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Figure 1: Given a single input image, our method reconstructs a high-quality editable 3D digital avatar (columns 2 and 3) by
combining implicit geometry representations with explicit texture maps. The proposed approach naturally supports novel view
synthesis from large pose shifts, an expressive and non-linear facial animation space (columns 4 through 6), direct user access
to texture map editing (column 7), and 3D asset extraction for further downstream applications such as relighting (column 8).

ABSTRACT
There is a growing demand for the accessible creation of high-
quality 3D avatars that are animatable and customizable. Although
3D morphable models provide intuitive control for editing and
animation, and robustness for single-view face reconstruction, they
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cannot easily capture geometric and appearance details. Methods
based on neural implicit representations, such as signed distance
functions (SDF) or neural radiance fields, approach photo-realism,
but are difficult to animate and do not generalize well to unseen data.
To tackle this problem, we propose a novel method for constructing
implicit 3D morphable face models that are both generalizable and
intuitive for editing. Trained from a collection of high-quality 3D
scans, our face model is parameterized by geometry, expression,
and texture latent codes with a learned SDF and explicit UV texture
parameterization. Once trained, we can reconstruct an avatar from
a single in-the-wild image by leveraging the learned prior to project
the image into the latent space of ourmodel. Our implicit morphable
face models can be used to render an avatar from novel views,
animate facial expressions by modifying expression codes, and
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edit textures by directly painting on the learned UV-texture maps.
We demonstrate quantitatively and qualitatively that our method
improves upon photo-realism, geometry, and expression accuracy
compared to state-of-the-art methods.
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1 INTRODUCTION
Personalized avatar creation—the ability to map one’s facial fea-
tures to a 3D virtual replica that can be animated, customized, and
rendered—is an emerging technology with great promise for cin-
ema, the metaverse, and telepresence. Advances in this area may
lead to digital twins with greater verisimilitude in detail and in
animation that are more easily integrated into downstream ap-
plications and pipelines. Single-shot personalized avatar creation
enables reconstructing face avatars from individual RGB images
with greater convenience and flexibility than methods that require
more specialized capture setups or procedures.

Traditional approaches to animatable 3D avatar creation are
often based on 3D Morphable Models (3DMM) [Blanz and Vetter
1999], which disentangle shape and appearance variation into a
low-dimensional face representation. Building on these, more re-
cent approaches often leverage either explicit (textured) template
meshes [Daněček et al. 2022; Feng et al. 2021; Grassal et al. 2022;
Khakhulin et al. 2022; Li et al. 2017; Tran and Liu 2019] or neural
implicit representations [Mildenhall et al. 2021; Park et al. 2019;
Sitzmann et al. 2019]. Template-based approaches enable easy asset
extraction and intuitive editing, but are often unable to capture
high-quality geometry and textures. Emerging implicit face models
can achieve greater realism by modeling more complex geomet-
ric features such as hair [Cao et al. 2022b; Giebenhain et al. 2022;
Zheng et al. 2022a]. However, implicit face representations often
compromise on interpretability and are less intuitive to control;
the entangled latent spaces learned by these highly parameterized
models are difficult to edit.

Our approach aims to combine the interpretability and editability
advantages of template-based 3DMMs with the quality and topolog-
ical flexibility of implicit 3D representations. Crucially, we decouple
appearance and geometry into two branches of our network archi-
tecture. By incorporating a UV parameterization network to learn
continuous and consistent texture maps, we can export avatars
as textured meshes to support downstream applications such as
texture map editing and relighting in a traditional graphics pipeline

Table 1: Comparison to recent prior work. To the best of our
knowledge, our method is the first implicit 3D face model
to generalize across single-image inputs while supporting
flexible topology and explicit texture map control.

Generalizable Single-Image Implicit
Representation

Explicit
Texture
Control

EMOCA [2022] ✓ ✓ ✗ ✓

ROME [2022] ✓ ✓ ✗ ✗

Neural Parametric Head Models [2022] ✗ ✗ ✓ ✗

IM-Avatar [2022a] ✗ ✗ ✓ ✗

Neural Head Avatars [2022] ✗ ✗ ✓ ✓

Volumetric Avatars from a Phone Scan [2022b] ✓ ✗ ✓ ✓

HeadNeRF [2022] ✓ ✓ ✓ ✗

Ours ✓ ✓ ✓ ✓

(See Figure 1). On the other hand, by representing geometry with an
implicit signed distance field (SDF), our facial shape is less limited
by resolution and topology compared to mesh-based approaches.

