) in terms
of both direction and length. Compared to one-step attacks, the different directions reveal more
curvatures of a local neighborhood, and it increases the probability of discovering a more optimal
moving speed to reduce the “time” (i.e., added noise) for converting a clean sample to an adversarial
one. That is also the reason that multi-step attacks are more effective than one-step attacks. However,
the dynamics introduced by multi-step attacks is also troublesome to estimate the desired moving
speed. To deal with it, we propose an average moving speed from 𝑦 𝑗 to 𝑦′𝑗 based on all explored
directions as follow:

𝑠 𝑗 ≈
1
𝑁

𝑁∑︁
𝑞

𝐷𝐽𝑀𝑗 (𝑥) × 𝛿𝑥𝑞
∥𝛿𝑥𝑞 ∥

𝑗 ∈ 1 . . . 𝐾, (7)

where 𝑁 is the total steps used in the multi-step attack, and 𝛿𝑥𝑞 is the added noise in the 𝑞th step. Even
though the estimated average speed has limited accuracy, our experiments show the effectiveness of
the proposed average speed.

3.2 Toy Example
We design a toy experiment to validate the proposed ACTS, where a simple two-layer feed-forward
network was trained to proximate a AND gate. The testing accuracy of the trained model was 99.7%.
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Mathematically, we define the AND gate as:

𝑥1 ∧ 𝑥2 = 1, 𝑥1 ≥ 0.5 and 𝑥2 ≥ 0.5
𝑥1 ∧ 𝑥2 = 0, otherwise

where 𝑥𝑖 ∈ [0, 1.0]. Based on this definition, as shown in Fig. 2 (a), [0.5, 1.0] is the decision
boundaries on both 𝑥1 and 𝑥2 axes, where lower ACTSs are expected. We use FGSM method, with
𝜖 = 0.1, to generate adversarial samples only for the clear sample pairs of 𝑥1 ∧ 𝑥2 = 1. For the rest
pairs, ACTSs are set to 0. As shown in Fig. 2 (b), the input pairs closer to the decision boundary
have lower ACTSs. Also, we observe an increasing trend in the ACTSs as the input values move
further away from the boundary. The maximum ACTS is observed at point (𝑥1, 𝑥2) = (1.0, 1.0).
These observations illustrate the proposed ACTSs is able to reflect the robustness under the FGSM
attack.

4 EXPERIMENTS
In this section, we first validate the effectiveness and generalization capacity of the proposed ACTS
metric against different state-of-the-art DNN models and adversarial attack approaches on the
ImageNet [11] dataset in Section 4.2. We then compare the proposed ACTS with CLEVER [51] (the
only method that can be adapted to deep models and large-scale ImageNet dataset), to show that our
method provides a more effective and practical robustness metric in different adversarial settings in
Section 4.3.

4.1 Experimental Setting
Evaluation dataset and methods To evaluate the effectiveness of proposed method on large-scale
datasets, we choose the ImageNet Large Scale Visual Recognition Challenge (ILSVR) 2012 dataset,
which has 1.2 million training and 50,000 validation images. We evaluate our method on three
representative state-of-the-art deep networks with pre-trained models provided by PyTorch [42],
i.e., the InceptionV3 [47], ResNet50 [22] and VGG16 [44], as these deep networks have their
own network architectures. To evaluate the robustness of our method against different attacks, we
consider three different state-of-the-art white-box attack approaches, i.e., (FGSM [21], BIM [26],
and PGD [34]).
Implementation details We have implemented our ACTS using the PyTorch framework, and all
attack methods using the adversarial robustness PyTorch library: Torchattacks [43]. A GPU-Server
with an Intel E5-2650 v4 2.20GHz CPU (with 32GB RAM) and one NVIDIA Tesla V100 GPU
(with 24GB memory) is used in our experiments. For preprocessing, we normalize the data using
mean and standard deviation. The images are loaded in the range of [0, 1] and then normalized using
a 𝑚𝑒𝑎𝑛 = [0.485, 0.456, 0.406] and 𝑠𝑡𝑑 = [0.229, 0.224, 0.225] [42]. To control the noise levels in
order not to bring any noticeable perceptual differences and show the consistent performance of the
proposed ACTS, we add the noise of three different levels: 𝜖 = {0.00039 (0.1/255), 0.00078 (0.2/255),
0.00117 (0.3/255)} to the FGSM [21], BIM [26] and PGD [34], respectively. We use N1, N2 and N3
to represent these three different noise levels, respectively. We use three steps and set the step size
= 𝜖/2 to both BIM [26] and PGD [34]. We use the untargeted attack setting in all attacks. For each
image, we evaluate its top-10 class (i.e., the class with the top-10 maximum probabilities except for
the true class, which is usually the easiest target to attack) [51] in 𝐷𝐽𝑀 .

