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Vertebrate retinas are highly-efficient in processing trivial visual tasks such as detecting moving objects, which still represent complex
challenges for modern computers. In vertebrates, the detection of object motion is performed by specialised retinal cells named
Object Motion Sensitive Ganglion Cells (OMS-GC). OMS-GC process continuous visual signals and generate spike patterns that are
post-processed by the Visual Cortex. Our previous Hybrid Sensitive Motion Detector (HSMD) algorithm was the first hybrid algorithm
to enhance Background subtraction (BS) algorithms with a customised 3-layer Spiking Neural Network (SNN) that generates OMS-GC
spiking-like responses. In this work, we present a Neuromorphic Hybrid Sensitive Motion Detector (NeuroHSMD) algorithm that
accelerates our HSMD algorithm using Field-Programmable Gate Arrays (FPGAs). The NeuroHSMD was compared against the HSMD
algorithm, using the same 2012 Change Detection (CDnet2012) and 2014 Change Detection (CDnet2014) benchmark datasets. When
tested against the CDnet2012 and CDnet2014 datasets, NeuroHSMD performs object motion detection at 720 × 480 at 28.06 Frames Per
Second (fps) and 720 × 480 at 28.71 fps, respectively, with no degradation of quality. Moreover, the NeuroHSMD proposed in this
paper was completely implemented in Open Computer Language (OpenCL) and therefore is easily replicated in other devices such as
Graphical Processing Units (GPUs) and clusters of Central Processing Units (CPUs).

CCS Concepts: • Computing methodologies→Massively parallel algorithms; Vision for robotics; •Hardware→ Neural
systems; • Computer systems organization→ Heterogeneous (hybrid) systems.
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1 INTRODUCTION

The human brain is characterised by its tolerance to faults/noise, concurrent processing capabilities, flexibility and
high level of parallelisation when processing data. Furthermore, the adult human brain has a power consumption of
about 400 Kcal per day, equivalent to 25 Watts [1]. Again, the human brain can reach 10-50 petaflops outperforming
any Commercial-Off-The-Shelf (COTS) Central Processing Unit (CPU) [2]. Despite CPUs outperforming the human
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2 Machado et al.

brain when processing and transmitting sequential signals by several orders of magnitude, the human brain exceeds
CPUs processing millions of signals in parallel using its massively parallel circuits [1, 2]. SNNs are well known for
their biological plausibility but also by their complexity inherited from biological systems, which are characterised for
being massively parallel [3]. Modern computation platforms rely heavily on CPUs to provide compatibility and security
with other devices/applications. Although the design CPU paradigm has shifted into multi-core and multi-processor to
overcome the limitations associated with the clock speed [4], the multi-core and multi-processor strategy will shortly
meet technological limitations related to the increase of power consumption of these solutions [4].

Machado et al. proposed the Hybrid Sensitive Motion Detector (HSMD) algorithm [5] that has proven to be very
sensitive to object motion events as a direct consequence of using an Spiking Neural Network (SNN) to emulate the basic
functionality observed in Object Motion Sensitive Ganglion Cells (OMS-GC) (see Figure 3). The SNN utilised is composed
of 3 layers of neurons interconnected on a 1:1 synaptic connectivity. CPUs which are suitable for sequential operations
are not optimised for running massively parallel SNNs architectures. Unlike CPUs that are not optimised for parallel
tasks, and Graphical Processing Units (GPUs) and Field-Programmable Gate Arrays (FPGAs) are parallel processing
devices for accelerating paralellisable algorithms. GPUs are specialised electronic circuits with a flexible architecture
designed for parallel processing of graphics, video rendering, and accelerating some types of Artificial Intelligence (AI)
algorithms [6–9], while FPGAs are Integrated Circuits (ICs) composed of built-in interconnected hardware blocks that
can be freely reprogrammable after manufacturing [10]. Despite the fact that both GPUs and FPGAs are suitable for
parallel applications, GPUs have a well-defined architecture, whereas FPGAs are flexible devices that allow users to
describe new hardware architectures, such as brain-like and neuromorphic architectures [11]. Nevertheless, GPUs have
also proven to be suitable to implement SNN architectures [12]. In this work, a FPGA device was used to accelerate a
customised 3-layer SNN.

The Neuromorphic Hybrid Sensitive Motion Detector (NeuroHSMD) is the reconfigurable hardware implementation
of the HSMD algorithm [5]. A high-end Intel Stratix 10 FPGA(see section 3 for further details) was selected for
accelerating the HSMD’s SNN. Open Computer Language (OpenCL) was used for describing the SNN because it
provides a higher level of abstraction when compared with Hardware Description Languages (HDLs), increased
productivity and compatibility with other OpenCL platforms (such as other FPGA devices, GPUs and CPUs).

The paper is structured as follows: the background research is presented in Section 2, the hardware platform details
are discussed in Section 3; the NeuroHSMD architecture is presented in Section 4; the results are presented in Section 5
and the discussion of the NeuroHSMD results and future work are in Section 6.

2 BACKGROUND RESEARCH

The detection of moving objects from video frame sequences is a trivial visual task performed by vertebrate retinal
Ganglion Cells (GC) [13, 14] and yet a challenge in the Computer Vision (CV) research field. Object Motion Detection
(OMD) is one of the most researched fields in computer vision and has been studied for more than 30 years [15]. OMD
in videos captured from static and/or moving cameras is essential for a wide range of computer vision applications
such as video surveillance, object collision avoidance, Advanced-Driver Assist Systems (ADAS), etc [15–17]. Although
the initial OMD models were designed for static cameras, the advances in sensor technology and the accessibility to
portable devices fitted with cameras is triggering more challenging scenes where both cameras and objects can move
at the same time [15]. OMD includes the following tasks: 1) Background subtraction, 2) noise reduction, 3) threshold
selection and 4) moving objects detection (see Figure 1).
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NeuroHSMD: Neuromorphic Hybrid Spiking Motion Detector 3

Several challenges have been identified in various works [15, 17–21] and can be summarised as follows : 1) Boot-
strapping: the sequence of images includes objects in both the background and foreground; 2) Camouflage: the
objects in the foreground are either obstructed by background objects or are composed of similar colours; 3) Dynamic
background: the objects in the background include parasitic movements such as surface water movement, branches
and leafs shaking in trees, flags on windy days, etc; 4) Camera aperture: undesired blurred background and foreground
as a consequence of the incorrect opening in a lens through which light passes to enter the camera; 5) Variation of
illumination: instant variations of illumination will increase the number of false-positive detections (i.e. pixels that
should belong to the background are classified as foreground); 6) Low frame rate: the temporal distance between image
frames prevents instant updates of the background and illumination changes, which reduces the accuracy and increases
the number of false positives; 7) Motion blur: caused by rapid camera movements or jittering, which blurs the image;

Fig. 1. Object Motion Detection steps.

8) Parallax: the apparent displacement of an object as
a consequence of the camera movement. The Parallax
will have implications on the background modelling and
its compensation; 9)Moving camera: moving cameras
introduce complexity because the static objects seem to
be moving, and objects moving at a similar speed in the
same direction of the camera will seem to be static; 10)
Background objects movement: although static ob-
jects can be added to and removed from the background,
such objects should still be considered static; 11) Night
videos: night videos have dim light, lower contrast and re-
duced colour information; 12)Noisy images: low-quality
sensors, dust exposure, dirty lens, bright lights and low
resolution are examples of factors that cause noisy im-

ages; 12) Shadows: shadows created by objects when exposed to light sources (e.g. sun rays and artificial illumination)
should not be part of the foreground models; 13) Stationary foreground objects: a foreground that has stopped
moving for a short period should not become part of the background model; 14) Challenging weather: weather
conditions (such as fog, rainstorms, strong winds, intense sun rays) have a major impact on the image quality and
reduce the quality of the image drastically.

2.1 Background Subtraction

Several surveys about BS have been published in the literature focused on static or semi-static (i.e. cameras fixed in
a given position exhibiting pan-tilt-zoom movements) scenes. McIvor [22] published, in 2000, one of the first OMD
surveys where nine BS methods which were only described in detail but not compared. Piccardi [23] presented, in 2004,
a comparative study between seven algorithms considering speed, memory resources utilisation and accuracy (see
Table 1). Piccardi’s study [23] aims to facilitate the BS selection based on speed, memory requirements and accuracy
requirements.

Cheung et al. [33] proposed a method for validating foreground regions (blobs) using a slow-adapting Kalman filter
and compared the proposed method against six other methods using the recall and precision metrics. Elhabian et al.
[34] covered several background removal algorithms and identified that all the BS algorithms follow four significant
steps, namely, pre-processing, background modelling, foreground extraction, and validation. Although the review was
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4 Machado et al.