We show that our proposed hybrid representation effectively
captures the geometry, appearance, and expression space of faces.
We demonstrate that single-shot in-the-wild portrait images can be
effectively mapped to avatars based on our proposed representation,
and that these avatars improve upon the previous state-of-the-art
in photo-realism, geometry, and monocular expression transfer.
Moreover, we demonstrate compelling capability for enabling direct
texture editing and disentangled attribute editing such as facial
geometry and appearance attributes.

In summary, contributions of our work include:
• We propose a hybrid morphable face model that combines
the high-quality geometry and flexible topology of implicit
representations with the editability of explicit UV parame-
terized texture maps.

• We present a single-shot inversion framework to map a sin-
gle in-the-wild RGB image to our implicit 3D morphable
model representation. The inverted avatar supports novel
view rendering, non-linear facial reanimation, disentangled
shape and appearance control, direct texture map editing,
and textured mesh extraction for downstream applications.

• We demonstrate that our method achieves state-of-the-art
reconstruction accuracy for photo-realistic rendering, geom-
etry, and expression accuracy in the single-view reconstruc-
tion setting.

2 RELATEDWORK
2.1 Mesh-based 3D Morphable Models
The seminal work by Blanz and Vetter proposed a linear 3D Mor-
phable Model (3DMM) [Blanz and Vetter 1999] that models facial
shape and textures on a template mesh using linear subspaces
computed by principal component analysis (PCA) from 200 facial
scans. This low-dimensional facial shape and texture space makes
3DMMs suitable for robustly capturing facial animation as well
as reconstructing 3D faces in monocular settings. To reconstruct
shape, texture, and lighting from a photo, previous work employed
continuous optimization using constraints such as facial landmarks
and pixel colors [Cao et al. 2014, 2016; Garrido et al. 2013, 2016;
Ichim et al. 2015; Li et al. 2017; Romdhani and Vetter 2005; Shi et al.
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2014; Thies et al. 2016] and more recently deep learning-based in-
ference [B R et al. 2021; Daněček et al. 2022; Deng et al. 2019b; Dib
et al. 2021a,b; Dou et al. 2017; Feng et al. 2021; Genova et al. 2018;
Luo et al. 2021; Tewari et al. 2019; Tewari et al. 2017; Tuan Tran et al.
2017; Wu et al. 2019]. While approaches relying on 3DMMs tend
to be robust, they are ineffective for reconstructing high-fidelity
geometry and texture details due to the linearity and low dimen-
sionality of the model. Various other methods extended 3DMMs
to capture non-linear shapes [Chandran et al. 2020; Li et al. 2020;
Tewari et al. 2018; Tran et al. 2019; Tran and Liu 2018, 2019; Wang
et al. 2022b], photo-realistic appearance using neural rendering
or optimization [Gecer et al. 2019; Nagano et al. 2018; Saito et al.
2017; Thies et al. 2019], or reflectance and geometry details for
relightable avatar generation [Chen et al. 2019; Huynh et al. 2018;
Lattas et al. 2020; Yamaguchi et al. 2018]. Recent approaches predict
geometry offsets over the template mesh to reconstruct non-facial
regions such as hair [Grassal et al. 2022; Khakhulin et al. 2022]. We
refer the reader to Egger et al. [2020] for an in-depth survey of
3DMM techniques and Tewari et al. [2022] for a report of recent
advancements in neural rendering.

Since mesh-based 3DMMs represent geometry with a shared
template mesh, their fixed topology limits the ability to scale the
model to capture complex geometry such hair or fine-scale details.
Additionally, their ability to synthesize photo-realistic facial tex-
tures may be limited by the resolution of the template mesh and
discrete texture map. By parameterizing geometry with a signed
distance function and color with a continuous texture map, our
method is able to avoid such resolution issues and scale more effi-
ciently with model capacity while retaining 3DMM-like intuitive
parameters to individually control geometry and textures. Our con-
sistent texture parameterization enables not only direct texture
editing in UV space, but also semantic correspondence between
our face model and an input image via facial landmarks, which can
be leveraged to improve single-shot reconstruction quality.

2.2 Implicit Representations for Modeling and
Rendering

While single-shot 3D reconstruction methods have explored vari-
ous explicit 3D representations such as voxels [Girdhar et al. 2016;
Tulsiani et al. 2017; Wu et al. 2018; Yan et al. 2016; Yang et al. 2018;
Zhu et al. 2017], point clouds [Fan et al. 2017], meshes [Xu et al.
2019], geometric primitives [Niu et al. 2018; Zou et al. 2017], and
depth maps [Wu et al. 2020], implicit representations have recently
been leveraged to achieve higher resolution reconstruction using
occupancy or signed distance fields (SDFs) [Chen and Zhang 2019;
Mescheder et al. 2019; Xu et al. 2019]. Implicit representations
such as neural radiance fields (NeRFs) [Mildenhall et al. 2021] and
signed distance fields (SDFs) [Park et al. 2019] have demonstrated
high reconstruction quality for 3D shapes and volumetric scenes.
PIFu [Saito et al. 2019] and follow-up works [Cao et al. 2022a; Saito
et al. 2020] use implicit fields to model human bodies and clothing.
AtlasNet [Groueix et al. 2018] demonstrated 3D shape generation by
predicting a set of parametric surface elements given an input im-
age or point cloud. NeuTex [Xiang et al. 2021] replaces the radiance
prediction of NeRFs with a learned UV texture parameterization
conditioned on lighting direction. Although our method also em-
ploys a UV cycle consistency loss, we 1) operate in a SDF setting and

