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Undeformed Interactive edit with local deformation

Figure 1: Ourmethod enables the user to edit shapes in an interactive and physically plausible way. The edit is local, meaning that
the user can focus on one region of the complex scene without worrying about inadvertent changes elsewhere. To visualize the
locality, in the rightmost figure we highlight the regions where the vertex displacement is larger than 10−3 in red. (Undeformed
scene shapes thanks to [Zhang et al. 2022])

ABSTRACT
We introduce a novel regularization for localizing an elastic-energy-
driven deformation to only those regions being manipulated by the
user. Our local deformation features a natural region of influence,
which is automatically adaptive to the geometry of the shape, the
size of the deformation and the elastic energy in use. We further
propose a three-block ADMM-based optimization to efficiently min-
imize the energy and achieve interactive frame rates. Our approach
avoids the artifacts of other alternative methods, is simple and easy
to implement, does not require tedious control primitive setup and
generalizes across different dimensions and elastic energies. We
demonstrates the effectiveness and efficiency of our localized defor-
mation tool through a variety of local editing scenarios, including
1D, 2D, 3D elasticity and cloth deformation.
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1 INTRODUCTION
Local deformation is a core component in modeling and animation.
In a localized deformation, only the parts of the shape near where
the user is currently manipulating move—everything else stays
still, ensuring that the user can focus entirely on one region of
the shape without worrying about inadvertent changes elsewhere.
However, existing localized deformation tools tend to have practical
impediments for interactive design: they are either too slow to run,
unaware of the geometry, introduce artifacts, or require a careful
control point setup.

When global deformation is acceptable, a widely useful approach
is to solve for the deformation by minimizing an elastic energy de-
fined over the shape, subject to positional constraints derived from
the user’s input. This paradigm has many advantages. The deforma-
tion accounts for the geometry of the shape, generalizes well to 2D,
3D, and cloth, and the elastic energy can be used to model a wide
range of both real-world and stylized materials. Unfortunately elas-
tic energy minimization is by its nature global, and jointly solves for
all the degrees of freedom in the shape. This necessitates a rigging
step to “pin down” certain aspects of the deformation lest the opti-
mizer move them. This limits the applicability of such methods to
situations where a suitable rig is available, or the region of influence
for a deformation is known in advance.
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We seek to combine the advantages of elastic energy minimiza-
tion with the locality of sculpting-style tools. In doing so, we also
want the locality of a deformation to be automatic, natural and
efficient. The locality of an edit should be automatic in that the
region of influence (ROI) of the deformation should scale automati-
cally depending on the size of the desired deformation. In addition,
although we do not require a rig, in cases where a rig or other
constraints have been placed on the shape, the ROI needs to auto-
matically adapt to them. We further want the notion of locality to
be natural in that it adjusts to both the geometry of the shape and
the elastic energy driving its deformation, where changes to either
will lead to a fitting change in the ROI. Finally, we require that the
method be fast enough to run in real time.

We achieve this with the following contributions:
• We introduce a novel deformation regularizer, called a
smoothly clamped ℓ1 (SC-L1) loss which augments an elastic
energy with a notion of locality. SC-L1 regularization is sim-
ple to implement, and avoids artifacts of previous methods.
• We enable real-time localized deformation with an ADMM-
based optimization algorithm for SC-L1-regularized defor-
mation which is significantly faster than prior work using a
group lasso regularizer.

We illustrate the utility of SC-L1 regularization on a wide range of
examples, including multiple different elastic energies, 1D curves,
2D and 3D meshes, and cloth. This provides a localized deformation
tool which avoids artifacts of other regularizers, is easy to imple-
ment, generalizes across different dimensions and material models,
and performs fast enough to run in real time.

2 RELATEDWORK
Shape deformation algorithms in computer graphics have typically
fallen into one of two categories, which we will call the direct ap-
proach and the optimization approach. In the direct approach, the
shape’s deformation is an explicit function of the user’s input, often
either by modifying some high-level parameterization or by apply-
ing a pre-specified deformation field. In the optimization approach,
the shape deformation is an indirect product of the user’s input
combined with an elastic energy, and the deformation itself is only
known after an optimization process has converged to minimize
this energy. These two approaches differ in how (and often whether)
they enforce the locality of a deformation.

2.1 Locality in High-Level Parameterizations
A time-honored and common approach for localized deformation is
the direct manipulation of high-level parameters. From the onset, a
notion of locality is baked into these parameters, which can directly
encode the shape itself, often using splines [Hoschek et al. 1993] or
a “rig” to control a shape’s deformation, as with cage-based gener-
alized barycentric coordinates [Joshi et al. 2007; Lipman et al. 2008],
linear-blend skinning [Jacobson et al. 2011; Magnenat-Thalmann
et al. 1989; Wang et al. 2015], lattice deformers [Coquillart 1990;
Sederberg and Parry 1986], wire curves [Singh and Fiume 1998], or
learned skinning weights [Genova et al. 2020], to list a few.

Approaches of this nature, although popular in computer graph-
ics, have a few disadvantages. Firstly, since the locality is baked
into the parameterization, it cannot easily adapt based on changes
in the deformation. Secondly, without an optimization step, even
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Figure 2: Directly applying different norms to an elastic en-
ergy leads to global deformation, and thus the user needs to
carefully set up additional fixed handles (green points) to
keep the shapes from freely moving around in the space.

in cases where a capable elastic energy is within reach there is no
way to incorporate it into the deformation.

2.2 Locality in Deformation Fields
Instead of providing localized deformation via pre-chosen param-
eters, it is also possible to define a localized deformation field,
then apply it to a shape. These methods often follow a “sculpt-
ing” metaphor, and include simple move, scale, pinch, and twist
edits as well as more sophisticated operations [Cani and Angelidis
2006]. Recently, De Goes and James [2017] introduced regularized
Kelvinlets, which provides real-time localized volumetric control
based on the regularized closed-form solutions of linear elasticity.
These closed-form solutions were later extended to handle dynamic
secondary motions [De Goes and James 2018], sharp deformation
[de Goes and James 2019] and anisotropic elasticity [Chen and
Desbrun 2022].

These approaches allow for local deformation with real-time
feedback. However, as they are designed for digital sculpting, these
methods usually require the user to explicitly pick the falloff of the
brushes. Furthermore, thesemethods are usually based on Euclidean
distance, unaware of the shape’s geometry. In contrast, our method
is shape-aware and enables automatic dynamic region of influence
with interactive feedback.

2.3 Localized Optimization via an ROI
The most natural formulation of optimization-based deformation
editing is by solving globally for the entire shape’s deformation
at once [Shtengel et al. 2017; Smith et al. 2019; Zhu et al. 2018].
Nevertheless, there are methods attempting to enforce locality in
the shape optimization process. Previous methods of this sort have
often computed the ROI of a manipulation as a preprocessing step,
then restricting the optimization to only move parts of the shape
within this ROI. The ROI can be taken as an input [Alexa 2006] or
based on a small amount of user markup [Kho and Garland 2005;
Luo et al. 2007; Zimmermann et al. 2007]. Other methods combine
deformation energies with handle-based systems, including skele-
ton rigs [Hahn et al. 2012; Jacobson et al. 2012; Kavan and Sorkine
2012] and cages [Ben-Chen et al. 2009].

Unfortunately, in many contexts, the ROI is hard or impossible
to know in advance. This is particularly the case when constraints
are involved, or where it is not known in advance if a deformation
will be small (best fitting a small ROI) or large (best fitting a large
ROI). In addition, the correct ROI may also depend on the elastic
energy driving the deformation, thus difficult to account for when
the ROI calculation is decoupled in a separate step.