4.2 ACTS Validation Results
This section evaluates the effectiveness and generalization properties of our proposed ACTS method
in various adversarial environments.
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(a) InceptionV3-FGSM (b) InceptionV3-BIM (c) InceptionV3-PGD

(d) ResNet50-FGSM (e) ResNet50-BIM (f) ResNet50-PGD

(g) VGG16-FGSM (h) VGG16-BIM (i) VGG16-PGD
(Green): 𝜖 = {0.1, 0.00039} (Yellow): 𝜖 = {0.2, 0.00078} (Red): 𝜖 = {0.3, 0.00117} (Blue): 𝜖 = {0.05, 0.00020}

Fig. 3. Noise Effectiveness charts for different models under different attacks. Area under the blue
color denotes ACTS scores for the correctly classified samples on ImageNet validation dataset .
Green, yellow, red colors denoted the ACTS scores of the samples that were successfully attacked.
Each color denotes the noise level added to the dataset with respect to the corresponding attack.

Evaluating the effectiveness of ACTS To be an effective adversarial robustness metric, the proposed
ACTS should faithfully reflect that the samples with lower ACTS scores are more prone to be attacked
successfully than those with higher scores. To validate such property of the ACTS, we design the
following experiments. First, we apply these three DNN models on the ImageNet validation dataset
and selected those correctly classified images. Secondly, we estimate the ACTS scores for all the
selected images and apply the three chosen attack methods to them. It can be seen from Table 1 that,
the adversarial accuracy is gradually decreased to a moderate extent with increased levels of noise.
Third, in order to show the consistent performance of the proposed ACTS, we increase the noise
level to N1, N2 and N3 and record the ACTS scores for those who are successfully attacked. Fig. 3
shows the histograms of the three chosen DNN models under different attacks, respectively. The blue
color indicates the ACTS scores of the images that are correctly classified on ImageNet validation
dataset under the initial noise 𝜖 = 0.0002, and the other three colors indicate the ones that are attacked
successfully with noise level N1, N2 and N3. For all the models and attacks, the green, yellow and
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Table 1. Clean and Adversarial accuracy in different adversarial environments.

Attack Model Clean Adversarial Accuracy
N1 N2 N3

FGSM
InceptionV3 77.21% 61.16% 50.03% 43.05%

ResNet50 76.13% 57.45% 43.94% 34.77%
VGG16 71.59% 52.35% 37.73% 27.71%

BIM
InceptionV3 77.21% 55.10% 43.05% 36.68%

ResNet50 76.13% 50.08% 34.77% 25.47%
VGG16 71.59% 44.38% 27.71% 18.46%

PGD
InceptionV3 77.21% 60.20% 45.86% 36.31%

ResNet50 76.13% 56.13% 39.15% 26.56%
VGG16 71.59% 51.77% 34.48% 22.28%

red regions are always on the very left side of the respective charts. This shows the inputs with
lower ACTS scores are easier to be attacked successfully. We can also see that with increased noise
levels, images with relatively lower ACTS scores would be attacked successfully first (from green to
red). In addition, Fig. 3 and Table 1 show that these aforementioned observations are consistent in
different adversarial environments (i.e., different DNN architectures and different attacks). Based
on the distribution of the obtained ACTS, we are able to gain a relatively precise intuition about
DNNs’ performance under different attack methods. For example, based on the each row figures of
Fig. 3, it is obvious that ACTS histograms of green, yellow, red colors become much wider range
than previous, which indicate BIM and PGD are more powerful attack methods when compared to
FGSM attack method. This observations can be confirmed by the corresponding adversarial accuracy
rates shown in Table 1.

Table 2. ACTS Overlap% values in different adversarial environments.

