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ABSTRACT
We propose a method of learning a policy for human-like locomo-
tion via deep reinforcement learning based on a human anatomical
model, muscle actuation, and biologically inspired rewards, with-
out any inherent control rules or reference motions. Our main
ideas involve providing a dense reward using metabolic energy
consumption at every step during the initial stages of learning and
then transitioning to a sparse reward as learning progresses, and
adjusting the initial posture of the human model to facilitate the
exploration of locomotion. Additionally, we compared and analyzed
differences in learning outcomes across various settings other than
the proposed method.

1 INTRODUCTION
In recent years, there has been significant progress in research
on learning control polices for physically-simulated characters via
deep reinforcement learning. In most studies, the torque calculated
by the target pose output by the policy or the torque directly output
by the policy is applied to each joint [Kang and Lee 2021; Yu et al.
2018] and a policy learns to produce motion results similar to refer-
ence motions using an imitation reward [Peng et al. 2018]. However,
while many successful results have been reported, this approach
has limitations in that it differs from the way actual humans move
their joints by contracting muscles, and the generated motion is
influenced by the reference motion used.

To produce more human-like movements, there have been con-
sistent attempts to control characters actuated by musculotendon
units rather than joint torque. Wang et al. proposed a walking con-
trol method for a simple model consisting of 16 muscles, assuming
control rules based on swing / stance phases and optimizing the
parameters used in the rule, which provided some prior informa-
tion on “walking” [Wang et al. 2012]. Lee et al. proposed a method
to control the model consisting of over one hundred muscles us-
ing quadratic programming and trajectory optimization, but has
a limitation that range of generated result motion is restrained to
reference motions used [Lee et al. 2014]. [Lee et al. 2019] proposed a
method for training a policy to reproduce a given reference motion
for a model with a larger number of muscles than former, using
deep reinforcement learning.

In contrast to these existing approaches, we propose a method
to train a policy for human-like locomotion through deep rein-
forcement learning based on an anatomical humanoid model, mus-
culotendon actuators, and biological rewards including metabolic
energy consumption. Because no reference motions or feedback
control rules are used, the policy is trained solely to maximize
cumulative rewards without any bias. However, unlike existing
approaches that use imitation rewards which provides more direct
guidance for good actions during the early stages of learning, this

approach is prone to getting stuck in local minima during the early
stages. We have found that a reward for metabolic energy minimiza-
tion actually helps learning in such situations, contrary to common
belief. This can be interpreted as the energy reward, similar to the
imitation reward, providing more direct information about “good”
movements to facilitate learning. This supports the well-known
belief that human natural walking is the type of locomotion that
expends the least amount of energy. We showed that by changing
the dense energy reward to a slightly modified form of sparse re-
ward after a certain amount of learning, the policy can be trained
to perform stable human-like locomotion. We also found that the
initial posture of the musculoskeletal model at the beginning of
each episode plays an important role in the learning process.

2 SIMULATION AND LEARNING
We use the Hill-type muscle model where a musculotendon unit
is composed of a muscle fiber and tendon. To improve computa-
tional speed, we assumes a fixed length for the tendon at its resting
state while simulating the musculotendon units, as in many pre-
vious studies. A muscle fiber consists of an active element that
actively generates contractile force and a passive element that mod-
els the elastic force that is generated passively when the muscle
is stretched beyond a certain length. The overall musculotendon
force is calculated as follows [Zajac 1989]:

𝑓𝑚𝑡𝑢 = cos𝛼 · (𝑎 · 𝑔𝑎𝑙 (𝑙𝑚) · 𝑔𝑣 (¤𝑙𝑚) + 𝑔𝑝 (𝑙𝑚)), (1)

where 𝑙𝑚 and ¤𝑙𝑚 for muscle fiber length and its time derivative, 𝛼
for pennation angle, and 𝑎 for muscle activation. 𝑔𝑎𝑙 and 𝑔𝑣 rep-
resent force-length and force-velocity functions of active element,
respectively, and 𝑔𝑝 represent the force-length function of passive
element. We adopted the same functions as those in [Lee et al. 2014].

Our policy receives positions and velocities of joints and links,
and muscle fiber lengths as 278-dimensions input, and outputs 120-
dimensions muscle activation. The reward function is as follows:

𝑟 (𝑠, 𝑎) = 𝑟𝑢𝑝 + 𝑟𝑜𝑟𝑖 + 𝑟𝑒𝑛𝑔 + 𝑟𝑣𝑒𝑙 + 𝑟𝑑𝑒𝑣 + 𝑟𝑎𝑙𝑖𝑣𝑒 . (2)

𝑟𝑢𝑝 , 𝑟𝑜𝑟𝑖 , and 𝑟𝑒𝑛𝑔 are biological rewards that reflect the charac-
teristics of human locomotion, and correspond to terms that keep
the upper body straight, prevent pelvis from tilting, and minimize
energy consumption, respectively. 𝑟𝑣𝑒𝑙 , 𝑟𝑑𝑒𝑣 , and 𝑟𝑎𝑙𝑖𝑣𝑒 are goal
rewards that encourage the model to achieve a desired velocity,
maintain the center of mass in a straight line without deviating
to the sides, and avoid falling over for as long as possible, respec-
tively. Each reward term includes a weight to ensure that they are
balanced to similar magnitudes in the overall reward function.