Local Deformation for Interactive Shape Editing SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

0.25

0

Undeformed (a) Ours (b1) 

L1 w smoothness

(c) De Goes and 

James 2017

(d) Wang et al. 2015(b2)

L1 w/o smoothness

(b3) 

Increase L1

(b) Chen et al. 2017

Figure 3: Our method (a) produces local deformation which is smooth, shape-aware and has automatically adaptive region of
influence without the need of additional handles. Here we highlight all the handles that have been moved in yellow. For the
other alternatives, 𝑙1-norm-based method (b) contains artifacts due to the use of 𝑙1 norm (see the green highlighted regions);
regularized Kelvinlets technique (c) is based on Euclidean distance and unaware of the geometry (see the blue highlighted
regions); and biharmonic coordinates approach (d) requires a careful placement of additional handles (green) to explicitly
control the region of influence. Note that the use of 𝑙1-norm (b) leads to either small global motions and minor artifacts (b2,
smaller 𝑙1-norm) or no global motions but significant artifacts (b3, larger 𝑙1-norm). Thus [Chen et al. 2017] mitigates it with a
smoothing regularizer (b1), but this changes the elastic energy and it no longer deforms like a localized ARAP.

2.4 Localized Optimization via Sparsity Norms
Sparsity-inducing norms, such as the smooth ℓ0 norm, have been
widely applied to many domains and problems including medical
image reconstruction [Xiang et al. 2022], sparse component analysis
[Mohimani et al. 2007] and UV mapping [Poranne et al. 2017]. To
allow an adaptive ROI while preserving the benefits of optimization-
based deformation, a few works have adopted a sparsity-inducing
norm, typically a ∥𝑥 ∥1 or ∥𝑥 ∥2 norm, in their energy, which is then
minimized by Alternating Direction Method of Multipliers (ADMM)
[Boyd et al. 2011; Peng et al. 2018; Zhang et al. 2019] or Augmented
Lagrangian Method (ALM) [Bertsekas 1996]. We refer the readers
to [Xu et al. 2015] for a survey on sparsity in geometry modelling
and processing.

Several methods of this variety rely on sparsity-inducing norm
formulated as a sum of ∥𝑥 ∥2 norms, referred to as ℓ2,1 or ℓ1/ℓ2
norms, or a group lasso penalty. They have been applied in a prepro-
cessing phase to compute sparse deformation modes for interactive
local control [Brandt and Hildebrandt 2017; Deng et al. 2013; Neu-
mann et al. 2013]. However, the deformation is limited by the linear
deformation modes and thus struggles with large deformation.

Another class of methods adds a sparsity-induced regularization
to an elastic energy optimization to achieve local deformation. Gao
et al. [2012] applied different ℓ𝑝 sparsity norms to the as-rigid-as-
possible energy [Sorkine and Alexa 2007] to create various defor-
mation styles. Recently, Chen et al. [2017] used ℓ2,1 regularization
on vertex positions to locally control the deformation. However,
their direct use of the ℓ2,1 norm will create artifacts when the con-
trol point is not on the boundary of the shape (see Fig. 3(b) and
Fig. 13(b)). Moreover, their method requires one ADMM solve in

each global iteration, which renders the optimization less efficient
and slow in runtime. Also, their framework is limited to 2D defor-
mation with ARAP energy only, while our framework generalizes
across dimensions and a variety of energy models.

Our algorithm, inspired by sparsity-seeking regularizers such as
that used by [Chen et al. 2017; Fan and Li 2001], addresses these
shortcomings. In particular, we propose a simple and novel sparsity-
inducing norm that eliminates artifacts arising from the ℓ2,1 norm,
and our efficient optimization scheme leads to interactive perfor-
mance.

3 OVERVIEW
The main idea of our method is to use a novel regularization term
to produce local deformation with a dynamic region of influence
(ROI). Our method takes a triangle/tetrahedral mesh (or a 1D poly-
line) and a set of selected vertices as control handles as input. The
output of our method is a deformed shape where the deformation
is both local and natural and the ROI is automatically adaptive
to the deformation. Here the “locality” implies that a handle only
dominates its nearby areas without affecting the regions far away.

3.1 SC-L1 Regularization
We suggest a sparsity-inducing regularization term to produce
natural local deformation. This regularizer is applied per-vertex
to V𝑖 − Ṽ𝑖 to bias each vertex deformed position V𝑖 to exactly
match its initial rest position Ṽ𝑖 except in isolated regions of the
shape. The most obvious choice for this regularization would be to
enforce sparsity either with an ℓ1-norm, or with a group lasso / ℓ2,1
regularization defined as

∑
𝑖 ∥V𝑖 ∥2 as in [Chen et al. 2017].
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However, direct use of a ℓ2,1 regularization term leads to artifacts,
due to the fact that the ℓ2,1-norm competes with the elastic energy
by dragging all the vertices towards their original positions. This
results in undesired distortion near the deformation handles (see
Fig. 3(b) and Fig. 13(b)), making the deformed region look unnatural.
Previous ℓ2,1-based methods [Chen et al. 2017] focus specifically
on ARAP-like deformation, and attempt to alleviate this artifact by
adding a Laplacian smoothness term and a weighting term based
on biharmonic distance. Unfortunately, as seen in Fig. 3 at the
ends of the octocat’s tentacles, artifacts can arise in regions quite
close to the deformation handles, and there is not necessarily any
setting of these parameters which alleviates these artifacts without
oversmoothing the entire deformation.

Inspired by “folded concave” losses in statistical regression [Fan
and Li 2001; Zhang 2010] and the use of the ℓ2,1 loss in deformation
[Chen et al. 2017], we propose using a smoothly clipped group
ℓ1-norm as our locality-inducing regularization. We call it a SC-L1
loss for “smoothly clamped ℓ1 loss” (see the inset).

We adopt a simple implementation for our SC-L1 loss:

∥x∥SC-L1 =
{∥x∥2 − 1

2𝑠 ∥x∥22 ∥x∥2 < 𝑠
1
2𝑠 ∥x∥2 ≥ 𝑠

, (1)

s
||x||

2

||x||
SC-L1

s

where 𝑠 is the threshold distance
beyond which the regularizer is
disabled (this is equivalent to a
group-variant of the MCP loss in
[Zhang 2010], but we use the term
“SC-L1” to emphasize that themin-
imax concave property is not critical for localized deformation).
This function is continuously differentiable and piecewise smooth,
and admits a proximal shrinkage operator free of local minima.
Near the origin the SC-L1 loss function acts like the group ℓ1-norm,
which drives ∥x∥SC-L1 towards 0 in a sparse-deformation-seeking
manner. When ∥x∥2 ≥ 𝑠 , the SC-L1 loss function value is a constant
and has no penalty on ∥x∥2. For a detailed comparison between
our SC-L1 loss function and other alternatives, please see Sec.5 of
the supplementary material.

3.2 Local Deformation Energy
We denote V as a |V| ×𝑑 matrix of vertex positions at the deformed
state, and Ṽ as a |V| ×𝑑 matrix containing rest state vertex positions.

The total energy for our local deformation is as follows:

minimize
V

𝐸 (V)︸︷︷︸
Elasticity

+
∑︁
𝑖∈𝑉

𝑤𝑎𝑖 ∥V𝑖 − Ṽ𝑖 ∥SC-L1︸                  ︷︷                  ︸
Locality

, (2a)

s.t. V𝑠 = p𝑠 , (position constraint) (2b)
A𝑘V𝑡 = b𝑘 ,∀𝑡 ∈ S𝑘 (affine constraint) (2c)

The first term is an elasticity energy of choice, and can be selected
independent of the locality regularization. The second term is the
novel “SC-L1 loss” term on the vertex position changes, which mea-
sures the locality of the deformation. 𝑎𝑖 is the barycentric vertex
area of the 𝑖-th vertex, which ensures the consistency of the re-
sult across different mesh resolutions for the same constant𝑤 . To
enable more user control, position constraints and optional affine
constraints can be added on selected vertices to achieve different
deformation effects. 𝑠 denotes the indices of the vertices with the

ALGORITHM 1: Three-block ADMM Overview
Input: A triangle or tetrahedral mesh Ṽ,T
Output: Deformed vertex positions V
V← Ṽ
while not converged do

X𝑖 ← local_step_X (V, Ṽ) ⊲ local step 1
Z𝑖 ← local_step_Z (V, Ṽ) ⊲ local step 2
V← global_step(X𝑖 ,Z𝑖 , Ṽ) ⊲ global step
U𝑖 ← dual_update (Z𝑖 ,V𝑖 , Ṽ𝑖 ) ⊲ dual update 1
W𝑖 ← dual_update (X𝑖 ,V𝑖 , Ṽ𝑖 ) ⊲ dual update 2

end

position constraint, and we call these vertices “handles”. S𝑘 is the
𝑘-th set of vertex indices where an affine constraint is added. For
simplicity, we omit the position constraints and affine constraints
in the discussion below, as they can be easily intergrated to the
system by removing the corresponding degrees of freedom and
using Lagrange multiplier method (see Eq(1) in [Wang et al. 2015]).