Table 1 BS methods and their performance analysis

Method Speed Memory Accuracy
Running Gaussian average [24, 25] high low acceptable
Temporal median filter [26, 27] high low acceptable
Mixture of Gaussians [28] low high very good
Kernel density estimation [29] low high very good
Sequential kernel density approximation [30] low acceptable good
Cooccurence of image variations [31] acceptable acceptable good
Eigenbackgrounds [32] acceptable acceptable good

very comprehensive, the focus was on recursive and non-recursive approaches, which are suitable for background
maintenance but less suitable for background modelling. Cristiani et al. [35] reviewed BS methods that can be applied
to data captured from different sensor channels (including audio). Elgammal [36] reviewed more than 100 papers about
object motion detection for static and moving cameras, highlighting the challenges and suggesting which method to
use in each case. Bouwmans et al., Garcia et al. and Chapel et al. published comprehensive surveys [15, 17–21] focusing
on traditional, recent, and prospective object motion detection methods.

Consecutive frame difference, background modelling and optical flow are the main categories for BS. Consecutive
frame difference methods are the simplest to implement and require less computational resources, but are also the most
sensitive to the challenges listed above [15, 17]. In contrast, optical flow methods are the most robust but require more
computational resources and, consequently, are not suitable for real-time applications [15, 17]. Therefore, background
modelling methods are commonly used methods for extracting the foreground from the background in real-time
applications [15, 17]. BS generic steps are detailed in Figure 2.

Fig. 2. Background subtraction steps.

Stauffer & Grimson [28], and KaewTraKulPong & Bow-
den [37] suggested modelling each pixel as a Mixture of
Gaussians (MOG) where the Gaussian distributions of
the adaptive mixture model are analysed for determining
which ones are likely to belong to the background pro-
cess. All the pixel values that do not fit in the background
distributions are considered foreground [28]. Zivkovic
[38] proposes an efficient adaptive algorithm using the
Gaussian Mixture Probability Density (MOG2) for en-
hancing the MOG algorithm. MOG2 selects automatically
the number of components per pixel, which results in

complete adaptation to the observed scene. Zivkovic & Heijden [39] identified recursive equations for updating the
parameters of the MOG and proposed Mixture of Gaussians K Nearest Neighbours (KNN) for the automatic selection
of the pixel components. The Gaussian mixture based algorithms (MOG, MOG2 and KNN) show good robustness
when exposed to noise and losses due to image compression but lack sensitivity to intermittent object motion, moving
background objects and abrupt illumination changes.
Manuscript submitted to ACM
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In 2016, Sagi Zeevi [40] proposed the CNT algorithm, which performed better on the 2014 Change Detection
(CDnet2014) dataset [41] and targets embedded platforms (e.g. Raspberry PI1). The CNT uses minimum pixel stability
for a specified period for modelling the background; this can vary from 170 ms, default for swift movements, up to
hundreds of seconds, where 60s is the default value [42]. Godbehere et al. [43] suggested a single-camera statistical
segmentation and tracking algorithm named the GMG by combining per-pixel Bayesian segmentation, a bank of Kalman
filters, and Gale-Shapley matching for the approximation of the solution to the multi-target problem. The proposed
GMG algorithm is limited when processing video streams susceptible to camouflage, losses due to image compression,
and noise.

Guo et al. [44] reported an adaptive Background subtraction model enhanced by a local Local Single Value De-
composition Binary Pattern (LSBP) for addressing illumination changes. The proposed LSBP algorithm enhances the
robustness of the motion detection to illumination changes, shadows, and noise. However, the LSBP is less effective
when processing video streams susceptible to camouflage, losses due to image compression, or external noise. More
recently, in 2017, Open Computer Vision (OpenCV) released an improved version of the LSBP algorithm, also known as
Google Summer of Code (GSOC) [45, 46], developed during the Google Summer of Code event [47], which enhances
the LSBP algorithm by using colour descriptors and stabilisation heuristics for motion compensation [46, 48]. The
GSOC algorithm demonstrates better performance on the 2012 Change Detection (CDnet2012) [49], and CDnet2014
[41] datasets [48, 50] when compared to other algorithms available on the OpenCV library.

More recently, Braham et al. [51] proposed a Semantic Background Segmentation (SBS) that uses object-level
semantics to meet a range of problematic background subtraction conditions. The proposed SBS reduces false positive
detections by integrating the output information of a semantic segmentation method, expressed as a probability for
each pixel, with the output of existing BS methods. Inspired by Braham’s work [51], Zeng et al. [52] proposed a
Real-Time Semantic Segmentation (RTSS) for performing BS. The RTSS consists of two components: a BS segmenter
B and a semantic segmenter S that work in parallel for foreground segmentation. The RTSS achieves state-of-the-art
performance among most unsupervised background subtraction methods while functioning in real-time as compared
to other BS methods [52]. Liang et al. [53] proposed a deep background subtraction method using a directed learning
strategy that learns a specific Convolutional Neural Network (CNN) model for each video without manually labelling.
Zeng et al. [54] proposed a Multiscale Fully Convolutional Network (MFCN) architecture for background subtraction
that takes advantage of diverse layer features. The deep features learned from MFCN improves foreground detection,
and the complexity of the background subtraction process can be easily handled during the subtraction operation itself.

BS can be done using methods based on signal processing, Machine Learning (ML), Deep Neural Network (DNN) or
mathematical models. Although signal processing, ML and DNN tend to exhibit better accuracy than mathematical
models, these algorithm types are also computationally intensive, introducing undesirable latencies. Nevertheless,
mathematical models exhibit lower accuracy but require fewer computational resources and, therefore, are suitable
for real-time applications. Moreover, the methods proposed by Braham et al. [51] and Zeng et al. [55] demonstrated
that existing BS algorithms can be improved when combined with semantic segmentation models. Therefore, in this
work, we propose an approach to accelerate the HSMD’s SNN which was identified to be the bottleneck of the HSMD
algorithm [5].

1Available online, https://www.raspberrypi.com/products/raspberry-pi-4-model-b/, last accessed 28/03/2022
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6 Machado et al.

2.2 Spiking Neural Networks

FPGAs have been used, for many decades, accelerating applications, including edge/cloud computing. FPGAs are flexible
devices because of their flexible architecture enables developers to describe customised architectures. Such flexibility
comes with a downside because FPGAs are also known by their associated complexity. There are two main FPGA
manufacturers, namely, Intel2 and Xilinx3.
Mishra et al. [56] identified in their survey that many SNN usually have about 104 ∼ 108 neurons and 1010 ∼ 1014

synapses and that high-performance neural hardware is essential for practical application. Li et al. [57] proposed
the implementation of visual cortex neurons on FPGAs. The implemented visual cortex neurons exhibited the same
dynamics as those recorded from real neurons using multi-electrodes arrays. Li et al.[58] implemented 256 fully
connected neurons, and its performance was assessed by storing four patterns and applying similar patterns containing
errors. The implemented system was capable of operating using a 100 MHz clock, which enables the acceleration of the
system 40 times above the real-time operation [58]. Cassidy et al. [59] proposed the use of FPGAs to accommodate
spiking neurons and unsupervised Spike Timing Dependent Plasticity (STDP) learning structures. In this work, Cassidy
et al. [59] demonstrated that digital neuron abstraction is preferable to more realistic analogue neurons; they also
emulated the massive parallelism connectivity and high neuron density as observed in nature; the neuron states were
also multiplexed to take advantage of clock frequencies and dense Static Random Access Memorys (SRAMs). Chen et al.
[60] described a Central Pattern Generator (CPG) composed of two reciprocally inhibitory neurons. To reduce the FPGA
resources usages, Chen et al. [60] has optimised the CPG to avoid using multipliers (FPGAs have a low quantity of
multiplier blocks), and the non-linear parts of the Komendantov-Kononenko neuron model [61] were removed. Cheung
et al. [62] proposed the NeuroFlow, a scalable SNN simulator suitable to be implemented on FPGA clusters. It was
possible to simulate about 600,000 neurons and to get a real-time performance for up to 400,000 neurons simulated
using NeuroFlow on 6 FPGAs [62]. Podobas and Matsuoka [63] proposed the use of OpenCL, an High Level Synthesis
(HLS) tool, to increase productivity by facilitating the SNN design (provide a higher level of hardware abstraction) on
FPGAs. Two different neuron models, their axons and synapses, were designed using OpenCL and the authors claim a
speed performance of up to 2.25 GSpikes/second. Sakellariou et al. [64] suggested a spiking accelerator base on FPGAs
to enable users to develop SNNs targeting ML applications and promise an acceleration of up to 800 times for inference
and up to 500 times for training compared to Software SNN simulations.

Machado et al. [5] proposed the HSMD model (see Figure 3) inspired by the object motion functionality exhibited
by vertebrate retinas, in which OMS-GC determine the difference between a local patch’s motion trajectory and the
background [13]. The HSMD uses a 3-layer SNN to enhance the GSOC BS algorithm [5, 46, 48].

