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Region representation plays a key role in image and 
scene analysis, computer cartography, and computer 
graphics. There are a variety of  approaches to represent- 
ing regions, based on their boundaries or their "skele- 
tons"; some of these are reviewed in the following para- 
graphs. Recently, a tree representation has been pro- 
posed which offers a number of  advantages; it is also 
described here. Since each type of  representation has its 
own advantages, it becomes desirable to develop efficient 
methods of converting from one representation to an- 
other. Sections 2-6 present and analyze an algorithm for 
converting the tree representation into a simple type of  
boundary representation. Section 7 briefly considers sev- 
eral related problems. 

We assume in what follows that a region is a simply 
connected subset of a 2n-by-2 n array, which we regard as 
being made up of unit-square "pixels." (The treatment 
of regions that have holes will be discussed in Section 7.) 
The boundary of such a region can thus be specified, 
relative to a given starting point, as a sequence of  unit 
vectors in the principal directions. We can represent the 
direction by numbers, e.g. let i, an integer quantity 
ranging from 0 to 3, represent 90 ° * i. For example, the 
direction sequence for the boundary of the region in 
Figure l(a), moving clockwise starting from the left of  
the uppermost border points, is 

03023523  1 2 3 3 0 3 2 5  160 1 0 1 0 3 0  1 0 1. 

This type of boundary representation is called a chain 
code. Generalized chain codes, involving more than four 
directions, can also be used. Chain codes provide a very 
compact region representation, and make it easy to detect 
features of the region boundary, such as sharp turns 
("corners") or concavities. On the other hand, it is harder 
to determine properties such as elongatedness from a 
chain code, and it is also difficult to perform operations 
such as union and intersection on regions represented by 
chain codes. A general introduction to chain codes and 
their uses can be found in [4]. 

Another class of region representations involves var- 
ious types of maximal "blocks" that are contained in a 
given region. For example, we can represent a region R 
as a linked list of the runs (of pixels) in which R meets 
the successive rows of the array [15]. Here each "block" 
is a l-by-m rectangle, where m is the run length; the runs 
are the largest such blocks that R contains, and R is 
determined by specifying the initial points (or centers) 
and lengths of  the runs. Alternatively, we can represent 
R by the set of maximal square blocks (or blocks of any 
other desired shape) that it contains; here R is determined 
by specifying the centers and radii of these blocks. This 
representation is called the medial axis transformation, or 
MAT [2, 14]. It is somewhat less compact than the chain 
code [12], but it has advantages with respect to perform- 
ing union and intersection operations or detecting prop- 
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Fig. 1. A Region, Its Maximal Blocks, and the Corresponding Quadtree. Blocks in the region are shaded, background blocks are blank. 

(a) Region. 
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(b) Block decomposition of the region in (a). 

NW/ NE/ SW\ SE 

1 2 5 16 17 24 25 40 41 

23 3 4//1~ 8 37 
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(c) Quadtree representation of the blocks in (b). 

erties such as e longatedness  (in terms of  the smallness o f  
the radii relative to the n u m b e r  o f  centers). 

There  has been recent interest in an approach  to 
region representat ion based on successive subdivision o f  
the array into quadrants .  I f  the region does not cover  the 
entire array,  we subdivide the array,  and repeat  this 
process for each quadrant ,  each subquadran t  . . . . .  as 
long as necessary, until we obtain  blocks (possibly single 
pixels) that  are entirely conta ined in the region or entirely 
disjoint f rom it. The  resulting blocks for the region of  
Figure l(a) are shown in Figure l(b). This  process can 
be represented by a tree o f  degree 4 (for brevity: a 
quadtree) in which the entire ar ray  is the root node,  the 
four  sons o f  a node are its quadrants ,  and the leaf  nodes 
correspond to those blocks for which no fur ther  subdi-  
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vision is necessary, t The  quadt ree  representat ion for 
Figure l(b) is shown in Figure  l(c). Note  that  here again  
we are represent ing the region as a union o f  m a x i m a l  
blocks, but this t ime the blocks must  have  s tandard  sizes 
and posit ions (powers of  2). Since the a r ray  was assumed 
to be 2n-by-2 '~, the tree height is at most  n. This  me thod  
of  region representat ion was proposed by  Kl inger  [1, 9]; 
it has also been used for image  representa t ion (e.g., [5, 
10, 13, 19, 20]). It is relatively compac t  [9], and  is also 
well-suited to opera t ions  such as union a n d  intersection 
[6, 7], and to detect ing various region propert ies  [6-9]. A 

' The quadtree region representation described here should not be 
confused with the quadtree representation of two-dimensional point 
data introduced by Finkel and Bentley [3]. 
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Fig. 2(a). Relationship between a block's four quadrants and its chain 
code representation. 
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Fig. 2(b). Relationship between a block's four quadrants and its 
boundary. 
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recent Ph.D. thesis by Hunter [6-8] in the domain of 
computer graphics develops a variety of  algorithms for 
the manipulation of  quadtree region representation. 

Since the quadtree and border representations have 
different computational advantages, it is of  interest to 
develop methods of converting from one representation 
to the other. We shall now present an algorithm for 
deriving a clockwise boundary code from the quadtree 
representation Of a given region. 

