
FZ-GPU: A Fast and High-Ratio Lossy Compressor for Scientific
Computing Applications on GPUs

Boyuan Zhang∗
Indiana University

Bloomington, IN, USA
bozhan@iu.edu

Jiannan Tian∗
Indiana University

Bloomington, IN, USA
jti1@iu.edu

Sheng Di
Argonne National Laboratory

Lemont, IL, USA
sdi1@anl.gov

Xiaodong Yu
Argonne National Laboratory

Lemont, IL, USA
xyu@anl.gov

Yunhe Feng
University of North Texas

Denton, TX, USA
yunhe.feng@unt.edu

Xin Liang
University of Kentucky
Lexington, KY, USA
xliang@uky.edu

Dingwen Tao†
Indiana University

Bloomington, IN, USA
ditao@iu.edu

Franck Cappello
Argonne National Laboratory

Lemont, IL, USA
cappello@mcs.anl.gov

ABSTRACT
Today’s large-scale scientific applications running on high-perfor-
mance computing (HPC) systems generate vast data volumes. Thus,
data compression is becoming a critical technique to mitigate the
storage burden and data-movement cost. However, existing lossy
compressors for scientific data cannot achieve a high compression
ratio and throughput simultaneously, hindering their adoption in
many applications requiring fast compression, such as in-memory
compression. To this end, in this work, we develop a fast and high-
ratio error-bounded lossy compressor on GPUs for scientific data
(called FZ-GPU). Specifically, we first design a new compression
pipeline that consists of fully parallelized quantization, bitshuffle,
and our newly designed fast encoding. Then, we propose a series
of deep architectural optimizations for each kernel in the pipeline
to take full advantage of CUDA architectures. We propose a warp-
level optimization to avoid data conflicts for bit-wise operations
in bitshuffle, maximize shared memory utilization, and eliminate
unnecessary data movements by fusing different compression ker-
nels. Finally, we evaluate FZ-GPU on two NVIDIA GPUs (i.e., A100
and RTX A4000) using six representative scientific datasets from
SDRBench. Results on the A100 GPU show that FZ-GPU achieves
an average speedup of 4.2× over cuSZ and an average speedup of
37.0× over a multi-threaded CPU implementation of our algorithm
under the same error bound. FZ-GPU also achieves an average
speedup of 2.3× and an average compression ratio improvement of
2.0× over cuZFP under the same data distortion.

CCS CONCEPTS
• Theory of computation → Massively parallel algorithms;
Data compression.

KEYWORDS
Lossy compression; scientific data; GPU; performance.
∗Boyuan Zhang and Jiannan Tian are co-first authors.
†Corresponding author: Dingwen Tao, Department of Intelligent Systems Engineering,
Luddy School of Informatics, Computing, and Engineering, Indiana University.

ACM acknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
HPDC ’23, June 16–23, 2023, Orlando, FL, USA

© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0155-9/23/06. . . $15.00
https://doi.org/10.1145/3588195.3592994

ACM Reference Format:
Boyuan Zhang, Jiannan Tian, Sheng Di, Xiaodong Yu, Yunhe Feng, Xin
Liang, Dingwen Tao, and Franck Cappello. 2023. FZ-GPU: A Fast and High-
Ratio Lossy Compressor for Scientific Computing Applications on GPUs.
In Proceedings of the 32nd International Symposium on High-Performance

Parallel and Distributed Computing (HPDC ’23), June 16–23, 2023, Orlando, FL,

USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3588195.
3592994

1 INTRODUCTION
Motivation. Large-scale scientific applications running on high-

performance computing (HPC) systems produce vast data for post
hoc analysis. For instance, Hardware/Hybrid Accelerated Cosmol-
ogy Code (HACC) [1, 2] may produce petabytes of data in hundreds
of snapshots when simulating one trillion particles. Storing such
a large amount of data could be vastly inefficient, especially to
parallel file systems (PFS) with relatively low I/O bandwidth [3, 4].

Data reduction is becoming an effective method to resolve the
big data issue in scientific applications. Although traditional loss-
less data reduction methods such as data deduplication and lossless
compression can guarantee no information loss, they suffer from
limited compression ratios on scientific datasets. Specifically, dedu-
plication usually reduces the scientific data size by only 20% to
30% [5], and lossless compression achieves a compression ratio of
up to ∼2:1 [6]. However, the data reduction ratios provided by these
methods are much lower than the ratios scientists desire [7].

Error-bounded lossy compressors have been studied for years to
address this issue for scientific data reduction. Not only can they
achieve very high compression ratios (e.g., over 100×) [3, 8–10], but
they can also strictly control data distortion concerning user-set
error bounds. Notably, a satisfying lossy compressor designed for
scientific data reduction should address three primary concerns
simultaneously: 1 high compression ratio, 2 high throughput,
and 3 high compression quality (data fidelity). Most of the existing
error-bounded lossy compressors (such as SZ [8, 9, 11], FPZIP [12],
ZFP [10]), however, are mainly designed for CPU architectures,
which cannot meet the high-throughput requirement. For example,
X-ray imaging data generated on advanced instruments such as
LCLS-II laser [13] can result in a data acquisition rate of 250 GB/s [7].
As such, high compression throughput is essential to store large
amounts of data for scientific projects efficiently.

Limitations of state-of-the-art approaches. Existing error-bounded
lossy compressors for GPUs (such as cuSZ [14], cuZFP [15], and

https://doi.org/10.1145/3588195.3592994
https://doi.org/10.1145/3588195.3592994
https://doi.org/10.1145/3588195.3592994

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Zhang & Tian et al.

MGARD-GPU [16]) suffer from either low throughputs or low com-
pression ratios. Specifically, although cuZFP has slightly higher
throughput compared with cuSZ and MGARD-GPU, it supports
only the fixed-rate mode [17], which suffers much lower compres-
sion quality than the fixed-accuracy mode (a.k.a error-bounded
mode) [18], significantly limiting its adoption in practice. On the
other hand, cuSZ and MGARD-GPU can achieve much higher com-
pression ratios than cuZFP, but their compression throughputs are
relatively low. This is because both MGARD and SZ algorithms
require entropy and dictionary encoding to achieve high compres-
sion ratios due to the aggregate repeated symbols (e.g., quantization
codes generated by the prediction and quantization stages in SZ).
At the same time, 1 MGARD-GPU uses DEFLATE [19] (including
Huffman entropy encoding [20] and LZ77 dictionary encoding [21])
on the CPU, causing low throughput, and 2 cuSZ adopts an ineffi-
cient GPU-based Huffman encoding [14].

Specifically, Huffman encoding and most dictionary encoding
algorithms contain substantial data dependencies, making them
difficult to parallelize on GPUs extensively. Moreover, designing
an efficient parallel dictionary encoding is challenging because of
the intrinsic dependency in its repeated sequence search. Thus,
cuSZ leaves this part to the CPU, which incurs high time overhead,
including data transfer. Furthermore, achieving high performance
on GPUs requires maximizing the parallelism of GPU threads and
using shared memory and mitigating issues of coherence, warp
divergence, and bank conflicts. Thus, it is challenging to develop
an efficient GPU-based error-bounded lossy compressor that simul-
taneously achieves a high compression ratio and high throughput.

Key insights and contributions. In this work, we propose a fast and
high-ratio error-bounded lossy compressor (called FZ-GPU 1) for
scientific computing applications on GPU based on the cuSZ frame-
work [14], which maximizes the overall throughput. Specifically,
we first propose to use bitshuffle [22] to rearrange the quantization
codes generated by the prediction-and-quantization step (called
“dual-quantization”) in cuSZ (will be introduced in §2.2) at the bit
level to increase the data correlation for more effective encoding.
We then design a new fast GPU lossless encoding method for bit-
shuffled data. We carefully design a GPU kernel to fuse bitshuffle
and encoding operations to reduce unnecessary data movements
between global and shared memories. Using the proposed bitshuffle
and encoding approach, we can eliminate the inefficient Huffman
encoding from cuSZ. Moreover, we optimize the performance of
the dual-quantization method by eliminating the outliers handling
mechanism and the data shift operation, hence improving the ef-
fectiveness of the subsequent bitshuffle process.

The main contributions of our work are summarized as follows.

• We propose a new compression pipeline based on the cuSZ
framework, which consists of our optimized dual-quantization,
bitshuffle, and our proposed lossless encoding after bitshuffle (to
replace the slow Huffman encoding implementation) on GPUs.

• We optimize the dual-quantization by eliminating the data-shift
and outlier-handling operations, improving both compression
throughput and bitshuffle efficiency, thus increasing the com-
pression ratio.

1The code is available at https://github.com/szcompressor/FZ-GPU.

• We develop a GPU bitshuffle kernel with a warp-level opti-
mization to avoid data conflicts in bit-wise operations. We also
maximize the utilization of shared memory to improve the per-
formance of this memory-intensive kernel.

• We design a new lossless encoding method that leverages the
data characteristics after bitshuffle and the high parallelism of
GPUs. It can effectively and efficiently remove the high redun-
dancy from bitshuffle, thereby achieving a high compression
ratio and throughput.

• We carefully fuse the bitshuffle kernel and the first phase of
the encode kernel (i.e., recording zero blocks) into a single GPU
kernel to eliminate unnecessary data movements between the
GPU’s global and shared memory.

• We evaluate FZ-GPU on six real-world scientific application
datasets from Scientific Data Reduction Benchmarks [23] on two
NVIDIA GPUs (i.e., A100 and RTX A4000) and compare it to
four state-of-the-art compressors. Experiments show that on
the A100 GPU, FZ-GPU significantly improves the compression
throughput by up to 11.2× over cuSZ; and compared to cuZFP,
FZ-GPU achieves an average of 2.0× higher compression ratio
at the same data distortion with an average speedup of 2.3×.

Limitations of the proposed approach. Compared to cuSZ, FZ-
GPU significantly improves the compression throughput in all cases,
while it has a slightly lower compression ratio at low error bounds.
Compared to cuSZx, FZ-GPU has much higher compression ratios
and hence higher overall data-transfer throughput, but its compres-
sion throughput is lower than cuSZx. Compared to cuZFP, FZ-GPU
has a slightly lower compression ratio and throughput at large error
bounds (e.g., over 5e−3) in some datasets.