The works reviewed in this section demonstrated that FPGAs offer flexibility, high efficiency, low-power, and high
degree of parallelism, making FPGAs is the most suitable devices for implementing brain-like circuits. FPGAs enable
the design of complex biological plausible neuron models and massively parallel SNN composed of thousands of
Leaky-Integrate-and-Fire (LIF) neurons capable of generating complex biological like patterns. Although FPGA devices
are normally programmed using complex HDL tools, HLS tools such as OpenCL can be used to increase the productivity
of the FPGAs design process by providing hardware abstraction which reduces the implementation complexity. In this
paper, we utilise OpenCL to design the complex SNN architecture of the HSMD. The NeuroHSMD reported in this
paper, improves the speed of the HSMD [5] without degradation of the background subtraction accuracy using an

2Available online, https://www.intel.co.uk/content/www/uk/en/products/programmable/fpga.html, last accessed: 04/03/2021
3Available online, https://www.xilinx.com/, last accessed: 04/03/2021

Manuscript submitted to ACM

https://www.intel.co.uk/content/www/uk/en/products/programmable/fpga.html
https://www.xilinx.com/


NeuroHSMD: Neuromorphic Hybrid Spiking Motion Detector 7

Fig. 3. HSMD architecture implemented by Machado et al. [5]. The GSOC algorithm performs the background subtraction, the
customised SNN performs the OMD and the filter removes noise. The customised SNN is composed of 3 layers for 1) converting pixel
values conversion into currents, 2) motion stability and 3) perform motion detection.

high-end FPGA device.

3 HARDWARE PLATFORM

The HSMD algorithm [5] has proven to be very sensitive to object motion events triggered by objects, as a direct
consequence of using an SNN to emulate the basic functionality observed in OMS-GC. The SNN utilised is composed of
4 layers of neurons interconnected on a 1:1 synaptic connectivity.

3.1 Field Programmable Gate Array

The target FPGA board is fitted with a state-of-the-art Stratix 10 SoC FPGA device4. The Intel Stratix family is composed
of logic array blockss (LABs) made of 10 basic building blocks called adaptive logic modules (ALMs). Each ALM is
composed of fractionable Look-Up-Tables, also known as adaptive look-up-table (ALU), two-bit full adder and four
registers. LABs can be freely reconfigured to implement logic and arithmetic functions. Furthermore, up to a quarter
of the LABs can be used as memory logic array blockss (MLABs). Each LAB contains dedicated logic elements used
to driving control signals to ALMs. Each MLAB supports up to 640 bits of simple dual-port Random Access Memory
(RAM). It is possible to configure each ALM in an MLAB as 32 × 2 memory blocks equivalent to 32 × 2 × 10 simple
dual-port RAM blocks. Dual-port RAMs are low-latency memory devices that only takes a clock cycle to perform a
read/write operation (for example, Synchronous Dynamic Random Access Memory (SDRAM) in CPUs takes thousands
of clock cycles to complete read/write operations). Furthermore, the Stratix 10 offer variable-precision digital signal
processing (DSP) blocks that can support fixed-point arithmetic and single-precision floating-point arithmetic.

4Available online, https://www.intel.co.uk/content/www/uk/en/products/programmable/soc/stratix-10.html, last accessed: 07/04/2021
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8 Machado et al.

3.2 Open Computer Language (OpenCL)

OpenCL applications are split into two parts, namely, host application(s) and device kernel(s). The host applications are
always compiled on the host Operating System and run on a CPU. Host applications are also used to launch the target
kernels on the target devices. Kernels are special functions written in OpenCL C/C++ to perform parallelisable computa-
tions on accelerators such as GPUs and FPGAs [65]. For instance, consider twom×nmatrices A and Bwhere it is expected
to do the operation C=A+B where C is the third matrix of m×n. In this case, the kernel could just perform, in parallel, the
addition of matrices A and B elements and store the result in C. Unlike in CPUs, where it would take m×n operations to
complete this matrix addition, GPUs and FPGAs could parallelise this operation depending on the resources available per
device resulting in the acceleration of the application. Buffer objects within a context are used in OpenCL to exchange
data between the host and device [66]. The Intel FPGA Software Development Kit (SDK) for OpenCL offline compiler
optimises the kernel throughput by adjusting buffer sizes during the kernel compilation process [67]. OpenCL provides
both mapped and asynchronous buffers, enabling the application to continue to run while additional data is exchanged.

Fig. 4. NeuroHSMD architecture. The diagram represents the com-
putation stages that run both on the CPU and FPGA. Shows that
the FPGA is connected to the host CPU via the Peripheral Compo-
nent Interconnect Expres (PCIe) bus. It also shows the dedicated
memory of the CPU and FPGA device. Includes also how external
devices (e.g. cameras, monitor and Hard Disk Drive (HDD)/Solid
State Drive (SSD)) connect to the host CPU via different interfaces
(e.g. ethernet (eth), Serial Advanced Technology Attachment (SATA),
display port and Universal Serial Bus (USB)). The computations
stages implemented in OpenCL are in blue and OpenCV in green.

Software Developers have to carefully analyse the
code to be optimised and only select the sections
that may benefit from the hardware acceleration be-
cause the maximum speed is always dictated by the
PCIe bus speed. Another big challenge for Software
Developers is the low debugging capabilities avail-
able while the code is being executed on the de-
vice.

Although it is possible to use OpenCL to program
FPGA and GPU devices, GPUs are specialised devices
designed for video rendering and graphics processing. At
the same time, FPGAs are customisable devices that can
be freely reconfigurable. Therefore, FPGAs offer more
flexibility than GPUs, which is desirable for accelerating
SNNs because they can be modelled using the Network-
on-Chips (NoCs) concept. Each individual spiking neuron
can be considered a node that interconnects to one or
more nodes (neurons) of the same SNN. The flexibility
offered by both FPGAs and OpenCL makes the selection
of FPGAs over GPUs the obvious choice.

The Intel FPGA SDK for OpenCL (IOCL) provides a
compiler and powerful tools to build and run OpenCL
applications targeting Intel FPGA devices. The IOCL gen-
erates two main components: the host application and
the FPGA programming bitstream(s). The IOCL offline

compiler (AOC) first compiles the custom kernel(s) to an image file (*.aocx) that will be used to program the FPGA. In
contrast, the host-side C/C++ compiler compiles the host application and then links it to the IOCL runtime libraries.
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NeuroHSMD: Neuromorphic Hybrid Spiking Motion Detector 9

Fixed-point data representations, which only retain the necessary data resolution for calculations and can result in
hardware savings, are a popular choice among hardware developers. However, the IOCL standard lacks support for
fixed-point representation and floating operations must be carried out using IEEE754 single-precision floating-point
[68]. In this work we adhered to this approach (the OpenCL standard) which then enabled the hardware compilation
tools to perform optimisations using appropriate masking operations in the source code.

The IOCL compiles one or more OpenCL kernels and creates a hardware configuration file. A successful compilation
results in a *.aocr, *.aoco, *.aocx and reports/report.html files. The report.html contains the estimated resource usage
and a preliminary assessment of area usage. The intermediary *.aoco and *.aocr are only used in the generation of the
*.aocx which is then used to program the FPGA.

Fig. 5. OpenCL stages.

The Terasic DE10-pro development board [69] equipped
with a state-of-the-art high-end Intel Stratix 10 FPGA
device was used for implementing the NeuroHSMD dis-
cussed in this section. Terasic states that DE10 pro was
designed to fulfil the demands of AI, Data Center, and
High-Performance Computing. Furthermore, the DE10-
pro development board takes advantage of the latest Intel
Stratix 10 to obtain high-speed and low-power (with up
to 70% lower power when compared with the previous
generation - i.e. Stratix V). It is equipped with 32GB DDR4
memory module running at over 150 Gbps, up to 15.754
GB/s data transfer via PCIe Gen 3 x16 edge between FPGA
and host workstation, and 4 onboard QSFP28 (100GbE)
connectors. The DE10 pro was installed on the host work-
station equipped with an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz and 16 GB of DDR3 using the PCIe slot.

4 NEUROHSMD ARCHITECTURE

Fig. 6. NeuroHSMD computation stages.

The NeuroHSMD architecture is described in this sec-
tion. In OpenCL, the data exchanged between the host
application and the FPGA kernels flow is as follows: a)
allocation and specification of buffer type (i.e. read or
write) on the host and device; b) copy data from the ap-
plication data structures to host buffers; c) transfer data
from host buffers to device buffers; d) run the inference
on the device; e) copy the results from device to host
buffers; f) copy data from the host buffers to application
data structures (see Figure 5).

The NeuroHSMD algorithm performs the following
stages of computation: 1) image capture, 2) conversion
from colour to grey, and 3) dynamic background sub-
traction using the OpenCL’s GSOC algorithm and copy
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10 Machado et al.

resulting pixel values are buffered and transferred to the
FPGA device; 4) run the inference on the FPGA and wait for the spike results; 5) run the SNN kernel, 6) Filtering using
an average filter, and 7) Display and save the output image. The NeuroHSMD computation stages are summarised in
Figure 6 and the NeuroHSMD architecture is depicted in Figure 4.

Furthermore, the NeuronHSMD OpenCL is composed of the NeuronHSMD Host Application (NHA) and the Neu-
ronHSMD device kernels (NDK). Details about the NHA and NDK are given in sections 4.4 and 4.5.

4.1 Spiking Neuron Model

This study employed the LIF spiking neuron model due to its simplicity, computational efficiency, and applicability
for near-real-time picture processing. When compared to real biological neurons, the LIF spiking neuron model has
comparable but less complex dynamics [70]. There are additional sophisticated spiking neuron models, such as Hodgkin-
Huxley, however these need substantial computational resources and have a larger effect on computational performance
(e.g. Izhikevich [71]). The dynamics of the LIF neuron follow equation 1 [70].