Attack Model
Overlap%

N1
Overlap%

N2
Overlap%

N3

FGSM
InceptionV3 1.46% 3.54% 4.71%

ResNet50 2.95% 6.42% 9.14%
VGG16 2.14% 4.29% 5.71%

BIM
InceptionV3 2.53% 4.71% 6.26%

ResNet50 4.89% 9.13% 10.89%
VGG16 3.02% 5.71% 6.47%

PGD
InceptionV3 1.33% 3.26% 4.85%

ResNet50 1.72% 4.70% 6.62%
VGG16 1.87% 3.73% 4.89%

In addition to the qualitative results in Fig. 3, we also present the quantitative results to show
the effectiveness of ACTS. Fig. 4, Fig. 5 and Fig. 6 show the detailed histogram results in different
adversarial environments. The orange color indicates the samples that are attacked successfully, and
the light blue color indicates the ones that are attacked unsuccessfully. Only an ideal robustness
metric could separate the two groups without any overlap, and existing approaches may have different
overlap regions between the two groups. Hence, the size of overlap regions can be leveraged as
an indicator to show the effectiveness of a robustness metric. For each histogram, we calculate the
overlap percentage by 𝑆𝑜/𝑆𝑎, where 𝑆𝑜 is the size (i.e., count) of an overlap area, and 𝑆𝑎 is the total
area of a histogram. Hence, for Overlap%, the lower its values, the better the evaluating results are.
All results are shown in Table 2. As we can see, almost all Overlap% values are below 10%. In terms
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(a) InceptionV3-FGSM-N1 (b) InceptionV3-FGSM-N2 (c) InceptionV3-FGSM-N3

(d) InceptionV3-BIM-N1 (e) InceptionV3-BIM-N2 (f) InceptionV3-BIM-N3

(g) InceptionV3-PGD-N1 (h) InceptionV3-PGD-N2 (i) InceptionV3-PGD-N3

Fig. 4. ACTS scores histograms of InceptionV3 in different experimental configurations. In each
histogram, the orange color indicates the samples that are attacked successfully, and the light blue
color indicates the ones that are attacked unsuccessfully.

(a) ResNet50-FGSM-N1 (b) ResNet50-FGSM-N2 (c) ResNet50-FGSM-N3

(d) ResNet50-BIM-N1 (e) ResNet50-BIM-N2 (f) ResNet50-BIM-N3

(g) ResNet50-PGD-N1 (h) ResNet50-PGD-N2 (i) ResNet50-PGD-N3

Fig. 5. ACTS scores histograms of ResNet50 in different experimental configurations. In each his-
togram, the orange color indicates the samples that are attacked successfully, and the light blue color
indicates the ones that are attacked unsuccessfully.
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(a) VGG16-FGSM-N1 (b) VGG16-FGSM-N2 (c) VGG16-FGSM-N3

(d) VGG16-BIM-N1 (e) VGG16-BIM-N2 (f) VGG16-BIM-N3

(g) VGG16-PGD-N1 (h) VGG16-PGD-N2 (i) VGG16-PGD-N3

Fig. 6. ACTS scores histograms of VGG16 in different experimental configurations. In each histogram,
the orange color indicates the samples that are attacked successfully, and the light blue color indicates
the ones that are attacked unsuccessfully.

Table 3. Numbers of images in ImageNet for different architectures found in different ‘attack flip’
experimental configurations. ‘1’ means attack flip between different noise level N1 and N2. ‘2’ means
attack flip between different noise level N1 and N3. ‘3’ means attack flip between different noise level
N2 and N3.

Attack type FGSM BIM PGD
Attack Flip 1 2 3 1 2 3 1 2 3
InceptionV3 0 0 1 1 10 10 0 0 2
ResNet50 0 1 1 0 3 5 1 0 3
VGG16 0 0 0 0 3 4 2 3 8

of DNN architecture, ACTS shows better performance on InceptionV3 and VGG16. We guess the
reason is the local areas on output hypersurfaces of InceptionV3 and VGG16 around the output
points of all tested images are flatter (i.e., the radius of curvature is small) than ResNet50. In this
case, the 𝐷𝐽𝑀 provides a more accurate linear approximation. It is worth to mention that the overlap
area is getting larger when 𝜖 increases in different adversarial environments. It confirms with the
limitation of the DJM that the linear approximation accuracy decreases while 𝛿𝑥 increases. In the
process of statistics, we found an interesting phenomenon called the attack flip: the image with a
successful attack at a lower noise level may fail at a higher noise level. The result is shown in Table 3.
Attack flip is a good explanation for why there are very small ACTS scores in the overlap at a higher
noise level. In other words, some small ACTS scores are counted as orange histogram at a lower
noise level and then counted as blue histogram at a higher noise level. This flip will result in small
ACTS scores in the overlap at a higher noise level. Besides, another reason is that the limitation of
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the DJM. The linear approximation accuracy of the DJM decreases while 𝛿𝑥 increases which will
lead to the error. Attack flip also suggests that the lower bound may not always make sense.
Evaluating the Generalization of ACTS In Fig. 3, the histogram of each row represent the results
of the same model under different attack, and each column represent the results of different models
under the same attack method. From the results, we can see that ACTS has a good generalization
ability across different attack methods and models.
Correlations to CLEVER We are interested in whether our ACTS align with the CLEVER. To this
end, we compute the average score of all the tested images as the CLEVER’s reported robustness
number. The higher the CLEVER score, the more robust the model is. We also calculate the average
ACTS score of all the tested images to represent the robustness of the network. From the results
shown in Table 4, we get the same ranking correlation to CLEVER. It also demonstrates that models
with higher ACTS scores are more robust. The results we obtained are basically consistent with the
results in Table (3) (b) of CLEVER (The column of Top-2 Target) [51]. Besides, we conclude that
VGG16 model with highest scores are more robust than other on test image set. This conclusion can
also be found in [46]. It is worth to mention that the score distribution may change dramatically on
different test image sets.