Inspired by the local-global strategy in [Brown and Narain 2021],
our local deformation energy (Eq. 2) can be rewritten as:

minimize
V,{X𝑗 }

∑︁
𝑗

𝐸 (X𝑗 )︸︷︷︸
Elasticity

+
∑︁
𝑖∈𝑉

𝑤𝑎𝑖 ∥V𝑖 − Ṽ𝑖 ∥SC-L1︸                  ︷︷                  ︸
Localness

, (3a)

s.t. X𝑗 = sym(D𝑗V),∀𝑗, (3b)

where D𝑗 is the selection matrix for edges of the 𝑗-th vertex or
element. sym(F) denotes the symmetric factor S computed using the
polar decomposition F = RS, where F is the deformation gradient.
Thus X𝑗 is the symmetric factor of deformation gradient of the 𝑗-th
vertex or element. (Note that in general sym(F) ≠ 1

2 (F + F⊤).) The
goal of using sym() here is to ensure the local coordinates X𝑗 are
invariant to rotations as well as translations. For details, please see
[Brown and Narain 2021].

4 OPTIMIZINGWITH ADMM
A natural way to minimize this energy is to use the alternating
direction method of multipliers [Boyd et al. 2011] for the sparsity
term, and to use a local-global update strategy for the elasticity term.
However, previous ℓ2,1-basedmethods [Chen et al. 2017] apply these
two strategies separately in their local and global steps, resulting in
an inefficient optimization scheme. As they only support 2D ARAP
energy, we discuss further in Sec. 4.1.

We propose a new way to efficiently minimize such energies in
Eq. 3 by combining the sparsity-targeted ADMMwith the elasticity-
focused local-global strategy. We minimize our energy (Eq. 3) using
a three-block alternating direction method of multipliers scheme
[Boyd et al. 2011] following the local-global update strategy. Our
first local step, finding the optimal symmetric factor X𝑖 of the
deformation gradient, can be formulated as a minimization problem
on its singular values. Our second local step, minimizing the SC-L1
loss term for each Z𝑖 , can be solved using a shrinkage step. Our
global step, updating vertex positions V, is achieved by solving a
linear system. We provide an overview of our three-block ADMM
scheme in Alg. 1.
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4.1 Example I: Local ARAP Energy
We begin by considering how to minimize an as-rigid-as-possible
(ARAP) energy [Sorkine and Alexa 2007] when combined with
a SC-L1 loss regularizer. With an ARAP elastic energy, the total
energy (Eq. 3) for our local deformation is as follows:

minimize
V,{R𝑖 }

∑︁
𝑖∈𝑉

1
2 ∥R𝑖D𝑖 − D̃𝑖 ∥2W𝑖︸                ︷︷                ︸

ARAP

+𝑤𝑎𝑖 ∥V𝑖 − Ṽ𝑖 ∥SC-L1︸                  ︷︷                  ︸
Localness

, (4)

where R𝑖 is a 𝑑 ×𝑑 rotation matrix,𝑊𝑖 is a |N (𝑖) | × |N (𝑖) | diagonal
matrix of cotangent weights, D̃𝑖 and D𝑖 are 3 × |N (𝑖) | matrices of
"spokes and rims" edge vectors of the 𝑖-th vertex at the rest and
deformed states respectively. ∥X∥2W𝑖

denotes Tr(X⊤W𝑖X). Here
we use R𝑖 to denote X𝑖 , since we drive the deformation gradient
towards a rotation matrix in ARAP energy.

Previous method [Chen et al. 2017] optimizes the ℓ2,1 version
of Eq. 4 in a less efficient way. Their local step optimizes over
per-vertex rotation R𝑖 and their global step minimizes over vertex

Local Ri

Ours Chen et al. 2017

Local Zi

Global X

Local Ri

Local Zi

Global X

ADMM ADMM

positions V using a two-block
ADMM scheme. This leads to an
expensive optimization with a
full ADMM optimization in each
global step, making their method
too slow for interactive usage. In
contrast, applying our new three-block ADMM scheme to the local
ARAP energy results in a much more efficient solver, which is one
ADMM optimization itself (see the inset, where the blue regions
denote an ADMM optimization). We further show the pseudocode
of our three-block ADMM for local ARAP energy in Suppl. Alg.1.

More concretely, by setting Z𝑖 = V𝑖 − Ṽ𝑖 , we can further rewrite
Eq. 4 as

minimize
V,{R𝑖 },Z

∑︁
𝑖∈𝑉

1
2 ∥R𝑖D𝑖 − D̃𝑖 ∥2W𝑖

+𝑤𝑎𝑖 ∥Z𝑖 ∥SC-L1, (5a)

s.t. Z𝑖 = V𝑖 − Ṽ𝑖 , ∀𝑖 . (5b)

The above minimization problem can be solved efficiently using
the following ADMM update steps:

R𝑘+1𝑖 ← argmin
R𝑖 ∈SO(3)

1
2 ∥R𝑖D𝑖 − D̃𝑖 ∥2W𝑖

(6a)

Z𝑘+1𝑖 ← argmin
Z𝑖

𝑤𝑎𝑖 ∥Z𝑖 ∥SC-L1 +
𝜌

2 ∥V
𝑘+1
𝑖 − Ṽ𝑖 − Z𝑖 + U𝑘

𝑖 ∥22 (6b)

V𝑘+1 ← argmin
V

W(V⊤LV − B⊤V) + 𝜌

2 ∥V − Ṽ − Z
𝑘 + U𝑘 ∥22 (6c)

U𝑘+1
𝑖 ← U𝑘

𝑖 + V𝑘+1𝑖 − Ṽ𝑖 − Z𝑘+1𝑖 (6d)

Here 𝜌 is a fixed penalty parameter. For a detailed derivation of
the ADMM update, please see Sec. 2 of the supplementary material.

The various steps in this ADMM-based algorithm are computed
as follows:

For updating R𝑖 , local step 1 (Eq. 6a) is an instance of the Or-
thogonal Procrustes problem, which can be solved in the same way
as the rotation fitting step in [Sorkine and Alexa 2007]. The optimal
R𝑖 can be computed as R𝑘+1𝑖 ← V𝑖U⊤𝑖 from the singular value
decomposition ofM𝑖 = U𝑖Σ𝑖V⊤𝑖 , whereM𝑖 = D𝑖 D̃⊤𝑖 .

For updating Z𝑖 , following the derivation of the proximal oper-
ator of SC-L1 loss in Sec. 1 of the supplementary material, our local
step 2 (Eq. 6b) is solved using a SC-L1 loss-specific shrinkage step:

Z𝑘+1𝑖 ← 𝑆𝑘𝑤𝑎𝑖

(
V𝑖 − Ṽ𝑖 + U𝑖

)
(7)

S𝑤𝑎𝑖 (x) =
{(

𝜌𝑠−𝑤𝑎𝑖𝑠/∥x∥2
𝜌𝑠−𝑤𝑎𝑖

)
+
x, if ∥x∥2 ≤ 𝑠

x, otherwise
(8)

To avoid local minima in the shrinkage step, this assumes 𝜌 is set
to satisfy 𝜌 >

max(𝑤𝑎𝑖 )
𝑠 (see Sec. 1 of the supplementary material).

For updating V, the global step (Eq. 6c) can be achieved by
solving a linear system:

(L + 𝜌I)V = B + 𝜌 (Ṽ + Z𝑘 − U𝑘 ), (9)

where the Laplacian L and B are defined in the same way as the
global step (Eq. 9) in [Sorkine and Alexa 2007]. For fixed 𝜌 an
efficient implementation is obtained by precomputing and storing
the Cholesky factorization of L + 𝜌I.