condition our parameterization on geometry and expression latent
codes to generalize across samples rather than overfit to a single
scene, 2) employ sparse facial landmark constraints to facilitate
learning a semantically intuitive and consistent parameterization,
and 3) explicitly leverage 2D to 3D facial landmark correspondences
enabled by the learned consistent parameterization during single-
image reconstruction. Implicit representations have also given rise
to higher quality 3D generative models [Chan et al. 2022; Or-El et al.
2022; Xue et al. 2022], and follow-up work has studied inverting an
image into the latent space of a pre-trained 3D GAN [Ko et al. 2023;
Lin et al. 2022; Roich et al. 2022] for single-view 3D reconstruction.
However, without careful optimization and additional priors [Xie
et al. 2022; Yin et al. 2022], this 3D GAN inversion tends to be less
robust due to unknown camera poses [Ko et al. 2023] and multi-
view nature of NeRF training in the monocular setting. On the other
hand, the compact face representation of our model provides robust
initialization in the single-shot reconstruction setting.

2.3 Implicit Face Models
Compared to traditional mesh-based 3DMMs for face modeling,
implicit representations naturally offer flexible topology and non-
linear expression animation through latent code conditioning.While
some approaches learn to reconstruct an implicit 3DMM from an
input 3D face scan [Alldieck et al. 2021; Cao et al. 2022b; Giebenhain
et al. 2022; Yenamandra et al. 2021; Zanfir et al. 2022; Zheng et al.
2022b], other works have explored modeling an implicit face model
from RGB videos [Grassal et al. 2022; Ma et al. 2022; Zheng et al.
2022a,c]. However, the above approaches either do not support or
cannot generalize to single-shot in-the-wild images. Multi-view
methods have also been used to reconstruct implicit head mod-
els [Athar et al. 2021, 2022; Hong et al. 2022; Kellnhofer et al. 2021; Li
et al. 2022; Ramon et al. 2021; Wang et al. 2022a]. HeadNeRF [Hong
et al. 2022] is the closest to our work and learns a parametric head
model from multi-view images during training; at test-time, an
input image can be inverted for 3D reconstruction. However, Head-
NeRF performs volumetric rendering at a limited image resolution
and relies on upsampling CNN modules, resulting in flickering arti-
facts from depth error during novel view synthesis. Furthermore,
existing implicit morphable models do not support texture manipu-
lation beyond interpolation; by contrast, our learned explicit texture
paramterization enables intuitive and out-of-domain edits such as
adding tattoos or mustaches (see Fig. 1).

3 METHOD
3.1 Implicit Morphable Face Parameterization
We disentangle each facial avatar into identity and expression,
where identity is encoded by geometry and color latent codes while
expression is captured by an expression latent code. To attain both
high-quality geometry and interpretable texture, our model consists
of an implicit geometry branch and a UV texture parameterization
branch. The geometry branch contains a multilayer perceptron
(MLP) that maps 3D points 𝑝 to SDF values 𝑆𝐷𝐹 (𝑝) during sphere
tracing. The UV texture branch consists of a parameterization MLP
that maps 𝑝 to spherical coordinates 𝑈𝑉 (𝑝), a parameterization
regularizer MLP that learns the inverse mapping from 𝑈𝑉 (𝑝) back
to 𝑝 , and a color network that predicts the output RGB at 𝑈𝑉 (𝑝).
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Figure 2: Our Pipeline. Avatars are represented by geometry, expression, and color latent codes {𝑤𝑔𝑒𝑜𝑚,𝑤𝑒𝑥𝑝𝑟 ,𝑤𝑐𝑜𝑙𝑜𝑟 } with each
being 512 dimensional. At each 3D coordinate 𝑝 during sphere tracing, the SDF network 𝑓 and UV parameterization network 𝑔

