
1. Introduction

Graphics and J.D. Foley
Image Processing Editor

Region
Representation:
Boundary Codes
from Quadtrees
Charles R. Dyer, Azriel Rosenfeld, and
Hanan Samet
University of Maryland

There has been recent interest in the use of
quadtrees to represent regions in an image. It thus
becomes desirable to develop efficient methods of
conversion between quadtrees and other types of region
representations. This paper presents an algorithm for
converting from quadtrees to a simple class of boundary
codes. The algorithm is shown to have an execution
time proportional to the perimeter of the region.

Key Words and Phrases: quadtrees, chain codes,
regions, borders, data structures

CR Categories: 3.63, 8.2

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was sponsored by the Defense Advanced Research
Projects Agency and the U.S. Army Night Vision Laboratory under
contract no. DAAG-53-76C-0138 (DARPA Order 3206).

Authors' present address. C.R. Dyer, Department of Information
Engineering, University of Illinois at Chicago Circle, Chicago,
IL60680; A..Rosenfeld, Computer Science Center, and H. Samet,
Computer Science Department, University of Maryland, College Park,
MD 20742.
© 1980 ACM 0001-0782/80/0300-0171 $00.75.

171

Region representation plays a key role in image and
scene analysis, computer cartography, and computer
graphics. There are a variety of approaches to represent-
ing regions, based on their boundaries or their "skele-
tons"; some of these are reviewed in the following para-
graphs. Recently, a tree representation has been pro-
posed which offers a number of advantages; it is also
described here. Since each type of representation has its
own advantages, it becomes desirable to develop efficient
methods of converting from one representation to an-
other. Sections 2-6 present and analyze an algorithm for
converting the tree representation into a simple type of
boundary representation. Section 7 briefly considers sev-
eral related problems.

We assume in what follows that a region is a simply
connected subset of a 2n-by-2 n array, which we regard as
being made up of unit-square "pixels." (The treatment
of regions that have holes will be discussed in Section 7.)
The boundary of such a region can thus be specified,
relative to a given starting point, as a sequence of unit
vectors in the principal directions. We can represent the
direction by numbers, e.g. let i, an integer quantity
ranging from 0 to 3, represent 90 ° * i. For example, the
direction sequence for the boundary of the region in
Figure l(a), moving clockwise starting from the left of
the uppermost border points, is

03023523 1 2 3 3 0 3 2 5 160 1 0 1 0 3 0 1 0 1.

This type of boundary representation is called a chain
code. Generalized chain codes, involving more than four
directions, can also be used. Chain codes provide a very
compact region representation, and make it easy to detect
features of the region boundary, such as sharp turns
("corners") or concavities. On the other hand, it is harder
to determine properties such as elongatedness from a
chain code, and it is also difficult to perform operations
such as union and intersection on regions represented by
chain codes. A general introduction to chain codes and
their uses can be found in [4].

Another class of region representations involves var-
ious types of maximal "blocks" that are contained in a
given region. For example, we can represent a region R
as a linked list of the runs (of pixels) in which R meets
the successive rows of the array [15]. Here each "block"
is a l-by-m rectangle, where m is the run length; the runs
are the largest such blocks that R contains, and R is
determined by specifying the initial points (or centers)
and lengths of the runs. Alternatively, we can represent
R by the set of maximal square blocks (or blocks of any
other desired shape) that it contains; here R is determined
by specifying the centers and radii of these blocks. This
representation is called the medial axis transformation, or
MAT [2, 14]. It is somewhat less compact than the chain
code [12], but it has advantages with respect to perform-
ing union and intersection operations or detecting prop-

Communications March 1980
of Volume 23
the ACM Number 3

http://crossmark.crossref.org/dialog/?doi=10.1145%2F358826.358838&domain=pdf&date_stamp=1980-03-01

Fig. 1. A Region, Its Maximal Blocks, and the Corresponding Quadtree. Blocks in the region are shaded, background blocks are blank.

(a) Region.

11

24

40

2

12113

41

3 4

9 8

~1 32 33 134

55 36 37
~,39

42

17

30

43

(b) Block decomposition of the region in (a).

NW/ NE/ SW\ SE

1 2 5 16 17 24 25 40 41

23 3 4//1~ 8 37

12 13 18 19 14 15 20 21 6 7 9 10 26 27 31 32 28 29 33 34 35 36 38 39

(c) Quadtree representation of the blocks in (b).

erties such as e longatedness (in terms of the smallness o f
the radii relative to the n u m b e r o f centers).

There has been recent interest in an approach to
region representat ion based on successive subdivision o f
the array into quadrants . I f the region does not cover the
entire array, we subdivide the array, and repeat this
process for each quadrant , each subquadran t as
long as necessary, until we obtain blocks (possibly single
pixels) that are entirely conta ined in the region or entirely
disjoint f rom it. The resulting blocks for the region of
Figure l(a) are shown in Figure l(b). This process can
be represented by a tree o f degree 4 (for brevity: a
quadtree) in which the entire ar ray is the root node, the
four sons o f a node are its quadrants , and the leaf nodes
correspond to those blocks for which no fur ther subdi-

172

vision is necessary, t The quadt ree representat ion for
Figure l(b) is shown in Figure l(c). Note that here again
we are represent ing the region as a union o f m a x i m a l
blocks, but this t ime the blocks must have s tandard sizes
and posit ions (powers of 2). Since the a r ray was assumed
to be 2n-by-2 '~, the tree height is at most n. This me thod
of region representat ion was proposed by Kl inger [1, 9];
it has also been used for image representa t ion (e.g., [5,
10, 13, 19, 20]). It is relatively compac t [9], and is also
well-suited to opera t ions such as union a n d intersection
[6, 7], and to detect ing various region propert ies [6-9]. A

' The quadtree region representation described here should not be
confused with the quadtree representation of two-dimensional point
data introduced by Finkel and Bentley [3].