3 DESIGN FOR HUMAN-LIKE LOCOMOTION
Energy Rewards. Our energy reward is based on the metabolic

energy consumption of muscles, which is calculated using factors
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such as muscle activation, volume, and fiber velocity [Wang et al.
2012]. We use two types of energy reward as follows:

• Metabolic Equivalent of Task (MET): MET is the metabolic
energy consumption rate normalized by body weight. This
is calculated at each step, as a dense reward.

• Cost of Transport (CoT): CoT is the quantity of energy
required to move a unit distance. This is calculated only
once at the end of each episode, as a sparse reward.

We employ a two-stage training approach to achieve stable human-
like locomotion in our policy. Specifically, we first train the policy
using the dense reward (MET) until convergence, and then switch
to the sparse reward (CoT) to further refine and stabilize the learned
policy. In the early stages of learning, the policy’s activations often
result in movements with high energy consumption and instability.
The dense reward (MET) aids in rapidly stabilizing the movements,
facilitating the discovery of a policy that can maintain balance over
multiple steps. Afterward, switching to the sparse reward (CoT)
encourages covering longer distances even with the same energy
consumption, effectively increasing the travel distance.

Initial Posture. We found that the humanoid’s posture at the
beginning of each episode had a significant impact on whether or
not it could learn human-like locomotion. If training begins with
both feet in contact, the policy is learned to repeatedly jump with
both feet. We speculate that this is because two-legged jumping
actions aremore likely to be explored than one leg lifting in the early
stages. The policy successfully learned human walking behavior
by introducing a randomized starting position of lifting either the
left or right leg at the beginning of each episode. This approach
increased the probability of exploring actions that naturally led
the lifted leg to make contact with the ground, while also enabling
the policy to learn how to swing the opposite leg. As a result, the
policy acquired the ability to swing both legs alternately, ultimately
enabling it to walk in a manner akin to human locomotion.

4 RESULTS
The model has a mass of 75kg, consists of 16 links and 31 DOFs with
120 muscles. DART and RLlib (with Proximal Policy Optimization)
were used for simulation and DRL. Our training took approximately
10 days to learn a policy for stable walking. For detailed results,
refer to the supplemental document and accompanying video.

Dense and Sparse Energy Rewards. With the dense reward (MET)
only, the policy converged after taking only four to five walking
steps. With the sparse reward (CoT) only, the policy failed to learn
how to move forward and fell easily. We could train stable, human-
like locomotion by sequentially using two types of energy rewards
over two stages (Row 1–3 of Figure 1).

Importance of Energy Rewards. When no energy reward was
used, the policy did not learn how to move at all, resulting in the
humanoid falling over immediately. We speculate that, in the case
of musculoskeletal models, minimizing the energy consumption is
not just about limiting the average force magnitude, but also about
giving advantage to explore state and action spaces that are closer
to human-like movements (Row 4 of Figure 1).

Importance of Initial Posture. As previously discussed, starting
training with both feet in contact resulted in the learned policy
involving repeated jumping with both feet, while introducing a
randomized starting position of lifting either the left or right leg at
the beginning of each episode was successful in teaching the policy
human-like locomotion behavior (Row 5 of Figure 1).

Ablation Study. The humanoid could not move forward properly
by a policy that learned with the mean squared sum of muscle
activations as the energy reward. When excluding 120-dimensional
muscle fiber lengths from our observation, the total reward in-
creased slowly and the humanoid could not move forward properly
as well, resulted in a quick fall (Row 6–7 of Figure 1).

5 CONCLUSIONS AND FUTUREWORKS
We demonstrated a new method for learning policies to generate
human-like locomotion of muscle-actuated humanoids, which re-
quires no inherent control rules or reference motions. The key idea
is the sequential adoption of dense and sparse metabolic energy
rewards in two stages, along with an initial posture that facilitates
alternating leg swings. The current results have some differences
from actual human movements, such as walking without swinging
the arms or the front part of the foot touching the ground first. We
plan to improve these aspects and expand our research to cover a
wider range of movements, such as running and jumping.
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Figure 1: Experimental results. From top to bottom: Ours (row 1), Dense energy (MET) only (row 2), Sparse energy (CoT) only
(row 3), Without energy reward (row 4), Start with a double stance pose (row 5), Dense activation reward (row 6), Without
muscle fiber length in observation (row 7)
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Figure 2: Hill-type muscle model
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