
Accelerating MPI Collectives with Process-in-Process-based
Multi-object Techniques

Jiajun Huang
jhuan380@ucr.edu

University of California,
Riverside

Riverside, USA

Kaiming Ouyang
kouyang@nvidia.com
NVIDIA Corporation
Santa Clara, USA

Yujia Zhai
yzhai015@ucr.edu

University of California,
Riverside

Riverside, USA

Jinyang Liu
jliu447@ucr.edu

University of California,
Riverside

Riverside, USA

Min Si
msi@fb.com

Meta Platforms, Inc.
Menlo Park, USA

Ken Raffenetti
raffenet@anl.gov
Argonne National

Laboratory
Lemont, USA

Hui Zhou
zhouh@anl.gov

Argonne National
Laboratory
Lemont, USA

Atsushi Hori
ahori@nii.ac.jp

National Institute of
Informatics
Tokyo, Japan

Zizhong Chen
chen@cs.ucr.edu

University of California,
Riverside

Riverside, USA

Yanfei Guo
yguo@anl.gov

Argonne National
Laboratory
Lemont, USA

Rajeev Thakur
thakur@anl.gov
Argonne National

Laboratory
Lemont, USA

ABSTRACT
In the exascale computing era, optimizing MPI collective perfor-
mance in high-performance computing (HPC) applications is criti-
cal. Current algorithms face performance degradation due to system
call overhead, page faults, or data-copy latency, affecting HPC ap-
plications’ efficiency and scalability. To address these issues, we
propose PiP-MColl, a Process-in-Process-based Multi-object Inter-
process MPI Collective design that maximizes small message MPI
collective performance at scale. PiP-MColl features efficient multi-
ple sender and receiver collective algorithms and leverages Process-
in-Process shared memory techniques to eliminate unnecessary
system call, page fault overhead, and extra data copy, improving
intra- and inter-node message rate and throughput. Our design also
boosts performance for larger messages, resulting in comprehen-
sive improvement for various message sizes. Experimental results
show that PiP-MColl outperforms popular MPI libraries, includ-
ing OpenMPI, MVAPICH2, and Intel MPI, by up to 4.6X for MPI
collectives like MPI_Scatter and MPI_Allgather.

ACM Reference Format:
Jiajun Huang, Kaiming Ouyang, Yujia Zhai, Jinyang Liu, Min Si, Ken Raf-
fenetti, Hui Zhou, Atsushi Hori, Zizhong Chen, Yanfei Guo, and Rajeev
Thakur. 2023. Accelerating MPI Collectives with Process-in-Process-based
Multi-object Techniques. In Proceedings of the 32nd International Sympo-
sium on High-Performance Parallel and Distributed Computing (HPDC ’23),
June 16–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3588195.3595955

1 INTRODUCTION
Researchers have utilized data compression techniques to accel-
erate MPI collectives for large messages [4]. Kernel-assisted data
copy approaches have been long demonstrated effective to speed-
up intra-node communications. In [1], Chakraborty proposed Cross
Memory Attach (CMA) which allows efficient intra-node communi-
cation without introducing redundant data copy. These approaches,

however, suffer from significant performance degradation for small
or medium-message collectives due to the overhead of expensive
system calls and page faults. Parsons et al. demonstrated efficient
MPI collective algorithms with a POSIX shared-memory (POSIX-
SHMEM) [5] multisender design. However, POSIX-SHMEM can
limit the efficiency of algorithms that are unable to achieve high
performance for medium- and large-message collective communi-
cation due to the inherent double copy overhead.

In addition to these data copy methods, researchers have also ex-
plored techniques that leverage data sharing based shared-memory
(SHMEM) to reduce intra-node data transfer overhead. Hashmi et al.
proposed strategies to reduce shared address space and accelerate
MPI_Allreduce and MPI_Reduce communication using the interpro-
cess SHMEM capability of XPMEM [2]. Nevertheless, XPMEM has
system call overhead for buffer expose and attachment which lim-
its its performance in small- and medium-messages. Apart from
these previous shared-memory approaches, Hori et al. proposed
Process-in-Process (PiP), a programming environment that allows
all processes on a node to be loaded into the same virtual memory
space and enables them to access each other’s private memory as
if they were threads in userspace [3]. PiP is able to facilitate afore-
mentioned extra copy and expensive system-related overhead. A
direct application of PiP in current MPI collectives, however, is un-
able to fully saturate the network bandwidth and is limited by the
potential negative impact of unnecessary process synchronization
on overall performance. To address these limitations, we introduce
PiP-MColl, a Process-in-Process-based multi-object interprocess
MPI collective design that maximizes intra- and inter-node message
rate and network throughput.