Communications March 1980
of Volume 23
the ACM Number 3

Fig. 2(a). Relationship between a block's four quadrants and its chain
code representation.

E

NW NE
N $

SW SE ¢

W

Fig. 2(b). Relationship between a block's four quadrants and its
boundary.

N

NW NE
W E

s w SE

recent Ph.D. thesis by Hunter [6-8] in the domain of
computer graphics develops a variety of algorithms for
the manipulation of quadtree region representation.

Since the quadtree and border representations have
different computational advantages, it is of interest to
develop methods of converting from one representation
to the other. We shall now present an algorithm for
deriving a clockwise boundary code from the quadtree
representation Of a given region.

2. Definitions and Notation

Let each node in a quadtree be stored as a record
containing six fields. The first five fields contain pointers
to the 'node's father and its four sons, labeled NW,
NE, SW, and SE. Given a node P and a son I, these
fields are referenced as FATHER(P) and SON(P, I)
respectively. At times it is preferable to use the
function SONTYPE(P) where SONTYPE(P) = Q iff
SON(FATHER(P), Q) = P. The sixth field, named
NODETYPE, describes the contents of the block of the
region Which the node represents, i.e., WHITE if the
block contains no pixels in the regionl BLACK if the
block contains only pixels in the region, and GRAY if it
contains pixels Of both types. We often examine the
information in this field by use of th e predicates WHITE,
BLACK, and GRAY respectively.

Let the four sides of a node's block be called its N, E,
S, and W sides. Two nodes are said to be adjacent along
the northern side of the first, for example, if the pair of
blocks represented by these nodes touch along that side
(not just at a corner). The sides of a node's block are
also termed its boundaries , and at times we speak of
them as if they are directions (e.g., in Figure 1, node 23
is adjacent to the eastern side of node 22; alternatively,
we say that node 23 is node 22's neighbor in the eastern
direction) . The four directions that can be represented
by a four-direction chain code are also labeled N, E, S,
W. We use a clockwise chain code, which means that the
region is always to the right of the boundary represented
by the code. The function LINK(T) yields the chain
code direction associated with side T. Using the coding
described in Section 1, we have that LINK('N') = 0,
LINK('E') = 3, LINK('S') = 2, and LINK('W') = 1.
Figure 2(a) shows the relationship between quadrants of
a node and directions of a chain code, and Figure 2(b)
shows the relationshi p between quadrants of a node and
its boundaries.

There are a number of functions and predicates

173

which are useful in describing the relationship between
nodes, quadrants, and boundaries. CSIDE(T) is the node
which is adjacent to side T in the clockwise direction,
e.g., CSIDE('N') = 'E'. Similarly, define CCSIDE(T) to
be the side which is adjacent in the counterclockwise
direction to T, and OPSIDE(T) as the side opposite tO
T. For example, CCSIDE('N') = 'W' and OPSIDE('N')
= 'S'. The predicate ADJ(T, K) is true if and only if
quadrant K is adjacent to side T o f t h e node's block, e.g.,
ADJ('N', 'NW') = TRUE. REF LECT (T, K) yields the
SONTYPE value of the block of equal size that is
adjacent to side T of a block having SONTYPE value K;
e.g., REFLECT('W' , 'NE') = 'NW', and REFLECT('N ' ,
'NW') = 'SW'. QUAD(T, U) is the quadrant that
touches the corner formed by sides T and U (if T and U
are opposite sides, then QUAD(T, U) is undefined), e.g.,
QUAD('N', 'E') = 'NE'.

For a quadtree corresponding to a 2 n by 2 n array we
say that the root is at level n, and that a node at level i
is at a distance of n - i from the root of the tree. In other
words, for a node at level i, we must ascend n - i
F A T H E R links to reach the root of the tree. Note that
the farthest node from the root of the tree is at level _>0.
A node at level 0 corresponds to a single pixel in the
image. Also, we say that a node is of size 2 s if it is found
at level s in the tree.

3. The Boundary Following Algorithm

Before tracing the boundary we must determine an
initial (BLACK, WHITE) node pair. This is achieved by
starting at the root and descending the quadtree in the
priority order NW, NE, SW, SE avoiding WHITE nodes
until a BLACK node P is reached. This node cannot
have a BLACK node adjacent to its northern side be-
cause we always descend to northern sons unless both
northern sons are WHITE. Assuming that the region
does not reach the border of the corresponding image,
we see that the node Q that is adjacent to P 's northern
side and touching P's northwestern corner must be
WHITE. The previous assumption can be made a reality
by surrounding the image with W H ITE blocks as in
Figure 3. At this point nodes P and Q form an initial
(BLACK, WHITE) node pair.

Given an arbitrary pair of adjacent BLACK and
WHITE nodes, P and Q respectively, we first output the
chain link associated with that part of P ' s border which
is adjacent to Q. Next, we must determine the (BLACK,
WHITE) node pair that defines the subsequent !ink in

C o m m u n i c a t i o n s M a r c h 1980
of Volume 23
the ACM Number 3

the chain as we traverse the boundary in the clockwise
direction. To find the new pair, we must consider the
three possible relative positions of P and Q with respect
to the direction of traversal--either P extends past Q
(Figure 4(a)), or Q extends past P (Figure 4(b)), or P
and Q end at the same point (Figure 4(c)). Note that in
Figure 4, P is always to the north of Q; however, it can
also be to the east, south, or west.

In order to determine the next pair, we first find the
adjacent nodes X and Y as shown in Figure 4. Given the
NODETYPE information for these nodes, we obtain the
next pair, for the three cases illustrated in Figure 4, in
the following manner. Note that the relationships involv-
ing Figure 4(c) are the same whether or not P is smaller
than Q. Also whenever we speak of a side of a node, we
mean the entire width of the side.