4.2 Example II: Local Neo-Hookean Energy
Our local deformation scheme can be further extended to physics-
based elasticity energies, e.g., Neo-Hookean energy. Using the Neo-
Hookean energy as our elasticity energy and following the frame-
work of [Brown and Narain 2021], the optimization problem in
Eq. 3 can be written as follows:

minimize
V,{X𝑗 },{Z𝑖 }

∑︁
𝑗∈𝑇

𝐸nh (X𝑗 )︸    ︷︷    ︸
Neo-Hookean

+
∑︁
𝑖∈𝑉

𝑤𝑎𝑖 ∥V𝑖 − Ṽ𝑖 ∥SC-L1︸                  ︷︷                  ︸
Locality

, (10a)

s.t. X𝑗 = sym(D𝑗V),∀𝑗, (10b)

where 𝑇 denotes all the elements.
Similarly, by introducing Z𝑖 = V𝑖 − Ṽ𝑖 , we can minimize our

local Neo-Hookean energy using ADMM. For a detailed derivation,
please see Sec. 3 of the supplementary material.

The ADMM update (Alg. 1) for the above minimization problem
is as follows:

X𝑘+1
𝑗 ← argmin

X𝑗

𝐸nh (X𝑗 ) + 𝛾2 ∥sym(D𝑗V) − X𝑗 +W𝑗 ∥22 (11a)

Z𝑘+1𝑖 ← argmin
Z𝑖

𝑤𝑎𝑖 ∥Z𝑖 ∥SC-L1 +
𝜌

2 ∥V
𝑘+1
𝑖 − Ṽ𝑖 − Z𝑖 + U𝑘

𝑖 ∥22
(11b)

V𝑘+1 ← argmin
V

∑
𝑗∈𝑇

𝛾
2 ∥sym(D𝑗V) − X𝑗 +W𝑗 ∥22

+∑𝑖∈𝑉
𝜌
2 ∥V − Ṽ − Z𝑘 + U𝑘 ∥22

(11c)

W𝑘+1
𝑗 ←W𝑘

𝑗 + sym(D𝑗V) − X𝑗 (11d)

U𝑘+1
𝑖 ← U𝑘

𝑖 + V𝑘+1 − Ṽ𝑖 − Z𝑘+1𝑖 (11e)

Here 𝜌 and 𝛾 are fixed penalty parameters.
The local step 2 (updating Z𝑖 ) and the global step (updating

V) can be solved in the same way as the local ARAP energy (see
Sec. 4.1).

For updating X𝑖 , local step 1 (Eq. 11a) can be solved by
performing the energy minimization on the singular values of
sym(D𝑗V) +W𝑗 . This is a proximal operator of 𝐸nh at the rotation-
invariant sym(D𝑗V) +W𝑗 .
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ALGORITHM 2: Three-block ADMM for local ARAP Energy

Input: A triangle or tetrahedral mesh Ṽ,T
Output: Deformed vertex positions V
V← Ṽ
while not converged do

R𝑖 ← local_step_X (V, Ṽ) ⊲ local step 1
Z𝑖 ← local_step_Z (V, Ṽ) ⊲ local step 2
V← global_step(X𝑖 ,Z𝑖 , Ṽ) ⊲ global step
U𝑖 ← dual_update (Z𝑖 ,V𝑖 , Ṽ𝑖 ) ⊲ dual update 1

end

0.2

0

Undeformed Ours (ARAP) Ours (ACAP)

Figure 4: Our method automatically choose a natural ROI
based on the elastic energy in use. Here we use the same
parameter settings for both the local ARAP and local ACAP
energies. With the local ACAP energy, we have a smaller
ROI than the case of local ARAP energy as the ACAP energy
allows for local scaling.

Let us denote the proximal operator of 𝐸nh and the singular value
decomposition of sym(D𝑗V) +W𝑗 as:

prox𝐸nh (X𝑗 ) = 𝐸nh (X𝑗 ) + 𝛾2 ∥sym(D𝑗V) +W𝑗 − X𝑗 ∥22 (12)

sym(D𝑗V) +W𝑗 = U𝑗Σ 𝑗V⊤𝑗 (13)

where 𝛾 is the augmented Lagrangian parameter for X𝑗 .
As shown by [Brown and Narain 2021], we can compute the

optimal X𝑗 as:

Σ𝑘+1𝑗 ← argmin
Σ 𝑗

prox𝐸nh (U𝑗Σ 𝑗V⊤𝑗 ) (14)

X𝑗 ←U𝑗Σ
𝑘+1
𝑗 V⊤𝑗 (15)

Specifically, one can compute the SVD of sym(D𝑗V) +W𝑗 and
perform the minimization of prox𝐸nh only on its singular values,
while keeping singular vectors unchanged. The above optimization
of singular values Σ𝑘+1𝑗 can be performed using an L-BFGS solver.

4.3 Extension to Other Elastic Energies
Our algorithm can easily generalize across different dimensions
and material models. Switching the material model only requires a
change on the minimization problem in the local step 1 argmin𝑋 ,
which can be optimized over the singular values of the symmetric
factor X𝑖 of the deformation gradient.

1.0

0

Undeformed

Stretched

Bent

Compressed

Figure 5: Given the same handle offset magnitude, a "natu-
ral" ROI size also depends on the way the handles are moved,
which is more complex than simply growing the ROI pro-
portional to the handle displacement. Here we moved the
handles (yellow) with the same offset magnitude 1.0 towards
the bottom, left and right respectively, resulting different
ROIs for the same handle offset magnitude.

4.3.1 As-Conformal-As-Possible Energy. For editing tasks where
users intend to locally scale the geometry while preserving the
texture, it’s desirable to constrain the angle preservation, or con-
formality (see Fig. 4 and Fig. 10). We can adapt the ARAP energy to
as-conformal-as-possible (ACAP) energy [Bouaziz et al. 2012] by
allowing local scaling:

𝐸ACAP (V) =
∑︁
𝑘∈𝑇

∑︁
𝑖, 𝑗∈N(𝑘 )

𝑤𝑖 𝑗

2 ∥𝑠𝑘R𝑘 d̃𝑖 𝑗 − d𝑖 𝑗 ∥
2
2 (16)

where 𝑠𝑘 is a scalar controlling the scaling of the local patch and can
be computed analytically (see Sec.4 of the supplementary material).

4.3.2 Cloth. Ourmethod also generalizes to higher co-dimensional
settings, such as deformable thin sheets and cloth in R3. We model
the cloth deformation using ARAP elasticity (Eq. 4), hard strain
limiting, and quadratic bending resistance [Bergou et al. 2006].

4.3.3 1D Polyline. Our algorithm can be also extended to the local
editing of 1D polyline in vector graphics. The deformation of a poly-
line can be modeled using the ARAP energy (Eq. 4) with uniform
weights.

5 RESULTS
We evaluate our method by comparing it against existing local
deformation tools and showcasing its extension to various elastic
energies. All the colormaps in our figures visualize the vertex dis-
placement with respect to the rest shape. The accompanying video
also includes several animation examples generated using our local
deformation tool.

We implement a 2D version of our method in MATLAB with gp-
toolbox [Jacobson et al. 2018a], and a 3D version in C++ with libigl
[Jacobson et al. 2018b] based on the WRAPD framework [Brown
and Narain 2021]. We also implement the 2D version of our method
in C++ for runtime evaluation and comparison. Benchmarks are
performed using a MacBook Pro with an Apple M2 processor and
24GB of RAM for 3D and a Windows desktop with an i9-9900K 3.60
GHz CPU for 2D. Table 2 in the supplementary material shows the
performance statistics and relevant parameters of all our examples.