2 DESIGNS AND OPTIMIZATIONS
An explicit multi-objective design achieves higher message rate and
network throughput compared to previous single-object techniques
for internode communication on small messages. This motivates

ar
X

iv
:2

30
5.

10
61

2v
1 

 [
cs

.D
C

] 
 1

7 
M

ay
 2

02
3

https://orcid.org/0000-0001-5092-3987
https://orcid.org/0000-0002-4775-1835
https://orcid.org/0000-0002-2688-8058
https://orcid.org/0000-0003-0177-502X
https://orcid.org/0000-0002-0208-096X
https://orcid.org/0009-0003-4705-2713
https://orcid.org/0000-0002-4422-2911
https://orcid.org/0000-0002-7010-8098
https://orcid.org/0000-0003-2578-4940
https://orcid.org/0000-0002-3731-5423
https://orcid.org/0000-0002-5532-3048
https://doi.org/10.1145/3588195.3595955


HPDC ’23, June 16–23, 2023, Orlando, FL, USAJiajun Huang, Kaiming Ouyang, Yujia Zhai, Jinyang Liu, Min Si, Ken Raffenetti, Hui Zhou, Atsushi Hori, Zizhong Chen, Yanfei Guo, and Rajeev Thakur

the performance-oriented designs of our PiP-MColl collective al-
gorithms. We present our algorithmic designs using MPI_Allgather.
Traditionally, for small messages, the Bruck algorithm is used for
non-power-of-two cases and the recursive doubling algorithm for
power-of-two cases. To achieve high-performance in our allgather
routine, we first design PiP-MColl allgather algorithm for small
message sizes, which can be described as follows: 1 We begin
by performing intranode gather to the local root process. Local
processes perform MPI_Gather to gather data into the local root
process destination buffer 𝐴𝑑 . 2 Next, we initialize parameters.
The multi-object Bruck algorithm step is initialized as 𝑆𝑝 = 1
and the base of the multi-object Bruck algorithm as 𝐵𝑘 = 𝑃 + 1.
3 We find the paired source and destination process. Each pro-
cess sets 𝑁𝑜 𝑓 𝑓 𝑠𝑒𝑡 = (𝑅𝑙 + 1) ∗ 𝑆𝑝 and finds the paired source
node 𝑁𝑠𝑟𝑐 = (𝑁𝑖𝑑 + 𝑁𝑜 𝑓 𝑓 𝑠𝑒𝑡 )%𝑁 and destination node 𝑁𝑑𝑠𝑡 =

(𝑁𝑖𝑑 −𝑁𝑜 𝑓 𝑓 𝑠𝑒𝑡 )%𝑁 . The paired source process rank is 𝑁𝑠𝑟𝑐 ∗𝑁 +𝑅𝑙 ,
and the destination process rank is 𝑁𝑑𝑠𝑡 ∗ 𝑁 + 𝑅𝑙 . 4 We then per-
form send and receive.We define𝐶𝑏 as the number of bytes received
from each process in allgather and 𝐴𝑑 as the starting address of
the destination buffer of the local root process. Each process sends
𝐶𝑏 ∗ 𝑆𝑝 bytes from the local root process buffer to the destina-
tion process and receives 𝐶𝑏 ∗ 𝑆𝑝 bytes from the source process
into address 𝐴𝑑 +𝐶𝑏 ∗ 𝑆𝑝 ∗ (𝑅𝑙 + 1). For each process, we update
𝑆𝑝 = 𝑆𝑝 ∗𝐵𝑘 . If 𝑆𝑝 is less than or equal to 𝑁

𝐵𝑘
, we repeat steps 3 to

4 . If not, we proceed to step 5 . 5 If 𝑁 is not a power of 𝐵𝑘 , we
have remaining 𝑁 − 𝑆𝑝 nodes for the final step. Each process takes
𝑅𝑒𝑚 = 𝑀𝑎𝑥 (𝑀𝑖𝑛(𝑆𝑝 , 𝑁 − 𝑆𝑝 ∗ 𝑅𝑙 ), 0) remainder. If 𝑅𝑒𝑚 > 0, the
process will send and receive 𝑅𝑒𝑚 ∗𝐶𝑏 bytes from the paired desti-
nation and source process. 6 Finally, the local root process shifts
data into the correct sequence and broadcasts to other processes.