The remaining of this paper is organized as follows. In §2, we
present the background about GPU lossy compression for scientific
data, cuSZ framework, prediction-and-quantization method, and
our problem statement. In §3, we describe the design of our pro-
posed FZ-GPU. In §4, we evaluate FZ-GPU on different scientific
datasets and compare it with other compressors. In §5, we discuss
related work on GPU-based lossy compression. Finally, in §6, we
conclude our work and discuss future work.

2 BACKGROUND AND PROBLEM
STATEMENT

In this section, we introduce the background about GPU-based lossy
compression and cuSZ framework and our problem statement.

2.1 GPU Lossy Compression for Scientific Data
There are two main data compression classes: lossless and lossy.
Compared to lossless compression, lossy compression can provide
a much higher compression ratio by trading an acceptable accuracy
loss. Lossy compressors for image and video have been well studied,
such as JPEG [24] and MPEG [25], but they are human perception-
driven rather than designed for scientific postanalysis and lack
error-controlling mechanism.

Recently, a new generation of lossy compression for scientific
data, especially floating-point data, has been developed, such as
SZ [3, 8, 9], ZFP [10], MGARD [26], and TTHRESH [27]. Unlike
lossy compressors for images and video, these lossy compressors

https://github.com/szcompressor/FZ-GPU

FZ-GPU HPDC ’23, June 16–23, 2023, Orlando, FL, USA

lossy lossless

lossy lossless

cuSZ

28.9 GB/s
eb-compliant
(pre)quantize

predict
(post)quantize histogram Huffman

codebook
Huffman
encoding archive

gather outlier

(kernel 1) 8.0%; 363.3 GB/s (kernel 2)
5.2%; 551.5 GB/s

(kernel 3)
49.2%; 58.8 GB/s

(kernel 4)
21.9%; 132.3 GB/s

(kernel 5) 15.8%; 183.4 GB/s
outlier

FZ-GPU

94.8 GB/s
eb-compliant
(pre)quantize

predict
(post)quantize bitshuffle mark all-

zero blocks
prefix-sum

encode
archive

(fused kernel 1) 16.6%; 570.1 GB/s (fused kernel 2) 48.3%; 196.3 GB/s

(encoding kernels)
35.1%; 270.5 GB/s

Figure 1: Our proposed new compression pipeline (“FZ-GPU”) versus original cuSZ’s compression pipeline. Each kernel is marked with its
relative time (in percentage) and throughput (in GB/s) based on one field from the Hurricane dataset at an error bound of 1e-4.

provide strict error-controlling schemes, allowing users to control
the accuracy loss in reconstructed data and even in post-analysis.

Considering the boom in GPU-based HPC systems and appli-
cations, SZ, ZFP, and MGARD are starting to roll out their GPU
versions using CUDA [28] (i.e., cuSZ [14], cuZFP [15], and MGARD-
GPU [16]), which provide much higher throughputs for compres-
sion compared with their CPU versions. cuZFP (a transform-based
compressor) allows the user to specify the desired bitrate (i.e., the
average number of bits per value after compression), while cuSZ (a
prediction-based compressor) and MGARD-GPU (a multigrid-based
compressor) allow the user to specify the maximum error that can
be tolerated. cuZFP with the fixed-rate mode can provide stably
higher compression throughput, whereas cuSZ and MGARD-GPU
with the error-bounded mode tend to achieve a higher compression
ratio. In addition, there are also some optimization works based on
these compressors to improve either compression ratio or compres-
sion throughput, which will be discussed in §5.

2.2 cuSZ Framework
Since scientific data are mainly in floating-point representation,
the randomly distributed bits in the exponent and mantissa are
the major obstacle to significantly reducing the data size. This is
because a change in floating-point values causes the exponent and
mantissa representation to change from the most significant bit
(MSB) to the least significant bit (LSB); even close values can have
distinct bitsets. In comparison, a change in integer values results in
fewer bit-level changes.

Thus, SZ framework converts the original floating-point data
to integers in two stages: 1 it first predicts the value of each data
point using a prediction function such as Lorenzo predictor [29]
and generates prediction errors (still floating-point values), which
are the differences between the predicted and the original values,
and 2 it then quantizes the prediction errors to integers to reduce
the bit randomness. After the prediction and quantization, lossless
encoding works effectively on the integers (i.e., the approximation
of prediction errors). The lossless encoding in SZ, such as gzip [30]
or Zstd [31], includes Huffman encoding and a dictionary encoding.
In addition, cuSZ, the GPU implementation of SZ framework, fol-
lows a similar compression pipeline with two primary adjustments

in favor of performance, 1 it performs quantization on the original
data before the prediction to remove the tight data dependency [14],
and 2 it omits the dictionary encoding stage.

2.3 Dual-Quantization Method
For the prediction and quantization stages, cuSZ uses dual-quantization
method to achieve fine-grained parallelization; not only can chun-
ked data blocks be compressed independently, but each data point
can also be processed in parallel. Specifically, cuSZ first splits
the whole dataset into multiple chunks. Then, it performs pre-
quantization, Lorenzo prediction, and post-quantization. Note that
pre-quantization is the only lossy stage (introducing compression
errors) in the entire compression pipeline.

We denote the input data as 𝑑 and the user-specified error bound
as 𝑒𝑏; the compression conducts the error-controlling process illus-
trated in Figure 2. The error-boundness (i.e., the decompressed data
error from the original is no greater than 𝑒𝑏) can be guaranteed as

| round(𝑑𝑖/(2 · 𝑒𝑏)) × (2 · 𝑒𝑏) − 𝑑𝑖 | ≤ 𝑒𝑏.

With the given parameter 𝑟 , the output comprises two parts, quan-
tization code 𝑞′ = 𝑞 + 𝑟 of limited numbers such that 𝑞′ = 𝑞 − 𝑟

and −𝑟 < 𝑞 < 𝑟 , and outlier that is out of range (−𝑟, 𝑟). We refer
readers to the cuSZ papers [14, 32] for more details.

? real round to nearest
units of 2𝑒𝑏

2𝑒
𝑏

Figure 2: An illustration of error controlling in SZ.

2.4 Problem Statement
While flourishing to achieve high data processing capabilities, GPU-
based compressors target high versatility and a wide range of usage
scenarios, such as in-memory compression [33], compression of
MPI messages [34], and reducing CPU-GPU data transfer time [35].
On the one hand, the current cuZFP only allows it to use where high
compression throughput is the priority, as its compression quality is
low compared to cuSZ under the same compression ratio. Moreover,
cuZFP does not support error-bounded mode. MGARD-GPU can
only provide very low compression throughput (will be shown in

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Zhang & Tian et al.

the evaluation). On the other hand, cuSZ’s modularized design
enables us to investigate/design new compression components and
replace specific ones in the pipeline if needed. For example, the
current cuSZ is limited by its inefficient Huffman encoder2. As a
result, in this work, we mainly focus on the error-bounded lossy
compression framework cuSZ, which can provide high compression
ratios, and aim to drastically improve the compression throughput
by designing a new high-performance GPU encoding approach to
replace Huffman encoding in the pipeline.

In this work, we assume the data to compress is generated by
scientific applications on GPUs, and then the compression would
be directly performed on the data from the GPU memory; finally,
the compressed data would be saved from GPUs to disks via CPUs.
There are several use cases that FZ-GPU targets. For example, it can
reduce storage overhead as the compressed data will be saved from
the GPU to the disk through the CPU for post-analysis. It can also
reduce memory overhead as the compressed data will be cached
in the GPU global memory and decompressed on the GPU directly
when the reconstructed data is needed for computation.

3 DESIGN OF PROPOSED FZ-GPU
In this section, we present the design of our new GPU-based lossy
compressor FZ-GPU with a series of optimizations.

3.1 Overview of New Compression Pipeline
Our proposed new compression pipeline is shown in Figure 1. To
fully utilize the computing power of GPUs, we aim to design a
pipeline that maximizes parallelism while achieving high compres-
sion ratios by exploiting potential data patterns.

Inspired by cuSZ, we adopt the dual-quantization method in
the first stage of our compression pipeline for three reasons. 1 Its
Lorenzo predictor exploits the spatial and dimensional information
to reduce the entropy of input data significantly [9]. 2 It is fully
parallelized, and its Lorenzo predictor is highly efficient due to
the 𝑂 (𝑛) time complexity. 3 Its quantization provides an error-
controlling scheme for our lossy compression pipeline. However,
the original quantization design in cuSZ sets a threshold to sepa-
rate regular quantization codes and outliers (§2.3); though it favors
a higher compression ratio, the amount of memory transaction
hinders the performance, and hence it is not used in our design. In-
stead, we propose to optimize dual-quantization by neither shifting
quantization codes nor handling outliers. Besides, we use the MSB
to denote the sign of the data point. We will describe the detail of
the optimized dual-quantization method in §3.2.

After that, we seek a new lossless encoding method that can
provide high throughput and high compression ratios at the same
time. On the one hand, cuSZ uses Huffman encoding that causes
irregular memory access (i.e., the number of bits varies for each
symbol). Thus, we look for a lossless encoding with more regular
memory access. On the other hand, Huffman encoding achieves
a high compression ratio but cannot handle sparse data (efficient
prediction minimizes prediction errors in amplitude). Thus, it is
critical to identify a representation for quantization codes that can
expose as many continuous zero bits as possible.

2The Huffman encoding on the GPU includes building a large Huffman codebook and
performing coarse-grained encoding based on the Huffman tree.

k

i

b15...8 b7...0

u2
0
...7

u2
8
...1

5
u2

1
6
...2

3
u2

2
4
...3

1

k

i

u4
0
...7

u4
8
...1

5

b31...24 b23...16 b15...8 b7...0

bit-level shuffle

Figure 3: An illustration of bitshuffle algorithm.
To this end, we propose to adopt bitshuffle [22] (as illustrated

in Figure 3) before performing encoding. The advantages of using
bitshuffle are twofold, 1 it transforms the data representation to
create more space redundancy for subsequent lossless compression,
and 2 it is a highly parallel process well-suited for GPU processing.
However, the bitshuffle operation is more time-consuming than
the dual-quantization operation. Thus, we propose to optimize its
performance by using warp-level functions and utilizing shared
memory. We will present bitshuffle and our optimization in §3.3.