2. Definitions and Notation 

Let each node in a quadtree be stored as a record 
containing six fields. The first five fields contain pointers 
to the 'node's father and its four sons, labeled NW, 
NE, SW, and SE. Given a node P and a son I, these 
fields are referenced as FATHER(P)  and SON(P, I )  
respectively. At times it is preferable to use the 
function SONTYPE(P) where SONTYPE(P) = Q iff 
SON(FATHER(P),  Q) = P. The sixth field, named 
NODETYPE, describes the contents of the block of the 
region Which the node represents, i.e., WHITE if the 
block contains no pixels in the regionl BLACK if the 
block contains only pixels in the region, and GRAY if it 
contains pixels Of both types. We often examine the 
information in this field by use of  th e predicates WHITE,  
BLACK, and GRAY respectively. 

Let the four sides of a node's block be called its N, E, 
S, and W sides. Two nodes are said to be adjacent along 
the northern side of the first, for example, if the pair of  
blocks represented by these nodes touch along that side 
(not just at a corner). The sides of  a node's block are 
also termed its boundaries , and at times we speak of 
them as if they are directions (e.g., in Figure 1, node 23 
is adjacent to the eastern side of  node 22; alternatively, 
we say that node 23 is node 22's neighbor in the eastern 
direction ) . The four directions that can be represented 
by a four-direction chain code are also labeled N, E, S, 
W. We use a clockwise chain code, which means that the 
region is always to the right of  the boundary represented 
by the code. The function LINK(T)  yields the chain 
code direction associated with side T. Using the coding 
described in Section 1, we have that LINK( 'N')  = 0, 
LINK('E')  = 3, LINK('S')  = 2, and LINK( 'W')  = 1. 
Figure 2(a) shows the relationship between quadrants of  
a node and directions of  a chain code, and Figure 2(b) 
shows the relationshi p between quadrants of a node and 
its boundaries. 

There are a number of functions and predicates 
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which are useful in describing the relationship between 
nodes, quadrants, and boundaries. CSIDE(T)  is the node 
which is adjacent to side T in the clockwise direction, 
e.g., CSIDE('N')  = 'E'. Similarly, define CCSIDE(T)  to 
be the side which is adjacent in the counterclockwise 
direction to T, and OPSIDE(T)  as the side opposite tO 
T. For example, CCSIDE('N')  = 'W' and OPSIDE('N')  
= 'S'. The predicate ADJ(T, K) is true if and only if 
quadrant K is adjacent to side T o f t h e  node's block, e.g., 
ADJ('N', 'NW') = TRUE. REF LECT (T, K) yields the 
SONTYPE value of the block of equal size that is 
adjacent to side T of  a block having SONTYPE value K; 
e.g., REFLECT( 'W' ,  'NE') = 'NW', and REFLECT( 'N ' ,  
'NW') = 'SW'. QUAD(T, U) is the quadrant that 
touches the corner formed by sides T and U (if T and U 
are opposite sides, then QUAD(T, U) is undefined), e.g., 
QUAD('N',  'E') = 'NE'. 

For a quadtree corresponding to a 2 n by 2 n array we 
say that the root is at level n, and that a node at level i 
is at a distance of  n - i from the root of  the tree. In other 
words, for a node at level i, we must ascend n - i  
F A T H E R  links to reach the root of  the tree. Note that 
the farthest node from the root of  the tree is at level _>0. 
A node at level 0 corresponds to a single pixel in the 
image. Also, we say that a node is of  size 2 s if it is found 
at level s in the tree. 

3. The Boundary Following Algorithm 

Before tracing the boundary we must determine an 
initial (BLACK, WHITE)  node pair. This is achieved by 
starting at the root and descending the quadtree in the 
priority order NW, NE, SW, SE avoiding WHITE nodes 
until a BLACK node P is reached. This node cannot 
have a BLACK node adjacent to its northern side be- 
cause we always descend to northern sons unless both 
northern sons are WHITE. Assuming that the region 
does not reach the border of  the corresponding image, 
we see that the node Q that is adjacent to P 's  northern 
side and touching P's northwestern corner must be 
WHITE. The previous assumption can be made a reality 
by surrounding the image with W H ITE blocks as in 
Figure 3. At this point nodes P and Q form an initial 
(BLACK, WHITE)  node pair. 

Given an arbitrary pair of  adjacent BLACK and 
WHITE nodes, P and Q respectively, we first output the 
chain link associated with that part of  P ' s  border which 
is adjacent to Q. Next, we must determine the (BLACK, 
WHITE)  node pair that defines the subsequent !ink in 
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the chain as we traverse the boundary in the clockwise 
direction. To find the new pair, we must consider the 
three possible relative positions of  P and Q with respect 
to the direction of  traversal--either P extends past Q 
(Figure 4(a)), or Q extends past P (Figure 4(b)), or P 
and Q end at the same point (Figure 4(c)). Note that in 
Figure 4, P is always to the north of  Q; however, it can 
also be to the east, south, or west. 

In order to determine the next pair, we first find the 
adjacent nodes X and Y as shown in Figure 4. Given the 
NODETYPE information for these nodes, we obtain the 
next pair, for the three cases illustrated in Figure 4, in 
the following manner. Note that the relationships involv- 
ing Figure 4(c) are the same whether or not P is smaller 
than Q. Also whenever we speak of  a side of  a node, we 
mean the entire width of the side. 

(1) Figure 4(a): In this case Xcannot  extend beyond 
P although it may be larger than Q. 
(a) If Xis WHITE, then the new pair is (P, X), and the 

boundary does not turn. The new link is the north 
side of  X (e.g., Figure 5(a)). 