3 EXPERIMENTAL RESULTS
In our experiments, we use a 128-node cluster with 18 processes per
node, resulting in a total of 2304 processes. Each node is equipped
with two Intel Xeon E5-2695v4 Broadwell processors, yielding a
total of 36 cores per node. The nodes are connected through the
Intel OPA interconnect, with a maximummessage rate of 97 million
per second and a bandwidth of 100 Gbps. We evaluate the perfor-
mance of the MPI_Scatter function for small message sizes. Figure
1 illustrates the scatter performance for small message sizes per
process (i.e., overall data size on the root process is𝑀𝑠𝑖𝑧𝑒 ∗#𝑝𝑟𝑜𝑐𝑒𝑠𝑠)
on a 128-node cluster with 18 processes on each node. To better
distinguish performance differences between the MPI implementa-
tions, we have excluded execution times that are more than 4 times
larger than that of PiP-Mcoll. As shown in the figure, PiP-MColl
consistently outperforms the other MPI implementations, achiev-
ing the best speedup of 65% when the message size is 256 bytes.
This demonstrates the effectiveness of our multiobject design for
small message sizes, as it maximizes the message rate and results
in higher performance than other MPI implementations.

On the other hand, Figure 2 shows the MPI_Allgather perfor-
mance with small message sizes from 16 B to 512 B on 128 Xeon
Broadwell nodes. Theoretically, MPI_Allgather generates more data
movements compared to other two MPI collectives, as processes
receive more data than they send, which benefits the most from
PiP-MColl. From the experimental data, we find that PiP-MColl

16 32 64 12
8

25
6

51
2

Message Size (Byte/Process) for 128 Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
ca

le
d

E
xe

cu
tio

n
Ti

m
e

Open MPI
Intel-MPI
MVAPICH2

PiP-MPICH
PiP-Mcoll

7.05 4.38

Figure 1: MPI_Scatter performance with small messages.
outperforms other MPI implementations in all cases. Similarly, our
multi-object design brings a noticeable performance improvement
for small messages (i.e., 64 B), where PiP-Mcoll is over 4.6X as fast
as the fastest MPI implementation. We also observe that our base-
line (PiP-MPICH) sometimes has the worst performance among
all the MPI implementations. This is due to the synchronization
overhead inside PiP, which requires message size synchronization
before communications.

16 32 64 12
8

25
6

51
2

Message Size (Byte/Process) for 128 Nodes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

S
ca

le
d

E
xe

cu
tio

n
Ti

m
e

Open MPI
Intel-MPI
MVAPICH2

PiP-MPICH
PiP-Mcoll

Figure 2: MPI_Allgather performance with small messages.
To conclude, PiP-MColl, our proposed Process-in-Process-based

MPI Collective design, effectively optimizes MPI collective perfor-
mance in HPC applications by addressing system call overhead,
page faults, and data-copy latency issues. The result is a compre-
hensive improvement in message rate and throughput for various
sizes, outperforming popular MPI libraries by up to 4.6X.

ACKNOWLEDGMENT
This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration,
under contract DE-AC02-06CH11357.

REFERENCES
[1] Sourav Chakraborty, Hari Subramoni, andDhabaleswar K Panda. 2017. Contention-

aware kernel-assisted MPI collectives for multi/many-core systems. In 2017 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE, 13–24.

[2] Jahanzeb Maqbool Hashmi, Sourav Chakraborty, Mohammadreza Bayatpour, Hari
Subramoni, and Dhabaleswar K Panda. 2018. Designing efficient shared address
space reduction collectives for multi-/many-cores. In 2018 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS). IEEE, 1020–1029.

[3] Atsushi Hori, Min Si, Balazs Gerofi, Masamichi Takagi, Jai Dayal, Pavan Balaji, and
Yutaka Ishikawa. 2018. Process-in-Process: Techniques for Practical Address-Space
Sharing. In Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing. ACM, 131–143.

[4] Jiajun Huang, Sheng Di, Xiaodong Yu, Yujia Zhai, Jinyang Liu, Ken Raffenetti, Hui
Zhou, Kai Zhao, Zizhong Chen, Franck Cappello, Yanfei Guo, and Rajeev Thakur.
2023. C-Coll: Introducing Error-bounded Lossy Compression into MPI Collectives.
arXiv:2304.03890 [cs.DC]

[5] Benjamin S Parsons and Vijay S Pai. 2014. Accelerating MPI collective communi-
cations through hierarchical algorithms without sacrificing inter-node communi-
cation flexibility. In 2014 IEEE 28th International Parallel and Distributed Processing
Symposium. IEEE, 208–218.

https://arxiv.org/abs/2304.03890

	Abstract
	1 Introduction
	2 Designs and optimizations
	3 Experimental Results
	References

