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Figure 1: From left to right, we show a linear triangle mesh, bicubic quad mesh, cubic spline wireframe, quartic triangle mesh,
and a trilinear hexahedral (hex) mesh. We solve continuous collision detection between these geometries moving along the
rigid ScLERPTay trajectory described in §4.4 and a plane. Our formulation with SOSP certifiably solves this hard problem and
naturally generalizes to any polynomial geometric element type.

ABSTRACT
Sum-of-Squares Programming (SOSP) has recently been introduced
to graphics as a unified way to address a large set of difficult prob-
lems involving higher order primitives. Unfortunately, a challenging
aspect of this approach is the computational cost—especially for
problems involving multiple geometries like collision detection.
In this paper, we present techniques to reduce the cost of SOSP
significantly. We use these improvements to speed up difficult prob-
lems like collision detection between Bézier triangles by as much as
300×. In addition, motivated by hair bundle simulation, we present
SOSP based collision detection on the tapered cubic cylinder. We
also present an algebraic formulation of rigid body motion enabling
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SOSP based collision detection for curved geometries and trajecto-
ries simultaneously. While these new formulations are complex, our
speedups make them feasible. These advances improve the applica-
bility of SOSP based collision detection and enable the continued
progress of higher-order geometry processing.
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1 INTRODUCTION
Modern computer-aided design (CAD) and simulation tools sup-
port curved geometric modeling through a variety of parametric
methods such as high-order polynomial or rational basis functions.
Techniques like finite-element analysis (FEA) or isogeometric anal-
ysis (IGA) allow numerical analysis of curved geometries using
high-order basis functions that respect the original curved geome-
try. The benefits of performing these analyses with high-order basis
functions are well documented [Schneider et al. 2022]. High-order
geometry has graphical benefits as well; as an example, produc-
tion hair curves are often rendered as cubic splines for resolution
independent smoothness [Burley et al. 2018; Kulla et al. 2018; Naka-
maru and Ohno 2002]. Yet, in the context of dynamic simulation,
piecewise linear geometry remains the most common [Bergou et al.
2010; Thyng et al. 2017].

In simulation, linearization of curved geometry introduces dis-
crepancies that propagate into the simulation, decreasing its over-
all efficiency. Despite the drawbacks, linearization has a primary
advantage explaining its pervasiveness: collision detection for flat
geometry is far easier than collision detection for curved geometry.
Collision detection for curved geometries frequently ends up as a
generic nonlinear optimization problem with few guarantees, as
opposed to collision detection between flat geometries, which is
simpler and well studied with impressively optimized runtimes
and guarantees [Provot 1997; Wang et al. 2021]. For this reason,
dynamic simulation usually turns to linearization.

Marschner et al. [2021] tackle the problem of high-order geome-
try processing, presenting a Sum-of-Squares Programming (SOSP)
based framework to solve several challenging problems on curved
geometries. Among these is continuous collision detection (CCD),
in which one seeks to find the earliest time of collision along a given
trajectory. The existing SOSP based CCD solution, while effective,
comes at a prohibitive runtime cost of up to 700 seconds for cubic
Bézier triangles and is not able to self-certify correctness.

In this work, we propose techniques to accelerate the SOSP
methodology and apply them to collision detection. Speedups are
primarily obtained by pruning redundant monomials in the SOSP
problem and re-expressing equivalent varieties in forms more ami-
cable to optimization. Furthermore, we augment the SOSP formu-
lation of collision detection by providing certificates for earliest-
collision, intersecting-pair, and non-collision, which enables a num-
ber of culling steps. Using our optimized formulation, we are able
to consider more complicated queries including collision between
tapered cubic cylinders useful for hair rendering and collision be-
tween curved geometries following rigid body motions. To apply
SOSP to the rigid body motion problem, we develop an algebraic
formulation of rigid body motion based on dual quaternions.