(1) Figure 4(a): In this case Xcannot extend beyond
P although it may be larger than Q.
(a) If Xis WHITE, then the new pair is (P, X), and the

boundary does not turn. The new link is the north
side of X (e.g., Figure 5(a)).

(b) I f X i s BLACK, then the new pair is (X, Q) and the
boundary turns left. If X is larger than Q, then the
new link is the west side of Q (e.g., Figure 5(b));
otherwise, it is the east side of X.

(2) Figure 4(b): In this case X cannot extend beyond
Q, although it may be larger than P.
(a) If X is WHITE, then the new pair is (P, X), and the

boundary turns right. If P is no larger than X, then
the new link is the west side of P; otherwise, it is
the east side of X (e.g., Figure 5(c)).

(b) If X is BLACK, then the new pair is (X, Q) and the
boundary does not turn. The new link is the south
side of X (e.g., Figure 5(d)).

(3) Figure 4(c): Assume that the region is 4-con-
nected so that blocks touching only at a corner are not
regarded as adjacent.
(a) If both X and Y are BLACK (they need not be

distinct nodes), then the new pair is (Y, Q), and the
boundary turns left. If X and Y are distinct and Y
is no bigger than Q, then the new link is the east
side of Y (e.g., Figure 5(i)); otherwise (i.e., Y is
bigger than Q), the new link is the west side of Q.
Note that if X and Y are the same node (e.g., Figure
5(f)), then Y must extend at least to the end of Q
because neighboring nodes cannot properly over-
lap.

(b) If X is BLACK and Y is WHITE, then the new
pair is (X, Y) and the boundary does not'turn. I f X
is not bigger than Y, then the new link is the south
side of X; otherwise, it is the north side of Y (e.g.,
Figure 5(h)).

(c) If X is WHITE, then the new pair is (P, X), and the
boundary turns right regardless of the type of node
Y by virtue of the 4-connected property. If P is no
bigger than X, then the new link is the west side of
P (e.g., Figure 5(e)); otherwise, it is the east side of
X (e.g., Figure 5(g)).

174

Fig. 3. An image totally surrounded by background.

image

image

(a) Block decomposition. (b) Quadtree.

Fig. 4. Possible overlap relationships between the (BLACK, WHITE)
adjacent node pair (P, Q). The heavy arrow indicates the boundary
segment just output.

Fig. 5. Possible configurations of P, Q and their neighbor blocks in
determining the next (BLACK, WHITE) pair. Arrows indicate the
boundary segments associated with the old and new pairs.

(a) (b) (c)

(d) (e) (t)

(g) (h) (i)

It should be clear that we could specify a similar set of
rules if we considered the region to be 8-connected.

4. Formal Statement of the Algorithm

The following ALGOL-like procedures [11] specify
the complete boundary following algorithm. The main
procedure is termed CHAINCODE and is invoked with
a pointer to the root of the quadtree representing the

Communications March 1980
of Volume 23
the ACM Number 3

image and an integer corresponding to the log of the
diameter of the image (e.g., n for a 2 n by 2 n image array).
It finds the initial (BLACK, WHITE) pair of nodes and
then invokes procedure NEXT__LINK which controls
the process of tracing the boundary and outputting the
appropriate links of the chain code. Procedure COR-
NER__ADJ__NEIGHBOR is used in conjunction with
procedure GTEQUAL__ADJ__NEIGHBOR to find the
adjacent nodes (e.g., X and Y in Figures 3 and 4).
Boolean procedure ALIGNED aids in determining
which of the three cases illustrated in Figure 3 is appli-
cable to the current (BLACK, WHITE) pair of nodes.
MARK and MARKED aid in the detection of the end
of the tracing process.

procedure CHAINCODE(ROOT, LEVEL);
/* Find the chaincode corresponding to the quadtree rooted at ROOT

representing a 2 T LEVEL by 2 1' LEVEL image */
begin

value node ROOT;
value integer LEVEL;
node P, Q;
integer LP, LQ;
P ,,-- ROOT;
LP ~ LEVEL; /*LEVEL and LP are used to determine the

length of sides of blocks */
while GRAY(P) do

/* Find a BLACK node P which is on the region boundary
and has no BLACK nodes adjacent to its north side. Q, a
WHITE node, is the western-most of P's northern neigh-
bors. The pair (P, Q) defines the initial chain segment */

begin
LP *-- L P - 1;
P ~ SON(P, if not WHITE(SON(P, 'NW')) then 'NW"

else if not WHITE(SON(P, 'NE')) then
'NE'

else if not WHITE(SON(P, 'SW')) then
'SW'

else 'SE');
end;

LQ ~-- LP;
CORNER__ADJ__NE1GHBOR(P, 'N', 'NW', Q, LQ);
NEXT__LINK(P, LP, Q, LQ, 'N');/*Trace the boundary*/

end;

procedure NEXT__LINK(P, LP, Q, LQ, D);
/* Given BLACK node P at level LP and WHITE node Q at level Q

that are adjacent along side D of P, output the corresponding chain
code description, and determine the next pair of adjacent BLACK
and WHITE nodes */

begin
value node P, Q;
value integer LP, LQ;
value side D;
node X, Y;
integer I, LX, L Y;
if MARKED(P, Q) then HALT/* Done */
else MARK(P, Q);
for 1 ~-- step 1 until 2 T MIN(LP, LQ) do PRINT(LINK(D));
/* Determine the next pair of adjacent BLACK and WHITE

nodes */
if ALIGNED(P, LP, Q, LQ, CSIDE(D)) then

/* P and Q are aligned along direction CSIDE(D) */
begin

LX *- LP;
CORNELADJ__NEIGHBOR(P, CSIDE(D),

QUAD(CSIDE(D), D), X, LX);