Lastly, we propose a sparsification-style fast lossless encoding
after bitshuffle. Specifically, we partition the data into many data
blocks and then go through each data block to check if all values
are zero: if so, we use a 0-bit to record the block; otherwise, we use
a 1-bit to record it and copy this block to the output compressed
array. However, this lossless encoding process is hard to achieve
high performance on the GPU because the encoded address offsets
are unknown for different data blocks. Therefore, we need to pre-
compute the offset (i.e., the starting point of the memory address)
and encode each data block according to its offset. The detail of our
proposed lossless encoding method will be described in §3.4.

Compared to cuSZ, both FZ-GPU and cuSZ use prediction and
quantization to reduce the entropy of the datasets. However, the
lossless encoding of our work is entirely different from cuSZ. In-
stead of utilizing the time-consuming Huffman encoding to com-
press the quantization code (output of prediction and quantization),
we propose to use a simple but effective pipeline with bitshuffle
and our proposed lossless encoding. By doing this, the compres-
sion throughput is significantly increased, as shown in Figure 3.
Moreover, the compression ratio is no longer limited by Huffman
encoding (an upper bound of 32), which means it is potentially in-
creased. It is worth noting that we also modify the pre-quantization
kernel to fit our pipeline by integrating the outliers and using the
most significant bit to store the sign of the number, which also
increases the throughput of the pre-quantization kernel.

3.2 Proposed Optimized Dual-Quantization
We employ dual-quantization in the first stage of our compression
pipeline because it can significantly reduce the entropy of input
data by exploring the spatial correlation through the Lorenzo pre-
dictor [9]. Furthermore, its fine-grained parallelism with low time
complexity (i.e., 𝑂 (𝑛)) further facilitates an efficient GPU imple-
mentation. Moreover, its quantization provides an error-controlling

FZ-GPU HPDC ’23, June 16–23, 2023, Orlando, FL, USA

Input
Sequence

8 Bytes 8 Bytes 8 Bytes … <8 Bytes

with padding

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 1

0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 1

…

Byte 0 →

Byte 1 →

Byte 2 →

Byte 7 →

Output
Sequence

Chunk 0 Chunk 1 Chunk 2 … Chunk 7

Figure 4: A simplistic fine-grained parallel bitshuffle [36].
scheme for lossy compression, which enables an error-bounded
mode similar to cuSZ. However, the original dual-quantization
method handles outliers by compressing them separately and shifts
all quantization codes by a radius for a higher compression ra-
tio, which leads to throughput degradation. Therefore, we propose
an optimized dual-quantization method for higher performance.
The main differences between the original and our optimized dual-
quantization methods are threefold, 1 we remove shift operations
to formulate values symmetrically distributed around zero, 2 we
avoid separate handling of outliers for high performance, and 3
we use 1 bit to handle the sign of each quantization code instead of
using 2’s complement. We describe them in detail as follows.

First, we optimize the representation of quantization codes. Ac-
cording to our empirical analysis, although the original data type is
a float of four bytes, most data can be denoted as less than four bytes
after quantization. Thus, we propose to use two bytes to represent
the quantization code, which indirectly achieves compression by
transforming the data type. Note that the out-of-range data points
are very few compared to the whole dataset. Thus, even losing these
elements’ precision will not significantly affect the decompressed
data quality, such as peak signal-to-noise ratio (PSNR).

Next, we optimize the mechanism that handles the outliers in
the prediction. The prediction in cuSZ sets a threshold to distin-
guish outliers and normal data points. cuSZ will compress outliers
separately because the compression ratio of Huffman encoding in
the next step depends on the entropy of the data. If the entropy
is too high, Huffman encoding will need more bits to denote pat-
terns. We note that it is unnecessary to separate the outliers and
normal data points when replacing Huffman encoding with our
proposed lossless encoder. Therefore, we propose to discard the
outliers handling in our pipeline.

Furthermore, we modify the negative numbers’ data format to
fit our encoding kernel’s design. Specifically, instead of storing the
data as a signed integer, we use an unsigned integer. We use the
corresponding positive number with the most significant bit set as
one for the negative number. This is because a negative number

is represented as two’s complement, consisting of many set bits
when its absolute value is small. This is unsuitable for our design
because we expect the data bytes to have as many zeros as possible.
To solve this issue, we propose to use the first bit of unsigned int
to denote the positive and negative because the efficient prediction
will keep the data in a small range around zero, which guarantees
the valid number that two bytes can represent is more than enough
for the quantization code. As aforementioned, few data points are
out of range, so this modification accelerates the dual-quantization
kernel due to fewer if-else branches and easier operations.

3.3 Optimization of Bitshuffle on GPUs
Bitshuffle is an algorithm that re-organizes the dataset bit-wise by
gathering the 𝑛-th bits of all the bytes in eight chunks. Figure 3
shows an example of bitshuffle. Bitshuffle fits our compression
pipeline for two reasons: 1 it creates more spatial redundancy for
the following lossless compression, and 2 there is no data depen-
dency in bitshuffle, meaning it is highly parallelizable. However,
the bitshuffle operation is time-consuming and needs bit-level oper-
ations. Therefore, we propose a series of optimizations to improve
its performance, as described below.

The first optimization is fully leveraging shared memory in each
thread block. Bitshuffle is a memory-intensive process that needs to
access the same memory multiple times to get different bits of the
same byte. Direct access to global memory has much higher latency
than shared memory. Therefore, we propose to use shared memory
to reduce the memory access overhead. Since we need to combine
as many bits as possible to create more spatial redundancy at the
bit level, we need to set shared memory size as large as possible to
store more data. In our kernel design, we use a 32-by-32 array of
unsigned integers, 4 bytes per array element (each element saves
two quantization codes) to store the data. We set the thread block
size to 32-by-32, corresponding to shared memory size. Note that
the actual size of the 2D array in shared memory is 32-by-33 with
padding to avoid bank conflicts.

After loading the data into shared memory, we need to extract
the corresponding bits and put them together. This operation is
challenging for GPU, since writing to the same memory location by
all threads in a warp will cause data access conflicts. However, if we
perform this 1-bit operation at a time, the parallelism advantage of
GPU is much undermined; in other words, there would always be
threads waiting for others to complete. To solve this issue, we use a
warp-level vote function, __ballot_sync() (requiring uint32_t
as the input type), to speed up this operation. The vote function
takes variable 𝑣𝑎 of each thread in a warp as input and outputs a
uint32_t 𝑣𝑏 . More specifically, 𝑣𝑎 of thread 𝑖 is used in the predicate
to set 𝑖-th bit of 𝑣𝑏 with true (1) or false (0). Therefore, we can extract
certain bits of the element in the array and use the vote function to
implement the shuffle process without sacrificing the parallelism.

Then, we need to put the bitshuffled result back into the global
memory to continue the encoding process. The simplistic way is to
store the shuffled data independently in eight chunks, as shown in
Figure 4. However, the memory access of this simplistic solution is
non-coalesced, which would cause a significant drop in throughput.
To solve this issue, we propose another optimization, as shown in
Figure 5. We store the result locally in the same thread block. The

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Zhang & Tian et al.

Input
Sequence

1024 B 1024 B 1024 B … <1024 B

with padding

u4 u4 u4 u4 u4

u4 u4 u4 u4 u4

u4 u4 u4 u4 u4

u4 u4 u4 u4 u4

ballot sync(buf)

(1)
(1) (1

) (1)
(1)

read by
a warp

… (padding)

… (padding)

… (padding)

… (padding)

… (padding)

y = 0

y = 1

y = 2

y = 31

(2)
write back to
buf[y][0]

Output
Sequence Chunk 0 …

Figure 5: Our proposed scalable GPU bitshuffle method. u4 stands
for 4-byte unsigned integer type.

compression ratio will not be affected if the granularity is coarser
than the following encoder. We process the data row-wise so that
the bits in the same order are stored in the same column. We then
write back column-wise. Note that padding allows us to access the
data points column-wise without bank conflict.

3.4 Proposed Fast GPU Lossless Encoder
The prior study [22] finds that bitshuffle works well with LZ4 loss-
less encoding on scientific floating-point data. However, the LZ4
algorithm is unsuitable for GPU architectures 3 due to the sequen-
tial nature of its search for repeated strings (similar to all LZ-family
compression algorithms such as LZ77 and LZSS), leading to rel-
atively low throughput. To this end, we propose a new lossless
encoding method to replace the LZ4 encoder and couple it with
bitshuffle. The overview of our proposed encoding method is pre-
sented in Figure 6. Specifically, this encoder has two phases. The
first phase is to partition the data into data blocks and then iterate
all data blocks to record whether all values in the data block are
zeros or not in an array, called the “bit-flag array”. Then, the second
phase encodes the data based on the flag array generated in the
first phase. During the encoding, if the corresponding bit flag is ‘0’,
we use this zero to denote it; if the bit flag is ‘1’, we copy the whole
block to our compressed data. This sparsification-style encoder
is highly suitable for bitshuffle because bitshuffle reorganizes the
representation of quantization codes at the bit level, creating many
consecutive zero bits/bytes and hence zero blocks.

However, it is non-trivial to implement this encoding method
efficiently on the GPU because the size of each data block after
compression varies. Thus, we need to determine the memory offset
for every data block before encoding it. We use the prefix-sum to

3LZ4 from nvCOMP [37] can only achieve 6.3 GB/s on our evaluation datasets.