2 RELATEDWORK
Sum-of-Squares Programming. Blekherman et al. [2012] provide

a comprehensive review of this field. Challenging polynomial pos-
itivity constraints can be convexified into Sum-of-Squares (SOS)
constraints encoded by semidefinite matrices, ultimately producing
a semidefinite program (SDP). SDPs are solvable in polynomial
time via interior-point methods [Alizadeh 1995; Nesterov and Ne-
mirovskii 1994]. In practice, modeling tools such as yalmip [Löfberg

2004] convert SOSPs into SDPs that can then be solved by optimiza-
tion software like mosek [MOSEK ApS 2020].

SOSP in Geometry Processing. Closest to our work is [Marschner
et al. 2020, 2021], where SOSP is applied to a variety of geometric
problems including continuous collision detection (CCD) between
pairs of polynomial patches. Amice et al. [2023] use SOSP to map
out non-colliding configurations for robotic arms. Yang et al. [2022]
alternate convex optimization with rank-one matrix projections to
improve runtime of SOSPs for point cloud correspondence. Ahmadi
et al. [2017] use SOSP to encapsulate point clouds with level set
surfaces.

High-Order Dynamics. Along with IGA [Hughes et al. 2005],
high-order simulation has recently increased in popularity, includ-
ing for contact mechanics [De Lorenzis et al. 2014]. In many cases,
however, collisions are either ignored or handled via approxima-
tions like linearization that lack guarantees. Lu and Zheng [2014]
consider NURBS based cloth simulation but use tessellation and a
standard Newton’s method for collision detection. Similarly, Trusty
et al. [2021] use NURBS patches for volumetric elastic simulation
but perform collision detection on a coarse linearization, thus failing
to detect interpenetration of the actual curved geometries. Bertails
et al. [2006] use piecewise helical elements to simulate hair dy-
namics. Ferguson et al. [2021] handle rigid body simulation with
curved trajectories, but require flat geometry. Snyder et al. [1993]
use Newton’s method with interval arithmetic for curved geometry
collision detection but need to be provided with convergent inclu-
sion functions per geometry. Their method also specifically finds
collision points and does not provide separation distance bounds
that can be helpful for simulation. Finally Ferguson et al. [2022]
propose a hybrid high-order simulation coupled to linear mesh
collision handling, bypassing the need for exact curved geometry
collision detection.

Algebraic Rigid Body Motions. Rigid body motions are curves in
SE(3). An example of such a curve is a screw motion. Screw motions
are characterized by jointly constant rotational and translational
velocity. Unfortunately, screw motions are non-algebraic [Wampler
and Sommese 2011], while SOSP is fundamentally limited to alge-
braic expressions. Redon et al. [2000] use nonlinear parameteriza-
tions of translation to produce an algebraic non-screw rigid body
trajectory. Kavan et al. [2008] use dual quaternion linear interpo-
lation to approximate pure screw motions. Paul [1997] uses dual
quaternions for contact problems on flat polyhedra.

3 PRELIMINARIES
We summarize the most relevant background material below.

3.1 Sum-of-Squares Programming
Sum-of-squares programming is a technique for converting poly-
nomial optimization problems into convex semidefinite programs.
Here, we summarize the details of SOSP necessary to apply it to
our collision detection problems. For a general summary of SOSP,
see [Parrilo 2019]; for further exposition in the context of geometry
processing, see [Marschner et al. 2020, 2021].

Let R[u] = R[𝑢1, ..., 𝑢𝑘 ] be the ring of polynomials in u and
R[u]𝑑 ⊂ R[u] be the subset of polynomials of maximum degree 𝑑 .
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Σ𝑑 is the set of SOS polynomials of maximum degree 𝑑 , defined as

Σ𝑑 :=
{∑︁

𝑖

𝑝2𝑖 : 𝑝𝑖 ∈ R[u] ⌊ 𝑑2 ⌋
}
. (1)

Omitting the subscript 𝑑 implies unrestricted degree.
Let the polynomial sets G,H ⊂ R[u] define a compact semial-

gebraic domain

D =
{
u ∈ R𝑘 : ∀𝑔 ∈ G, ℎ ∈ H , 𝑔(u) ≥ 0, ℎ(u) = 0

}
. (2)