Quality. We compare our methods against other local editing
tools, including i) ℓ1-based deformation [Chen et al. 2017], ii) regu-
larized Kelvinlets [De Goes and James 2017] and iii) biharmonic



Local Deformation for Interactive Shape Editing SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

coordinates [Wang et al. 2015]. Among them, the use of ℓ2,1-norm
regularization [Chen et al. 2017] causes artifacts (see Fig. 3-b and
Fig. 13-b). Regularized Kelvinlets technique [De Goes and James
2017] deforms a shape based on Euclidean distances, thus not shape-
aware, creating artifacts when two disjoint parts are close in Eu-
clidean space but far away geodesically (see the blue region in Fig. 3-
c and the teeth area in Fig. 13-c). Methods based on biharmonic
coordinates, such as [Wang et al. 2015], usually require careful
placement of additional fixed control points to pre-determine the
ROI. The latter two methods do not minimize any elastic energy
in the deformation process, and thus their deformations are more
susceptible to shape distortion (see Fig. 13). We additionally com-
pare our method against the sparse deformation method [Gao et al.
2012], which directly introduces a sparsity-induced norm in ARAP
energy. As shown in Fig. 2, the resulting deformation is sparse but
not local, thus requiring the setup of additional fixed constraints.

In contrast, our method produces the deformation which is local,
natural, and shape-aware; it automatically adapts the ROI without
the need for careful control primitive setup.

Efficacy. We illustrate the ROI adaptation of our method in dif-
ferent situations: It adapts to different energy models—for example,
the local ACAP has a smaller ROI than the local ARAP energy as
the former allows for local scaling (see Fig. 4). It also adapts to
different extents of deformation. As Fig. 8 demonstrates, the ROI
gradually increases as the deformation of the bar becomes larger.

One can configure the local deformation style by choosing var-
ious elastic energy models. For example, the local Neo-Hookean
energy leads to deformation that preserves volume, while the local
ARAP energy is volume agnostic (see Fig. 11). The deformation can
be further tuned by introducing additional affine constraints—for
instance, to enable the character to wave hands (Fig. 12) or the
crocodile to open its mouth (Fig. 13)—in a natural way.

Performance. In terms of performance, our solver is able to effi-
ciently minimize the energy at interactive rate, while the method
of [Chen et al. 2017] is too slow to run in realtime. Because their
method only supports 2D ARAP energy, in Table 1 of the supple-
mentary material, we evaluate the runtime of our method (using
both the SC-L1 loss and ℓ2,1 loss) and [Chen et al. 2017] on a 2D
ARAP local energy and across different mesh resolutions and de-
formations. Measured with the same convergence threshold, our
method runs orders of magnitude faster than [Chen et al. 2017],
achieving roughly 1000× speedup for small deformation and 100×
speedup for large deformation.

Extensibility. Our method can easily generalize to other dimen-
sions and material models, such as the ACAP deformation, cloth
deformation, and 1D polyline deformation (see Fig. 10 and Fig. 4).
The local ACAP energy enables local scaling and better preserves
the texture around the deformed region. In Fig. 7, the user can
interactively edit a polyline and naturally recovers its rest shape,
which is a desirable feature by the users. In Fig. 6, to deform a
cloth in a physically plausible way, the deformation locality is par-
ticularly useful, as otherwise a local edit of the cloth may cause
a global change leading to unexpected intersections with other

objects. Lastly, to demonstrate our method in a more complex sce-
nario, an editing session involving multiple objects and clothes is
shown in Fig. 1.

6 CONCLUSION & FUTUREWORK
We describe a regularization based on an “SC-L1 loss” which pro-
vides an effective and simple to implement tool for localizing an
elastic energy driven deformation to only those regions of a shape
being manipulated by a user. The region of influence induced by
our method naturally adapts to the geometry of the shape, the size
of the deformation, and the elastic energy being used. Furthermore
SC-L1 regularization is generic enough to be applied to a wide range
of shapes and elastic energies, including 1D, 2D, 3D and cloth finite
element deformation, and is fast enough to be used in real-time. Our
proposed approach offers several benefits for shape manipulation:
It avoids undesired movement in far-off regions of a shape when
only one part is being moved by the user, it allows parts of a shape
to be deformed with direct manipulation without a pre-rigging step,
and avoids the visual artifacts of previous work.

There remain several issues related to localized shape deforma-
tion not addressed by our method. Firstly our regularization is ap-
plied independently per-vertex, which makes it difficult to apply to
splines, NURBS, or even meshes with highly irregular element sizes,
which we mark an important direction for future work. In addition,
since we use an ADMM method in the optimization, our approach
suffers from the common shortcomings of applying ADMM to non-
convex energies, including lack of convergence guarantees and
slow convergence when high precision is required. Exploration of
other optimization algorithms alleviating these issues is another
useful future direction. Finally, although it is out of scope for our
work here, we note in particular the usefulness of incorporating
localized elastic energy deformation into sculpting workflows for
artists. This involves a number of facets: Choosing the correct elas-
tic energy to achieve an artistic effect, providing an intuitive UI
to adjust the scale of the ROI (for instance by adjusting 𝑤 and 𝑠 ,
see Fig. 9 and the supplementary video), and in ensuring that our
tool integrates well with other sculpting tools. This is particularly
useful when handling large “freeform” deformations, as the elastic
energy will tend to fight against such deformations, making other
tools more suitable. One simple idea for this is to simply reset the
rest shape after each click-and-drag, since each deformation step
is then independent of the others, and one could switch between
our method and others at each step. We have found this mode of
interaction to be useful even when only using our method, as it
leads to a simple sculpting-style interface, and we include some
examples in the supplementary video.
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Initial Ours  [Brown and Narain 2021] Ours  [Brown and Narain 2021]

0.2

0

Figure 6: Our method enables the user to locally edit a simulated cloth in an interactive fashion, without the need of rerunning
the simulation. In contrast, quasi-static deformations generated by directly moving the control points [Brown and Narain
2021] have global effects, easily deviating the edit from the initial shape in a distinct way. Bottom row: To show the extent to
which the handles affect cloth vertex positions, we colormap the vertex displayment from the input cloth. The handles moved
by the user are in yellow. (Undeformed geometry thanks to [Zhang et al. 2022])

…

Figure 7: Our method also generalizes to 1D polyline editing. Our method enables the deformed shape to naturally return to
the rest shape when they are close enough.

8.0

0Δx ↑

Figure 8: Our algorithm naturally enables an adaptive region of influence under different deformations. Only the vertices
(yellow) on the rightmost end are selected as handles. From left to right, the offset Δ𝑥 of the rightmost end is 0.0, 0.5, 1.0, 2.0,
4.0, 6.0 and 8.0 respectively.

w=0.25 w=1.0 w=10.0 s=0.25 s=1.0 s=10.0

Figure 9: We show how the ROI (yellow) changes when adjusting 𝑠 or𝑤 , while keeping the rest the same. Here the handles are
highlighted in red. In general, we use𝑤 to control the scale of the ROI, and set 𝑠 to a small factor of the size of the shape and
then leave it alone.
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Undeformed Ours (ARAP) Ours (ACAP)

Figure 10: As-conformal-as-possible (ACAP) energy encour-
ages conformality, thus better preserving the color texture by
allowing local scaling, while the as-rigid-as-possible (ARAP)
energy favors preserving the rigidity. Here the handle (in
blue) is placed around the eye and an affine constraint is
added to the red region.

Undeformed

Ours 

(ARAP)

Ours 

(N-H)

0.4 0

Figure 11: ARAP v.s. Neo-Hookean energy with SC-L1 loss.
Only the vertices (yellow) on the nose of the pig are selected as
handles. Note that Neo-Hookean version exhibits the volume-
preservation property.

0.2

0

Undeformed

Figure 12: Our method supports adding both positional con-
straints (green) and affine constraints (red) on vertices. The
region of influcence in the deformed shape naturally adapts
to the resulting deformation.
Black Man Waving Hand Cartoon Vector.svg from Wikimedia Commons by Videoplasty.com, CC-BY-SA 4.0.