Input
Sequence

Block 0 Block 1 Block 2 … Block n

with padding

ByteFlag
Array

Flag 0 Flag 1 Flag 2 … Flag n

BitFlag
Array

Encoded
Data

BitFlags Block 0 Block 1 … Block n

Figure 6: Our proposed fast GPU encoding method.

compute the memory offsets. To implement an efficient GPU pre-
fix sum, we need device-wide synchronization to ensure sizes for
all compressed blocks are ready. Two approaches can achieve this
global synchronization. The first approach is to use the cooperative
group API [38]. However, the maximum possible number of threads
is limited and unsuitable for our problem. Another approach is
to split one kernel into two since a synchronization can be con-
veniently triggered when a GPU kernel exits. Thus, we propose
two phases in our encoding method, with the two corresponding
optimized kernels detailed below.

To take advantage of the result stored in shared memory in
the bitshuffle kernel to save the time to read again from global
memory, we propose to fuse the bitshuffle and the first phase of
our encoding in a single kernel. Note that while the granularity of
the two processes is different, meaning that some threads in the
kernel will be idle while others are executing, it is still more cost-
effective than accessing global memory (which will be proved in
the evaluation). Once the data is ready, we use statically allocated
buffers in shared memory (Lines 2–3) to store the flags of each
data block. We then use fewer threads than in bitshuffle to iterate
over the data blocks and record a flag indicating whether all data
points in the same data block are zero (Lines 14–16). The result
will be temporarily stored in an uint8_t array, called ByteFlagArr
(declared in Line 3). Finally, we convert the byte-flag array to the
bit-flag array through the bit-level operations (Lines 18–20). Note
that we also use the warp-level vote function to generate the bit-flag
array to avoid data access conflicts (Line 21). In addition, instead of
wasting the byte-flag array, we will use it to calculate the prefix-sum
for the offsets of data blocks in the second phase. The proposed
fused kernel is shown below in detail.

1 __shared uint32_t buf [32][33]

2 __shared uint32_t BitFlagArr [8]

3 __shared uint8_t ByteFlagArr [256]

4 uint32_t cur

5 ltid = get_linear_threadid ()

6

7 buf[Idx.y][Idx.x] = input[offset]; __syncthreads ()

8

9 cur = buf[Idx.y][Idx.x]

10 for i in range (32):

11 buf[Idx.y][Idx.x] = __ballot_sync(cur & (1U << i))

12 output[offset] = cur = buf[Idx.x][Idx.y]

13

14 if Idx.x * 4 < 32:

15 for i in range (4):

16 ByteFlagArr[ltid] = any(buf[Idx.x*4+i][Idx.y] != 0)

FZ-GPU HPDC ’23, June 16–23, 2023, Orlando, FL, USA

17

18 if Idx.y < 8:

19 cur = ByteFlagArr[ltid]

20 BitFlagArr[Idx.y] = __ballot_sync(buf)

21

22 WriteBackToGlobalMem(ByteFlagArr)

23 WriteBackToGlobalMem(BitFlagArr)

For the second phase, we directly call the high-performance Ex-
clusiveSum function (Line 1) from NVIDIA::CUB library [39]. Then,
we can obtain the memory offset of each compressed data block.
After that, we launch our encode kernel to write the compressed
data back to the output array in the global memory (Lines 8-9).
Note that if the corresponding data block has a valid offset4, the
compressed data block will be saved; otherwise, it will be discarded.
The detail of our second kernel is shown below.
1 PrefixSum(ByteFlagArr , PreSum)

2 __shared uint32_t sumArr [33]

3

4 ltid = get_linear_threadid ()

5 SumArr [0] = PreSum[ltid]

6 SumArr[Idx.x+1] = PreSum[gid+1]

7

8 if SumArr[Idx.x+1] != SumArr[Idx.x]:

9 output[offset] = input[ltid]

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup

Platforms. We use two platforms in our evaluation: 1 One node
from an HPC cluster equipped with two 64-core AMD EPYC 7742
CPUs at 2.25GHz and four NVIDIA Ampere A100 GPUs (108 SMs,
40GB), running CentOS 7.4 and CUDA 11.4.120. 2 An in-house
workstation equipped with two 28-core Intel Xeon Gold 6238R
CPUs at 2.20GHz and two NVIDIA GTX A4000 GPUs (40 SMs, 16
GB), running Ubuntu 20.04.5 and CUDA 11.7.99. While we use one
GPU for evaluation, multi-GPU processing is considered embar-
rassingly parallel with regard to single-GPU processing. This is
because we partition data in a coarse-grained manner to fit into
a single GPU, with a data chunk independent from another. With
no data dependency, the multi-GPU comparison will only involve
different numbers of data chunks.

Table 1: Real-world float-type datasets used in evaluation.

field data size #fields
datasets dimensions examples(s)

cosmology 1,123.81 MB 6 in total

HACC 280,953,867 xx, vx
climate 25.92 MB 70 in total

CESM 1,800×3,600 CLDICE, RELHUM
cosmology 536.87 MB 6 in total

NYX 512×512×512 baryon_density
climate 100 MB 13 in total

Hurricane 100×500×500 CLDICE, QRAIN
quantum circuits 630.74 MB 1 in total

QMCPACK 7,935×69×288 einspline
petroleum exploration 189.50 MB 16 in total

RTM 449×449×235 snapshot_1200

4The offset is valid if it is different from its previous offset.

Datasets. We conduct our evaluation and comparison based on
six typical real-world HPC simulation datasets from the Scientific
Data Reduction Benchmarks [23]: HACC (cosmology particle sim-
ulation) [1], CESM (climate simulation) [40], Hurricane (ISABEL
weather simulation) [41], Nyx (cosmology simulation) [42], QMC-
PACK (quantum Monte Carlo simulation) [43], and RTM (reverse
time migration, seismic imaging for petroleum exploration) [44],
which have been widely used in previous compression studies [14,
32, 45–53]. The details are shown in Table 1.

Note that to compress particle datasets such as the HACC dataset
with a minimum impact on the probability density function, prior
work [54] proposes to use point-wise relative error bound. To read-
ily achieve that, an existing work [4] proposes to transform the
original data using a logarithmic function and compress the log-
transformed data with the corresponding absolute error bound
(computed from the point-wise relative error bound). Thus, in this
paper, we evaluate the log-transformed HACC dataset.

Baselines. We compare FZ-GPU with four state-of-the-art GPU
lossy compressors, including cuZFP [15], cuSZ [14], cuSZx [55],
and MGARD-GPU [16]. We exclude bitcomp [56] from the evalua-
tion as it is closed-source software with an unknown compression
algorithm. We use five typical relative error bounds (relative to
the value range of the data field), i.e., 1e−2, 5e−3, 1e−3, 5e−4, and
1e−4. Note that when comparing the compression throughput, we
evaluate cuSZ, cuSZx, and MGARD-GPU under the same error
bound. In contrast, we evaluate cuZFP under the same PSNR as
ours as cuZFP does not support the error-bounded mode.

4.2 Evaluation Metrics
Our evaluation metrics include 1 compression ratio, 2 distortion
between original and reconstructed data, 3 compression through-
put, and 4 overall throughput, which are detailed as follows.
(1) Compression ratio is one of the most commonly used metrics

in compression research. It is a factor of the original data size
to the compressed data size. Higher compression ratios mean
denser information aggregation against the original data. It is
worth noting that the bitrate is the average number of bits per
value after compression. Since all of our evaluation datasets
are single-precision floating-point data, the bitrate is calculated
as 32 (bits) divided by the compression ratio. We evaluate how
each compressor corresponds to data quality at a specific bitrate,
which will be presented in the rate-distortion curve in §4.3.

(2) Distortion evaluation is crucial for evaluating lossy compression
performance in data reconstruction quality. In this work, we
mainly use PSNR to measure the distortion quality. Similar to
prior work, we plot the rate-distortion curve for a fair compari-
son among different compressors and their diverse compression
modes, which compares the distortion quality at the same bi-
trate. Moreover, we also adopt the Structural Similarity Index
Measure (SSIM) to evaluate the reconstructed data quality. SSIM
is a metric used to measure the similarity between two images.
Details on the calculation can be found in [57].

(3) Compression throughput is how much data a compressor can
process in one unit of time. It is a key advantage of using a
GPU-based lossy compressor instead of a CPU-based one.

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Zhang & Tian et al.

1 2 3 4 5 6 7 8 9
40

60

80

100

120

PS
N

R

CESM

1 2 3 4 5 6 7 8 9 10 11 12
40

60

80

100

120Hurricane

1 2 3 4 5 6 7 8 9
40

60

80

100

120Nyx

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
40

60

80

100

120

PS
N

R

HACC

1 2 3 4 5 6 7 8
40

60

80

100

120

Bitrate

RTM

1 2 3 4 5 6 7 8 9 1011121314151617181920
40

60

80

100

120

Bitrate

PS
N

R

QMCPACK

cuSZ cuZFP FZ-GPU
MGARD-GPU cuSZx

Figure 7: Rate-distortion of five GPU lossy compressors.

(4) Overall data-transfer throughput is to measure the performance
of transferring compressed data (through the network or CPU-
GPU interconnect), including compression overhead. This met-
ric is a composite indicator of compression ratio and speed.
Higher compression ratio and higher compression throughput,
higher overall data transfer throughput.

4.3 Evaluation of Compression Quality
First, we compare the five compressors’ rate-distortion curves (i.e.,
distortion in PSNR versus bitrate), as shown in Figure 7. Specifically,
our platform uses different experimental settings to get the rate-
distortion curves. We apply five different relative error bounds
(relative to the value range) to cuSZ, MGARD-GPU, cuSZx, and
FZ-GPU. Due to the fact that cuZFP does not support the error-
bounded mode, we investigate a series of bitrates and select the
bitrates with the same average PSNR as ours. Note that on Nyx
and RTM, cuZFP cannot achieve a similar PSNR as ours with the
error bounds of 1e−2 and 5e−3. As shown in Figure 7, FZ-GPU has
a similar compression ratio compared to cuSZ. On the RTM dataset
with high error bounds, the compression ratio of FZ-GPU is up to
1.1× higher than cuSZ and 1.7× higher than cuZFP on average. Note
that FZ-GPU has good stability regarding distortion. For example,
on RTM with 400 timesteps, PSNR varies only from 86.1 dB to 87.5
dB under the relative error bound of 1e−4. The analysis is detailed
in the following sections.