Table 4. Using CLEVER method and ACTS method to measure the ranking correlation of the robust-
ness of different models.

Model CLEVER ACTS
VGG16 0.370 4.459

InceptionV3 0.215 3.047
ResNet50 0.126 2.558

Determining k To investigate the impact of the top-k class in 𝐷𝐽𝑀 , for each image, we evaluate its
top-k class ACTS scores in Table 5. From the results, we can see that with the increase of k, the value
of Overlap% changes very slightly. Considering the balance between computational consumption
and ACTSs’ performance, it is reasonable to set the k to 10.

4.3 Comparing With the State-of-the-art CLEVER
We compare our method with state-of-the-art method CLEVER in this section. CLEVER score is
designed for estimating the lower bound on the minimal distortion required to craft an adversarial
sample, and it used 𝐿2 and 𝐿∞ norms for their validations. We follow the setting in [51] to compute
CLEVER 𝐿2 and 𝐿∞ norms scores for 1,000 images out of the all 5,0000 ImageNet validation set, as
CLEVER is more computational expensive. The same set of randomly selected 1,000 images from
the ImageNet validation set is also used in our method. Instead of sampling a high-dimension-space
ball, our method only requires normal backpropagations, which is significantly faster than CLEVER.
Our experiment results in Table 6 confirm this.

For each image, we calculate its CLEVER and ACTS scores on an NVIDIA Tesla V100 graphics
card, the average computation speed of our method is three orders of magnitude faster than CLEVER
method on different models. We also use the Overlap% indicator to compare the effectiveness of
different robustness metrics, inspired by the ROC curve, which visualizes all possible classification
thresholds to quantify the performance of a classifier. Since ACTS and CLEVER only care about
whether the distribution of image scores are consistent with successful/unsuccessful results in
different adversarial environments, we can use the Overlap% indicator as “mis-classification rate". In
Table 7, we calculate 𝐿2 CLEVER, 𝐿∞ CLEVER and ACTS Overlap% values respectively. From the
results, we can see that the value range of the 𝐿2 CLEVER and 𝐿∞ CLEVER Overlap% is almost in
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Table 5. Top-k class ACTS Overlap% values in different environments.

Attack Model Metric
Overlap%

N1
Overlap%

N2
Overlap%

N3

FGSM

InceptionV3
ACTS-10 1.56% 2.08% 5.2%
ACTS-20 1.56% 2.08% 5.2%
ACTS-50 1.56% 2.08% 5.2%

ResNet50
ACTS-10 2.39% 7.98% 9.84%
ACTS-20 2.39% 7.98% 9.71%
ACTS-50 2.39% 7.98% 9.71%

VGG16
ACTS-10 1.3% 3.46% 6.63%
ACTS-20 1.3% 3.46% 6.77%
ACTS-50 1.3% 3.46% 6.92%

BIM

InceptionV3
ACTS-10 1.43% 5.2% 6.37%
ACTS-20 1.43% 5.2% 6.37%
ACTS-50 1.43% 5.2% 6.37%

ResNet50
ACTS-10 4.39% 9.84% 10.9%
ACTS-20 4.26% 9.71% 11.17%
ACTS-50 4.26% 9.71% 11.17%

VGG16
ACTS-10 2.74% 3.63% 5.91%
ACTS-20 2.74% 3.63% 5.91%
ACTS-50 2.74% 3.63% 5.91%

PGD

InceptionV3
ACTS-10 0.91% 3.25% 4.81%
ACTS-20 0.91% 3.25% 4.42%
ACTS-50 0.91% 2.99% 4.68%