are conditioned on𝑤𝑔𝑒𝑜𝑚 ,𝑤𝑒𝑥𝑝𝑟 , and positional encoding 𝑃𝐸 (𝑝) to predict the signed distance 𝑆𝐷𝐹 (𝑝) and UV coordinates𝑈𝑉 (𝑝),
respectively. The inverse UV parameterization network 𝑔−1 regularizes the learned mapping to be a surface parameterization
𝑔−1 (𝑈𝑉 (𝑝);𝑤𝑔𝑒𝑜𝑚,𝑤𝑒𝑥𝑝𝑟 ) = 𝑝, while the color network ℎ predicts the associated RGB texture 𝑅𝐺𝐵(𝑝) = ℎ(𝑈𝑉 (𝑝);𝑤𝑐𝑜𝑙𝑜𝑟 ,𝑤𝑒𝑥𝑝𝑟 ).
After training, the avatar can be rendered freely with direct control over its texture and facial expression, or extracted as a
stand-alone textured mesh asset.

See Figure 2 for a diagram of our model pipeline. Please refer to
the supplement for model architecture details.

We train our model on the Triplegangers [2022] 3D scan dataset
for its volume and diversity of subjects and expressions. Although
the RenderPeople [2022] dataset additionally models hair and cloth-
ing, it only contains 120 neutral expression subjects, making it less
suitable for reconstructing an avatar from unconstrained in-the-
wild photos. Our training samples consist of a 3D head mesh, UV
diffuse texture map, and six diffusely lit frontal RGB images. The
dataset contains 515 different subjects each with 20 expressions,
for a total of 10,300 data samples. Our full model learns an AutoDe-
coder dictionary of 515 geometry codes, 515 color codes, and 10,300
expression codes, as subjects express the same sentiment differ-
ently. Different expressions for the same training subject share the
same geometry and color codes, allowing the model to disentangle
expression from the underlying geometry and texture. Please refer
to the supplement for examples of our training data.

3.2 Training Losses
Our model is trained on geometry, color, and regularization losses:

L = L𝑔𝑒𝑜𝑚 + L𝑐𝑜𝑙𝑜𝑟 + L𝑟𝑒𝑔 (1)

Following Figure 2, let 𝑓 be the SDF MLP, 𝑔 the UV parameteriza-
tion MLP, 𝑔−1 the inverse UV parameterization MLP, and 𝑋 the set
of randomly sampled surface points during training. The geometry
loss consists of surface, Eikonal [Gropp et al. 2020], normal, and UV
losses. The surface loss ℓ𝑠𝑢𝑟 𝑓 optimizes the SDF zero level set, the
Eikonal loss ℓ𝑒𝑖𝑘𝑜𝑛𝑎𝑙 regularizes the SDF gradients, and the normal
loss ℓ𝑛𝑜𝑟𝑚𝑎𝑙 aligns the SDF gradients with the ground truth mesh
normals 𝑛̂. The UV loss ℓ𝑢𝑣 regularizes the learned mapping to

follow an invertible surface parameterization, which enables corre-
spondences between texture and geometry used in our single-shot
inversion pipeline, described in Section 3.5.

ℓ𝑠𝑢𝑟 𝑓 =
1
|𝑋 |

∑︁
𝑥∈𝑋

|𝑓 (𝑥) | (2)

ℓ𝑒𝑖𝑘𝑜𝑛𝑎𝑙 = E𝑥 (∥∇𝑥 𝑓 (𝑥)∥ − 1)2 (3)

ℓ𝑛𝑜𝑟𝑚𝑎𝑙 =
1
|𝑋 |

∑︁
𝑥∈𝑋

∥∇𝑥 𝑓 (𝑥) − 𝑛̂(𝑥)∥2 (4)

ℓ𝑢𝑣 =
1
|𝑋 |

∑︁
𝑥∈𝑋

∥𝑥 − 𝑔−1 (𝑔(𝑥))∥2 (5)

L𝑔𝑒𝑜𝑚 = ℓ𝑠𝑢𝑟 𝑓 + ℓ𝑒𝑖𝑘𝑜𝑛𝑎𝑙 + ℓ𝑛𝑜𝑟𝑚𝑎𝑙 + ℓ𝑢𝑣 (6)

The color loss consists of a reconstruction loss ℓ𝑡𝑒𝑥 on the ground
truth texture 𝑇 , as well as perceptual [Zhang et al. 2018] and re-
construction losses ℓ𝑖𝑚𝑔 over the facial region 𝐼𝑓 𝑎𝑐𝑒 between the
ground truth image 𝐼 and rendered image 𝐼 obtained via sphere
tracing:

ℓ𝑡𝑒𝑥 =
1
|𝑋 |

∑︁
𝑥∈𝑋

∥𝑇 (𝑥) − ℎ(𝑔(𝑥))∥2 (7)