Comparisonwith cuSZ. Since the lossy part (i.e., dual-quantization)
of FZ-GPU is the same as cuSZ, their PSNR is the same when we
use the same error bound. Therefore, our bitrate is very close to
cuSZ. In some cases of the high error bound, FZ-GPU has a higher
compression ratio than cuSZ. For example, Figure 7 shows that
FZ-GPU has a 13.9% improvement in compression ratio with an

error bound of 1e−2 on the RTM dataset. This is because the RTM
dataset contains many zero values and other highly smooth values.
Therefore, after we apply bitshuffle, the shuffled data is mostly zero,
resulting in a high compression ratio of our designed sparsification-
like encoding method. In comparison, cuSZ has the compression
ratio upper bounded by 32 due to Huffman encoding. Moreover,
cuSZ does not fully utilize the spatial redundancy of the RTM
dataset. In contrast, our lossless encoder guarantees that the spatial
redundancy is effectively compressed and the compression ratio is
up to 128. Thus, the smooth values on the RTM dataset make the
bitshuffled data more suitable for our lossless encoder. We note that
cuSZ cannot work correctly on 3D QMCPACK due to a Huffman
encoding error; therefore, we apply cuSZ on the 1D QMCPACK
(flattened) for a comparison.

Comparison with cuZFP. FZ-GPU achieves a much higher com-
pression ratio under the same average PSNR on almost all datasets
compared to cuZFP, except for some high error-bound cases on
Nyx and RTM. For example, cuZFP has a compression ratio of 21.3
on Nyx with the error bound of 1e−2, while FZ-GPU has a com-
pression ratio of 14.5. This is because the two datasets under high
error bounds are very smooth (most quantization codes are zeros),
where cuZFP is highly effective. But cuZFP loses this advantage
quickly when the error bound is lower. That is because the lower
error bound gives the Nyx and RTM datasets higher entropy (like
other datasets) after dual-quantization. The compression method
of cuZFP cannot handle such a complex dataset effectively.

Comparison with MGARD-GPU. We note that due to memory
issues, MGARD-GPU cannot work correctly on 1D datasets. For
example, it cannot compress HACC on A100 with the relative error
bound of 1e−4 and on A4000 with all the relative error bounds. Also,
MGARD-GPU fails to compress QMCPACK with the error bound
of 1e−4 because the compressed size is larger than the original size.
As a result, the rate-distortion curve in Figure 7 only contains 4
points for MGARD-GPU on QMCPACK and HACC. Figure 7 shows
that under the same relative error bound, MGARD-GPU has higher
PSNR on all datasets because MGARD-GPU over-preserves the
data distortion. Regarding rate-distortion, MGARD-GPU is similar
to cuSZ and slightly better than FZ-GPU on CESM, Hurricane,
and Nyx, since it uses a multi-grid-based approach with high time
complexity (a large coefficient before𝑂 (𝑁)) to achieve an accurate
approximation. FZ-GPU is close to MGARD-GPU on RTM. For
example, FZ-GPU has a bitrate of 2.6 at the error bound of 1e−4,
while MGARD-GPU has a bitrate of 2.4 at the error bound of 1e−2,
with similar PSNR values. On QMCPACK, FZ-GPU outperforms
MGARD-GPU: specifically, FZ-GPU has a bitrate of 4.7 at the error
bound of 1e−4, while MGARD-GPU has a bitrate of 6.7 at the error
bound of 1e−2, again with similar PSNR values.

Comparison with cuSZx. Under the same relative error bound, FZ-
GPU has a much higher compression ratio than cuSZx. Specifically,
FZ-GPU has an average compression ratio improvement of 2.4× and
4.3× higher compression ratio than cuSZx atmost on theQMCPACK
dataset with a relative error bound of 1e−2. Although cuSZx has
higher PSNR than FZ-GPU under the same error bound, FZ-GPU
has a higher compression ratio under similar PSNR according to
the curve shown in Figure 7. This is because FZ-GPU employs
the Lorenzo predictor (to reduce the entropy of the input data)

FZ-GPU HPDC ’23, June 16–23, 2023, Orlando, FL, USA

1e-2 5e-3 1e-3 5e-4 1e-4
0

50

100

150

200

Th
ro

ug
hp

ut
(G

B
/s

)

CESM

1e-2 5e-3 1e-3 5e-4 1e-4
0

100

200

300

Hurricane

1e-2 5e-3 1e-3 5e-4 1e-4
0

100

200

300

HACC

1e-2 5e-3 1e-3 5e-4 1e-4
0

100

200

300

Th
ro

ug
hp

ut
(G

B
/s

)

Nyx

1e-2 5e-3 1e-3 5e-4 1e-4
0

50

100

150

200

QMCPACK

1e-2 5e-3 1e-3 5e-4 1e-4
0

100

200

300

RTM

Compressor Throughputs on A100 GPU for Range-Based Relative Error Bounds

MGARD-GPU cuSZ cuSZ-ncb cuZFP cuSZx FZ-GPUMGARD-GPU cuSZ cuSZ-ncb cuZFP cuSZx FZ-GPUMGARD-GPU cuSZ cuSZ-ncb cuZFP cuSZx FZ-GPUMGARD-GPU cuSZ cuSZ-ncb cuZFP cuSZx FZ-GPUMGARD-GPU cuSZ cuSZ-ncb cuZFP cuSZx FZ-GPUMGARD-GPU cuSZ cuSZ-ncb cuZFP cuSZx FZ-GPU

Figure 8: Compression throughput of cuZFP, cuSZ, cuSZ-ncb (cuSZwith no codebook building), cuSZx,MGARD-GPU, and FZ-GPU onNVIDIA
Tesla A100. cuZFP’s throughput corresponds to FZ-GPU with the same average PSNR.

1e-2 5e-3 1e-3 5e-4 1e-4
0

50

100

150

200

Th
ro

ug
hp

ut
(G

B
/s

)

CESM

1e-2 5e-3 1e-3 5e-4 1e-4
0

50

100

150

Hurricane

1e-2 5e-3 1e-3 5e-4 1e-4
0

50

100

150

HACC

1e-2 5e-3 1e-3 5e-4 1e-4
0

50

100

150

Th
ro

ug
hp

ut
(G

B
/s

)

Nyx

1e-2 5e-3 1e-3 5e-4 1e-4
0

50

100

150

QMCPACK

1e-2 5e-3 1e-3 5e-4 1e-4
0

50

100

150

RTM

Compressor Throughputs on A4000 GPU for Range-Based Relative Error Bounds

MGARD-GPU cuSZ cuSZ-ncb cuZFP cuSZx FZ-GPUMGARD-GPU cuSZ cuSZ-ncb cuZFP cuSZx FZ-GPUMGARD-GPU cuSZ cuSZ-ncb cuZFP cuSZx FZ-GPUMGARD-GPU cuSZ cuSZ-ncb cuZFP cuSZx FZ-GPUMGARD-GPU cuSZ cuSZ-ncb cuZFP cuSZx FZ-GPUMGARD-GPU cuSZ cuSZ-ncb cuZFP cuSZx FZ-GPU

Figure 9: Compression throughput of cuZFP, cuSZ, cuSZ-ncb (cuSZwith no codebook building), cuSZx,MGARD-GPU, and FZ-GPU onNVIDIA
RTX A4000. cuZFP’s throughput corresponds to FZ-GPU with the same average PSNR.

and minimizes the bitwise data redundancy, whereas cuSZx only
reduces the blockwise data redundancy.

4.4 Evaluation of Compression Throughput
Next, we evaluate the compression throughput of these three meth-
ods on A100 and A4000 GPUs, as shown in Figure 8 and Figure 9,
respectively. Specifically, we measure their kernel time and apply
five relative error bounds to cuSZ and FZ-GPU. Due to the fact that
cuZFP does not support the error-bounded mode, we investigate a
series of bitrates and select the bitrates that have the same average
PSNRs as ours. Then, we use these bitrates to get the corresponding
compression throughput. In some cases, since cuZFP cannot achieve
similar PSNR, we use fewer bars to display valid results. Figure 8

illustrates that on A100, FZ-GPU achieves a speedup of up to 11.2×
over cuSZ, and a speedup of up to 4.2× over cuZFP. On the A4000
platform, Figure 9 shows that FZ-GPU achieves a speedup of up to
3.6× over cuSZ, and a speedup of up to 2.0× over cuZFP. Note that
cuSZ includes all cuSZ’s kernels, while cuSZ-ncb does not include
the time to generate the Huffman codebook (as this part can be
done on the CPU). Note that the decompression pipeline is highly
symmetrical to the compression pipeline, exhibiting throughput
nearly identical to that of compression. Due to space constraints,
we do not present a detailed evaluation.

Comparison with cuSZ. On A100, we observe that FZ-GPU has
higher throughput than cuSZ on all datasets. FZ-GPU has an av-
erage speedup of 4.2× than cuSZ overall. on the CESM dataset,

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Zhang & Tian et al.

FZ-GPU achieves an even higher average speedup of 10.7×. The
performance compared with cuSZ on CESM is better than other
datasets because the Huffman codebook generating time in cuSZ
is almost the same among all datasets. For datasets like CESM, the
field size is smaller than others, and the throughput of Huffman
codebook generation is relatively lower. The result of cuSZ-ncb
also proves this; the ratio of cuSZ-ncb to FZ-GPU is around 0.5
on almost all datasets. In contrast, FZ-GPU is highly stable across
different datasets because our bitshuffle and fast encode kernels
have almost the same amount of operations for the same data size.

The result on A4000 also demonstrates that FZ-GPU has more
stability and higher throughput on different datasets compared
to cuSZ. Our throughputs are consistently around 70 GB/s, an
average of 2.4× higher than cuSZ. However, it is unusual that cuSZ
on A4000 has a higher throughput for the CESM dataset than on
A100. This is due to the CESM dataset’s small data size per field
(i.e., 24.7 MB), which is sufficient for A4000 to warm up but not for
A100. This phenomenon is less pronounced with datasets having
larger field sizes than CESM.