(b) I f X i s  BLACK, then the new pair is (X, Q) and the 
boundary turns left. If  X is larger than Q, then the 
new link is the west side of  Q (e.g., Figure 5(b)); 
otherwise, it is the east side of  X. 

(2) Figure 4(b): In this case X cannot extend beyond 
Q, although it may be larger than P. 
(a) If  X is WHITE,  then the new pair is (P, X), and the 

boundary turns right. If P is no larger than X, then 
the new link is the west side of  P; otherwise, it is 
the east side of  X (e.g., Figure 5(c)). 

(b) If X is BLACK, then the new pair is (X, Q) and the 
boundary does not turn. The new link is the south 
side of  X (e.g., Figure 5(d)). 

(3) Figure 4(c): Assume that the region is 4-con- 
nected so that blocks touching only at a corner are not 
regarded as adjacent. 
(a) If both X and Y are BLACK (they need not be 

distinct nodes), then the new pair is ( Y, Q), and the 
boundary turns left. If  X and Y are distinct and Y 
is no bigger than Q, then the new link is the east 
side of  Y (e.g., Figure 5(i)); otherwise (i.e., Y is 
bigger than Q), the new link is the west side of  Q. 
Note that if X and Y are the same node (e.g., Figure 
5(f)), then Y must extend at least to the end of  Q 
because neighboring nodes cannot properly over- 
lap. 

(b) If  X is BLACK and Y is WHITE,  then the new 
pair is (X, Y) and the boundary does not'turn. I f  X 
is not bigger than Y, then the new link is the south 
side of  X; otherwise, it is the north side of  Y (e.g., 
Figure 5(h)). 

(c) If  X is WHITE, then the new pair is (P, X), and the 
boundary turns right regardless of  the type of  node 
Y by virtue of  the 4-connected property. If P is no 
bigger than X, then the new link is the west side of  
P (e.g., Figure 5(e)); otherwise, it is the east side of  
X (e.g., Figure 5(g)). 
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Fig. 3. An image totally surrounded by background. 

image 

image 

(a) Block decomposition. (b) Quadtree. 

Fig. 4. Possible overlap relationships between the (BLACK, WHITE) 
adjacent node pair (P, Q). The heavy arrow indicates the boundary 
segment just output. 

Fig. 5. Possible configurations of P, Q and their neighbor blocks in 
determining the next (BLACK, WHITE) pair. Arrows indicate the 
boundary segments associated with the old and new pairs. 

(a) (b) (c) 

(d) (e) (t) 

(g) (h) (i) 

It should be clear that we could specify a similar set of  
rules if we considered the region to be 8-connected. 

4. Formal Statement of the Algorithm 

The following ALGOL-like procedures [11] specify 
the complete boundary following algorithm. The main 
procedure is termed CHAINCODE and is invoked with 
a pointer to the root of the quadtree representing the 
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image and an integer corresponding to the log of the 
diameter of the image (e.g., n for a 2 n by 2 n image array). 
It finds the initial (BLACK, WHITE) pair of nodes and 
then invokes procedure NEXT__LINK which controls 
the process of tracing the boundary and outputting the 
appropriate links of the chain code. Procedure COR- 
NER__ADJ__NEIGHBOR is used in conjunction with 
procedure GTEQUAL__ADJ__NEIGHBOR to find the 
adjacent nodes (e.g., X and Y in Figures 3 and 4). 
Boolean procedure ALIGNED aids in determining 
which of the three cases illustrated in Figure 3 is appli- 
cable to the current (BLACK, WHITE) pair of nodes. 
MARK and MARKED aid in the detection of the end 
of the tracing process. 

procedure CHAINCODE(ROOT, LEVEL); 
/* Find the chaincode corresponding to the quadtree rooted at ROOT 

representing a 2 T LEVEL by 2 1' LEVEL image */ 
begin 

value node ROOT; 
value integer LEVEL; 
node P, Q; 
integer LP, LQ; 
P ,,-- ROOT; 
LP ~ LEVEL; /*LEVEL and LP are used to determine the 

length of sides of blocks */ 
while GRAY(P) do 

/* Find a BLACK node P which is on the region boundary 
and has no BLACK nodes adjacent to its north side. Q, a 
WHITE node, is the western-most of P's northern neigh- 
bors. The pair (P, Q) defines the initial chain segment */ 

begin 
LP *-- L P -  1; 
P ~ SON(P, if not WHITE(SON(P, 'NW')) then 'NW" 

else if not WHITE(SON(P, 'NE')) then 
'NE' 

else if not WHITE(SON(P, 'SW')) then 
'SW' 

else 'SE'); 
end; 

LQ ~-- LP; 
CORNER__ADJ__NE1GHBOR(P, 'N', 'NW', Q, LQ); 
NEXT__LINK(P, LP, Q, LQ, 'N');/*Trace the boundary*/ 

end; 

procedure NEXT__LINK(P, LP, Q, LQ, D); 
/* Given BLACK node P at level LP and WHITE node Q at level Q 

that are adjacent along side D of P, output the corresponding chain 
code description, and determine the next pair of adjacent BLACK 
and WHITE nodes */ 

begin 
value node P, Q; 
value integer LP, LQ; 
value side D; 
node X, Y; 
integer I, LX, L Y; 
if MARKED(P, Q) then HALT/* Done */ 
else MARK(P, Q); 
for 1 ~-- step 1 until 2 T MIN(LP, LQ) do PRINT(LINK(D)); 
/* Determine the next pair of adjacent BLACK and WHITE 