ℓ𝑖𝑚𝑔 = 𝐿𝑃𝐼𝑃𝑆 (𝐼𝑓 𝑎𝑐𝑒 , 𝐼𝑓 𝑎𝑐𝑒 ) + ∥𝐼𝑓 𝑎𝑐𝑒 − 𝐼𝑓 𝑎𝑐𝑒 ∥2 (8)
L𝑐𝑜𝑙𝑜𝑟 = ℓ𝑡𝑒𝑥 + ℓ𝑖𝑚𝑔 (9)

Finally, we enforce the compactness in the learned latent space
by penalizing the magnitude of the geometry, color, and expression
codes:

L𝑟𝑒𝑔 = ∥𝑤𝑔𝑒𝑜𝑚 ∥2 + ∥𝑤𝑐𝑜𝑙𝑜𝑟 ∥2 + ∥𝑤𝑒𝑥𝑝𝑟 ∥2 (10)
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Figure 3: Single-shot inversion pipeline. We de-light the in-
put image and initialize the latent codes using a pre-trained
encoder (top row). We then perform PTI [Roich et al. 2022]
to get the final reconstruction (bottom row).

3.3 Learning UV Parameterizations
To learn an interpretable texture space and coherent semantic cor-
respondence across subjects, we add an auxiliary loss term to L𝑟𝑒𝑔

that enforces the parameterization to be consistent through a sparse
set of facial landmark constraints:

ℓ𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 =
1
|𝐿 |

∑︁
𝑥∈𝐿

∥𝑔(𝑥) − 𝑔(𝑥)∥2 + ∥𝑥 − 𝑔−1 (𝑔(𝑥))∥2 (11)

The first term enforces the learned UVmapping tomatch the ground
truth UV mapping 𝑔 for the set of 3D facial landmark points 𝐿,
and the second term enforces this mapping to be invertible. Fig. 8
demonstrates the consistency of our learned UV parameterization.
Although mostly consistent, it is difficult to obtain perfect reg-
istrations around the inner mouth and eyes due to the billboard
geometry and errors originating from the ground truth data.

3.4 Animation
After training, an avatar can be animated bymanipulating its expres-
sion latent code. For a source subject with expression code𝑤𝑒𝑥𝑝𝑟 ,
target expression code 𝑤 ′

𝑒𝑥𝑝𝑟 , and animation timesteps 𝑡 ∈ [0, 1],
we define the expression animation trajectory by:

𝑤𝑒𝑥𝑝𝑟 (𝑡) = 𝑤𝑒𝑥𝑝𝑟 + 𝑡 ∗ (𝑤 ′
𝑒𝑥𝑝𝑟 −𝑤𝑒𝑥𝑝𝑟 ) (12)

Unlike traditional linear 3DMM approaches, our expression space
follows non-linear trajectories learned from high-quality 3D scans,
as shown in Fig. 4.

3.5 Single-Shot Inversion
In order to reconstruct and animate unseen subjects, we project
an input RGB image into the latent space of our pre-trained model
and lightly fine-tune the model weights similar to Pivotal Tuning
Inversion (PTI) [Roich et al. 2022]. To handle unseen lighting con-
ditions, we de-light the input image using LUMOS [Yeh et al. 2022]
and initialize the geometry, color, and expression codes through a

Figure 4: Non-linear animation space. By linearly interpolat-
ing between source and target expression codes, ourmodel ex-
hibits non-linear deformation trajectories on the 3D mouth
vertices visualized.

separately trained encoder. We empirically find this encoder initial-
ization to be important in obtaining robust results for in-the-wild
input images (See Figure 9).

Image Encoder. We attain latent code initializations by training a
DeepLabV3+ [Chen et al. 2018] encoder to reconstruct each training
image 𝐼 and its corresponding latent codes 𝑊̂ already computed
from the previous AutoDecoder training stage:

L𝑒𝑛𝑐 = ∥𝐼 − 𝐼 ∥2 + ∥𝑊̂ −𝑊 ∥2 (13)
𝑊 = [𝑤𝑔𝑒𝑜𝑚 ;𝑤𝑐𝑜𝑙𝑜𝑟 ;𝑤𝑒𝑥𝑝𝑟 ] (14)

One major challenge when inverting in-the-wild images is handling
unseen identities, accessories, hairstyles, and occlusion present in
real-world images, as Triplegangers contain limited identities with
no variations in hairstyles or background. Therefore, we augment
the encoder’s training dataset with synthetically augmented Triple-
gangers images from [Yeh et al. 2022], which improves the robust-
ness of the initialization and final inversion reconstruction, shown
in Fig. 9.