175

if WHITE(X) then/* Figures 5(e) and 5(g) */
NEXT__LINK(P, LP, X, LX, CSIDE(D))

else
begin

L Y ~-- LQ;
CORNELADJ__NEIGHBOR(

Q, CS1DE(D),
QUAD(CSIDE(D), OPSIDE(D)),
Y, LY);

if BLACK(Y) then/* Figures 5(f) and 5(i) */
NEXT .LINK(Y, L Y, Q, LQ,

CCSIDE(D))
else NEXT_LINK(X, LX, Y, LY, D);

/* Figure 5(h) */
end;

end
else if LP > LQ then

/* BLACK extends farther than WHITE */
begin

LX ~ LQ;
CORNELADJ__NE1GHBOR(

Q, CSIDE(D),
QUAD(CSIDE(D), OPSIDE(D)),
x, LX);

if WHITE(X) then NEXT__LINK(P, LP, X, LX, D)
/* Figure 5(a) */

else NEXT__LINK(X, LX, Q, LQ, CCSIDE(D));
/* Figure 5(b) */

elrld
else/* WHITE extends farther than BLACK */

begin
LX ~ LP;
CORNER__ADJ__NEIGHBOR(

P, CSIDE(D),
QUAD(CCSIDE(D), D), X, LX);

if WHITE(X) then/* Figure 5(c) */
NEXT__LINK(P, LP, X, LX, CSIDE(D))

else NEXT__LINK(X, LX, Q, LQ, D);
/* Figure 5(d) */

end;
end;

Boolean procedure ALIGNED(P, LP, Q, LQ, D);
/* Given two nodes P and Q, at levels LP and LQ respectively, which

are adjacent along side CCSIDE(D) of node P, determine whether
either of P or Q extends farther in direction D than the other (return
FALSE), or their two sides in direction D are aligned (return TRUE)
*/

begin
value node P, Q;
value integer LP, LQ;
value direction D;
node R;
integer l;
if LP = LQ then return (TRUE)
else if LP > LQ then R ~ Q
else R *-- P;
/* The smaller of the two nodes cannot extend farther than the

other because this would imply that P and Q properly overlap,
which is impossible. At best, the smaller node can be aligned
with the other node, and this occurs if and only if the smaller
node is adjacent to the extreme side in direction D of the nearest
common ancestor of nodes P and Q */

for 1 ,,-- 1 step 1 until ABS(LP - LQ) do
begin

if not ADJ(D, SONTYPE(R)) then return(FALSE)
else R ,-- FATHER(R);

end;
return(TRUE);

Communications March 1980
of Volume 23
the ACM Number 3

end;

procedure CORNER__ADJ__NEIGHBOR(P, D, C, Q, L);
/* Return in Q the neighbor of node P in horizontal or vertical

direction D which is adjacent to corner C of node P. L denotes the
level of the tree at which node P is initially found and the level of
the tree at which node Q is ultimately found */

begin
value node P;
value direction D;
value quadrant C;
reference node Q;
reference integer L;
GTEQUAL__ADJ__NEIGHBOR(P, D, Q, L);
while GRAY(Q) do

begin
Q ~ SON(Q, REFLECT(D, C));
L~---L- 1;

end;
end;

procedure GTEQUAL~ADJ__NEIGHBOR(P, D, Q, L);
/* Return in Q the neighbor of node P in horizontal or vertical

direction D which is greater than or equal in size to P. If such a node
does not exist, then a GRAY node of equal size is returned. If this
is also impossible, then the node is adjacent to the border, and
NULL is returned. L denotes the level of the tree at which node P
is initially found and the level of the tree at which node Q is
ultimately found */

begin
value node P;
value direction D;
reference node Q;
reference integer L;
L~---L+ 1;
if (not NULL (FATHER(P))) and ADJ(D, SONTYPE(P)) then

/* Find a common ancestor */
GTEQUAL__ADJ__NE1GHBOR(FATHER(P), D, Q, L)

else Q ~ FATHER(P);
/* Follow the reflected path to locate the neighbor */
if not NULL (Q) and GRAY (Q) then

begin
Q ~- SON(Q, REFLECT(D, SONTYPE(P)));
L ~ - - L - l;

end;
end;

5. E x a m p l e

Let us consider the quadtree shown in Figure 1.
Notice that this quadtree has 57 nodes whereas an array
representat ion would have required a 16 by 16 (=256-
cell) logical array. Procedure C H A I N C O D E finds the
initial pair (19, 13) and then invokes procedure
N E X T _ _ L I N K to follow the b o u n d a r y starting at this

point. Table I specifies the a rguments of N E X T _ _ L I N K
at each recursive call a long with the l ink that is output
as a result of this pairing.

6. A n a l y s i s

The speed of our bounda ry coding algori thm is de-
termined by procedure N E X T _ _ L I N K which ~ called
for each bounda ry segment associated with a (BLACK,
W H I T E) adjacent node pair. Recall that N E X T _ _ L I N K
has two parts. First, it must ou tput the chain code

description for each bounda ry segment. The time re-

176

Table I. Sequence of calls of NEXT__LINK for the quadtree in
Figure 1. The exponent on the output indicates the number of unit
length links associated with the boundary specified by the given
(P, Q) pair.