nodes */ 
if ALIGNED(P, LP, Q, LQ, CSIDE(D)) then 

/* P and Q are aligned along direction CSIDE(D) */ 
begin 

LX *- LP; 
CORNELADJ__NEIGHBOR(P,  CSIDE(D), 

QUAD(CSIDE(D), D), X, LX); 
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if WHITE(X) then/* Figures 5(e) and 5(g) */ 
NEXT__LINK(P, LP, X, LX, CSIDE(D)) 

else 
begin 

L Y ~-- LQ; 
CORNELADJ__NEIGHBOR( 

Q, CS1DE(D), 
QUAD(CSIDE(D), OPSIDE(D)), 
Y, LY); 

if BLACK(Y) then/* Figures 5(f) and 5(i) */ 
NEXT .LINK(Y, L Y, Q, LQ, 

CCSIDE(D)) 
else NEXT_LINK(X, LX, Y, LY, D); 

/* Figure 5(h) */ 
end; 

end 
else if LP > LQ then 

/* BLACK extends farther than WHITE */ 
begin 

LX ~ LQ; 
CORNELADJ__NE1GHBOR( 

Q, CSIDE(D), 
QUAD(CSIDE(D), OPSIDE(D)), 
x, LX); 

if WHITE(X) then NEXT__LINK(P, LP, X, LX, D) 
/* Figure 5(a) */ 

else NEXT__LINK(X, LX, Q, LQ, CCSIDE(D)); 
/* Figure 5(b) */ 

elrld 
else/* WHITE extends farther than BLACK */ 

begin 
LX ~ LP; 
CORNER__ADJ__NEIGHBOR( 

P, CSIDE(D), 
QUAD(CCSIDE(D), D), X, LX); 

if WHITE(X) then/* Figure 5(c) */ 
NEXT__LINK(P, LP, X, LX, CSIDE(D)) 

else NEXT__LINK(X, LX, Q, LQ, D); 
/* Figure 5(d) */ 

end; 
end; 

Boolean procedure ALIGNED(P, LP, Q, LQ, D); 
/* Given two nodes P and Q, at levels LP and LQ respectively, which 

are adjacent along side CCSIDE(D) of node P, determine whether 
either of P or Q extends farther in direction D than the other (return 
FALSE), or their two sides in direction D are aligned (return TRUE) 
*/ 

begin 
value node P, Q; 
value integer LP, LQ; 
value direction D; 
node R; 
integer l; 
if LP = LQ then return (TRUE) 
else if LP > LQ then R ~ Q 
else R *-- P; 
/* The smaller of the two nodes cannot extend farther than the 

other because this would imply that P and Q properly overlap, 
which is impossible. At best, the smaller node can be aligned 
with the other node, and this occurs if and only if the smaller 
node is adjacent to the extreme side in direction D of the nearest 
common ancestor of nodes P and Q */ 

for 1 ,,-- 1 step 1 until ABS(LP - LQ) do 
begin 

if not ADJ(D, SONTYPE(R)) then return(FALSE) 
else R ,-- FATHER(R); 

end; 
return(TRUE); 
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procedure CORNER__ADJ__NEIGHBOR(P, D, C, Q, L); 
/* Return in Q the neighbor of node P in horizontal or vertical 

direction D which is adjacent to corner C of node P. L denotes the 
level of the tree at which node P is initially found and the level of 
the tree at which node Q is ultimately found */ 

begin 
value node P; 
value direction D; 
value quadrant C; 
reference node Q; 
reference integer L; 
GTEQUAL__ADJ__NEIGHBOR(P, D, Q, L); 
while GRAY(Q) do 

begin 
Q ~ SON(Q, REFLECT(D, C)); 
L~---L- 1; 

end; 
end; 

procedure GTEQUAL~ADJ__NEIGHBOR(P, D, Q, L); 
/* Return in Q the neighbor of node P in horizontal or vertical 

direction D which is greater than or equal in size to P. If such a node 
does not exist, then a GRAY node of equal size is returned. If this 
is also impossible, then the node is adjacent to the border, and 
NULL is returned. L denotes the level of the tree at which node P 
is initially found and the level of the tree at which node Q is 
ultimately found */ 

begin 
value node P; 
value direction D; 
reference node Q; 
reference integer L; 
L~---L+ 1; 
if (not NULL (FATHER(P))) and ADJ(D, SONTYPE(P)) then 

/* Find a common ancestor */ 
GTEQUAL__ADJ__NE1GHBOR(FATHER(P), D, Q, L) 

else Q ~ FATHER(P); 
/* Follow the reflected path to locate the neighbor */ 
if not NULL (Q) and GRAY (Q) then 

begin 
Q ~- SON(Q, REFLECT(D, SONTYPE(P))); 
L ~ - - L -  l; 

end; 
end; 

5. E x a m p l e  

Let us consider the quadtree shown in Figure  1. 
Notice that this quadtree  has 57 nodes whereas an  array 
representat ion would have required a 16 by 16 (=256- 
cell) logical array. Procedure C H A I N C O D E  finds the 
initial  pair  (19, 13) and  then invokes procedure 
N E X T _ _ L I N K  to follow the b o u n d a r y  starting at this 

point.  Table  I specifies the a rguments  of  N E X T _ _ L I N K  
at each recursive call a long with the l ink that is output  
as a result of  this pairing. 