Since G,H specify D via inequality and equality constraints, we
will sometimes refer to them as inequalities and equalities. Given
a polynomial objective function 𝑓 (u), we can now formulate a
generic nonconvex polynomial optimization over the domain D:

𝑓 ∗ = 𝑓 (u∗) = min 𝑓 (u) : u ∈ D. (3)

Eq. 3 can be equivalently rewritten as a convex problem with a
polynomial positivity constraint

𝑓 ∗ = 𝛾∗ = max{𝛾 : 𝑓 (u) − 𝛾 is positive for u ∈ D}. (4)

𝛾 is constrained in Eq. 4 to be a lower bound for 𝑓 (u) on D. 𝛾∗ is
then a maximum lower bound and thus achieves the solution to
Eq. 3.

Unfortunately, polynomial positivity constraints are NP-hard
to maintain [Parrilo 2000]. In contrast, constraining a polynomial
to be SOS—a sufficient condition for positivity–only requires a
semidefinite matrix constraint. SOSP leverages this sufficiency to
parameterize a subset of polynomials that are positive over D via
the d-truncated quadratic module:

Q(G,H)𝑑 =

𝑠0 +
∑︁
𝑔∈G

𝑠𝑔𝑔 +
∑︁
ℎ∈H

𝑝ℎℎ :
𝑠0 ∈ Σ, 𝑠𝑔 ∈ Σ𝑑 ,

𝑝ℎ ∈ R[u]𝑑

 . (5)

𝑠𝑔 and 𝑝ℎ are known as multiplier polynomials, as opposed to
𝑔 and ℎ which define D. Membership in the module is sufficient
to assure positivity over D, allowing Eq. 3 to be relaxed into the
convex SDP

𝑓 ∗𝑑 = max{𝛾 ∈ R : 𝑓 (u) − 𝛾 ∈ Q(G,H)𝑑 }. (6)

Fortuitously, this sufficient condition is also frequently necessary,
as is formalized in the following theorem [Putinar 1993]:

Theorem 3.1 (Putinar’s Positivstellensatz). Let D = {u ∈
R𝑘 : ∀𝑔 ∈ G, ℎ ∈ H , 𝑔(u) ≥ 0, ℎ(u) = 0} be a domain with an
algebraic certificate of compactness. Any polynomial 𝑓 (u) that is
strictly positive on D is an element of Q(G,H).

Thus 𝑓 ∗
𝑑
≤ 𝑓 ∗ and under the conditions of Theorem 3.1, 𝑓 ∗

𝑑
→ 𝑓 ∗

as 𝑑 → ∞. In practice, many problems exhibit 𝑓 ∗ = 𝑓 ∗
𝑑
for finite 𝑑

[Laurent 2007; Marschner et al. 2020, 2021; Nie 2014].
We omit the technical details regarding the dual problem to

Eq. 6 and only note the most critical point that if 𝑓 ∗
𝑑
= 𝑓 ∗ and the

dual SDP matrix has rank 1, then the unique u∗ can be read off its
first column. This is detected by checking that the second largest
eigenvalue of the dual SDP matrix, 𝜆2, equals zero and is known
as exact recovery. Curiously, Marschner et al. [2021] show that the
first column may contain u∗ even without exact recovery. When
u∗ is non-unique, exact recovery is impossible. For more detailed
examples, see [Marschner et al. 2020, 2021].

3.2 CCD and Surface-Surface Intersection
Marschner et al. [2021] demonstrate the application of SOSP to sev-
eral geometric kernel problems. Of particular interest to us are the
CCD and surface-surface intersection (SSI) problems. We combine
both problems under the collision detection umbrella in §4.2. In
the SOSP framework, it is simple to formulate these problems for
various spline geometries after Bézier extraction.