BLACK node WHITE node
P Q Side T Link output

19 13 N 01
14 13 W [~
14 2 N 0 ~
14 15 E 31
21 15 N 01
16 15 W 11
16 9 N 0 I
10 9 W 11
10 7 N 0 I
10 8 E 3 I
16 8 N 02
16 17 E 34
29 30 E 31
29 34 S 2 ~
28 33 S 2 ~
27 32 S 21
27 26 W 11
16 26 S 2 ~
25 26 E 31
25 31 E 3 I
25 35 E 3 ~
38 35 N 0 ~
38 39 E 3 I
38 42 S 2 j
25 41 S 24
25 24 W 14
22 11 W 1 ~
22 18 N 0 ~
19 18 W 11
19 13 N - -

quired to output the ind iv idua l l inks is propor t ional to
the region's perimeter, where the per imeter is def ined to
be the n u m b e r of uni t - square pixels on the region's
bounda ry (not the n u m b e r of B L A C K nodes which are
adjacent to W H I T E nodes). Second, it must de te rmine
the next (BLACK, W H I T E) adjacent node pair. The
t ime required to do this is dependen t on the execu-
t ion t ime of procedures A L I G N E D and C O R -
N E R A D J _ _ N E I G H B O R . G i v e n a pair (P, Q) of ad-
j acen t (BLACK, W H I T E) nodes respectively, procedure
A L I G N E D is called once and procedure C O R -
N ER ADJ N E I G H B O R is called at most two times
(once for Figures 4(a) and 4(b) and twice for Figure
4(c)). The a m o u n t of t ime required by these procedures
is propor t ional to the n u m b e r of nodes that must be
visited and depends on their relative posit ions in the
quadtree. Note that the n u m b e r of t imes that the deter-
m i n a t i o n of the next (BLACK, W H I T E) adjacency must
be done is also b o u n d e d by the region's perimeter.

The average execution t ime of procedures C O R -
N E R _ _ A D J _ _ N E I G H B O R and A L I G N E D is analyzed
below. However, it is appropria te to c omme n t on our
not ion of average. We assume a r a n d o m image in the
sense that a node is equal ly likely to appear in any
posit ion and level in the quadtree. This means that we

Communications March 1980
of Volume 23
the ACM Number 3

Fig. 6. lflustration of nearest neighbor computation.

1 9 17 25 33 41 49 57

2 I0 18 26 34 42 50 58

3 ii 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

7 15 23 31 39 47 55 63

8 16 24 32 40 48 56 64

assume that all neighbor pairs (i.e., configurations of
adjacent nodes of varying sizes) have equal probability.
This is different from the more conventional notion of
a random image which implies that every block at level
0 (i.e., pixel) has an equal probabili ty of being BLACK
or WHITE. Such an assumption would lead to a very
low probability of any nodes corresponding to blocks of
size larger than 1. Clearly, for such an image, the quad-
tree is the wrong representation.

THEOREM 1. The average number o f nodes visited by
CORNER___ADJ__NEIGHBOR is bounded by 14/3.

PROOF. Given a node P at level i, and a direction D
toward corner C of P, there are

2 "-i ~, 2n-j . j
j=i+ l

possible neighbor pairs where j corresponds to the level
at which is located the nearest common ancestor of the
members of the neighbor pair. The 2 "-~ factor is a direct
result of there being 2 n-~ possible rows (or columns)
containing nodes at level i. For each such row, 2 0 neigh-
bor pairs have their nearest common ancestor at level n,
21 at level n - 1 and 2 n-i-1 at level i + 1. For
example, in the 23 by 23 grid of Figure 6, nodes corre-
sponding to blocks 25 to 32 have eastern neighbors 33 to
40 respectively and nearest common ancestors at level 3;
nodes corresponding to blocks 9 to 16 and 41 to 48 have
eastern neighbors 17 to 24 and 49 to 55 respectively and
nearest common ancestors at level 2; nodes correspond-
ing to blocks 1 to 8, 17 to 24, 33 to 40, and 49 to 55 have
eastern neighbors 9 to 16, 25 to 32, 41 to 48, and 57 to 64
respectively and nearest common ancestors at level 1.
For a node at level i, a direction D toward corner C, and
a nearest common ancestor at level j , we have possible
neighbor pairs having the initial node at level i and the
neighboring node at levels j - 1, j - 2 i + 1, i,
i - 1 2, 1, 0--i.e., j possible neighbor pairs. Thus
for a node at level i, the number of node pairs that
will be visited in the process of locating a neighbor at
level k with a nearest common ancestor at level j is
(j - i + j - k). This is obtained by observing that the
nearest common ancestor is at a distance of j - i.
Therefore, the average number of nodes visited by COR-
NER__ADJ___NEIGHBOR is

177

n - 1 n j - 1

Y, Z 2"-i'2~-J" Z (J - i + j - k)
i=O j=i+l k=O

n - 1 (1) n

E E 2"-i'2"-J'J
i=O j=i+l

The numerator of (1) can be simplified to yield

n--1 n--i

E 2z"-zi-J-l"(3j z + j + 4ji + i z + i) (2)
i=0 j = l

Making use of the following identities in (2) leads to (9)

2 ~ 7 = 2 - 1 - (3)
j = 0

j n + 2
j=2 ° - - - = ~7 = 2 2" (4)

, j2 n 2 + 4n + 6
i~o ~3 = 6 2" (5)

i__~o 1 1 - 2 ~ = 2"~ = 5 4 (6)

j=~0 = 4 (7)

__" j2~3 ~-~1 (9nZ+24n+20)22" ~_E ° = 2 0 • (8)

9827.,'~2,+z - (3n z + l ln + 10).2" - ½n z - ~gn - ~ (9)

The denominator of (1) can be manipulated in a similar
manner to yield

8 7.,92n+29 -- - - (n + 2).2 "+~ + ~n + ~ (10)

Substituting (9) and (10) into (1) results in

14 (27n z + 15n - 78).2" + 3n z + 39n + 78
3 7.22n+2 - 9.(n + 2).2 "+a + 6n + 8
14
- - as n gets large
3
14 < - - []