6. A n a l y s i s  

The speed of  our  bounda ry  coding algori thm is de- 
termined by procedure N E X T _ _ L I N K  which ~ called 
for each bounda ry  segment  associated with a (BLACK,  
W H I T E )  adjacent  node pair. Recall  that N E X T _ _ L I N K  
has two parts. First, it must  ou tput  the chain code 

description for each bounda ry  segment.  The time re- 
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Table I. Sequence of calls of NEXT__LINK for the quadtree in 
Figure 1. The exponent on the output indicates the number of unit 
length links associated with the boundary specified by the given 
(P, Q) pair. 

BLACK node WHITE node 
P Q Side T Link output 

19 13 N 01 
14 13 W [~ 
14 2 N 0 ~ 
14 15 E 31 
21 15 N 01 
16 15 W 11 
16 9 N 0 I 
10 9 W 11 
10 7 N 0 I 
10 8 E 3 I 
16 8 N 02 
16 17 E 34 
29 30 E 31 
29 34 S 2 ~ 
28 33 S 2 ~ 
27 32 S 21 
27 26 W 11 
16 26 S 2 ~ 
25 26 E 31 
25 31 E 3 I 
25 35 E 3 ~ 
38 35 N 0 ~ 
38 39 E 3 I 
38 42 S 2 j 
25 41 S 24 
25 24 W 14 
22 11 W 1 ~ 
22 18 N 0 ~ 
19 18 W 11 
19 13 N - -  

quired to output  the ind iv idua l  l inks is propor t ional  to 
the region's  perimeter,  where the per imeter  is def ined to 
be the n u m b e r  of  uni t - square  pixels on the region's  
bounda ry  (not the n u m b e r  of  B L A C K  nodes which are 
adjacent  to W H I T E  nodes). Second, it must  de te rmine  
the next (BLACK,  W H I T E )  adjacent  node  pair. The  
t ime required to do this is dependen t  on  the execu- 
t ion t ime of  procedures A L I G N E D  and  C O R -  
N E R  A D J _ _ N E I G H B O R .  G i v e n  a pair  (P, Q) of  ad- 
j acen t  (BLACK,  W H I T E )  nodes  respectively, procedure 
A L I G N E D  is called once and  procedure C O R -  
N ER ADJ N E I G H B O R  is called at most  two times 
(once for Figures  4(a) and  4(b) and  twice for Figure  
4(c)). The  a m o u n t  of  t ime required by these procedures 
is propor t ional  to the n u m b e r  of  nodes  that  must  be 
visited and  depends  on their  relative posit ions in  the 
quadtree.  Note that  the n u m b e r  of  t imes that  the deter- 
m i n a t i o n  of  the next  (BLACK,  W H I T E )  adjacency must  
be done  is also b o u n d e d  by the region's  perimeter.  

The  average execution t ime of  procedures C O R -  
N E R _ _ A D J _ _ N E I G H B O R  and  A L I G N E D  is analyzed 
below. However,  it is appropria te  to c omme n t  on our  
not ion  of  average. We assume a r a n d o m  image in the 
sense that a node is equal ly  likely to appear  in any  
posit ion and  level in the quadtree.  This means  that we 
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Fig. 6. lflustration of nearest neighbor computation. 

1 9 17 25 33 41 49 57 

2 I0 18 26 34 42 50 58 

3 ii 19 27 35 43 51 59 

4 12 20 28 36 44 52 60 

5 13 21 29 37 45 53 61 

6 14 22 30 38 46 54 62 

7 15 23 31 39 47 55 63 

8 16 24 32 40 48 56 64 

assume that all neighbor pairs (i.e., configurations of  
adjacent nodes of  varying sizes) have equal probability. 
This is different from the more conventional notion of 
a random image which implies that every block at level 
0 (i.e., pixel) has an equal probabili ty of  being BLACK 
or WHITE.  Such an assumption would lead to a very 
low probability of  any nodes corresponding to blocks of  
size larger than 1. Clearly, for such an image, the quad- 
tree is the wrong representation. 

THEOREM 1. The average number o f  nodes visited by 
CORNER___ADJ__NEIGHBOR is bounded by 14/3. 

PROOF. Given a node P at level i, and a direction D 
toward corner C of  P, there are 

2 "-i ~, 2n-j . j  
j=i+ l 

possible neighbor pairs where j corresponds to the level 
at which is located the nearest common ancestor of  the 
members of  the neighbor pair. The 2 "-~ factor is a direct 
result of  there being 2 n-~ possible rows (or columns) 
containing nodes at level i. For  each such row, 2 0 neigh- 
bor pairs have their nearest common ancestor at level n, 
21 at level n - 1 . . . . .  and 2 n-i-1 at level i + 1. For 
example, in the 23 by 23 grid of  Figure 6, nodes corre- 
sponding to blocks 25 to 32 have eastern neighbors 33 to 
40 respectively and nearest common ancestors at level 3; 
nodes corresponding to blocks 9 to 16 and 41 to 48 have 
eastern neighbors 17 to 24 and 49 to 55 respectively and 
nearest common ancestors at level 2; nodes correspond- 
ing to blocks 1 to 8, 17 to 24, 33 to 40, and 49 to 55 have 
eastern neighbors 9 to 16, 25 to 32, 41 to 48, and 57 to 64 
respectively and nearest common ancestors at level 1. 
For a node at level i, a direction D toward corner C, and 
a nearest common ancestor at level j ,  we have possible 
neighbor pairs having the initial node at level i and the 
neighboring node at levels j - 1, j - 2 . . . . .  i + 1, i, 
i - 1 . . . . .  2, 1, 0--i.e.,  j possible neighbor pairs. Thus 
for a node at level i, the number  of  node pairs that 
will be visited in the process of  locating a neighbor at 
level k with a nearest common ancestor at level j is 
( j  - i + j - k). This is obtained by observing that the 
nearest common ancestor is at a distance of  j - i. 
Therefore, the average number  of  nodes visited by COR-  
NER__ADJ___NEIGHBOR is 
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n - 1  n j - 1  