𝐼 (𝑡) = 𝑉𝑚(𝑡) −𝑉𝑚𝑟𝑒𝑠𝑡

𝑅
+𝐶 𝜕𝑉𝑚

𝜕𝑡
(1)

𝜏𝑚
𝜕𝑉𝑚

𝜕𝑡
= −[𝑉𝑚(𝑡) −𝑉𝑚𝑟𝑒𝑠𝑡 ] + 𝑅𝐼 (𝑡) (2)

Where 𝐶 is the membrane capacitance, 𝑅 is the membrane resistance, 𝐼 (𝑡) is the current in a given time t, 𝑉𝑚(𝑡) is
the membrane potential in a given time t, 𝜏𝑚 is constant given by the resister 𝑅 times the capacitor 𝐶 and the 𝑉𝑚𝑟𝑒𝑠𝑡 is
the reset potential.

The action potential 𝑡 (𝑓 ) that is emitted by a given neuron is known as the firing time. The firing time 𝑡 (𝑓 ) is given
by equation 3 [70].

lim
𝛿→0;𝛿>0

𝑡 (𝑓 ) : 𝑉𝑚(𝑡 (𝑓 ) ) = 𝑇ℎ (3)

The firing time 𝑡 (𝑓 ) is generated when the potential is reset to a new value𝑉𝑚𝑟 < 𝑇ℎ where𝑇ℎ is the threshold (see
equation 4 [70]).

lim
𝛿→0;𝛿>0

𝑉𝑚(𝑡 (𝑓 ) + 𝛿) = 𝑉𝑚𝑟 (4)

For 𝑡 > 𝑡 (𝑓 ) the dynamics given by equations 1 and 2 until the next threshold 𝑇ℎ crossing occurs. (𝛿 is the Dirac
function). The combination of leaky integration in equations 1 and 2 and reset 3 is given by equation 5 [70].
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𝑆𝑖 (𝑡) =
∑︁
𝑓

𝛿 (𝑡 − 𝑡 (𝑓 )
𝑖
) (5)

The Euler method was employed to numerically solve the Ordinary Differential Equations (ODEs) that model the
behaviour of the LIF neurons. This method was used to approximate the solutions of the ODEs at the simulation’s
time-steps throughout the simulation. At each time-step, the Euler method used the derivative of the current solution
to estimate the next solution, effectively advancing the state of the neuron across time.

4.2 Layers and interconnectivity

4.2.1 Input Layer: BS and reduction.

Each 𝑛 ×𝑚 image frame (i.e. camera, video sequence or image sequences) is transformed into greyscale. The GSOC [45]
provides an adaptive BS utilising colour descriptors and different stabilisation heuristics [46, 48] while computing the
frames pixel-by-pixel and exploiting the scalability offered by the OpenCV [48].

4.2.2 Layer 2: Pixel intensities to currents encoding.

Pixel intensity values are transformed to proportionate currents and delivered to the spiking neurons in Layer 2 through
a 1:1 connection. The Layer 1 neurons were trained to generate spike events proportional to the pixel intensities, and
are ruled by the equation 6.

𝑖𝑐 (𝑥,𝑦) = 𝐼 (𝑥,𝑦).𝑐 (6)

where 𝑖𝑐 (𝑥,𝑦) is the corresponding current for the image light intensity value 𝐼 (𝑥,𝑦) at coordinates 𝑥 and 𝑦, and 𝑐 is a
conversion constant obtained experimentally (in our case, 𝑐=17.5).

4.2.3 Layer 3: Motion stability.

Fig. 7. HSMD connectivity. In this example, it can be seen that the
neuron 1 (N1) of each layer connects to the N1 of the subsequent
layer.

The neurons in Layer 3 are utilised to stabilise motion by
creating local buffers and delaying the transmission of
spike occurrences. Neurons in layer 2 connect to Layer
3 neurons and Layer 3 neurons to the Layer 4 neurons
for creating local delays. The Layer 3 neurons are used
to buffer spike events for one simulation time-step (𝛿𝑡 ,
in this work, 𝛿𝑡 = 10𝑚𝑠) and forwarded to the Layer 4
neurons for the subsequent simulation time-step. The
Layer 2 neurons extend 1:1 synaptic connectivities to
the Layer 3 neurons and Layer 3 neurons also extend 1:1
synaptic connectivities to the Layer 4 neurons as depicted

in Figure 7. All the synapses were assigned the value 1370, which was obtained experimentally.

4.2.4 Layer 4: Motion detection.

The neurons in Layer 4 receive excitatory synaptic connections from the neurons in both Layers 2 and 3 and utilise the
spike patterns generated to sense motion. The generation of spike events by Layer 4 neurons is the result of dynamic
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changes triggered by successive image frames. Signals received directly from Layer 2 neurons allow for the detection of
differences between the current image frame n and the prior image frame n-1. In contrast, Layer 3 neurons are used for
comparing image frame n-1 to image frame n-2. Layer 4 spike events are mapped to the matching area of the current
image area. The synaptic weight of 1370 for all the synapses was obtained experimentally. The Layer 2 to Layer 4
weights were adjusted to feed-forward all the Layer 2 spike events. While the Layer 3 to Layer 4 synaptic weights were
adjusted to generate spike events from the Layer 4 neurons for every pair of two consecutive spike events, the primary
objective was to give higher priority to recent spike events (frame [n] - frame [n-1]) and lower priority to older spike
events (frame [n-1] - frame [n-2]).

4.2.5 Layer 5: Filtering.

The spike events matrix of Layer 4 neurons is mapped into a motion matrix𝑀𝑑 of the same dimensions as the current
image frame (i.e., 𝑛𝑡𝑖𝑚𝑒𝑠𝑚). The events in the 𝑀𝑑 matrix are filtered via an averaging filter ruled by the following
equations 7 and 8:

𝐻 (𝑢, 𝑣) = 1
𝑢.𝑣

©­­­«

𝑤0, 0 ... 𝑤0,𝑢
... ... ...

𝑤𝑣, 0 ... 𝑤𝑣,𝑢


ª®®®¬ (7)

𝑌𝑑 (𝑥,𝑦) = 𝑀𝑑 (𝑥,𝑦) ∗ 𝐻 (𝑢, 𝑣) (8)

where 𝑌𝑑 (𝑥,𝑦) is the filtered motion detection matrix,𝐻 (𝑢, 𝑣) is the averaging filter,𝑢 and 𝑣 are the convolution window
length and height respectively, ∗ is the convolution operator,𝑤 is the filter window.

4.3 Neuronal parameters

The SNN was parameterised using the recommended settings in the references [72, 73]. Therefore, the simulation
was configured with a time step of 𝛿𝑡=10 ms, 𝑉𝑚=-55.0 mV, 𝐸𝐿 = -55.0 mV, 𝐶𝑚 = 10.0 pF, 𝑅=1.0 MΩ, 𝑉𝑟𝑒𝑠𝑒𝑡=-70.0 mV,
𝑉𝑚𝑖𝑛=-70.0 ms, 𝑉𝑡ℎ=-70.0 mV, 𝜏=10.0 ms, 𝑡𝑟𝑒 𝑓 =2 ms,𝑤𝑠𝑦𝑛 = 1370 (neurons L3 and L4) and𝑤𝑝2𝑖=8.0 (L2 neurons only).

4.4 Host application

The NHA is used to interface two NDKs, one with implements the HSMD and a second version that includes a speed
optimisation (see next section for further details). Algorithm 1 summarises each of the computation stages that occur in
the NHA. The communication between the NHA and the NDK is limited by the PCIe bus speed ( 16 GB/s 5). In the
HSMD, the limitations are only dictated by the CPU speed and the DDR4 memory speed ( 34.1 GB/s6) which is 2 times
faster than the PCIe bus speed.