Optimization. After initializing the latent codes for an input im-
age 𝐼 using our encoder, we freeze the model weights and optimize
the latent codes while minimizing image, silhouette, multi-view
consistency, facial landmark, and regularization losses:

ℓ𝑖𝑚𝑔 = 𝐿𝑃𝐼𝑃𝑆 (𝐼𝑓 𝑎𝑐𝑒 , 𝐼𝑓 𝑎𝑐𝑒 ) + ∥𝐼𝑓 𝑎𝑐𝑒 − 𝐼𝑓 𝑎𝑐𝑒 ∥2 (15)

ℓ𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 =
∑︁

𝑥∈𝐼𝑓 𝑎𝑐𝑒∧𝑥∉𝐼𝑓 𝑎𝑐𝑒

𝑓 (𝑥) (16)

ℓ𝐼𝐷 = 𝐴𝑟𝑐𝐹𝑎𝑐𝑒 (𝐼 , 𝐼 , 𝐼𝑟𝑎𝑛𝑑 ) (17)

ℓ𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 =
∑︁

𝑑∈𝐷 (𝐼 )
∥𝑑 − 𝑝𝑟𝑜 𝑗2𝐷 (𝑔−1 (𝑑))∥2 (18)

ℓ𝑟𝑒𝑔 = ∥𝑤𝑔𝑒𝑜𝑚 ∥2 + ∥𝑤𝑐𝑜𝑙𝑜𝑟 ∥2 + ∥𝑤𝑒𝑥𝑝𝑟 ∥2 (19)

where the silhouette loss ℓ𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 iterates over points contained
in the ground truth face region 𝐼𝑓 𝑎𝑐𝑒 , but not in the predicted face
region 𝐼𝑓 𝑎𝑐𝑒 , to bring the points closer to the SDF zero level set.
ArcFace [Deng et al. 2019a] measures the face similarity between
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different views and 𝐼𝑟𝑎𝑛𝑑 is a predicted render from a randomly
perturbed camera pose. 𝐷 is an off-the-shelf facial landmark de-
tector [King 2009] and 𝑑 is the ground truth facial landmark UV
mapping enforced in Eq. 11. Note that our consistent UV parame-
terization directly enables correspondences for the facial landmark
alignment loss ℓ𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 ; Fig. 10 demonstrates the benefits of in-
corporating this loss. The regularization loss ℓ𝑟𝑒𝑔 is important to
ensure that the optimized codes stay near the manifold of the pre-
trained latent space for expression animation. We obtain face masks
using a pre-trained BiSeNet [Yu et al. 2018] and optimize for 800
steps.

Fine-tuning. To reconstruct finer details in the input image, we
freeze the latent codes after optimization and fine-tune the model
weights on the above losses. We omit the silhouette loss, as we
find it tends to bloat the geometry when the model weights are
unfrozen. Although fine-tuning the model improves reconstruction
quality, it may also hinder its capability for animation or novel view
synthesis. Therefore, we only perform model fine-tuning for 60
steps.

4 RESULTS
We present results of our proposed method with comparisons to
EMOCA [Daněček et al. 2022], ROME [Khakhulin et al. 2022] and
FaceVerse [Wang et al. 2022b], three recent mesh-based approaches
for single-shot 3D avatar generation, and HeadNeRF [Hong et al.
2022], an implicit approach using neural radiance fields. Ourmethod
achieves higher fidelity texture and geometry reconstruction in the
facial region compared to the baselines. Qualitatively and quanti-
tatively, our method also demonstrates more faithful expression
and pose transfer between in-the-wild source and target images.
Finally, our learned texture map is intuitive to edit and propagates
naturally during animation.

4.1 Implementation Details
Our model is trained in two stages. In the first stage, we with-
hold the ground truth multi-view images, as we find that super-
vising with both texture maps and multi-view images negatively
impacts the model’s ability to learn a consistent UV mapping. In
the second stage, we freeze the UV networks {𝑔,𝑔−1} and super-
vise using the multi-view images to fine-tune the learned texture
maps while rendering image reconstructions at 768 × 512 resolu-
tion. Camera poses are provided with ground truth training data
and we estimate camera poses for in-the-wild FFHQ images using
Deep3DFaceRecon [Deng et al. 2019b]. We perform sphere tracing
for 50 steps per ray and use a dimensionality of 512 for the geome-
try, color, and expression latent codes. We train our AutoDecoder
for 1000 epochs (approx. one week) and our inversion encoder for
200 epochs (approx. one day) across 8 NVIDIA A40 GPUs. We use
a Triplegangers training/test split of 386/129 for the quantitative
expression experiments. Sphere tracing takes 8.5 seconds and inver-
sion takes 3 hours per image. See supplemental material for more
details on training and model architectures.