Undeformed

(a) Ours

(c) De Goes 

and James 2017

(d) Wang et al. 2015

0.20

(b1) Chen et al. 2017

(L1 w smoothness)

(b2) Chen et al. 2017

(L1 w/o smoothness)

(b3) Chen et al. 2017

(Increase L1)

Figure 13: Our local deformation (a) is natural and shape-
aware and supports an adaptive ROI without the need of
additional handles. Here we highlight all the handles that
have been moved in yellow, all the additional fixed handles
in green and the affine constraint regions in orange. Other
local editing alternatives either introduces artifacts (see the
flame on the tail in b and d), is unaware of the geometry (see
the teeth region in c) or requires additional handles setup
(d). More specifically, [Chen et al. 2017] uses a group lasso
penalty, which yields hard to avoid artifacts (b). They there-
fore mitigate it with a smoothing regularizer, at the expense
of fidelity in rotations (b1). Removing the smoothing leads
to other artifacts and still has global motion (b2). Further in-
creasing the group lasso penalty removes the global motion
but amplifies the artifacts (b3).
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1 ADDITIONAL RESULTS
We report the runtime of our method and [Chen et al. 2017] on a 2D
ARAP local energy and across different mesh resolutions and de-
formations in Table 1. We also provide the timings and experiment
setup of all our 3D examples in Table 2 and the convergence plot in
Fig. 1. In addition to the results in Sec. 5, we include an additional
example with one or multiple control points in Fig. 2.

Table 1: Timings comparing our ARAP ADMM formulation
in Sec.4.1 with standard local-global ARAP and [Chen et al.
2017] for moving the top-right arm of the octocat in Fig.3 of
the main text, meshed at three different resolutions. Wall-
clock time is measured by averaging over 100 random defor-
mations and uses the (relatively tight) convergence criteria
from [Chen et al. 2017]. All timings are generated by single-
threaded C++ implementations, written as equivalently as
possible between the methods. For an apples-to-apples com-
parison these timings include the 𝐸smooth energy from [Chen
et al. 2017] in the SC-L1 loss and ARAP elastic energies.

ours (w. SC-L1 loss) ARAP [Chen et al. 2017]
# triangles small deformation

200 0.00087s 0.00015s 0.11s
1000 0.0055s 0.0010s 0.59s
10000 0.058s 0.017s 2.05s

# triangles large deformation
200 0.0053s 0.00032s 0.022s
1000 0.0078s 0.0018s 0.17s
10000 0.095s 0.027s 2.03s
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2 DERIVATION OF PROXIMAL OPERATOR
FOR SC-L1 LOSS

For simplicity, we start the derivation with scalar function 𝑓 (𝑣) =
|𝑣 |SC-L1. However, the following derivation can be easily extended
to vector function 𝑓 (x) = ∥x∥SC-L1 by replacing the | · | with ∥ · ∥.

For scalar 𝑣 ,

𝑓 (𝑣) =
{|𝑣 | − 1

2𝑠 𝑣
2 |𝑣 | < 𝑠

1
2𝑠 |𝑣 | ≥ 𝑠

(1)

The gradient of 𝑓 (𝑣) is

𝑓 ′ (𝑣) =
{
sgn(𝑣) − 1

𝑠 𝑣 |𝑣 | < 𝑠
0 |𝑣 | ≥ 𝑠

(2)

The proximal operator of 𝑓 (𝑣) can be evaluated as

argmin
𝑣

𝑓 (𝑣) + 𝜌

2 (𝑣 − 𝑥)
2 (3)

The minimum can be found by setting the derivative to be 0,
thus we have

0 =𝑓 ′ (𝑣) + 𝜌 (𝑣 − 𝑥) (4)

0 =𝜌 (𝑣 − 𝑥) +
{
sgn(𝑣) − 1

𝑠 𝑣 |𝑣 | < 𝑠
0 |𝑣 | ≥ 𝑠

(5)

0 =
{(

𝜌 − 1
𝑠

)
𝑣 + sgn(𝑣) − 𝜌𝑥 |𝑣 | < 𝑠

𝜌 (𝑣 − 𝑥) |𝑣 | ≥ 𝑠
(6)

The location of the minumum 𝑣 depends on whether or not
𝜌 > 1

𝑠 .
Case 1: 𝜌 ≤ 1

𝑠
When 𝜌 ≤ 1

𝑠 , then the proximal operator may have up to two
local minimaÐone at the origin and one in the flat region where
|𝑥 | ≥ 𝑠 . We arbitrarily prefer the minima at the origin if it exists,
giving:

S(𝑥) =
{
0 |𝑥 | < 𝑠
𝑥 |𝑥 | ≥ 𝑠

(7)

Case 2: 𝜌 ≥ 1
𝑠

When 𝜌 ≥ 1
𝑠 , then there is only one (global) minimum, so the

optimal 𝑣 is:

S(𝑥) =



0 |𝑥 | ≤ 1
𝜌

𝜌𝑠𝑥−𝑠 ·sgn(𝑥 )
𝜌𝑠−1

1
𝜌 < |𝑥 | < 𝑠

𝑥 |𝑥 | ≥ 𝑠

(8)

for a vector 𝑥 this can be further simplied to be

S(𝑥) =
{(

𝜌𝑠−𝑠/∥𝑥 ∥2
𝜌𝑠−1

)
+
𝑥, if ∥𝑥 ∥2 ≤ 𝑠

𝑥, otherwise
(9)
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Table 2: Performance of and parameters for our algorithm on all the 3D examples. All wall-clock timings are reported in seconds,
physical parameters are reported with appropriate units. Timing experiments are measured with 8-thread parallelization and
PARDISO support [Alappat et al. 2020; Bollhöfer et al. 2019, 2020]. |V| is the number of vertices, |T| is the number of elements.
𝜌 is the ADMM penalty parameter and 𝑠 is the SC-L1 loss threshold. Local 1, Local 2 and Global is the total runtime for the
local step 1, the local step 2 and the global step respectively. Total is the total runtime for our ADMM algorithm. Residual is
the final residuals of our energy, defined as |𝐸curr − 𝐸prev |/(𝐸curr + 1.0), where 𝐸 is the total energy and adding 1.0 is to avoid
dividing by 0. We use𝑤 = 1𝑒4 as the weight of the SC-L1 loss for all the 3D examples. The Young’s modulus is 1𝑒7 Pa and the
poisson’s ratio is 0.45 for all our Neo-Hookean examples. We use different 𝜌 for ARAP and Neo-Hookean energy to handle the
different magnitude of the energies due to the physical parameters in Neo-Hookean energy. In general we set 𝑠 to be 0.01 times
the max extent of the mesh’s bounding box, but other values for 𝑠 also work well. For interactive frame rates, we generate all
the results using a fixed 500 ADMM iterations or when its objective residual reaches 1𝑒−11. As showen by Fig. 1, all of examples
converged within 500 iterations. For the bar example in Fig.7 and Fig.13 of the main text, we report its average runtime.

Example |V| |T| Material 𝜌 𝑠 Residual Local 1(s) Local 2(s) Global(s) Total(s)
Cloth 1(Fig. 6) 14,641 28,800 Cloth 5𝑒3 0.4 3.93𝑒−5 1.58 0.04 1.76 3.38
Cloth 2(Fig. 6) 14,641 28,800 Cloth 5𝑒3 0.4 2.09𝑒−5 1.52 0.03 1.74 3.29
Cloth 1(Suppl Fig.3) 14,641 28,800 Cloth 3𝑒6 0.01 5.04𝑒−5 1.95 0.05 1.88 3.89
Cloth 2(Suppl Fig.3) 14,641 28,800 Cloth 3𝑒6 0.01 3.54𝑒−7 1.60 0.06 1.71 3.37
Cloth(Fig. 1) 46,977 92,928 Cloth 3𝑒6 0.01 3.26𝑒−4 6.06 0.10 5.41 11.57
Pig(Fig. 1) 10,416 43,749 NH 5𝑒5 0.01 3.58𝑒−3 5.85 0.03 1.61 7.49
Pig 1(Fig. 11) 10,416 43,749 ARAP 1𝑒−1 0.01 3.84𝑒−7 2.40 0.03 1.59 4.03
Pig 2(Fig. 11) 10,416 43,749 NH 5𝑒5 0.01 3.94𝑒−5 5.56 0.03 1.58 7.18
Cat(Fig. 1) 9,078 36,115 NH 5𝑒3 0.01 7.81𝑒−6 4.24 0.02 1.30 5.56
Robot(Fig. 1) 6,601 26,024 NH 1𝑒3 0.04 6.88𝑒−4 3.91 0.04 0.86 4.81
Cube(Fig. 1) 4,913 20,480 NH 1𝑒5 1.0 1.14𝑒−5 2.77 0.01 2.17 4.95
Apple(Fig. 1) 1,088 4,072 NH 1𝑒3 0.01 1.69𝑒−3 0.60 0.01 0.52 1.13
Table(Fig. 1) 6,483 21,864 ARAP 2𝑒−4 0.01 3.41𝑒−11 1.46 0.04 1.03 2.53
Bar(Fig. 8) 7,011 34,557 ARAP 1𝑒−1 0.1 1.28𝑒−4 2.89 0.08 2.69 5.65
Bar(Fig. 5) 7,011 34,557 NH 5𝑒5 0.1 6.66𝑒−5 5.74 0.03 1.63 7.41