5Available online, https://www.trentonsystems.com/blog/pcie-gen4-vs-gen3-slots-speeds, last accessed: 21/06/2021
6Available online, https://www.crucial.com/support/articles-faq-memory/understanding-cpu-limitations-with-memory, last accessed: 21/06/2021
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4.5 Device kernels

Algorithm 1 NeuroHSMD host application.
Input:

img: image frame;
Output:

post_proc_img: post processed image;
stats: computation statistics;

Main Algorithm:

1: initialise_opencl()
2: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑜𝑟 ← 𝑙𝑖𝑠𝑡_𝑓 𝑜𝑙𝑑𝑒𝑟𝑠.𝑏𝑒𝑔𝑖𝑛() to

list_folders.end() do
3: (𝑥,𝑦) ← 𝑔𝑒𝑡_𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 ();
4: 𝑛𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠 ← 3
5: 𝑡𝑜𝑡_𝑛𝑒𝑢𝑟𝑜𝑛𝑠 ← 𝑥 .𝑦.𝑛𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠
6: reset_opencl_buffers(tot_neurons )
7: 𝑔𝑠𝑜𝑐 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒_𝑔𝑠𝑜𝑐_𝑏𝑎𝑐𝑘_𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
8: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑜𝑟2 ← 𝑓 𝑖𝑙𝑒𝑠_𝑙𝑖𝑠𝑡 .𝑏𝑒𝑔𝑖𝑛() to

files_list.end() do
9: 𝑖𝑚𝑔← 𝑟𝑒𝑎𝑑_𝑖𝑚𝑎𝑔𝑒 (𝑖𝑡𝑒𝑟𝑎𝑡𝑜𝑟2);
10: < 𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒𝑠 >← 𝑔𝑠𝑜𝑐.𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑖𝑚𝑔)
11: NeuroHSMDv1(< 𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒𝑠 >) →<

𝑠𝑝𝑖𝑘𝑒_𝑠𝑢𝑚 > {Alg. 2}
12: OR
13: NeuroHSMDv2(< 𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒𝑠 >) →<

𝑠𝑝𝑖𝑘𝑒_𝑠𝑢𝑚 > {Alg. 3}
14: 𝑝𝑜𝑠𝑡_𝑝𝑟𝑜𝑐_𝑖𝑚𝑔 ← 𝑔𝑒𝑡_𝑠𝑝𝑖𝑘𝑒𝑠_𝑠𝑢𝑚_𝑙3(<

𝑠𝑝𝑖𝑘𝑒_𝑠𝑢𝑚 >)
15: 𝑠𝑎𝑣𝑒 (𝑝𝑜𝑠𝑡_𝑝𝑟𝑜𝑐_𝑖𝑚𝑔)
16: 𝑠𝑡𝑎𝑡𝑠 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑡𝑎𝑡𝑠 (𝑡𝑖𝑚𝑒)
17: end for
18: 𝑠𝑎𝑣𝑒 (𝑠𝑡𝑎𝑡𝑠)
19: end for

The NHA performs the background subtraction using
the GSOC algorithm, performs inference of the SNN
kernel (described on the FPGA), and uses the inference
results to compute the BS. Furthermore, the NHA can
process both live images captured from camera devices
or extracted from videos stored on USB or SATA de-
vices.

The NDKs section covers the two kernels (i.e. Neu-
roHSMDv1 and NeuroHSMDv2) that have been imple-
mented. The Intel Quartus via the Intel FPGA SDK
for OpenCL optimised the device kernels to use of the
variable-precision DSP blocks, offering IEEE754 single-
precision floating point resolution required for perform-
ing the target operations. Both kernels use the IEEE754
single-precision floating point representation, and there-
fore all computations were performed using single-
precision arithmetic. The NeuroHSMDv1 is the equiv-
alent implementation to the HSMDv1 where the spike
sum per neuron is computed for all the neurons, while
NeuroHSMDv2 is the equivalent to HSMDv2 where the
spike sum per neuron is only computed for neurons that
have pixel intensity values greater than 0.0. Both, Neu-
roHSMDv1 and NeuroHSMDv2 NDKs implement the
HSMD’s SNN (see Figure 8). Furthermore, the synaptic
weights were stored in vectors and were exchanged via
the device and host CPU memory buffers.

The NeuroHSMDv1 was parallelised by a factor of 16.
The parallell factor of 16 was the optimal parallelism
coefficient and was obtained experimentally. The NDK
version 1 is the equivalent implementation of the HSMD
algorithm [5] which is referred to as HSMDv1 in this sec-
tion. The HSMDv2 is an optimised version of the HSMD
where spike sums per neuron are only computed for neu-

rons that have pixel intensity values greater than 0.
The Algorithm 3, inferred by the NHP, summarises the computation steps required to compute the spike sum.
Fig. 8 depicts the seven stages of computation and exhibits the place where each stage occurs (i.e. CPU or FPGA).
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Algorithm 2 NeuroHSMDv1
Parallel Circuits: 16

Constants:
𝑅: membrane resistance;

𝜏 : membrane time constant;
𝑑𝑡 : time step;

𝑝2𝑐: pixel values to current;
𝑠𝑡𝑒𝑝𝑠 : number of steps;
𝑠2𝑐: spike to current;

𝑛𝑢𝑚𝑏𝑒𝑟_𝑛𝑒𝑢𝑟𝑜𝑛𝑠: obtained from largest image to be
processed
Input:

< 𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙 >: pixel values;
𝑛𝑢𝑚_𝑛𝑒𝑢𝑟𝑜𝑛_𝑙𝑎𝑦𝑒𝑟 : number of neurons per layer (one

per pixel);
Output:

< 𝑠𝑝𝑘_𝑠𝑢𝑚 >: spike sum;
Main Algorithm:

1: for 𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥 ← 0 to number_neurons do
2: 𝐼 (𝑡) ← 𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙 [𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] .𝑝2𝑐;
3: for 𝑑𝑡1← 0 to steps do
4: Layer 1:
5: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑉𝑚_𝑙1[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] (𝐼 (𝑡)); {Eq. 1}
6: 𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑝𝑖𝑘𝑒_𝑠𝑢𝑚_𝑙1[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] (𝑉𝑚_𝑙1)

{Eq. 5};
7: Layer 2:
8: 𝐼 (𝑡)_𝑙2← 𝑠𝑝𝑖𝑘𝑒_𝑠𝑢𝑚_𝑙1[[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] .𝑠2𝑐;
9: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑉𝑚_𝑙2[[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] (𝐼 (𝑡)_𝑙2);

{Eq. 1}
10: 𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑝𝑖𝑘𝑒_𝑠𝑢𝑚_𝑙2[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] (𝑉𝑚_𝑙2);

{Eq. 5};
11: Layer 3:
12: 𝐼 (𝑡)_𝑙3← 𝑠𝑝𝑖𝑘𝑒_𝑠𝑢𝑚_𝑙2[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] .𝑠2𝑐;
13: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑉𝑚_𝑙3[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] (𝐼 (𝑡)_𝑙2 +

𝐼 (𝑡)_𝑙3); {Eq. 1}
14: 𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑝𝑘_𝑠𝑢𝑚[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] (𝑉𝑚_𝑙3);

{Eq. 5};
15: end for
16: end for

Algorithm 3 NeuroHSMDv2
Parallel Circuits: 16

Constants:
𝑅: membrane resistance;

𝜏 : membrane time constant;
𝑑𝑡 : time step;

𝑝2𝑐: pixel values to current;
𝑠𝑡𝑒𝑝𝑠 : number of steps;
𝑠2𝑐: spike to current;

𝑛𝑢𝑚𝑏𝑒𝑟_𝑛𝑒𝑢𝑟𝑜𝑛𝑠 : obtained from largest image to be
processed
Input:

< 𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙 >: pixel values;
𝑛𝑢𝑚_𝑛𝑒𝑢𝑟𝑜𝑛_𝑙𝑎𝑦𝑒𝑟 : number of neurons per layer (one

per pixel);
Output:

< 𝑠𝑝𝑘_𝑠𝑢𝑚 >: spike sum;
Main Algorithm:

1: for 𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥 ← 0 to number_neurons do
2: if 𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙 [𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] > 0.0 then
3: 𝐼 (𝑡) ← 𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙 [𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] .𝑝2𝑐;
4: for 𝑑𝑡1← 0 to steps do
5: Layer 1:
6: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑉𝑚_𝑙1[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] (𝐼 (𝑡)); {Eq. 1}
7: 𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑝𝑖𝑘𝑒_𝑠𝑢𝑚_𝑙1[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] (𝑉𝑚_𝑙1) {Eq. 5};
8: Layer 2:
9: 𝐼 (𝑡)_𝑙2← 𝑠𝑝𝑖𝑘𝑒_𝑠𝑢𝑚_𝑙1[[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] .𝑠2𝑐;
10: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑉𝑚_𝑙2[[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] (𝐼 (𝑡)_𝑙2);

{Eq. 1}
11: 𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑝𝑖𝑘𝑒_𝑠𝑢𝑚_𝑙2[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] (𝑉𝑚_𝑙2);

{Eq. 5};
12: Layer 3:
13: 𝐼 (𝑡)_𝑙3← 𝑠𝑝𝑖𝑘𝑒_𝑠𝑢𝑚_𝑙2[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] .𝑠2𝑐;
14: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑉𝑚_𝑙3[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] (𝐼 (𝑡)_𝑙2 +

𝐼 (𝑡)_𝑙3); {Eq. 1}
15: 𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑝𝑘_𝑠𝑢𝑚[𝑛𝑒𝑢𝑟𝑜𝑛_𝑖𝑑𝑥] (𝑉𝑚_𝑙3);

{Eq. 5};
16: end for
17: end if
18: end for
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Similar to NeuroHSMDv1, the NeuroHSMDv2 was parallelised by a factor of 16. The parallel factor of 16 was the
optimal parallelism coefficient and was obtained experimentally. The NDK version 1 contains an optimisation where the
spike sum for a given neuron of layer 1 is only computed if the pixel intensity value is greater than 0.0. This optimisation
was also applied to the original HSMD Algorithm [5]. The optimised version of the HSMD is called HSMDv2 in this
section.

4.6 Datasets and Benchmarking

The NeuroHSMDv1, NeuroHSMDv2, HSMDv1 and HSMDv2 were tested against the CDnet2012 [49] and CDnet2014
[41].