We recall their formulation of these problems on quadratic and
cubic Bézier triangles. Let

𝒙 (𝑢, 𝑣, 𝑡) =
𝑛𝐵∑︁
𝑖

(p𝑖 + v𝑖𝑡)𝜙𝑖 (𝑢, 𝑣) (7)

denote the embedding of a Bézier triangle with control points
p𝑖 , velocities v𝑖 , and 𝑛𝐵 basis functions 𝜙𝑖 of degree 𝑑𝜙 . 𝑢 and
𝑣 are coordinates in the pre-image of the Bézier triangle, i.e., a
flat triangular base domain. Following Eq. 2, the CCD domain is
specified by u = (𝑢1, 𝑣1, 𝑢2, 𝑣2, 𝑡) satisfying certain polynomial in-
equality and equality constraints. With G1 = {𝑢1, 𝑣1, 1 − 𝑢1 − 𝑣1}
and G2 = {𝑢2, 𝑣2, 1 − 𝑢2 − 𝑣2} specifying two flat triangular do-
mains and G𝑡 = {𝑡, 1 − 𝑡} specifying the time interval of inter-
est, G = G1 ∪ G2 ∪ G𝑡 specifies the subset of space-time con-
sidered in the CCD problem. H is comprised of three equalities,
H = {𝒙1 (𝑢1, 𝑣1, 𝑡)𝑥𝑦𝑧 − 𝒙2 (𝑢2, 𝑣2, 𝑡)𝑥𝑦𝑧 }, encoding the collision
constraint. Since CCD finds the earliest collision, the objective
polynomial is time: 𝑓 (u) = 𝑡 . The SSI domain is the set u =
(𝑢1, 𝑣1, 𝑢2, 𝑣2) satisfying inequalities G1 ∪ G2 and three equalities
H = {𝒙1 (𝑢1, 𝑣1, 0)𝑥𝑦𝑧 − 𝒙2 (𝑢2, 𝑣2, 0)𝑥𝑦𝑧 }. Since SSI is a feasibil-
ity problem, the objective polynomial is arbitrarily chosen as the
x-coordinate of the first Bézier triangle 𝑓 (u) = 𝒙1 (𝑢1, 𝑣1, 0)𝑥 .

The results in [Marschner et al. 2021] show that multiplier poly-
nomials must be degree 5 (6) for quadratic (cubic) Bézier triangle
CCD or SSI to be solved reliably. Despite achieving the correct
results, they rarely obtain exact recovery in CCD, meaning they
are unable to certify that the obtained collision is the earliest pos-
sible. Runtimes average around 25 s and 700 s per CCD problem,
for quadratic and cubic triangles respectively. The SSI problem is
simpler and has accordingly lower runtimes of 0.78 s and 6.19 s.

3.3 Curved paths using Dual Quaternions
Marschner et al. [2021] only consider CCD problems with linear
trajectories; we extend their work to curved paths in §4.4. In partic-
ular, we target paths through SE(3), the space of rigid body motions,
which we represent by unit dual quaternions, DH1. In this section,
we provide relevant background on the use of dual quaternions to
represent rigid body motions. For an overview, see [Jia 2013].

A dual quaternion𝑄 = 𝑝 +𝜖𝑞 ∈ DH combines two quaternions 𝑝
and 𝑞 with the dual unit 𝜖 , which satisfies the property 𝜖2 = 0. Key
to our work is the conjugation operation 𝑄† = 𝑝★ + 𝜖𝑞★, where ★
denotes the quaternion conjugate. Using this operation, unit dual
quaternions are defined as

DH1 = {𝑄 ∈ DH : 𝑄† ⊗ 𝑄 = 1} =
{
𝑝 + 𝜖𝑞 ∈ DH :

𝑝 · 𝑞 = 0
∥𝑝 ∥ = 1

}
(8)

with ⊗ denoting dual quaternion multiplication, ∥𝑝 ∥ the quaternion
norm, and 𝑝 · 𝑞 the elementwise quaternion dot product.
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Dual quaternions are particularly well suited to ourwork because
many operations, such as transforming a point by a dual quaternion,
result in low-degree polynomials perfect for use with SOSP. Given
a dual quaternion 𝑄 and a point 𝑣 encoded as a dual quaternion
𝑄𝑣 = 1 + 𝜖𝑣 , the rigidly transformed point after applying 𝑄 is

𝑄𝑣′ = 𝑄 ⊗ 𝑄𝑣 ⊗ 𝑄†, (9)
a polynomial in the coordinates of 𝑣 .