4.2 Single-Shot 3D Face Reconstruction and
Animation

Qualitative Results. We show qualitative comparisons for single-
shot reconstruction followed by expression and pose transfer on
FFHQ [Karras et al. 2019] images between the proposed method,
EMOCA, ROME, and HeadNeRF in Fig. 5 and Fig. 13.

Overall, our method is more photo-realistic and achieves higher
expression accuracy in facial reconstruction. EMOCA does not
model themouth interior and relies on a pre-trained FLAME [Li et al.
2017] albedo model for texture. Our model produces the most faith-
ful expression transfer, demonstrating the diversity of its learned
expression space and generalization capabilities of our method to
in-the-wild data. HeadNeRF exhibits a large amount of identity shift
during pose transfer, whereas our method remains view-consistent
after large pose changes.

We also show a ground truth comparison of reconstructed geom-
etry on the H3DS [Ramon et al. 2021] dataset between our method
and the baselines in Fig. 6. HeadNeRF performs volumetric render-
ing at a low resolution and therefore produces noisy depth results.
Our geometry captures higher fidelity facial geometry than ROME
and captures the expression more faithfully (e.g., eye blink) com-
pared to EMOCA.

Quantitative Results. We report quantitative reconstruction and
self-reenactment expression transfer results in Table 2 and Table 3.
The photometric (LPIPS [Zhang et al. 2018], DISTS [Ding et al. 2020],
SSIM [Wang et al. 2004]), pose error, andMagFace [Meng et al. 2021]
identity consistency (ID) metrics are calculated over a dataset of
500 images from FFHQ. We compute L1 and RMSE depth error
over all subjects in the H3DS dataset. To evaluate self-reenactment
expression error, we randomly sample 32 source–target expression
pairs over a test split of the Triplegangers dataset and measure the
L2 error for FACS [Ekman and Friesen 1978] coefficients and facial
landmarks. For details related to how each metric is computed,
please refer to the supplemental material.

On the FFHQ dataset, our proposed method achieves the best ac-
curacy in terms of LPIPS, DISTS, SSIM, and ID score. The optimization-
free ablation struggles to handle the considerably large domain shift
between Triplegangers training data and FFHQ in-the-wild images.
Our model also exhibits the lowest depth error on the H3DS dataset
without relying on a 3D template mesh prior. Finally, our model
has the lowest FACS and facial landmark errors, demonstrating the
diversity of its learned expression space.

4.3 Ablations
In addition to the baselines mentioned, we compare our method to
two ablations for single-shot reconstruction. The first ablation is
an optimization-free inversion approach that only uses the learned
encoder to directly map an input image to the geometry, color, and
expression codes {𝑤𝑔𝑒𝑜𝑚,𝑤𝑐𝑜𝑙𝑜𝑟 ,𝑤𝑒𝑥𝑝𝑟 }. The second ablation is
an encoder-free inversion approach that omits the encoder and
instead uses a mean initialization for {𝑤𝑔𝑒𝑜𝑚,𝑤𝑐𝑜𝑙𝑜𝑟 ,𝑤𝑒𝑥𝑝𝑟 } over
the learned AutoDecoder dictionary of latent codes.

Quantitative results for the ablations are reported in Table 2.
The optimization-free approach produces significantly worse pho-
tometric and depth results, as there is a large domain gap between
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Figure 5: Single-shot reconstruction on FFHQ with expression and pose transfer. On the left, we show the input FFHQ source
image, de-lit input image using LUMOS [Yeh et al. 2022], and reconstruction results for each method. On the right, we show
monocular performance capture and retargeting, where we reconstruct and transfer the expression and pose from a target
image (right-most column) to the source image identity (left-most column).

Table 2: Quantitative results on single-shot in-the-wild reconstruction (left) and self-expression retargeting (right). Left: image,
pose, and identity metrics are computed on 500 images sampled from FFHQ. Depth metrics are computed on the H3DS dataset.
Image, identity, and depth metrics are computed only on the facial region. EMOCA is evaluated using its smaller face crop.
Right: FACS coefficients and facial landmarks are computed after expression and pose transfer on 32 expression pairs sampled
from the Triplegangers test split.

Reconstruction LPIPS↓ DISTS↓ SSIM↑ Pose↓ ID↑ L1
Depth↓

RMSE
Depth↓

EMOCA 0.1122 0.1268 0.9182 0.0681 0.0697 0.0300 0.0677
ROME 0.1054 0.1130 0.9317 0.0600 0.3866 0.0237 0.0513
HeadNeRF 0.1090 0.1199 0.9268 0.0606 0.2334 0.0379 0.0695
Ours (optimization-free) 0.1427 0.1465 0.9053 0.0549 0.1082 0.0357 0.0658
Ours (encoder-free) 0.0890 0.0921 0.9441 0.0533 0.4600 0.0241 0.0527
Ours 0.0879 0.0905 0.9451 0.0563 0.4670 0.0228 0.0510

Retargeting FACS↓ Facial
Landmarks↓

EMOCA 4.712 0.2088
ROME 3.204 0.1414
HeadNeRF 3.848 0.1641
Ours 1.733 0.1165

Table 3: Quantitative comparison with FaceVerse [Wang et al.
2022b] on 500 sampled FFHQ images for single-shot in-the-
wild reconstruction.