The average performance obtained for each category using each BS method and the HSMD and NeuroHSMD
algorithms are characterised via the eight metrics, as shown below. The four base qualitative metrics are: True Positive
(TP), True Negative (TN), False Positive (FP) and False Negative (FN) [41, 49].

Fig. 8. NDKs implementation. The HSMD’s SNN includes:
Layer L2 - conversion of pixel values to currents, Layer L3 -
motion stability and Layer L4 - motion detection

Recall (Re): 𝑅𝑒 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

𝑅𝑒 : ranked by descending order;
Specificity (Sp): 𝑆𝑝 = 𝑇𝑁

𝑇𝑁+𝐹𝑃 ;
𝑆𝑝 ranked by descending order;
False Positive Rate (FPR): 𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑁 ;
𝐹𝑃𝑅 ranked by ascending order;
False Negative Rate (FNR): 𝐹𝑁𝑅 = 𝐹𝑁

𝐹𝑁+𝑇𝑃 ;
𝐹𝑁𝑅 ranked by ascending order;
Wrong Classifications Rate (WCR):

𝑊𝐶𝑅 = 𝐹𝑁+𝐹𝑃
𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁 ;

𝑊𝐶𝑅 ranked by ascending order;
Correct Classifications Rate (CCR):

𝐶𝐶𝑅 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁 ;

𝐶𝐶𝑅 ranked by descending order;
Precision (Pr): 𝑃𝑟 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 ;
𝑃𝑟 ranked by descending order;
F-measure (F1): 𝐹1 = 2 × 𝑃𝑟 .𝑅𝑒

𝑃𝑟+𝑅𝑒
𝐹1 ranked by descending order;

Average Ranking (R):
𝑅 =

𝑅𝑒+𝑆𝑝+𝐹𝑃𝑅+𝐹𝑁𝑅+𝑊𝐶𝑅+𝐶𝐶𝑅+𝐹1
𝑛𝑀𝑒𝑡

;
R ranked by ascending order;
𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝑎𝑐𝑟𝑜𝑠𝑠𝑎𝑙𝑙𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 (𝑅𝐶):

𝑅𝐶 =
𝑅𝑒+𝑆𝑝+𝐹𝑃𝑅+𝐹𝑁𝑅+𝑊𝐶𝑅+𝐶𝐶𝑅+𝐹1

𝑛𝑀𝑒𝑡
;

𝑅𝐶 ranked by ascending order;
where 𝑛𝑀𝑒𝑡 is the number of metrics (8 in this case).
The benchmark of the four algorithms (i.e. HSMDv1, HSMDv2, NeuroHSMDv1 and NeuroHSMDv2) and is required

to ensure that the four algorithms produce comparative results to that of the original HSMDv1 results when tested
against CDnet2012 and CDnet2014 datasets. Furthermore, the OpenCL calls the Intel Quartus, which performs several
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Table 2 FPGA resources usage.

Summary
Info
Project Names:

snn_pc_v1
snn_pci_v2

Target Family, Device, Board Stratix 10, 1SG280LU3F50E1VGS1, de10_pro:s10_sh2e1_4Gx2
AOC Version 19.1.0 Build 240
Quartus Version 19.1.0 Build 240 Pro
Quartus Fit Clock Summary
Frequency (MHz)
NeuroHSMDv1 kernel 306.25 (fmax)
NeuroHSMDv2 kernel 300 (Kernel fmax)
Quartus Fit Resource Utilisation Summary

ALMs FFs RAMs DSP blocks MLABs
NeuroHSMDv1 kernel 488257.1 1060084 2484 1024 3871
NeuroHSMDv2 kernel 486808.4 1034661 2486 1024 3933

Kernel Resource Usage
ALUs FFs RAMs DSP blocks MLABs

NeuroHSMDv1 kernel 488257.1 1060084 2484 1024 3871
NeuroHSMDv2 kernel 486808.4 1034661 2486 1024 3933

Global Interconnect
NeuroHSMDv1 kernel 10629 16485 61 0 0
NeuroHSMDv2 kernel 10629 16485 61 0 0

Board Interface
NeuroHSMDv1 kernel 13132 20030 112 0 0
NeuroHSMDv2 kernel 13132 20030 112 0 0

System description ROM
NeuroHSMDv1 kernel 2 71 2 0 0
NeuroHSMDv2 kernel 2 71 2 0 0

Total
NeuroHSMDv1 kernel 567523 (30%) 907449 (24%) 2963 (25%) 976 (17%) 3786
NeuroHSMDv2 kernel 554199 (30%) 881379 (24%) 3043 (26%) 976 (17%) 3844

hardware optimisations that may include converting from floating-point to fixed-point representation [68], which
might affect the accuracy of the NeuroHSMD algorithms during the synthesis step (one of the steps of the OpenCL
design flow).

5 RESULTS

The HSMDv1, HSMDv2, NeuroHSMDv1 and NeuroHSMDv2 were all tested on the same computer equipped with a
quad-core Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 16GB of DDR3 @ 1600 MHz and 1TB of HDD.
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The results section is divided into three parts. Namely, Section 5.1 shows the resources’ usage to enable the comparison
between the two kernels’ complexity, the speed performance results are presented in Section 5.2 and Section 5.3 shows
the benchmark results when tested against the CDnet2012 and CDnet2014 datasets.

5.1 Resources Usage

The resources’ usage are provided in the report generated by the aoc after the successful completion of the kernel
compilation, which can take several hours (typically between 6h and 24h depending on the kernel complexity for
the DE10pro). The resources’ usage for the compilation of the NeuroHSMDv1 and NeuroHSMDv2 kernels is given in
Table 2.

From the analysis of Table 2 it can be seen that the estimated resource utilisation is more pessimistic than the final
resource utilisation, which is a direct consequence of the Intel Quartus’s optimisations during the synthesis and routing
phases and to ensure that the circuit fits in the FPGA device. Nevertheless, it takes about 5 minutes to get the estimated

resources usage and between 6h to 24h to get the resources’ utilisation summary. Therefore, it is a good practice defining
the coefficient N in the statement # PRAGMA UNROLL N based on the estimated resources’ usage.

The NeuroHSMDv2 compared with the NeuroHSMDv1, consumes 1448.7 ALMs less, 25423 FFs less, 2 RAMs less and
the same number of DSPs. Nevertheless, the NuroHSMDv2 kernel max frequency is 300MHz, while the NuroHSMDv1
kernel max frequency is 306.25 MHz. The NuroHSMDv2 enables saving of less than 1% of resources and introduces an
2% increase in latency.

The coefficient N should always be a multiple of 2𝑛 to ensure the optimal use of FPGA resources. For example,
the resources’ usage of 𝑁 = 48 is equivalent to 𝑁 = 64. Moreover, both NDKs had failed to compile when 𝑁 = 32
because there was not enough ALUs. The design required more ALUs than those available on the device, violating the
compilation rules because the design would not fit on the device.

Finally, the same neuronal parameters were used for all the neurons to reduce resource usage and the amount of
data to be exchanged between the host CPU and the FPGA device via the PCIe bus. It is important to highlight that it is
only possible to increase the size of the SNN by reducing the complexity of the neuron model, and vice versa.

5.2 Speed Performance

Table 3 displays the speed results obtained for the four algorithms tested against the CDnet2012.
From Table 3 can be seen that both the NeuroHSMDv1 and NeuroHSMDv2 have performed better than the software

versions (i.e. HSMDv1 and HSMDv2). It is also apparent that the NeuroHSMDv2 performs better in images with higher
resolution (i.e. 720 × 480 and 720 × 576) while the NeuroHSMDv1 in lower resolutions (i.e below 720 × 480). Unlike in
software, where it is consistent that the HSMDv2 is always faster than the HSMDv1 (non-opimised version), FPGA
optimisations require the utilisation of more resources which might increase latency. Therefore, the NeuroHSMDv2 is
only more efficient for resolutions above 288 × 432.

Overall, the NeuroHSMDv1 had an average frame rate of 71.50 fps, NeuroHSMDv2 63.20 fps, HSMDv1 40.26 fps,
HSMDv2 36.11 fps. Finally, the average frame rate for processing images with the native resolution of 720 × 480 per
algorithm is i) NeuroHSMDv2 28.06 fps, NeuroHSMDv1 25.45 fps, HSMDv2 11.19 fps and HSMDv1 9.97 fps.

The speed results obtained for the four algorithms when tested against the CDnet2014 are depicted in Table 4
Table 4 shows that the NeuroHSMDv1 and NeuroHSMDv2 have performed better than the software versions (i.e.