Comparison with cuZFP. On A100, FZ-GPU has an average speed-
up of 2.3× than cuZFP. Furthermore, we observe that FZ-GPU
achieves higher throughput on almost every experimental setting,
except for the high error-bound cases on CESM and RTM. For
example, on CESM with the error bound of 1e−2, our throughput is
125.0 GB/s, while the throughput of cuZFP is 197.6 GB/s. The reason
is that cuZFP employs discrete cosine transform and bit truncation,
which can be efficiently performed on theGPU bymatrix operations,
and achieves high efficiency when the data is super smooth (as
aforementioned, RTM and CESM after pre-quantization have many
zero values with a high error bound). But this advantage of cuZFP
disappears quickly as the error bound becomes lower.

On A4000, FZ-GPU has an average speedup of 1.3× than cuZFP.
However, we notice that the throughput of cuZFP maintains almost
the same between A4000 and A100. This is because cuZFP is limited
by GPU memory bandwidth rather than peak performance.

Comparison with MGARD-GPU. As mentioned in §4.3, MGARD-
GPU cannot work correctly on 1D datasets due to memory issues.
Moreover, although it can work on A100 in some error bounds, the
compression throughput is unsteadily low (e.g., 0.018 GB/s on 1D
HACC with 1e−2 error bound). With excluding the extreme cases,
FZ-GPU averages 87.0× and 45.7× in throughputs, compared to
MGARD-GPU. We also note that MGARD-GPU does not scale well
from A4000 to A100. For example, its throughput on CESM with
the relative error bound of 1e−2 is 0.62 GB/s on A100 and 0.67 GB/s
on A4000, far less distinguishable than the hardware specifications.
This demonstrates that MGARD-GPU does not respond well to
different grades of modern GPUs.

Comparison with cuSZx. OnA100, cuSZx has higher compression
throughput on all datasets. The compression throughput of cuSZx
is 1.5× higher than FZ-GPU in average. This is because cuSZx uses
a straightforward compression pipeline, which divides the input
data into blocks and handles the constant blocks and non-constant
blocks separately. This makes cuSZx highly efficient but also results
in a fairly low compression ratio (as illustrated in §4.3). Note that the
throughput of cuSZx on QMCPACK is relatively lower compared
with other datasets. This is because the QMCPACK dataset consists

of many unsmooth floating data points. Thus, non-constant blocks
are much more than constant blocks. In contrast, FZ-GPU is highly
stable over different datasets. On A4000, cuSZx also has advantages
in throughput; the improvement is the same as that on A100, which
is 1.5× on average.

Comparison with the CPU implementation. We also implement
our proposed lossy compression algorithm on multi-core CPUs us-
ing OpenMP (called “FZ-OMP”) and compare it with FZ-GPU. The
evaluation results show that FZ-GPU with A100 has speedups of
38.8×, 42.4×, 36.3×, 31.8×, 34.8×, and 37.6× over FZ-OMP with Intel
Xeon Gold 6238R CPUs (32 cores/threads) on HACC, CESM, Nyx,
Hurricane, QMCPACK, and RTM, respectively. Moreover, FZ-OMP
has higher throughput than SZ-OMP due to its efficient compres-
sion algorithm. For example, the average throughput of FZ-OMP
is 1.7×, 2.5×, and 2.0× higher than that of the original SZ-OMP
(v.2.1.12.5) [58] on the 3DHurricane, Nyx, and RTM datasets, respec-
tively, with the Intel CPUs using 32 cores/threads 5 (SZ-OMP only
supports 3D data). This demonstrates that both our proposed GPU
performance optimizations and our compression algorithm con-
tribute to the significant performance improvement over SZ/cuSZ.

4.5 Evaluation of Proposed Optimizations
Finally, we present the evaluation of each of our optimizations in
detail. The breakdown of the performance improvement on A100 is
illustrated in Figure 10. Different bars represent different versions
of each compression kernel, detailed as follows:
(1) pred-quant-v1: The original dual-quantization kernel.
(2) pred-quant-v2: Our optimized dual-quantization kernel with-

out shifting and outlier handling.
(3) bitshuffle-mark-v1: Two separate kernels for bitshfuffle and

mark operations.
(4) bitshuffle-mark-v2: One fused kernel for both bitshfuffle and

mark operations.
(5) prefix-sum-encode-v1: Our prefix-sum & fast encode kernel.
(6) prefix-sum-encode-v2: The same kernel as v1, while the en-

coding is improved due to dual-quantization optimization.
Figure 10 shows that the dual-quantization kernel has a speedup

of up to 1.7× because we remove the branches in the original kernel.
More specifically, GPU executes instructions at the warp level,
and different branches incur warp divergence, which is resolved
sequentially. The kernel fusion of bitshuffle and bit-flag array also
brings a speedup of up to 1.1×. The kernel fusion can avoid extra
access to the global memory by directly caching the bitshuffled
data in shared memory. Our prefix-sum-encode kernel also has a
speedup of up to 1.9× because of dual-quantization optimization.
This is because fewer data blocks are encoded, so the encoding
time is much lower than before. In addition, on the HACC dataset,
the encoding time differs from other datasets (i.e., v1 has higher
throughput than v2). This is because Lorenzo prediction is less
effective for unsmoothed data like HACC; it generates many large
irregular integers, affecting the encoding performance. In contrast,
cuSZ does not have this phenomenon as it otherwise handles these
irregular integers as outliers.

5Note that the performance of both FZ-OMP and SZ-OMP increases as the number of
threads increases to 32 (with up to 21.2× speedup), but it does not increase much with
more than 32 threads on some datasets due to the limited workload per core.

FZ-GPU HPDC ’23, June 16–23, 2023, Orlando, FL, USA

5e-3 1e-3 5e-4 1e-4
0

200

400

600

K
er

ne
lT

hr
ou

gh
pu

t
(G

B
/s

)

CESM

5e-3 1e-3 5e-4 1e-4
0

200

400

600

Hurricane

5e-3 1e-3 5e-4 1e-4
0

200

400

600

HACC

5e-3 1e-3 5e-4 1e-4
0

200

400

600

800

K
er

ne
lT

hr
ou

gh
pu

t
(G

B
/s

)

Nyx

5e-3 1e-3 5e-4 1e-4
0

200

400

600

QMCPACK

5e-3 1e-3 5e-4 1e-4
0

200

400

600

RTM

pred-quant-v1
pred-quant-v2

bitshu�le-mark-v1
bitshu�le-mark-v2

prefix-sum-encode-v1
prefix-sum-encode-v2

Figure 10: Performance improvements of our proposed optimizations for different compression kernels on NVIDIA A100.

1e-2 5e-3 1e-3 5e-4 1e-4
0

25

50

75

100

Th
ro

ug
hp

ut
(G

B
/s

)

CESM

1e-2 5e-3 1e-3 5e-4 1e-4
0

25

50

75

100

Hurricane

1e-2 5e-3 1e-3 5e-4 1e-4
0

25

50

75

100

HACC

1e-2 5e-3 1e-3 5e-4 1e-4
0

25

50

75

100

125

Th
ro

ug
hp

ut
(G

B
/s

)

Nyx

1e-2 5e-3 1e-3 5e-4 1e-4
0

25

50

75

100

QMCPACK

1e-2 5e-3 1e-3 5e-4 1e-4
0

25

50

75

100

125
RTM

GPU-CPU Data Transfer Throughput in GB/s for Range-Based Relative Error Bounds

MGARD-GPU cuSZ cuZFP cuSZx FZ-GPU

Figure 11: Overall CPU-GPU data-transfer throughput of cuZFP, cuSZ, cuSZx, MGARD-GPU, and FZ-GPU on NVIDIA A100.

4.6 Evaluation of Overall Throughput
Besides compression throughput (𝑇compr), overall throughput con-
sidering the time in moving compressed data between GPU and
CPU, is also a critical metric for overall application performance.
Thus, we propose to use this metric to further evaluate the effi-
ciency of different compressors in practice. Specifically, the overall
throughput can be calculated as

𝑇overall =
(
(𝐵𝑊 × CR)−1 +𝑇−1

compr
)−1

,

where 𝐵𝑊 is the memory bandwidth between GPU and CPU and
𝐶𝑅 is the compression ratio. Our HPC cluster node is equipped
with 4 A100 GPUs connected to the CPU via a 32-lane PCIe 4.0
interconnect; each GPU can leverage up to 16-lane bandwidth (i.e.,
32 GB/s). Based on our benchmarking result using [59], when the 4
GPUs read/write data from/to the CPU simultaneously, the band-
width for each GPU can be as low as 11.4 GB/s (aggregately about

45 GB/s). Finally, we measure the overall data-transfer throughputs
of different compressors and show them in Figure 11. It illustrates
that FZ-GPU achieves the best overall throughput on almost all
datasets at all evaluated relative error bounds. Note that for the
interconnections with effective bandwidth lower than 15 GB/s (e.g.,
networks), FZ-GPU method can achieve the optimal balance of
compression ratio and throughput. We leave the evaluation in node
communication for future work.

4.7 Evaluation of Reconstructed Data Quality
Finally, we use Figure 12 to demonstrate the reconstructed data
quality for all five lossy compressors by utilizing PSNR and SSIM.
We select a similar compression ratio at approximately 22.8× for a
fair comparison, with different error bounds or bitrate configured.

Specifically, FZ-GPU has the identical reconstructed data quality
to that of cuSZ because of the shared error control scheme in our

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Zhang & Tian et al.