3 DERIVATION OF LOCAL ARAP ENERGY
With as-rigid-as-possible (ARAP) energy [Sorkine and Alexa 2007]
as our elastic energy, the total energy for our local deformation is
as follows:

minimize
V,{R𝑖 }

∑︁
𝑖∈𝑉

∑︁
𝑗∈N( 𝑗 )

𝑤𝑖 𝑗

2 ∥R𝑖 d̃𝑖 𝑗 − d𝑖 𝑗 ∥
2
2︸                  ︷︷                  ︸

ARAP

+𝑤𝑎𝑖 ∥V𝑖 − Ṽ𝑖 ∥SC-L1︸                  ︷︷                  ︸
Localness

,

(10)

where R𝑖 is a 𝑑 × 𝑑 rotation matrix, 𝑤𝑖 𝑗 is the cotangent weight,
d𝑖 𝑗 = [V𝑗 − V𝑖 ]⊤ and d̃𝑖 𝑗 = [Ṽ𝑗 − Ṽ𝑖 ]⊤ are the edge vectors
between vertices 𝑖, 𝑗 at the deformed and rest states respectively.
N( 𝑗) denotes the neighboring edges of the 𝑖-th vertex in the style of
"spokes-and-rims". Here we use R𝑖 to denote X𝑖 , since we drive the
deformation gradient towards a rotation matrix in ARAP energy.

Our local ARAP deformation energy (Eq. 10) can be rewritten as

minimize
V,{R𝑖 }

∑︁
𝑖∈𝑉

1
2 ∥R𝑖D𝑖 − D̃𝑖 ∥2W𝑖

+𝑤𝑎𝑖 ∥V𝑖 − Ṽ𝑖 ∥SC-L1, (11)

where𝑊𝑖 is a |N (𝑖) | × |N (𝑖) | diagonal matrix of cotangent weights,
D̃𝑖 and D𝑖 are 3× |N (𝑖) | matrices of "spokes and rims" edge vectors
of the 𝑖-th vertex at the rest and deformed states respectively. ∥X∥2W𝑖

denotes Tr(X⊤W𝑖X).

By setting Z𝑖 = V𝑖 − Ṽ𝑖 , we can further rewrite Eq. 11 as

minimize
V,{R𝑖 },Z

∑︁
𝑖∈𝑉

1
2 ∥R𝑖D𝑖 − D̃𝑖 ∥2W𝑖

+𝑤𝑎𝑖 ∥Z𝑖 ∥SC-L1, (12a)

s.t. Z𝑖 = V𝑖 − Ṽ𝑖 , ∀𝑖 (12b)

The ADMM update for the above minimization problem is as
follows:

R𝑘+1𝑖 ← argmin
R𝑖 ∈SO(3)

1
2 ∥R𝑖D𝑖 − D̃𝑖 ∥2W𝑖

(13a)

Z𝑘+1𝑖 ← argmin
Z𝑖

𝑤𝑎𝑖 ∥Z𝑖 ∥SC-L1 +
𝜌

2 ∥V
𝑘+1
𝑖 − Ṽ𝑖 − Z𝑖 + U𝑘

𝑖 ∥22
(13b)

V𝑘+1 ← argmin
V

W(V⊤LV − B⊤V) + 𝜌

2 ∥V − Ṽ − Z
𝑘 + U𝑘 ∥22

(13c)

U𝑘+1
𝑖 ← U𝑘

𝑖 + V𝑘+1𝑖 − Ṽ𝑖 − Z𝑘+1𝑖 (13d)

Here 𝜌 is a fixed penalty parameter.
Updating R
Local step 1 (Eq. 13a) is an instance of the Orthogonal Procrustes

problem, which can be solved in the same way as the rotation fitting
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ALGORITHM 1: Three-block ADMM for ARAP energy

Input: A triangle or tetrahedral mesh Ṽ,T
Output: Deformed vertex positions V
V← Ṽ
while not converged do

R𝑖 ← local_step_X (V, Ṽ) ⊲ local step 1
Z𝑖 ← local_step_Z (V, Ṽ) ⊲ local step 2
V← global_step(X𝑖 ,Z𝑖 , Ṽ) ⊲ global step
U𝑖 ← dual_update (Z𝑖 ,V𝑖 , Ṽ𝑖 ) ⊲ dual update 1

end

step in [Sorkine and Alexa 2007]:

R𝑘+1𝑖 ← argmax
R𝑖 ∈SO(3)

Tr (R𝑖M𝑖 ) (14)

M𝑖 = D𝑖 D̃⊤𝑖 (15)
One can derive the optimal R𝑖 from the singular value decompo-

sition of M𝑖 = U𝑖Σ𝑖V⊤𝑖 :

R𝑘+1𝑖 ←V𝑖U⊤𝑖 (16)
Updating Z
Local step 2 (Eq. 13b) can be solved with a shrinkage step (see

derivation in App. 2):

Z𝑘+1𝑖 ← 𝑆𝑘𝑤𝑎𝑖

(
V𝑖 − Ṽ𝑖 + U𝑖

)
(17)

S𝑤𝑎𝑖 (x) =
{(

𝜌𝑠−𝑤𝑎𝑖𝑠/∥x∥2
𝜌𝑠−𝑤𝑎𝑖

)
+
x, if ∥x∥2 ≤ 𝑠

x, otherwise
(18)

where 𝜌 is set to satisfy 𝜌 >
max(𝑤𝑎𝑖 )

𝑠 (see App. 2).
Updating V
The global step (Eq. 13c) can be achieved by solving a linear

system:

(L + 𝜌I)V = B + 𝜌 (Ṽ + Z𝑘 − U𝑘 ), (19)
which can be precomputed for fixed 𝜌 .

4 DERIVATION OF LOCAL NEO-HOOKEAN
ENERGY

Our local deformation scheme can be further extended to physics-
based elasticity energies, e.g., Neo-Hookean energy. Using the Neo-
Hookean energy as our elasticity energy, the optimization problem
can be written as follows:

minimize
V,{X𝑗 },{Z𝑖 }

∑︁
𝑗∈𝑇

𝐸nh (X𝑗 )︸    ︷︷    ︸
Neo-Hookean

+
∑︁
𝑖∈𝑉

𝑤𝑎𝑖 ∥V𝑖 − Ṽ𝑖 ∥SC-L1︸                  ︷︷                  ︸
Localness

, (20a)

s.t. X𝑗 = sym(D𝑗V),∀𝑗, (20b)
where 𝑇 denotes all the elements.
By introducing Z𝑖 = V𝑖 − Ṽ𝑖 , Eq. 20 can be further rewritten into:

minimize
V,{X𝑗 },{Z𝑖 }

∑︁
𝑗∈𝑇

𝐸nh (X𝑗 ) +
∑︁
𝑖∈𝑉

𝑤𝑎𝑖 ∥Z𝑖 ∥SC-L1, (21a)

s.t. X𝑗 = sym(D𝑗V),∀𝑗, (21b)

Z𝑖 = V𝑖 − Ṽ𝑖 , ∀𝑖 (21c)
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Figure 1: Convergence plot. We demonstrate the convergence
of ourADMMby plotting residuals (|𝐸curr−𝐸prev |/(𝐸curr+1.0))
and objective values of all our examples in Table 2 in themain
text over the ADMM iterations. As can be seen from the plot,
all our 3D examples converge within 500 ADMM iterations.

Initial 1 handle 148 handles

0.2250

Figure 2: Our local deformer allows the user to use just a
single control point, without the need to "pin down" the
mesh. It also supports adding more control points to achieve
more detailed control.