HSMDv1 and HSMDv2) when tested against the CDnet2014 dataset. Once again, the NeuroHSMDv2 performs
The results for each of the eleven categories shared by both CDnet2012 and CDnet2014 are shown in Figure 9. better
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Table 3 CDnet2012 speed result
Category number of height width NeuroHSMDv2 NeuroHSMDv1 HSMDv2 HSMDv1

images [pixels] [pixels] [fps] [fps] [fps] [fps]
baseline/PETS2006 1199 576 720 23.66 20.45 8.40 9.73
cameraJitter/badminton 1149 480 720 28.33 25.48 10.01 11.50
dynamicBackground/fall 3999 480 720 27.28 25.01 9.87 11.08
shadow/copyMachine 3399 480 720 28.56 25.86 10.04 10.98
dynamicBackground/fountain01 1183 288 432 55.17 58.30 27.40 29.99
dynamicBackground/fountain02 1498 288 432 56.12 58.13 27.64 30.37
intermittentObjectMotion/abandonedBox 4499 288 432 55.93 58.45 26.88 29.89
intermittentObjectMotion/tramstop 3199 288 432 55.35 58.66 27.05 29.59
thermal/park 599 288 352 55.72 59.96 28.99 33.02
shadow/peopleInShade 1198 244 380 66.85 74.06 36.05 38.74
baseline/highway 1699 240 320 72.48 85.70 46.97 53.00
baseline/office 2049 240 360 69.49 78.86 40.24 46.71
baseline/pedestrians 1098 240 360 69.59 78.73 40.18 47.00
cameraJitter/boulevard 2499 240 352 68.96 78.81 41.21 46.98
cameraJitter/sidewalk 1199 240 352 69.04 78.54 39.49 47.32
cameraJitter/traffic 1569 240 320 72.17 85.29 43.95 51.40
dynamicBackground/boats 7998 240 320 71.86 84.29 45.33 51.70
dynamicBackground/canoe 1188 240 320 71.98 83.86 44.15 52.95
dynamicBackground/overpass 2999 240 320 71.98 84.56 43.69 49.31
intermittentObjectMotion/parking 2499 240 320 72.98 85.21 44.68 48.55
intermittentObjectMotion/sofa 2749 240 320 73.56 86.46 44.37 47.96
intermittentObjectMotion/streetLight 3199 240 320 72.01 84.95 44.31 47.76
intermittentObjectMotion/winterDriveway 2499 240 320 72.98 85.88 44.72 49.21
shadow/backdoor 1999 240 320 72.06 85.77 44.21 48.87
shadow/bungalows 1699 240 360 68.61 78.36 39.80 42.25
shadow/busStation 1249 240 360 68.79 78.78 39.85 42.91
shadow/cubicle 7399 240 352 70.87 80.47 41.07 44.52
thermal/corridor 5399 240 320 73.80 87.01 44.58 48.10
thermal/diningRoom 3699 240 320 73.38 86.60 44.38 47.82
thermal/lakeSide 6499 240 320 73.91 86.80 45.62 49.64
thermal/library 4899 240 320 74.83 87.05 44.40 49.36

Best results are highlighted using grey.

Fig. 9. Results obtained for each of the eleven of the five categories (columns A to F) are common to both CDnet2012 and CDnet2014
datasets, while the remaining six categories (columns G to K) are only available on CDnet2014 dataset. Column A: baseline; B: camera
jitter; C: dynamic background; D: dynamic object motion; E: shadow, F: thermal, G: bad weather, H: low frame rate; I: night videos, J:
PTZ and K: turbulence. Row 1: RGB image; 2: ground-truth; and 3: NeuroHSMD binarised. The raw images, shown in the first row,
demonstrate the scenarios that can be found in both datasets. The corresponding ground truth images, presented in the second row,
show the 5 labels, namely, i) static [greyscale value 0], ii) shadow [greyscale value 50], iii) non-Region of Interest (ROI) [greyscale
value 85], iv) unknown [greyscale value 170] and v) moving [greyscale value 255]. The corresponding binarised images generated by
the NeuroHSMD are shown in the third row.

Manuscript submitted to ACM



NeuroHSMD: Neuromorphic Hybrid Spiking Motion Detector 19

Table 4 CDnet2014 speed results
Category number of height width NeuroHSMDv2 NeuroHSMDv1 HSMDv2 HSMDv1

images [pixels] [pixels] [fps] [fps] [fps] [fps]
badWeather/blizzard 6999 480 720 29.70 24.55 10.12 11.21
badWeather/snowFall 6499 480 720 29.61 24.31 10.16 11.11
badWeather/wetSnow 3499 540 720 26.54 21.76 8.93 10.19
baseline/PETS2006 1199 576 720 25.04 20.36 8.52 9.53
cameraJitter/badminton 1149 480 720 28.58 25.07 9.80 11.00
dynamicBackground/fall 3999 480 720 27.48 24.75 13.90 10.96
shadow/copyMachine 3399 480 720 28.76 25.66 14.10 11.51
turbulence/turbulence0 4999 480 720 28.59 25.07 14.26 11.62
turbulence/turbulence1 3999 480 720 28.24 25.21 14.28 11.35
turbulence/turbulence3 2199 486 720 28.72 25.15 14.07 11.49
PTZ/continuousPan 1699 480 704 28.49 23.91 9.88 10.85
lowFramerate/tunnelExit_0_35fps 3999 440 700 31.45 28.23 15.94 12.47
nightVideos/fluidHighway 1363 450 700 31.17 27.64 15.27 12.10
turbulence/turbulence2 4499 315 645 41.85 39.59 23.90 18.93
lowFramerate/port_0_17fps 2999 480 640 31.35 28.17 15.75 12.39
lowFramerate/tramCrossroad_1fps 899 350 640 39.51 36.73 21.37 16.71
nightVideos/busyBoulvard 2759 364 640 38.86 36.00 20.90 16.43
nightVideos/bridgeEntry 2499 430 630 34.52 31.85 17.90 14.20
nightVideos/winterStreet 1784 420 624 35.92 32.57 18.26 14.52
nightVideos/streetCornerAtNight 5199 245 595 52.86 51.56 32.83 25.35
PTZ/twoPositionPTZCam 2299 340 570 43.30 41.11 17.91 18.92
PTZ/intermittentPan 3499 368 560 40.65 38.52 16.39 17.71
badWeather/skating 3899 360 540 43.00 40.79 17.20 19.08
nightVideos/tramStation 2999 295 480 53.15 52.62 33.46 26.15
dynamicBackground/fountain01 1183 288 432 55.38 57.06 37.95 30.16
dynamicBackground/fountain02 1498 288 432 56.56 56.97 38.22 30.49
intermittentObjectMotion/abandonedBox 4499 288 432 55.64 58.03 38.19 30.26
intermittentObjectMotion/tramstop 3199 288 432 56.58 57.56 38.03 28.99
shadow/peopleInShade 1198 244 380 67.31 71.54 49.84 41.11
baseline/office 2049 240 360 71.72 75.86 37.85 45.39
baseline/pedestrians 1098 240 360 70.75 75.87 40.13 45.66
shadow/bungalows 1699 240 360 69.25 75.88 55.53 45.12
shadow/busStation 1249 240 360 69.51 74.76 55.41 46.24
cameraJitter/boulevard 2499 240 352 70.44 75.44 39.33 42.60
cameraJitter/sidewalk 1199 240 352 69.44 75.95 38.54 42.36
shadow/cubicle 7399 240 352 71.78 77.42 57.46 46.65
thermal/park 599 288 352 57.07 58.39 43.26 36.78
PTZ/zoomInZoomOut 1129 240 320 72.70 80.89 41.94 44.97
baseline/highway 1699 240 320 74.12 82.40 42.85 46.89
cameraJitter/traffic 1569 240 320 72.87 81.54 40.97 45.95
dynamicBackground/boats 7998 240 320 73.14 82.14 60.35 47.99
dynamicBackground/canoe 1188 240 320 72.64 81.62 61.19 46.91
dynamicBackground/overpass 2999 240 320 72.85 82.26 61.72 50.00
intermittentObjectMotion/parking 2499 240 320 73.56 81.88 61.94 51.23
intermittentObjectMotion/sofa 2749 240 320 73.57 82.95 62.15 47.82
intermittentObjectMotion/streetLight 3199 240 320 72.77 82.48 62.27 48.13
intermittentObjectMotion/winterDriveway 2499 240 320 74.19 82.81 62.96 48.48
lowFramerate/turnpike_0_5fps 1499 240 320 73.10 82.38 60.99 46.52
shadow/backdoor 1999 240 320 73.73 83.84 62.82 51.77
thermal/corridor 5399 240 320 74.86 83.65 62.48 51.11
thermal/diningRoom 3699 240 320 74.42 83.86 62.34 50.98
thermal/lakeSide 6499 240 320 74.93 83.60 63.23 51.68
thermal/library 4899 240 320 75.79 83.72 62.17 47.23

Best results are highlighted using grey.
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Table 5 CDnet2012 Overall ranks