Y, Z 2"-i'2~-J" Z ( J - i + j - k )  
i=O j=i+l k=O 

n - 1  ( 1 )  n 

E E 2"-i'2"-J'J 
i=O j=i+l 

The numerator  of  (1) can be simplified to yield 

n--1 n--i 

E 2z"-zi-J-l"(3j z + j  + 4ji + i z + i) (2) 
i=0 j = l  

Making use of  the following identities in (2) leads to (9) 

2 ~ 7 = 2 -  1 -  (3) 
j = 0  

j n + 2  
j=2 ° - - -  = ~7 = 2 2" (4) 

, j2 n 2 + 4n + 6 
i~o ~3 = 6 2" (5) 

i__~o 1 1 - 2 ~  = 2"~ = 5 4  (6) 

j=~0 = 4 (7) 

__" j2~3 ~-~1 ( 9nZ+24n+20)22" ~_E ° = 2 0  • ( 8 )  

9827.,'~2,+z - (3n z + l ln  + 10).2" - ½n z - ~gn - ~ (9) 

The denominator of  (1) can be manipulated in a similar 
manner  to yield 

8 7.,92n+29 -- - -  (n + 2).2 "+~ + ~n + ~ (10) 

Substituting (9) and (10) into (1) results in 

14 (27n z + 15n - 78).2" + 3n z + 39n + 78 
3 7.22n+2 - 9.(n + 2).2 "+a + 6n + 8 
14 
- -  as n gets large 
3 
14 < - -  [] 

- - 3  

Procedure A L I G N E D  takes time proportional to the 
difference in the levels of  the two neighboring nodes for 
whom this relationship is to be verified. In other words, 
given nodes P and Q at levels L P  and L Q  respectively, 
we must visit at most I L P  - L Q  I nodes. For a rationale 
for this bound see the comment  in the formal statement 
of  procedure A L I G N E D  in Section 4. In fact, at times 
we can use information about the spatial relationship 
between P and Q so that A L I G N E D  need not be invoked 
for each call to NEXT__LINK.  For example, having 
determined that P extends beyond Q and that X is 
smaller in size than Q (this can be detected while search- 
ing for X i n  CORNER ADJ__NEIGHBOR) ,  then the 
new direction for the chain code is as illustrated in 
Figures 5(a) and 5(b) for X being W H I T E  or BLACK 
respectively (disregard the fact that X is larger than Q in 
Figure 5(b)). A similar result is obtained when Q extends 
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beyond P. It should be clear that the ALIGNED  rela- 
tionship is false in these cases. This can be seen by 
observing that whenever two adjacent nodes (in the 
vertical, horizontal, or diagonal directions), say P and Q, 
correspond to blocks of  size SP and SQ respectively, 
such that SP > SQ, then there exist additional nodes of  
size less than or equal to SQ adjacent to the opposite 
side of  Q. This is a direct consequence of  the property of  
the quadtree that a node, say P, corresponding to a block 
of size SP cannot be adjacent to node Q and R corre- 
sponding to blocks of  size SQ and SR respectively on 
opposite sides of  P where both SQ and SR are greater 
than SP. Using our model of  a random image, we have: 

THEOREM 2. The average number of nodes visited by 
ALIGNED is bounded by 19/21. 

PROOF. Given a node P at level i, and a direction D, 
using similar reasoning as in Theorem 1, there are 

n 

2n-i 2 2"-J.j 
j~ i+  l 

possible neighbor pairs where j corresponds to the level 
at which the nearest common ancestor of  the members 
of  the neighbor pair is located. Given i and j as defined 
above, we have possible neighbor pairs having an initial 
node at level i and a neighboring node at levels j - 1, 
j - 2 . . . . .  i + 1, i, i - 1 . . . . .  2, 1, 0--i.e., j possible 
neighbor pairs. For a node at level i and a neighbor at 
level k, at most l i - k I nodes must be visited in deter- 
mining the aligned relationship. Therefore, the average 
number of  nodes visited by A L I G N E D  is 

n--1 n j - I  

2 Y 2"-"2"-i"  ~ l i -  kl 
i = 0  j = i + l  k = 0  

,-1 (11) 

2 2 2"-i'2"-J'j 
i~O j = i + l  

The numerator of  (11) can be simplified to yield 
n--I n--i 

~, ~ 22n-2i - j - l ' ( j  2 - - j  -- i + i 2) ( 12 )  
i=o j=l  

Making use of  the identities (3) - (8) in (12) leads to 
(13) 

~ .22"+2-  (n 2 + n + 6).2" + ½n 2 + ~}n + ~ (13) 

The denominator of (1 l) is equal to (10) and substituting 
(13) and (10) into (1 l) yields: 

19 3 (2In 2 - 17n + 50).2" - 7n 2 -  13n - 50 

21 7 7.22n+2 - 9 . (n+2)-2  n÷a + 6n + 8 
19 

- -  as n gets large 
21 
19 

21 
[] 

At this point we can prove the following theorem. 