The augmented Lagrangian for this problem (Eq. 21) is:

𝐿(V; {X𝑖 }, {W𝑖 }; {Z𝑖 }, {U𝑖 }) =
∑︁
𝑗∈𝑇

𝐸nh (X𝑗 )+
∑︁
𝑖∈𝑉

𝑤𝑎𝑖 ∥Z𝑖 ∥SC-L1

+
∑︁
𝑗∈𝑇

𝛾

2 ∥sym(D𝑗V) − X𝑗 +W𝑗 ∥22 +
∑︁
𝑖∈𝑉

𝜌

2 ∥V − Ṽ𝑖 − Z𝑖 + U𝑖 ∥22 .

(22)

Therefore, the ADMM update for the above minimization prob-
lem is as follows:

X𝑘+1
𝑗 ← argmin

X𝑗

𝐸nh (X𝑗 ) + 𝛾2 ∥sym(D𝑗V) − X𝑗 +W𝑗 ∥22 (23a)

Z𝑘+1𝑖 ← argmin
Z𝑖

𝑤𝑎𝑖 ∥Z𝑖 ∥SC-L1 +
𝜌

2 ∥V
𝑘+1
𝑖 − Ṽ𝑖 − Z𝑖 + U𝑘

𝑖 ∥22
(23b)

V𝑘+1 ← argminV
∑

𝑗∈𝑇
𝛾
2 ∥sym(D𝑗V) − X𝑗 +W𝑗 ∥22

+∑𝑖∈𝑉
𝜌
2 ∥V − Ṽ − Z𝑘 + U𝑘 ∥22

(23c)

W𝑘+1
𝑗 ←W𝑘

𝑗 + sym(D𝑗V) − X𝑗 (23d)

U𝑘+1
𝑖 ← U𝑘

𝑖 + V𝑘+1𝑖 − Ṽ𝑖 − Z𝑘+1𝑖 (23e)

Here 𝜌 and 𝛾 are fixed penalty parameters.
Compared with the ADMM steps for the local ARAP energy

(Eq. 13), the local step 2 (argminZ𝑖 ) and the global step (argminV)
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ALGORITHM 2: Three-block ADMM for Neo-Hookean energy

Input: A triangle or tetrahedral mesh Ṽ,T
Output: Deformed vertex positions V
V← Ṽ
while not converged do

X𝑖 ← local_step_X (V, Ṽ) ⊲ local step 1
Z𝑖 ← local_step_Z (V, Ṽ) ⊲ local step 2
V← global_step(X𝑖 ,Z𝑖 , Ṽ) ⊲ global step
U𝑖 ← dual_update (Z𝑖 ,V𝑖 , Ṽ𝑖 ) ⊲ dual update 1
W𝑖 ← dual_update (X𝑖 ,V𝑖 , Ṽ𝑖 ) ⊲ dual update 2

end

for the local Neo-Hookean energy can be solved in the same way
as the local ARAP energy (see App. 3).

Updating X
Local step 1 (Eq. 23a) can be solved by performing the energy

minimization on the singular values of sym(D𝑗V) +W𝑗 . This is a
proximal operator of 𝐸nh at rotation-invariant sym(D𝑗V) +W𝑗 .

Let us denote the proximal operator of 𝐸nh and the singular value
decomposition of sym(D𝑗V) +W𝑗 as:

prox𝐸nh (X𝑗 ) = 𝐸nh (X𝑗 ) + 𝛾2 ∥sym(D𝑗V) +W𝑗 − X𝑗 ∥22 (24)

sym(D𝑗V) +W𝑗 = U𝑗Σ 𝑗V⊤𝑗 (25)

As shown by [Brown and Narain 2021], we can compute the
optimal X𝑗 as:

Σ𝑘+1𝑗 ← argmin
Σ 𝑗

prox𝐸nh (U𝑗Σ 𝑗V⊤𝑗 ) (26)

X𝑗 ←U𝑗Σ
𝑘+1
𝑗 V⊤𝑗 (27)

Specifically, one can compute the SVD of sym(D𝑗V) +W𝑗 and
perform the minimization of prox𝐸nh only on its singular values,
while keeping singular vectors unchanged. The above optimization
of the singular values Σ𝑘+1𝑗 can be performed using an L-BFGS
solver.

5 OPTIMAL SCALING 𝑠𝑘 FOR 𝐸ACAP
Adopting the as-conformal-as-possible energy 𝐸ACAP as our elastic
energy requires solving an instance of isotropic orthogonal Pro-
crustes problem in the local step 1 (updating R𝑘 ). Following the
derivation in [Schönemann and Carroll 1970], one can compute its
analytical solution as follows: The optimal rotation R𝑘 can be com-
puted the same way as the local step 1 (updating R𝑘 ) for the ARAP
energy, and the optimal scaling 𝑠𝑘 can be computed analytically as

𝑠𝑘 =
Tr

(
W𝑘 D̃⊤𝑘 R𝑘D𝑘

)
Tr

(
W𝑘D⊤𝑘 D𝑘

) (28)

When assembling the matrices B for the global step, one needs to
replace R𝑘 with 𝑠𝑘R𝑘 .

6 COMPARISON WITH OTHER SC-L1 LOSS
ALTERNATIVES

Our SC-L1 loss is designed with the following desirable properties
in mind:

(1) Behaves like a ℓ1 loss near zero.

(2) Is constant far from zero.
(3) Admits an efficient proximal shrinkage operator free of local

minima.
We will consider each of these properties in turn, examining the

motivation and comparing our loss to other alternatives.

(1) Behaves like a ℓ1 loss near zero. This property is what gives our
method the ability to localize deformation. The non-differentiable
ℓ1-like łvertexž of the SC-L1 loss at the origin is critical in this,
and we refer the reader to [Hastie et al. 2015] Sec. 2.2 for more
information as to why. Using a loss which is smooth at the origin
will invariably result in small amounts of global motion, with the
degree of global motion being roughly related to the magnitude of
the function’s Hessian at the origin, so the smoother the loss, the
more global motion should be expected. Examples of such smooth
losses are the smoothed-ℓ1 or Huber loss [Huber 1964] or smoothed-
ℓ0 losses [Mohimani et al. 2007; Xiang et al. 2022], and we avoid
these losses due to their inability to eliminate global deformations.

(2) Constant far from zero. This property has the effect of disabling
the locality-inducing force for parts of a deformed shape which
have moved beyond a certain radius, and serves to remove artifacts
resulting from parts of a deformed shape being pulled toward a rest
position which is now far away. Fig.3(b) and Fig.10(b) in the main
text illustrate the types of artifacts which can be observed using a
loss without this property.

(3) Efficient proximal shrinkage operator free of local minima. It is
convenient for the loss’ proximal shrinkage operator to be uniquely
defined. Recalling that this operator is defined as the minimizer(s)
of Eq. 3, the condition that it be uniquely defined is equivalent to
requiring that Eq. 3 has a unique minimum. A sufficient condition
for this is that 𝑓 (𝑣) + 𝜌

2 (𝑣 − 𝑥)2 is strictly convex, or equivalently
that 𝜌 > − 𝑑2

𝑑𝑣2
𝑓 (𝑣). We thus prefer a loss function which has a

bounded negative second derivative, and the lower this bound the
lower the value of 𝜌 which can be used to convexify it. Within
distance 𝑠 from the origin (excluding the origin itself), our loss has
a constant negative value for 𝑑2

𝑑𝑣2
𝑓 (𝑣), making it in some sense

the minimal function satisfying the three desired properties. Other
losses are of course possible, but would require a higher value of 𝜌
for the same radius of effect.

Alternative losses. A natural question is whether there might be
other locality-inducing losses which could be used in place of our
SC-L1 loss, perhaps even a generic spline-based loss which could
be shaped in detail. Although we have not directly explored this,
we expect that there would be many possible options provided
they exactly or sufficiently approximately satisfy the three desired
properties outlined above. That said, in our experiments we have
found that it’s normally useful to set 𝑠 to be relatively small to
limit artifacts. In this situation the specific shape of the loss is not
particularly important since it only has an impact within a visually
small region, and our simple formulation seems to work well.
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