Method 𝑅𝐶 ↓ Re ↑ Sp ↑ FPR ↓ FNR ↓ WCR ↓ CCR ↑ F1 ↑ Pr ↑
HSMDv1 2.8 0.52 0.994 0.006 0.23 0.024 0.976 0.77 0.62
HSMDv2 2.8 0.52 0.994 0.006 0.23 0.024 0.976 0.77 0.62
NeuroHSMDv1 2.8 0.52 0.994 0.006 0.23 0.024 0.976 0.77 0.62
NeuroHSMDv2 2.8 0.52 0.994 0.006 0.23 0.024 0.976 0.77 0.62
GSOC [5] 3.5 0.54 0.993 0.007 0.25 0.024 0.976 0.75 0.63
MOG2 [5] 3.8 0.37 0.995 0.004 0.24 0.026 0.974 0.76 0.50
GMG [5] 3.9 0.20 0.998 0.002 0.21 0.033 0.967 0.79 0.32
KNN [5] 4.3 0.39 0.995 0.005 0.26 0.025 0.975 0.74 0.51
MOG [5] 4.5 0.32 0.996 0.004 0.26 0.030 0.970 0.74 0.44
CNT [5] 6.1 0.73 0.927 0.073 0.71 0.081 0.919 0.29 0.41
LSBP[5] 7.3 0.57 0.90 0.096 0.80 0.109 0.891 0.20 0.29

↑: the highest score is the best. ↓: the lowest result is the best.
All the 4 methods were ranked first because no changes were made to the customised SNN. 𝑅𝑒 stands for Recall, 𝑆𝑝

Specificity, FPR False Positive Rate, FNR False Negative Rate, WCR Wrong Classifications Rate, CCR Correct
Classifications Rate, Pr Precision, F1 F-score and 𝑅𝐶 Average Ranking across all Categories.

in images with higher resolution (i.e. equal or higher than 480 × 295) while the NeuroHSMDv1 in lower resolutions
(i.e below 480 × 295). Again, the NeuroHSMDv2 is only more efficient for resolutions above 288 × 432 because of the
complexity and latency introduced by the optimisation circuit.

Overall, the NeuroHSMDv1 has an average frame rate of 43.51 fps, NeuroHSMDv2 39.94 fps, HSMDv2 29.30 fps, and
HSMDv1 25.18 fps. It is essential to highlight that the CDnet2014 has more categories and image sequences, leading to
different frame rates for the CDnet2012 and CDnet2014 datasets.

The average frame rate for processing images with the native resolution of 720 × 480 per algorithm was i) Neu-
roHSMDv2 28.71 fps, NeuroHSMDv1 24.95 fps, HSMDv2 12.37 fps and HSMDv1 11.25 fps. These results are in line with
the results obtained for the 4 algorithms when tested against the CDnet2012 dataset. Although HSMDv1 and HSMDv2
have archived near-real time performance, it is also clear that CPUs are not ideal for accelerating SNNs. Furthermore,
to achieve such performance on the CPU all the non-essential applications were closed to ensure that all the memory
and computational resources were free to compute the HSMDv1 and HSMDv2 with maximum efficiency. Furthermore,
the parallelisation process takes place in the FPGA, where the device kernel is defined in its internal logic. Data is
exchanged between the device and host SDRAMs through buffers. The FPGA implementation contains 16 parallel
circuits, which were configured using the IOCL. In this work, we did not explore learning rules (such as STDP, Hebbian,
Oja, etc.) as these would require additional FPGA resources.

5.3 Benchmark

Table 5 shows the results obtained after testing the 4 methods against the CDnet2012 ground-truth images using the
scripts provided by Nil Goyette et al. [49].

From the results shown in Table 5 it is possible to infer that the results obtained with the four methods are the same
because all the methods were ranked in first place with the same values per metric. Indexing all the algorithms in the
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Table 6 CDnet2014 Overall ranks

Method 𝑅𝐶 ↓ Re ↑ Sp ↑ FPR ↓ FNR ↓ WCR ↓ CCR ↑ F1 ↑ Pr ↑
HSMDv1 2.9 0.55 0.993 0.007 0.35 0.018 0.982 0.65 0.60
HSMDv2 2.9 0.55 0.993 0.007 0.35 0.018 0.982 0.65 0.60
NeuroHSMDv1 2.9 0.55 0.993 0.007 0.35 0.018 0.982 0.65 0.60
NeuroHSMDv2 2.9 0.55 0.993 0.007 0.35 0.018 0.982 0.65 0.60
GSOC [5] 3.0 0.40 0.995 0.005 0.38 0.017 0.983 0.62 0.48
KNN [5] 3.5 0.34 0.996 0.004 0.32 0.019 0.981 0.68 0.45
GMG[5] 4.3 0.24 0.997 0.003 0.36 0.022 0.978 0.64 0.35
MOG [5] 4.4 0.58 0.991 0.009 0.39 0.019 0.981 0.61 0.60
MOG2 [5] 4.5 0.39 0.994 0.006 0.42 0.018 0.982 0.58 0.47
LSBP [5] 6.5 0.58 0.945 0.055 0.79 0.064 0.936 0.21 0.31
CNT 7.0 [5] 0.72 0.930 0.070 0.80 0.075 0.925 0.20 0.32

↑: the highest score is the best. ↓: the lowest result is the best.
All the 4 methods were ranked first because no changes were made to the customised SNN. 𝑅𝑒 stands for Recall, 𝑆𝑝

Specificity, FPR False Positive Rate, FNR False Negative Rate, WCR Wrong Classifications Rate, CCR Correct
Classifications Rate, Pr Precision, F1 F-score and 𝑅𝐶 Average Ranking across all Categories.

first place was expected because the speed optimisation in version 2 of the NeuroHSMD and HSMD should not interfere
with the model dynamics. Furthermore, the HSMDv1, HSMDv2, NeuroHSMDv1 and NeuroHSMDv2 showed poor
performance in both dynamic backgrounds and low frame rate conditions, indicating that the spiking neuron model is
not effective in accurately distinguishing the type of motion. This is likely due to the fact that in the vertebrate retina,
only ganglion cells are spiking cells and the distinction between the main object and shadows is performed by other
non-spiking cells. However, the integration of the GSOC algorithm and the SNN in a new approach has significantly
improved the accuracy of the GSOC algorithm by mimicking the basic functionality of OMS-GC.

Table 6 depicts the results obtained after testing 4 methods against the CDnet2014 ground-truth images using the
scripts provided by Nil Goyette et al. [49].

From the results shown in Table 6 it is possible to infer that the results obtained with the four methods are the same
because the four methods were ranked first with the same values per metric. These results are important because it is
possible to infer that there has been no degradation in accuracy as a consequence of the hardware acceleration. Again,
the HSMDv1, HSMDv2, NeuroHSMDv1, and NeuroHSMDv2 demonstrated subpar results in dynamic backgrounds and
low frame rate situations, demonstrating that the spiking neuron model is not capable of accurately identifying the type
of motion. This is likely a result of only ganglion cells being spiking cells in the vertebrate retina, where the distinction
between the main object and shadows is handled by non-spiking cells. However, combining the GSOC algorithm and
the SNN in a novel approach has significantly enhanced the accuracy of the GSOC algorithm by replicating the basic
operations of OMS-GC.

6 CONCLUSIONS AND FUTUREWORK

Two bio-inspired NeuroHSMD have been proposed to accelerate the HSMD algorithm [5]. The NeuroHSMDv1 and
NeuroHSMDv2 (speed optimisation) were tested against the CDnet2012 and CDnet2014 datasets. The NeuroHSMDv1 has
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lower latency when processing images with resolutions equal to or greater than 480 × 295. The NeuronHSMDv2 (speed
optimisation) has a lower latency when processing images with resolutions smaller than 480× 295. Two HSMD versions
were used (the original HSMDv1 algorithm [5] and HSMDv2 with speed optimisation) for ensuring a fair comparison
between the software and hardware implementations. The HSMDv1, HSMDv2, NeuroHSMDv1 and NeuroHSMDv2
where all tested on the same computer equipped with a quad-core Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 16GB
of DDR3 @ 1600 MHz and 1TB of HDD. The average frame rate for processing images with the native resolution of
720 × 480 per algorithm was: 1) CDnet2012: i) NeuroHSMDv2 28.06 fps, NeuroHSMDv1 25.45 fps, HSMDv2 11.19 fps
and HSMDv1 9.97 fps; and 2) CDnet2014: i) NeuroHSMDv2 28.71 fps, NeuroHSMDv1 24.95 fps, HSMDv2 12.37 fps and
HSMDv1 11.25 fps.
The four methods were also tested against the ground-truth images available in the CDnet2012 and CDnet2014 datasets
using the eight metrics, were used to assess and compare the quality of the HSMD algorithm. The four methods obtained
the same values for all the metrics and were all ranked first. The first place acquired by the four methods is an indication
that there was no degradation with the hardware acceleration.
Finally, the NeuroHSMD is the first Neuromorphic SNN accelerator capable of accelerating thousands of spiking neuron
models in parallel using OpenCL. Moreover, the proposed method can be used by non-engineering background users
for accelerating SNNs in different heterogenous platforms using OpenCL. It is also possible to conclude that the results
on the FPGA are the same as the results obtained in the CPU implementation, meaning that the target FPGA offers
sufficient IEEE754 single-precision DSP blocks to accelerate the SNN kernel without degradation of the results.

Future work includes optimising the HSMD algorithm to detect and track motion in challenging scenarios (e.g. low
frame rate, dynamic background and camera jitter) and optimise those SNNs to run in affordable lower-end FPGAs. The
implementation and evaluation of more complex retinal cells (such as direction sensitive and predictive cells) using
SNNs and target lower-end and affordable FPGA devices is also planned.
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