THEOREM 3. The chain code description of a region 
represented by a quadtree can be obtained in time propor- 
tional to the region's perimeter. 
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PROOF. Procedure NEXT__LINK requires time pro- 
portional to the region's perimeter to output the individ- 
ual links. Determining the next (BLACK, WHITE)  ad- 
jacency takes time which on the average is proportional 
to 2 .14/3 + 19/21 for each invocation of  procedures 
CORNER ADJ__NEIGHBOR and A L I G N E D  re- 
spectively. However, the number of  times these proce- 
dures are involved is bounded by the region's 
perimeter. [] 

7. Concluding Remarks 

An algorithm has been presented for converting the 
quadtree representation of  a simply connected region 
into the chain code description of the region's boundary. 
The algorithm is different from [17] where a method is 
reported for computing the perimeter of  an image rep- 
resented by a quadtree, in that we must visit the bound- 
ary nodes in a specified sequence. We have shown that 
our algorithm's execution time is bounded by the perim- 
eter of the region. It is interesting to note that our concept 
of a random image yields higher averages for the number 
of  nodes that are visited than when a random image is 
defined as stipulating that every node at level 0 has an 
equal probability of being BLACK or WHITE.  Recall 
that in such a case there is a very low likelihood of nodes 
corresponding to blocks of  size larger than 1. In fact, for 
such an image, it is shown in [16] that the average 
number of  nodes visited in determining neighbors is 
bounded by 4 whereas our model of  the image yields an 
average bounded by 14/3. 

In the case where a region may have holes, we may 
extend our algorithm by simply adding a quadtree tra- 
versal procedure which systematically visits all BLACK 
nodes upon completion of the first boundary following 
sequence. If  such a scan results in the discovery of  a 
BLACK boundary node with a boundary edge that was 
not marked by the boundary follower, then the scan is 
temporarily interrupted so that the boundary of  its cor- 
responding region can be followed. 

Some related work concerned with quadtrees and the 
establishment of their applicability for efficiently oper- 
ating on areal data includes the following. In [16] an 
algorithm is reported for the converse operation of  con- 
structing the quadtree from the chain code of  a region. 
Also, in [18] an efficient algorithm is given for determin- 
ing the connectivity of  BLACK nodes. This is interesting 
because the algorithm presented herein assumes a single 
connected region. 
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ACM's calendar policy is to list open computer 
science meetings that are held on a not-for-profit 
basis. Not included in the calendar are educational 
seminars, institutes, and courses. Submittals should 
be substantiated with name of the s~onsoring orga- 
nization, fee schedule, and chairman s name and full 
address. 

One telephone number contact for those inter- 
ested in attending a meeting will be given when a 
number is specified for this purpose. 
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tion should be addressed to Chairman, Conferences 
and Symposia Committee, Seymour J. Wolfson, 643 
MacKenzie Hall, Wayne State University, Detroit, 
MI 48202, with a copy to Louis Flora, Conference 
Coordinator, ACM Headquarters. 1133 Avenue of 
the Americas, New York,NY 10036; 212 265-6300. 
For European events, a copy of the request should 
also be sent to the European Representative. Tech- 
nical Meeting Request Forms for this purpose can 
be obtained from ACM Headquarters or from the 
European Regional Representative. Lead time 
should include 2 months (3 months if for Europe) 
for processing of the request, plus the necessary 
months (minimum 3) for any publicity to appear in 
Communications. 
• This symbol indicates that the Conferences and 
Symposia Committee has given its approval for 
ACM sponsorship or cooperation. 
In this issue the calendar is given to November 1981. 
New Listings are shown first; they will appear next 
month as Previous Listings. 

NEW LISTINGS 
20-21 March 1980 
Computers in Elementary Education, Washing- 

ton, D.C. Sponsor: AEDS. Contact: Shirley Easter- 
wood, AEDS Workshops, 1201 16th St., N.W., 
Washington, D.C. 20036; 202 833~.100. 

13-15 April 1980 
IVth International Conference on Collective 

Phenomena, Moscow, U.S.S.R. Sponsors: New York 
Academy of Sciences, Committee of Concerned Sci- 
entists with support of SIAM, AMS, APS. Contact: 
Dorothy Hirsch, Committee of Concerned Scientists, 
Inc., 9 East 40th St., New York, NY 10016; 212 686- 
8862. 

13-16 April 1980 
Spring 80 Conference, Atlanta, Ga. Sponsor: 

COMMON. Contact: David G. Lister, Administra- 
tive Director, COMON-Sz, 435 N. Michigan Ave., 
Suite 1717, Chicago, IL 60611; 312 644-0828. 

25-26 April 1980 
Symposium in Cognitive Science, Poughkeepsie, 

N.Y. Sponsor: Vassar College Cognitive Science 

Group. Contact: Cognitive Science Symposium, Vas- 
sar College, Box 525, Poughkeepsie, NY 12601. 

28-30 April 1980 
Workshop on Array Architecture for Computing 

in the 80s and 90s, Hampton, Va. Sponsor: ICASE. 
Contact: Robert G. Voigt, ICASE, Mail Stop 132C. 
NASA Langley Research Center, Hampton, VA 
23665; 804 827-2513. 