Reconstruction LPIPS↓ DISTS↓ SSIM↑
FaceVerse 0.1280 0.1119 0.9126
Ours 0.0879 0.0905 0.9451

Triplegangers training data and in-the-wild images; this causes
the encoder to produce a coarse reconstruction. The encoder-free
approach performs better than the optimization-free approach but
is still worse than our full method in image and geometry quality,
demonstrating that the encoder initialization improves the optimiza-
tion reconstruction. Both ablations and our full method perform
similarly on pose accuracy.
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Figure 6: Ground truth geometry comparison on the H3DS
dataset in the single-view setting.

Figure 7: Texture editing. Top row: input image, learned tex-
ture map, and user edited texture map. The learned texture
map layout is intuitive and edits propagate naturally during
facial animation as shown in the bottom row.

Applications. As demonstrated in Fig. 5, our method directly
supports monocular facial performance capture and expression re-
targeting. Our hybrid representation provides direct control over an
intuitive texture map with a consistent layout. Fig. 7 demonstrates
an example workflow: a user reconstructs an input image and mod-
ifies the learned texture map. The edits then continue to persist
smoothly across different facial animations. Textured meshes can be
extracted for further downstream applications such as re-lighting,
as shown in the teaser. Fig. 11 and Fig. 12 further demonstrate our
model’s disentanglement between geometry, texture, and expres-
sion with its capability of shape and facial appearance transfer.

5 DISCUSSION
We have presented a new method for reconstructing 3D animat-
able and textured faces from a single RGB image. The proposed ap-
proach combines implicit representations with explicit texture maps
to support explicit editing while achieving better photo-realistic
rendering, geometry, and expression reconstruction than previous
methods. We believe the proposed method makes important contri-
butions towards accessible creation of high-fidelity avatars from

in-the-wild images that are animatable, editable, and customizable
for downstream applications.

However, there are still limitations to the method. Firstly, the cur-
rent optimization process during inversion is significantly slower
than encoder-based methods. For real-time applications, more ex-
pressive representations such as neural feature fields can be ex-
plored to enable optimization-free inversion methods. Furthermore,
the method relies on a de-lighting module from Lumos to process
in-the-wild images to generate a diffusely lit input image, which
may cause subjects to appear paler than expected. These limitations
may be alleviated through lighting augmentations of the training
dataset to reduce the domain gap and incorporating a lighting
model such as spherical harmonics into the representation. Finally,
the results shown in this paper do not capture hair or accessories
due to limitations of the training dataset. While not perfect, we
refer to the supplemental material for a preliminary demonstration
of our representation’s capacity to handle hair and clothing on the
smaller RenderPeople dataset. As implicit representations such as
neural radiance fields excel at capturing the geometry and texture
of thin structures, it may be fruitful to combine our method with
recent sparse view implicit hair models [Kuang et al. 2022; Wu et al.
2022].
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Figure 8: UV parameterization consistency. We measure the
mean L2 error over 32 FFHQ subjects between the learned
texture map (top left) and the cycle texture map (bottom left)
obtained by mapping from UV→ 3D → UV.
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Figure 9: Encoder training data augmentation ablation. Train-
ing the encoder with the synthetically augmented Triple-
gangers dataset [Yeh et al. 2022] significantly improves our
initialization, which is important for converging to a high
quality inversion result. Note the difference in the final re-
constructed geometry.
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Figure 10: Facial landmarks loss ablation. Removing the fa-
cial landmarks loss during inversion reduces reconstruction
quality of the face contour (left and right jaws) and facial
features such as the eyes (right).
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Figure 11: Shape attribute transfer. We fix the color and ex-
pression codes for the source subject and directly replace the
source geometry code with the target geometry code.
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Figure 12: Facial appearance attribute transfer. We fix the
geometry and expression codes for the source subject and
directly replace the source color code with the target color
code.

Target Ours ROME

Figure 13: Zoomed in comparison with ROME [Khakhulin
et al. 2022] from Fig. 5. Our model captures the target ex-
pression with higher fidelity and higher resolution textures
(512×512) compared to ROME (256×256).
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Figure 14: Gallery of single-shot reconstruction results on FFHQ.
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