- - 3

Procedure A L I G N E D takes time proportional to the
difference in the levels of the two neighboring nodes for
whom this relationship is to be verified. In other words,
given nodes P and Q at levels L P and L Q respectively,
we must visit at most I L P - L Q I nodes. For a rationale
for this bound see the comment in the formal statement
of procedure A L I G N E D in Section 4. In fact, at times
we can use information about the spatial relationship
between P and Q so that A L I G N E D need not be invoked
for each call to NEXT__LINK. For example, having
determined that P extends beyond Q and that X is
smaller in size than Q (this can be detected while search-
ing for X i n CORNER ADJ__NEIGHBOR) , then the
new direction for the chain code is as illustrated in
Figures 5(a) and 5(b) for X being W H I T E or BLACK
respectively (disregard the fact that X is larger than Q in
Figure 5(b)). A similar result is obtained when Q extends

C o m m u n i c a t i o n s M a r c h 1980
o f V o l u m e 23
t h e A C M N u m b e r 3

beyond P. It should be clear that the ALIGNED rela-
tionship is false in these cases. This can be seen by
observing that whenever two adjacent nodes (in the
vertical, horizontal, or diagonal directions), say P and Q,
correspond to blocks of size SP and SQ respectively,
such that SP > SQ, then there exist additional nodes of
size less than or equal to SQ adjacent to the opposite
side of Q. This is a direct consequence of the property of
the quadtree that a node, say P, corresponding to a block
of size SP cannot be adjacent to node Q and R corre-
sponding to blocks of size SQ and SR respectively on
opposite sides of P where both SQ and SR are greater
than SP. Using our model of a random image, we have:

THEOREM 2. The average number of nodes visited by
ALIGNED is bounded by 19/21.

PROOF. Given a node P at level i, and a direction D,
using similar reasoning as in Theorem 1, there are

n

2n-i 2 2"-J.j
j~ i+ l

possible neighbor pairs where j corresponds to the level
at which the nearest common ancestor of the members
of the neighbor pair is located. Given i and j as defined
above, we have possible neighbor pairs having an initial
node at level i and a neighboring node at levels j - 1,
j - 2 i + 1, i, i - 1 2, 1, 0--i.e., j possible
neighbor pairs. For a node at level i and a neighbor at
level k, at most l i - k I nodes must be visited in deter-
mining the aligned relationship. Therefore, the average
number of nodes visited by A L I G N E D is

n--1 n j - I

2 Y 2"-"2"-i" ~ l i - kl
i = 0 j = i + l k = 0

,-1 (11)

2 2 2"-i'2"-J'j
i~O j = i + l

The numerator of (11) can be simplified to yield
n--I n--i

~, ~ 22n-2i - j - l ' (j 2 - - j -- i + i 2) (12)
i=o j=l

Making use of the identities (3) - (8) in (12) leads to
(13)

~ .22"+2- (n 2 + n + 6).2" + ½n 2 + ~}n + ~ (13)

The denominator of (1 l) is equal to (10) and substituting
(13) and (10) into (1 l) yields:

19 3 (2In 2 - 17n + 50).2" - 7n 2 - 13n - 50

21 7 7.22n+2 - 9 . (n+2)-2 n÷a + 6n + 8
19

- - as n gets large
21
19

21
[]

At this point we can prove the following theorem.

THEOREM 3. The chain code description of a region
represented by a quadtree can be obtained in time propor-
tional to the region's perimeter.

178

PROOF. Procedure NEXT__LINK requires time pro-
portional to the region's perimeter to output the individ-
ual links. Determining the next (BLACK, WHITE) ad-
jacency takes time which on the average is proportional
to 2 .14/3 + 19/21 for each invocation of procedures
CORNER ADJ__NEIGHBOR and A L I G N E D re-
spectively. However, the number of times these proce-
dures are involved is bounded by the region's
perimeter. []

7. Concluding Remarks

An algorithm has been presented for converting the
quadtree representation of a simply connected region
into the chain code description of the region's boundary.
The algorithm is different from [17] where a method is
reported for computing the perimeter of an image rep-
resented by a quadtree, in that we must visit the bound-
ary nodes in a specified sequence. We have shown that
our algorithm's execution time is bounded by the perim-
eter of the region. It is interesting to note that our concept
of a random image yields higher averages for the number
of nodes that are visited than when a random image is
defined as stipulating that every node at level 0 has an
equal probability of being BLACK or WHITE. Recall
that in such a case there is a very low likelihood of nodes
corresponding to blocks of size larger than 1. In fact, for
such an image, it is shown in [16] that the average
number of nodes visited in determining neighbors is
bounded by 4 whereas our model of the image yields an
average bounded by 14/3.

In the case where a region may have holes, we may
extend our algorithm by simply adding a quadtree tra-
versal procedure which systematically visits all BLACK
nodes upon completion of the first boundary following
sequence. If such a scan results in the discovery of a
BLACK boundary node with a boundary edge that was
not marked by the boundary follower, then the scan is
temporarily interrupted so that the boundary of its cor-
responding region can be followed.

Some related work concerned with quadtrees and the
establishment of their applicability for efficiently oper-
ating on areal data includes the following. In [16] an
algorithm is reported for the converse operation of con-
structing the quadtree from the chain code of a region.
Also, in [18] an efficient algorithm is given for determin-
ing the connectivity of BLACK nodes. This is interesting
because the algorithm presented herein assumes a single
connected region.

Acknowledgments. We thank K. Riley for typing this
paper, P. Young for drawing the figures, and J. Antonisse
and P. McMullin for their comments.