1 May 1980 
Social Science Data Workshop (preceding 

IASSIST Annual Conference 1980), Washington, 
D.C. Sponsor: IASSIST. Workshop chm: Barbara 
Aldrich, 2715A S. Walter Reed Drive, Arlington, VA 
22206. 

15-17 May 1980 
9th ASIS Mid-Year Meeting, Pittsburgh, Pa. 

Sponsor: American Society for Information Science. 
Conf. chm: K. Leon Montgomery, Information Sci- 
ence, 721 LIS Building, University of Pittsburgh, 
Pittsburgh, PA 15260. 

19-23 May 1980 
Conference on Mathematical Models for-En- 

ergy and Public Policy, Charleston, S.C. Host: The 
Citadel. Contact: John I. Moore Jr., Dept. of Math- 
ematics, The Citadel, Charleston, SC 29409. 

24-31 August 1980 
Data Processing in Chemistry 80, Rzesz6w, Po- 

land. Organizers: Committee of Chemical Sciences, 
Polish Academy of Sciences, I. Lukasiewicz Techni- 
cal University. Contact: Institute of Chemical Tech- 
nology, I. Lukasiewicz Technical University, 35-959 
Rzeszrw, P.O. Box 85, Poland. 

22-25 September 1980 
12th Annual Conference of the Society for Man- 

agement Information Systems, Philadelphia, Pa. 
Sponsor: SMIS. Contact: SMIS Headquarters, 111 
East Wacker Drive, Chicago, IL 60601. 

24-27 September 1980 
Tenth Annual Conference of the Society for 

Computer Medicine, San Diego, Calif. Sponsor: 
SCM. Contact: Society for Computer Medicine, 1901 
N. Ft. Myer Drive, Suite 602, Arlington. VA 22209. 

30 September-2 October 1980 
Annual Conference 80, Universit/it des Saar- 

landes, Saarbriicken, West Germany. Sponsor: Ge- 
sellschaft ffir Informatik. Prog. chm: R. Wilhelm, FB 
10--1nformatik, Universit/it des Saarlandes, D-6600 
Saarbriicken 11, West Germany. 

1-3 October 1980 
Twenty-First Annual Symposium on Founda- 

tions of Computer Science, Lake Placid, N.Y. Spon- 
sor: IEEE-CS Tech. Comm. on Mathematical Foun- 
dations of Computing. Prog. chm: Andrew C. Yao, 
Computer Science Dept., Stanford University, Stan- 
ford, CA 94305. 

8-10 October 1980 
Eighteenth Annual Allerton Conference on 

Communication, Control, and Computing, Allerton 

House, near Monticello, IlL Sponsor: University of 
Illinois at Urbana-Champaign. Conf. co-chm: D.V. 
Sarwate and W.R. Perkins, Coordinated Science 
Laboratory, University of Illinois at Urbana-Cham- 
paign, Urbana, IL 61801. 

20 October 1980 
National Information Systems: Getting Ready 

for 1984, Washington, D.C. Sponsor: Computer Law 
Association. Contact: Michael Yourshaw, 1776 K St., 
N.W., Washington, DC 20006; 202 857-5029. 

27-31 October 1980 
Compsac 80, Fourth International Computer 

Software and Applications Conference, Chicago, IlL 
Sponsor: IEEE-CS. Gen. chm: Richard Merwin, 
Dept. of EE and Computer Science, The George 
Washington University, Washington. DC 20052; 202 
676-4951. 

8-11 December 1980 
• ACM SIGPLAN Symposium on the Ado Pro- 
grammingLanguage, Boston, Mass. Sponsor: ACM 
SIGPLAN. Conf. chm: Robert M. Graham, COINS 
Graduate Research Center, University of Massachu- 
setts, Amherst, MA 01003; 413 545-2742. 

8-9 January 1981 
• 14th Annual Hawaii International Confer- 

ence on Systems Sciences, Honolulu. Sponsor: Uni- 
versity of Hawaii in cooperation with ACM 
SIGBDP. Conf. chm: Ralph H. Sprague Jr., Univer- 
sity of Hawaii a~t Manoa, College of Business Ad- 
ministration, 2404 Maile Way, Honolulu, HI 96822; 
808 948-7430. 

22-26 June 1981 
XXV International Meeting of the Institute of 

Management Sciences, Cairo, Egypt. Sponsor: 
TIMS. Gen. chm: Mostafa E1 Agizy, Exxon Corpo- 
ration, Box 153, Florham Park, NJ 07932. 

PREVIOUS LISTINGS 

17-19 March 1980 
IEC! 80, Sixth Annual Conference and Exhibit 

on Industrial and Control Applications of Micropro- 
cessors, Philadelphia, Pa. Sponsors: Industrial Elec- 
tronic and Control Instrumentation Society, IEEE. 
Gen. chm: Paul M. Russo, RCA Laboratories, 
Princeton. NJ 08540; 609 452-2700. 

18-20 March 1980 
Electric Power Problems: The Mathematical 

Challenge, Seattle, Wash. Sponsor: SIAM. Contact: 
Albert M. Erisman, Boeing Computer Services Co., 
565 Andover Park West, M/S 9C-01, Tukwila, WA 
98188. 

19-21 March 1980 
• 13th Annual Simulation Symposium, Tampa, 
Fla. Sponsors: ACM SIGSIM, IEEE-CS, SCS. 
Symp. chin: Harvey Fisher, Alcan Products, Box 51 I, 
Warren, OH 44482; 216 841-3416. 
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