0 50 100 150 200 250
Data extent = [:250, :250]

0

50

100

150

200

250

Original, Zoomed-in

0 250 500

0

250

500

region of
interst
(zoomed in)

Original

0 50 100 150 200 250
PSNR: 63.80 dB, SSIM: 0.9996

Compr. Ratio: 22.8/27.0

0

50

100

150

200

250

FZ-GPU/cuSZ

0 50 100 150 200 250
PSNR: 47.91 dB, SSIM: 0.9977

Compr. Ratio: 22.8

0

50

100

150

200

250

cuZFP

0 50 100 150 200 250
PSNR: 57.80 dB, SSIM: 0.9906

Compr. Ratio: 22.1

0

50

100

150

200

250

cuSZx

0 50 100 150 200 250
PSNR: 69.47 dB, SSIM: 0.9994

Compr. Ratio: 22.4

0

50

100

150

200

250

MGARD-GPU

0.0000 0.0002 0.0004

Data Value Distribution

102

104

N
um

be
r

of
Po

in
ts

FZ-GPU/cuSZ
Original

0.0000 0.0002 0.0004

Data Value Distribution

102

105

N
um

be
r

of
Po

in
ts

cuZFP
Original

0.0000 0.0002 0.0004

Data Value Distribution

102

104

N
um

be
r

of
Po

in
ts

cuSZx
Original

0.0000 0.0002 0.0004

Data Value Distribution

102

104

N
um

be
r

of
Po

in
ts

MGARD-GPU
Original

Figure 12: Reconstructed data quality using various GPU-based lossy compressors on field QSNOWf48 (slice 50) in the Hurricane dataset, under
a similar compression ratio. The first row shows the visualization of the region of interest, while the second row shows the data distribution
comparison between the decompressed and the original data for each compressor.

pipeline; thus, they share the same data visualization. Moreover,
FZ-GPU has the highest SSIM among all compressors. Given that
SSIM is a metric designed based on image structure, contrast, and
luminance [60], this demonstrates that FZ-GPU has a higher capa-
bility to preserve the quantity of interests or features than other
compressors. On the other hand, the PSNR of our proposed pipeline
is much higher compared to cuZFP and cuSZx under a similar com-
pression ratio. Although the PSNR of FZ-GPU is slightly lower than
MGARD-GPU, MGARD-GPU has a very low throughput (4.9 GB/s
compared to 65.4 GB/s in FZ-GPU). This is because MGARD-GPU
uses a multi-grid-based approach with high time complexity (a large
coefficient before O(𝑁)) to achieve an accurate approximation.

5 RELATEDWORK
Some GPU-based lossy compression works have been optimized
for scientific data, with a focus on CUDA architectures [28]. For
example, cuSZ is the first lossy compression framework that pro-
vides the error-bounded mode (detailed in §2.2). cuZFP is the CUDA
implementation of ZFP algorithm [10], which performs near or-
thogonal transform and bit truncation over the split blocks of the
data. Tian et al. [32] proposed using run-length encoding in place
of Huffman encoding to improve the compression ratio of cuSZ for
high error-bound scenarios. Yu et al. proposed cuSZx [55] based on
the cuSZ framework that achieves very high compression through-
put by using lightweight bitwise operations. Chen et al. developed
MGARD-GPU [16] that optimizes data refactoring kernels for GPU
accelerators to enable efficient creation and manipulation of data in
multigrid-based hierarchical forms. Bitcomp [56] is a proprietary
lossy compression developed by NVIDIA for scientific data, which
has a similar performance as cuSZx.

In addition to lossy compression on GPUs, there are some GPU-
based lossless compression works for scientific data. For example,
Tian et al. [47] proposed and implemented an efficient Huffman
encoding approach for modern GPU architectures to parallelize
Huffman encoding algorithm and utilize the GPU’s high memory
bandwidth. Rivera et al. [48] bitwise a deep architectural optimiza-
tion for two Huffman decoding algorithms to take advantage of
CUDA GPU architectures. Knorr et al. [61] proposed an efficient

GPU lossless compression of scientific floating-point data on GPUs
using integer Lorenzo transform and vertical bit packing. Masui et
al. [22] proposed a CPU vectorized compression using bitshuffle
and LZ4, and [36] is its simple GPU implementation.

6 CONCLUSION AND FUTUREWORK
In this paper, we develop a fast and high-ratio error-bounded lossy
compressor on GPUs for scientific data. Specifically, we design a
new compression pipeline that consists of dual-quantization, bit-
shuffle, and fast lossless encoding. We also propose a series of archi-
tectural optimizations for each GPU compression kernel, including
warp-level optimization for bitwise operations, maximization of
sharedmemory utilization, andmulti-kernel fusion. Finally, we eval-
uate our proposed FZ-GPU on six representative scientific datasets
and demonstrate its high compression throughput and ratio.

In the future, we plan to 1 exploit fusing all GPU kernels into
one to improve the performance further, 2 adapt FZ-GPU to other
GPU platforms by using code translation tools such as HIPFY [62]
for AMDGPUs and SYCLomatic [63] for Intel GPUs, and 3 evaluate
FZ-GPU with real-world applications requiring fast compression,
such as memory compression.

ACKNOWLEDGMENT
This research was supported by the Exascale Computing Project
(ECP), Project Number: 17-SC-20-SC, a collaborative effort of two
DOE organizations—the Office of Science and the National Nu-
clear Security Administration, responsible for the planning and
preparation of a capable exascale ecosystem, including software,
applications, hardware, advanced system engineering and early
testbed platforms, to support the nation’s exascale computing im-
perative. The material was supported by the U.S. Department of
Energy, Office of Science, Advanced Scientific Computing Research
(ASCR), under contract DE-AC02-06CH11357. This work was also
supported by the National Science Foundation under Grants OAC-
2003709, OAC-2104023, OAC-2303064, OAC-2247080, and OAC-
2312673. This research was also supported in part by Lilly Endow-
ment, Inc., through its support for the Indiana University Pervasive
Technology Institute.

FZ-GPU HPDC ’23, June 16–23, 2023, Orlando, FL, USA

REFERENCES
[1] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann, K. Ku-

maran, V. Vishwanath, T. Peterka, J. Insley, et al., “HACC: Extreme scaling
and performance across diverse architectures,” Communications of the ACM,
vol. 60, no. 1, pp. 97–104, 2016.

[2] S. C. V. Vishwanath and K. Harms, Parallel i/o on mira, https://www.alcf.anl.
gov/files/Parallel_IO_on_Mira_0.pdf, Online, 2019.

[3] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello, “Error-
controlled lossy compression optimized for high compression ratios of scien-
tific datasets,” in 2018 IEEE International Conference on Big Data, IEEE, 2018,
pp. 438–447.

[4] X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An efficient transformation
scheme for lossy data compression with point-wise relative error bound,” in
IEEE International Conference on Cluster Computing, Belfast, UK: IEEE, 2018,
pp. 179–189.

[5] D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and J. Kunkel, “A
study on data deduplication in HPC storage systems,” in SC ’12: Proceedings

of the International Conference on High Performance Computing, Networking,

Storage and Analysis, Salt Lake City, UT, USA: IEEE, 2012, p. 7.
[6] S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W.-k. Liao, and A. Choudhary,

“Data compression for the exascale computing era-survey,” Supercomputing

Frontiers and Innovations, vol. 1, no. 2, pp. 76–88, 2014.
[7] F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C. H. Yoon, X.-C. Wu,

Y. Alexeev, and F. T. Chong, “Use cases of lossy compression for floating-point
data in scientific data sets,” The International Journal of High Performance

Computing Applications, vol. 33, no. 6, pp. 1201–1220, 2019.
[8] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression with

SZ,” in 2016 IEEE International Parallel and Distributed Processing Symposium,
Chicago, IL, USA: IEEE, 2016, pp. 730–739.

[9] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy com-
pression for scientific data sets based on multidimensional prediction and
error-controlled quantization,” in 2017 IEEE International Parallel and Dis-

tributed Processing Symposium, Orlando, FL, USA: IEEE, 2017, pp. 1129–1139.
[10] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE Transactions

on Visualization and Computer Graphics, vol. 20, no. 12, pp. 2674–2683, 2014.
[11] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian, J. Deng, J. C.

Calhoun, D. Tao, Z. Chen, and F. Cappello, “Sz3: A modular framework for
composing prediction-based error-bounded lossy compressors,” IEEE Transac-

tions on Big Data, pp. 1–14, 2022.
[12] P. Lindstrom and M. Isenburg, “Fast and efficient compression of floating-

point data,” IEEE Transactions on Visualization and Computer Graphics, vol. 12,
no. 5, pp. 1245–1250, 2006.

[13] https://lcls.slac.stanford.edu/lasers/lcls-ii, Online.
[14] J. Tian, S. Di, K. Zhao, C. Rivera, M. H. Fulp, R. Underwood, S. Jin, X. Liang,

J. Calhoun, D. Tao, et al., “Cusz: An efficient gpu-based error-bounded lossy
compression framework for scientific data,” in Proceedings of the ACM Interna-

tional Conference on Parallel Architectures and Compilation Techniques, 2020,
pp. 3–15.

[15] cuZFP, https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp, Online, 2019.
[16] J. Chen, L. Wan, X. Liang, B. Whitney, Q. Liu, D. Pugmire, N. Thompson, J. Y.

Choi, M. Wolf, T. Munson, I. Foster, and S. Klasky, “Accelerating multigrid-
based hierarchical scientific data refactoring on gpus,” in 2021 IEEE Interna-

tional Parallel and Distributed Processing Symposium, IEEE, 2021, pp. 859–
868.

[17] Compression Modes, https://zfp.readthedocs.io/en/release0.5.4/modes.html.
[18] S. Jin, P. Grosset, C. M. Biwer, J. Pulido, J. Tian, D. Tao, and J. Ahrens, “Un-

derstanding GPU-based lossy compression for extreme-scale cosmological
simulations,” in 2020 IEEE International Parallel and Distributed Processing

Symposium, IEEE, 2020, pp. 105–115.
[19] P. Deutsch, Rfc1951: Deflate compressed data format specification version 1.3,

1996.
[20] D. A. Huffman, “A method for the construction of minimum-redundancy

codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.
[21] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”

IEEE Transactions on information theory, vol. 23, no. 3, pp. 337–343, 1977.
[22] K. Masui, “Bitshuffle: Filter for improving compression of typed binary data,”

Astrophysics Source Code Library, ascl–1712, 2017.
[23] K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, and F. Cappello,

“Sdrbench: Scientific data reduction benchmark for lossy compressors,” in 2020
IEEE International Conference on Big Data, IEEE, 2020, pp. 2716–2724.