ResNet50
ACTS-10 0.93% 5.32% 6.12%
ACTS-20 0.93% 5.45% 6.52%
ACTS-50 0.93% 5.19% 6.38%

VGG16
ACTS-10 1.3% 3.03% 4.61%
ACTS-20 1.44% 3.17% 4.61%
ACTS-50 1.44% 3.17% 4.76%

Table 6. The average computation time of CLEVER and ACTS on different models for a single image
in ImageNet. Blue and red fonts in the third column represent ACTS average computation time under
one-step and multi-step attacks, respectively. The fourth column is the corresponding lifting multiple.

Model Metric
Average

Computation
Time (second)

ACTS
speed_up

InceptionV3
CLEVER 331.42

6628/2549
ACTS 0.05/0.13

ResNet50
CLEVER 196.25

4906/2181
ACTS 0.04/0.09

VGG16
CLEVER 286.85

5737/2207
ACTS 0.05/0.13

10% ˜ 20%, and the value range of the ACTS Overlap% is almost in 0% ˜ 10%. CLEVER scores have
almost more than twice larger Overlap% values on average for all testing configurations. Even though
𝐿∞ CLEVER scores give slightly less Overlap% values than the ones based on 𝐿2 CLEVER scores,
ACTS still outperform them in a significant margin with all testing configurations. These results
indicate that ACTS is a more effective metric than CLEVER in different adversarial environments.
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Table 7. Comparing ACTS with CLEVER Overlap% values in different adversarial environments.

Attack Model Metric
Overlap%

N1
Overlap%

N2
Overlap%

N3

FGSM

InceptionV3
𝐿2 CLEVER 14.34% 15.36% 17.80%
𝐿∞ CLEVER 13.7% 15.88% 17.67%

ACTS 1.56% 2.08% 5.2%

ResNet50
𝐿2 CLEVER 17.11% 18.6% 19.14%
𝐿∞ CLEVER 13.61% 15.5% 17.25%

ACTS 2.39% 7.98% 9.84%

VGG16
𝐿2 CLEVER 10.43% 11.59% 13.48%
𝐿∞ CLEVER 8.99% 10.43% 12.75%

ACTS 1.3% 3.46% 6.63%

BIM

InceptionV3
𝐿2 CLEVER 11.91% 12.16% 10.88%
𝐿∞ CLEVER 11.91% 11.65% 10.5%

ACTS 1.43% 5.2% 6.37%

ResNet50
𝐿2 CLEVER 16.44% 16.31% 14.42%
𝐿∞ CLEVER 13.34% 15.23% 13.34%

ACTS 4.39% 9.84% 10.9%

VGG16
𝐿2 CLEVER 10.72% 11.45% 14.2%
𝐿∞ CLEVER 9.13% 10.58% 13.19%

ACTS 2.74% 3.63% 5.91%

PGD

InceptionV3
𝐿2 CLEVER 12.04% 11.4% 11.91%
𝐿∞ CLEVER 11.01% 11.27% 11.78%

ACTS 0.91% 3.25% 4.81%

ResNet50
𝐿2 CLEVER 14.15% 15.77% 14.82%
𝐿∞ CLEVER 12.13% 12.94% 12.8%

ACTS 0.93% 5.32% 6.12%

VGG16
𝐿2 CLEVER 7.54% 10.14% 13.77%
𝐿∞ CLEVER 7.68% 8.7% 12.17%

ACTS 1.3% 3.03% 4.61%

5 CONCLUSION AND FUTURE WORK
In this work, we have proposed the Adversarial Converging Time Score (ACTS) as an instance-
specific adversarial robustness metric. ACTS is inspired by the geometrical insight of the output
hypersurfaces of a DNN classifier. We perform a comprehensive set of experiments to substantiate
the effectiveness and generalization of our proposed metric. Compared to CLEVER, we prove that
ACTS can provide a faster and more effective adversarial robustness prediction for different attacks
across various DNN models. More importantly, ACTS solves the adversarial robustness problem
from a geometrical point of view. We believe it provides a meaningful angle and insight into the
adversarial robustness problem, which will help the future work in the same vein.

In the future, we will focus on improving DNN’s adversarial performance by leveraging the
proposed ACTS. Another interesting direction to look into is extending the ACTS to make it work
under black-box attack methods.
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