Received February 1979; revised November 1979; accepted
December t979

Communications March 1980
of Volume 23
the ACM Number 3

References

!. Alexandridis, N., and Klinger, A. Picture decomposition, tree
data-structures, and identifying directional symmetries as node
combinations. Comptr. Graphics and Image Processing 8 (1978), 43-
77.
2. Blum, H. A transformation for extracting new descriptors of
shape. In Models for the Perception of Speech and Visual Form, W.
Wathen-Dunn, Ed., M.I.T. Press, Cambridge, Mass., 1967, pp. 362-
380.
3. Finkel, R.A., and Bentley, J.L. Quadtrees: A data structure for
retrieval on composite keys. Acta Informatica 4 (1974), 1-9.
4. Freeman, H. Computer processing of line-drawing images.
Comptg. Surv. 6 (1974), 57-97.
5. Horowitz, S.L., and Pavlidis, T. Picture segmentation by a tree-
traversal algorithm. J. A CM 23 (1976), 368-388.
6. Hunter, G.M. Efficient computation and data structures for
graphics. Ph.D. dissertation, Dept. of Electrical Engineering and
Comptr. Sci., Princeton Univ., Princeton, N.J., 1978.
7. Hunter, G.M., and Steiglitz, K. Operations on images using
quadtrees. 1EEE Trans. on Pattern Analysis and Machine Intell. 1
(1979), 145-153.
8. Hunter, G.M., and Steiglitz, K. Linear transformation of pictures
represented by quadtrees. Comptr. Graphics and Image Processing 10
(1979), 289-296.
9. Klinger, A., and Dyer, C.R. Experiments in picture
representation using regular decomposition. Comptr. Graphics and
Image Processing 5 (1976), 68-105.
10. Klinger, A., and Rhodes, M.L. Organization and access of

image data by areas. IEEE Trans. on Pattern Analysis and Machine
lntell. 1 (1979), 50-60.
!1. Naur, P., Ed. Revised report on the algorithmic language
ALGOL 60. Comm. A C M 3, 5(May 1960), 299-314.
12. Pfaltz, J.L., and Rosenfeld, A. Computer representation of planar
regions by their skeletons. Comm. A C M 10, 2 (Feb. 1967), 119-122,
125.
13. Riseman, E.M., and Arbib, M.A. Computational techniques in
the visual segmentation of static scenes. Comptr. Graphics and Image
Processing 6 (1977), 221-276.
14. Rosenfeld, A., and Pfaltz, J.L. Sequential operations in digital
picture processing. J. A CM 13 (1966), 471--494.
15. Rutovitz, D. Data structures for operations on digital images. In
Pictorial Pattern Recognition, G.C. Cheng et al., Eds., Thompson
Book Co., Washington, D.C., 1968, pp. 105-133.
16. Samet, H. Region representation: Quadtrees from boundary
codes. Comptr. Sci. TR-741, Univ. of Maryland, College Park, Md.,
March 1979; Comm. A C M 23 3(March 1980), 163-170.
17. Samet, H. Computing perimeters of images represented by
quadtrees. Comptr. Sci. TR-755, Univ. of Maryland, College Park,
Md., April 1979.
18. Samet, H. Connected component labeling using quadtrees.
Comptr. Sci. TR-756, Univ. of Maryland, College Park, Md., April
1979.
19. Tanimoto, S.L. Pictorial feature distortion in a pyramid. Comptr.
Graphics and Image Processing 5 (1976), 333-352.
20. Tanimoto, S.L., and Pavlidis, T. A hierarchical data structure for
picture processing. Comptr. Graphics and Image Processing 4 (1975),
104-119.

Professional Activities
Calendar of Events

ACM's calendar policy is to list open computer
science meetings that are held on a not-for-profit
basis. Not included in the calendar are educational
seminars, institutes, and courses. Submittals should
be substantiated with name of the s~onsoring orga-
nization, fee schedule, and chairman s name and full
address.

One telephone number contact for those inter-
ested in attending a meeting will be given when a
number is specified for this purpose.

All requests for ACM sponsorship or coopera-
tion should be addressed to Chairman, Conferences
and Symposia Committee, Seymour J. Wolfson, 643
MacKenzie Hall, Wayne State University, Detroit,
MI 48202, with a copy to Louis Flora, Conference
Coordinator, ACM Headquarters. 1133 Avenue of
the Americas, New York,NY 10036; 212 265-6300.
For European events, a copy of the request should
also be sent to the European Representative. Tech-
nical Meeting Request Forms for this purpose can
be obtained from ACM Headquarters or from the
European Regional Representative. Lead time
should include 2 months (3 months if for Europe)
for processing of the request, plus the necessary
months (minimum 3) for any publicity to appear in
Communications.
• This symbol indicates that the Conferences and
Symposia Committee has given its approval for
ACM sponsorship or cooperation.
In this issue the calendar is given to November 1981.
New Listings are shown first; they will appear next
month as Previous Listings.

NEW LISTINGS
20-21 March 1980
Computers in Elementary Education, Washing-

ton, D.C. Sponsor: AEDS. Contact: Shirley Easter-
wood, AEDS Workshops, 1201 16th St., N.W.,
Washington, D.C. 20036; 202 833~.100.

13-15 April 1980
IVth International Conference on Collective

Phenomena, Moscow, U.S.S.R. Sponsors: New York
Academy of Sciences, Committee of Concerned Sci-
entists with support of SIAM, AMS, APS. Contact:
Dorothy Hirsch, Committee of Concerned Scientists,
Inc., 9 East 40th St., New York, NY 10016; 212 686-
8862.

13-16 April 1980
Spring 80 Conference, Atlanta, Ga. Sponsor:

COMMON. Contact: David G. Lister, Administra-
tive Director, COMON-Sz, 435 N. Michigan Ave.,
Suite 1717, Chicago, IL 60611; 312 644-0828.