[24] G. K.Wallace, “The JPEG still picture compression standard,” IEEE Transactions
on Consumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv, 1992.

[25] D. Le Gall, “Mpeg: A video compression standard for multimedia applications,”
Communications of the ACM, vol. 34, no. 4, pp. 46–58, 1991.

[26] M Ainsworth, O Tugluk, B Whitney, and S Klasky, “Mgard: A multilevel
technique for compression of floating-point data,” in DRBSD-2 Workshop at

Supercomputing, 2017.

[27] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “Tthresh: Tensor compres-
sion for multidimensional visual data,” IEEE transactions on visualization and

computer graphics, vol. 26, no. 9, pp. 2891–2903, 2019.
[28] J. Sanders and E. Kandrot,CUDA by example: an introduction to general-purpose

GPU programming. Addison-Wesley Professional, 2010.
[29] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core com-

pression and decompression of large n-dimensional scalar fields,” Computer

Graphics Forum, vol. 22, no. 3, pp. 343–348, 2003.
[30] L. P. Deutsch, GZIP file format specification version 4.3, 1996.
[31] Zstd, https://github.com/facebook/zstd/releases, Online, 2019.
[32] J. Tian, S. Di, X. Yu, C. Rivera, K. Zhao, S. Jin, Y. Feng, X. Liang, D. Tao, and

F. Cappello, “Optimizing error-bounded lossy compression for scientific data
on gpus,” in 2021 IEEE International Conference on Cluster Computing, IEEE,
2021, pp. 283–293.

[33] S. Jin, C. Zhang, X. Jiang, Y. Feng, H. Guan, G. Li, S. L. Song, and D. Tao, “Comet:
A novel memory-efficient deep learning training framework by using error-
bounded lossy compression,” Proceedings of the VLDB Endowment, vol. 15,
no. 4, pp. 886–899, 2021.

[34] Q Zhou, C Chu, N. Kumar, P. Kousha, S. M. Ghazimirsaeed, H. Subramoni,
and D. K. Panda, “Designing high-performance mpi libraries with on-the-fly
compression for modern gpu clusters,” in 2021 IEEE International Parallel and

Distributed Processing Symposium, IEEE, 2021, pp. 444–453.
[35] K. Y. Besedin, P. S. Kostenetskiy, and S. O. Prikazchikov, “Increasing efficiency

of data transfer between main memory and intel xeon phi coprocessor or
nvidia gpus with data compression,” in International Conference on Parallel

Computing Technologies, Springer, 2015, pp. 319–323.
[36] Jon Wright, Bslz4 decoding, https://github.com/jonwright/bslz4decoders,

Online, 2022.
[37] Nvcomp, https://github.com/NVIDIA/nvcomp.
[38] M Harris and K Perelygin, Cooperative groups: Flexible cuda thread program-

ming, https://developer.nvidia.com/blog/cooperative-groups/, Oct. 2017.
[39] Nvidia/cub: Cooperative primitives for cuda c++. https://github.com/NVIDIA/

cub.
[40] Community Earth System Model (CESM) Atmosphere Model, http://www.

cesm.ucar.edu/models/, Online, 2019.
[41] Hurricane ISABEL Simulation Data, http://vis.computer.org/vis2004contest/

data.html, Online, 2019.
[42] NYX simulation, https://amrex-astro.github.io/Nyx/, Online.
[43] QMCPACK: many-body ab initio Quantum Monte Carlo code, http://vis .

computer.org/vis2004contest/data.html, Online, 2019.
[44] S. Jin, S. Di, J. Tian, S. Byna, D. Tao, and F. Cappello, “Improving prediction-

based lossy compression dramatically via ratio-quality modeling,” in 2022

IEEE 38th International Conference on Data Engineering (ICDE), IEEE, 2022,
pp. 2494–2507.

[45] J. Wang, T. Liu, Q. Liu, X. He, H. Luo, andW. He, “Compression ratio modeling
and estimation across error bounds for lossy compression,” IEEE Transactions

on Parallel and Distributed Systems, vol. 31, no. 7, pp. 1621–1635, 2019.
[46] T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki, S. Klasky, M.

Wolf, T. Liu, et al., “Understanding and modeling lossy compression schemes
on hpc scientific data,” in 2018 IEEE International Parallel and Distributed

Processing Symposium, IEEE, 2018, pp. 348–357.
[47] J. Tian, C. Rivera, S. Di, J. Chen, X. Liang, D. Tao, and F. Cappello, “Revisiting

huffman coding: Toward extreme performance on modern gpu architectures,”
in 2021 IEEE International Parallel and Distributed Processing Symposium, IEEE,
2021, pp. 881–891.

[48] C. Rivera, S. Di, J. Tian, X. Yu, D. Tao, and F. Cappello, “Optimizing huffman
decoding for error-bounded lossy compression on gpus,” in 2022 IEEE Inter-

national Parallel and Distributed Processing Symposium, IEEE, 2022, pp. 717–
727.

[49] T. Liu, J. Wang, Q. Liu, S. Alibhai, T. Lu, and X. He, “High-ratio lossy compres-
sion: Exploring the autoencoder to compress scientific data,” IEEE Transactions
on Big Data, 2021.

[50] R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “Fraz: A generic high-
fidelity fixed-ratio lossy compression framework for scientific floating-point
data,” in 2020 IEEE International Parallel and Distributed Processing Symposium

(IPDPS), IEEE, 2020, pp. 567–577.
[51] M. Barrow, Z. Wu, S. Lloyd, M. Gokhale, H. Patel, and P. Lindstrom, “Zhw:

A numerical codec for big data scientific computation,” in 2022 International

Conference on Field-Programmable Technology (ICFPT), IEEE, 2022, pp. 1–9.
[52] R. Underwood, J. C. Calhoun, S. Di, A. Apon, and F. Cappello, “Optzcon-

fig: Efficient parallel optimization of lossy compression configuration,” IEEE
Transactions on Parallel and Distributed Systems, 2022.

[53] J. Liu, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “Dynamic quality met-
ric oriented error bounded lossy compression for scientific datasets,” in 2022

SC22: International Conference for High Performance Computing, Networking,

Storage and Analysis (SC), IEEE Computer Society, 2022, pp. 892–906.

https://www.alcf.anl.gov/files/Parallel_IO_on_Mira_0.pdf
https://www.alcf.anl.gov/files/Parallel_IO_on_Mira_0.pdf
https://lcls.slac.stanford.edu/lasers/lcls-ii
https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp
https://zfp.readthedocs.io/en/release0.5.4/modes.html
https://github.com/facebook/zstd/releases
https://github.com/jonwright/bslz4decoders
https://github.com/NVIDIA/nvcomp
https://developer.nvidia.com/blog/cooperative-groups/
https://github.com/NVIDIA/cub
https://github.com/NVIDIA/cub
http://www.cesm.ucar.edu/models/
http://www.cesm.ucar.edu/models/
http://vis.computer.org/vis2004contest/data.html
http://vis.computer.org/vis2004contest/data.html
https://amrex-astro.github.io/Nyx/
http://vis.computer.org/vis2004contest/data.html
http://vis.computer.org/vis2004contest/data.html

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Zhang & Tian et al.

[54] S. Di, D. Tao, X. Liang, and F. Cappello, “Efficient lossy compression for
scientific data based on pointwise relative error bound,” IEEE Transactions on

Parallel and Distributed Systems, vol. 30, no. 2, pp. 331–345, 2018.
[55] X. Yu, S. Di, K. Zhao, J. Tian, D. Tao, X. Liang, and F. Cappello, “Ultrafast error-

bounded lossy compression for scientific datasets,” in Proceedings of the 31st

International Symposium on High-Performance Parallel and Distributed Com-

puting, ser. HPDC ’22, Association for Computing Machinery, 2022, 159–171.
[56] Nvcomp, https://github.com/NVIDIA/nvcomp, 2022.
[57] J. Nilsson and T. Akenine-Möller, “Understanding ssim,” arXiv preprint arXiv:2006.13846,

2020.
[58] Sz parallel mode with openmp, https://github.com/szcompressor/SZ/blob/

master/sz/src/sz_omp.c.

[59] Benchmark of measuring bandwidth of multiple gpu, https : / /github.com/
enfiskutensykkel/multi-gpu-bwtest.

[60] D. R. I. M. Setiadi, “Psnr vs ssim: Imperceptibility quality assessment for image
steganography,” Multimedia Tools and Applications, vol. 80, no. 6, pp. 8423–
8444, 2021.

[61] F. Knorr, P. Thoman, and T. Fahringer, “Ndzip-gpu: Efficient lossless compres-
sion of scientific floating-point data on gpus,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
2021, pp. 1–14.

[62] Hipify, https://github.com/ROCm-Developer-Tools/HIPIFY.
[63] Syclomatic, https://github.com/oneapi-src/SYCLomatic.

https://github.com/NVIDIA/nvcomp
https://github.com/szcompressor/SZ/blob/master/sz/src/sz_omp.c
https://github.com/szcompressor/SZ/blob/master/sz/src/sz_omp.c
https://github.com/enfiskutensykkel/multi-gpu-bwtest
https://github.com/enfiskutensykkel/multi-gpu-bwtest
https://github.com/ROCm-Developer-Tools/HIPIFY
https://github.com/oneapi-src/SYCLomatic

	Abstract
	1 Introduction
	2 Background and Problem Statement
	2.1 GPU Lossy Compression for Scientific Data
	2.2 cuSZ Framework
	2.3 Dual-Quantization Method
	2.4 Problem Statement

	3 Design of Proposed FZ-GPU
	3.1 Overview of New Compression Pipeline
	3.2 Proposed Optimized Dual-Quantization
	3.3 Optimization of Bitshuffle on GPUs
	3.4 Proposed Fast GPU Lossless Encoder

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Metrics
	4.3 Evaluation of Compression Quality
	4.4 Evaluation of Compression Throughput
	4.5 Evaluation of Proposed Optimizations
	4.6 Evaluation of Overall Throughput
	4.7 Evaluation of Reconstructed Data Quality

	5 Related Work
	6 Conclusion and Future Work