Constructing a path between two rigid transforms boils down
to interpolation on the manifold associated with DH1. Naïve lin-
ear interpolation (LERP) of dual quaternions is invalid, as it leaves
the DH1 ⊂ DH manifold. Dual quaternion linear interpolation
(DQLERP) solves this by projecting LERP onto DH1 via normaliza-
tion [Kavan et al. 2008, § 3.2]:

DQLERP(𝑄0, 𝑄1, 𝑡) B 𝑄0 + 𝑡 (𝑄1 −𝑄0)
∥𝑄0 + 𝑡 (𝑄1 −𝑄0)∥ . (10)

While this interpolation is algebraic and stays on DH1, it does not
respect the underlying geometry of SE(3).

A more canonical interpolation is derived from screw motions.
Chasles’ theorem [Selig 2005] states that all rigid motions are screw
motions, i.e., a rotation around a screw axis followed by a trans-
lation along the same axis. This motion is represented by screw
parameters: two vectors (𝒍,𝒎) denoting the Plücker coordinates of
the screw axis, as well as 𝜃 and 𝛿 representing the rotation angle
and translation distance. Plücker coordinates satisfy the conditions
∥𝒍 ∥ = 1 and 𝒍 · 𝒎 = 0. Screw parameters (𝒍,𝒎, 𝜃, 𝛿) parameterize
the Lie algebra 𝔰𝔢(3), the tangent space to SE(3). The exponential
map exp : 𝔰𝔢(3) → SE(3) using screw parameters for 𝔰𝔢(3) and
DH1 for SE(3) is [Daniilidis 1999, Eq. 27]

exp : (𝒍,𝒎, 𝜃, 𝛿) ↦→
(
𝑐 + 𝑠 𝒍 + 𝜖

(
−𝛿𝑠2 + 𝛿𝑐

2 𝒍 + 𝑠𝒎
))

𝑐 B cos (𝜃/2) , 𝑠 B sin (𝜃/2) .
(11)

Using the standard log = exp−1 map and𝑄★ = 𝑝★ − 𝜖𝑞★, the screw
space linear interpolation (ScLERP) [Kavan et al. 2006] is

(𝒍,𝒎, 𝜃, 𝛿) B log(𝑄★
0𝑄1) (12)

ScLERP(𝑄0, 𝑄1, 𝑡) B 𝑄0 exp(𝒍,𝒎, 𝑡𝜃, 𝑡𝛿). (13)
Since Eq. 13 shows rotation angle and translation distance vary lin-
early in time, angular and translational velocity are constant along
the path, a property missing from DQLERP. ScLERP additionally
traces a geodesic from 𝑄0 to 𝑄1 in SE(3).

4 METHOD
We begin by detailing our speedup methods in § 4.1. Then § 4.2
presents our SOSP collision detection setup. In §4.3, we introduce
an algebraic formulation for the tapered cubic cylinder, and §4.4
introduces our algebraic expressions for rigid body motions.

4.1 Speeding up SOS
The SOSP framework is flexible but has significant runtime costs.
Here, we present several methods for decreasing runtime.