25-26 April 1980
Symposium in Cognitive Science, Poughkeepsie,

N.Y. Sponsor: Vassar College Cognitive Science

Group. Contact: Cognitive Science Symposium, Vas-
sar College, Box 525, Poughkeepsie, NY 12601.

28-30 April 1980
Workshop on Array Architecture for Computing

in the 80s and 90s, Hampton, Va. Sponsor: ICASE.
Contact: Robert G. Voigt, ICASE, Mail Stop 132C.
NASA Langley Research Center, Hampton, VA
23665; 804 827-2513.

1 May 1980
Social Science Data Workshop (preceding

IASSIST Annual Conference 1980), Washington,
D.C. Sponsor: IASSIST. Workshop chm: Barbara
Aldrich, 2715A S. Walter Reed Drive, Arlington, VA
22206.

15-17 May 1980
9th ASIS Mid-Year Meeting, Pittsburgh, Pa.

Sponsor: American Society for Information Science.
Conf. chm: K. Leon Montgomery, Information Sci-
ence, 721 LIS Building, University of Pittsburgh,
Pittsburgh, PA 15260.

19-23 May 1980
Conference on Mathematical Models for-En-

ergy and Public Policy, Charleston, S.C. Host: The
Citadel. Contact: John I. Moore Jr., Dept. of Math-
ematics, The Citadel, Charleston, SC 29409.

24-31 August 1980
Data Processing in Chemistry 80, Rzesz6w, Po-

land. Organizers: Committee of Chemical Sciences,
Polish Academy of Sciences, I. Lukasiewicz Techni-
cal University. Contact: Institute of Chemical Tech-
nology, I. Lukasiewicz Technical University, 35-959
Rzeszrw, P.O. Box 85, Poland.

22-25 September 1980
12th Annual Conference of the Society for Man-

agement Information Systems, Philadelphia, Pa.
Sponsor: SMIS. Contact: SMIS Headquarters, 111
East Wacker Drive, Chicago, IL 60601.

24-27 September 1980
Tenth Annual Conference of the Society for

Computer Medicine, San Diego, Calif. Sponsor:
SCM. Contact: Society for Computer Medicine, 1901
N. Ft. Myer Drive, Suite 602, Arlington. VA 22209.

30 September-2 October 1980
Annual Conference 80, Universit/it des Saar-

landes, Saarbriicken, West Germany. Sponsor: Ge-
sellschaft ffir Informatik. Prog. chm: R. Wilhelm, FB
10--1nformatik, Universit/it des Saarlandes, D-6600
Saarbriicken 11, West Germany.

1-3 October 1980
Twenty-First Annual Symposium on Founda-

tions of Computer Science, Lake Placid, N.Y. Spon-
sor: IEEE-CS Tech. Comm. on Mathematical Foun-
dations of Computing. Prog. chm: Andrew C. Yao,
Computer Science Dept., Stanford University, Stan-
ford, CA 94305.

8-10 October 1980
Eighteenth Annual Allerton Conference on

Communication, Control, and Computing, Allerton

House, near Monticello, IlL Sponsor: University of
Illinois at Urbana-Champaign. Conf. co-chm: D.V.
Sarwate and W.R. Perkins, Coordinated Science
Laboratory, University of Illinois at Urbana-Cham-
paign, Urbana, IL 61801.

20 October 1980
National Information Systems: Getting Ready

for 1984, Washington, D.C. Sponsor: Computer Law
Association. Contact: Michael Yourshaw, 1776 K St.,
N.W., Washington, DC 20006; 202 857-5029.

27-31 October 1980
Compsac 80, Fourth International Computer

Software and Applications Conference, Chicago, IlL
Sponsor: IEEE-CS. Gen. chm: Richard Merwin,
Dept. of EE and Computer Science, The George
Washington University, Washington. DC 20052; 202
676-4951.

8-11 December 1980
• ACM SIGPLAN Symposium on the Ado Pro-
grammingLanguage, Boston, Mass. Sponsor: ACM
SIGPLAN. Conf. chm: Robert M. Graham, COINS
Graduate Research Center, University of Massachu-
setts, Amherst, MA 01003; 413 545-2742.

8-9 January 1981
• 14th Annual Hawaii International Confer-

ence on Systems Sciences, Honolulu. Sponsor: Uni-
versity of Hawaii in cooperation with ACM
SIGBDP. Conf. chm: Ralph H. Sprague Jr., Univer-
sity of Hawaii a~t Manoa, College of Business Ad-
ministration, 2404 Maile Way, Honolulu, HI 96822;
808 948-7430.

22-26 June 1981
XXV International Meeting of the Institute of

Management Sciences, Cairo, Egypt. Sponsor:
TIMS. Gen. chm: Mostafa E1 Agizy, Exxon Corpo-
ration, Box 153, Florham Park, NJ 07932.

PREVIOUS LISTINGS

17-19 March 1980
IEC! 80, Sixth Annual Conference and Exhibit

on Industrial and Control Applications of Micropro-
cessors, Philadelphia, Pa. Sponsors: Industrial Elec-
tronic and Control Instrumentation Society, IEEE.
Gen. chm: Paul M. Russo, RCA Laboratories,
Princeton. NJ 08540; 609 452-2700.

18-20 March 1980
Electric Power Problems: The Mathematical

Challenge, Seattle, Wash. Sponsor: SIAM. Contact:
Albert M. Erisman, Boeing Computer Services Co.,
565 Andover Park West, M/S 9C-01, Tukwila, WA
98188.

19-21 March 1980
• 13th Annual Simulation Symposium, Tampa,
Fla. Sponsors: ACM SIGSIM, IEEE-CS, SCS.
Symp. chin: Harvey Fisher, Alcan Products, Box 51 I,
Warren, OH 44482; 216 841-3416.

(Calendar continued on p. 184)

179 Communications
of
the ACM

March 1980
Volume 23
Number 3