4.1.1 Mixed Degree. The runtime of an SOSP problem depends
heavily on the number of monomials in the parameters of the
quadratic module, i.e., monomials of 𝑠0, 𝑠𝑔, 𝑝ℎ in Eq. 5. This number
grows factorially with degree 𝑑 . On the other hand, 𝑑 controls the

expressiveness of the quadratic module—a larger𝑑 results in a larger
module, allowing Eq. 6 to approach Eq. 4. We want the module to
be just barely expressive enough to acheive exact recovery. To that
end, we introduce the (𝑑1, 𝑑2)-truncated quadratic module

Q(G,H)𝑑1,𝑑2 =
𝑠0 +

∑︁
𝑔∈G

𝑠𝑔𝑔 +
∑︁
ℎ∈H

𝑝ℎℎ :
𝑠0 ∈ Σ, 𝑠𝑔 ∈ Σ𝑑1
𝑝ℎ ∈ R[u]𝑑2

 , (14)

which gives us finer control over the expressiveness of the module.
Eq. 14 separates the degree truncation of inequality and equality
multipliers 𝑠𝑔 and 𝑝ℎ , allowing deg(𝑝ℎℎ) to change independently
from deg(𝑠𝑔𝑔). In the context of CCD, deg(ℎ) is typically greater
than deg(𝑔) so choosing 𝑑1 = 𝑑2 results in deg(𝑝ℎℎ) > deg(𝑠𝑔𝑔)
and a total runtime that is heavily dependent on deg(𝑝ℎℎ). In this
case, changing 𝑑1 and 𝑑2 independently allows us to maintain the
expressiveness of 𝑠𝑔 , while decreasing the size of 𝑝ℎ and thus both
the overall size and runtime dramatically.

Aside from runtime, Marschner et al. [2021] hypothesize that
redundant monomials in the problem can prevent exact recovery
while still allowing extraction of 𝑓 ∗ and u∗. Indeed, our results
show that discarding unnecessary monomials from 𝑝ℎ grants us
exact recovery where [Marschner et al. 2021] falls short.

4.1.2 Higher-Degree Descriptions of Equivalent Domains. The qua-
dratic module is not directly dependent on domain D but instead
is constructed from the polynomial sets G,H used to describe D.
This is because different ways of writing the same domain have
a significant effect on what functions the quadratic module can
express. Additionally, no particular choice of G,H is canonical. We
observe that it is frequently beneficial for runtime to replace pairs
of elements of G with their product. This produces an alternate
description of the same D, which generates a different quadratic
module.

For example, consider the interval D = {𝑡 : 𝑡 ∈ [0, 1]}. D
can be encoded equivalently with either two linear polynomials,
G𝑡1 = {𝑡, 1 − 𝑡}, or one quadratic polynomial, G𝑡2 = {𝑡 (1 − 𝑡)}.
This choice alters

∑
𝑠𝑔𝑔 in Eq. 14; For a fixed multiplier polynomial

degree, substituting G𝑡1 with G𝑡2 will increase the degree of
∑
𝑠𝑔𝑔,

but decrease the number of multiplier polynomials used. The choice
of module that minimizes runtime depends on the problem struc-
ture and the experimentally determined degrees of the multiplier
polynomials. We remark on the theoretical connection between
rewritings of the module to another variant of the Positivstellensatz
in §6.1 of the supplemental materials.

4.1.3 Reducing Degree with Increased Variables. The next speedup
approach is to decrease the degree of polynomials inG by increasing
the number of variables and constraints. Consider the toy example:

D0 = {𝑥 : 𝑥6 ≥ 0}, D1 = {(𝑥,𝑦) : 𝑦2 ≥ 0 and 𝑥 − 𝑦3 = 0}. (15)

Projecting D1 onto its first dimension produces D0. However, by
introducing the new variable 𝑦, the maximum degree of its defining
polynomials is reduced to 3. Such a decrease has a large impact
on the maximum degree of an SOS problem involving D0. This
may seem contrary to §4.1.2, but in practice reducing runtime is
a balance between number of polynomials and degree. It is not
obvious when to take this approach, but we show some successful
examples in §5.3 and §5.4.
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4.1.4 Constraining 𝛾 . The last speedup method is to constrain the
lower bound variable 𝛾 from Eq. 6:

𝑡∗𝑑 = max{𝛾 ∈ [0, 1] : 𝑡 − 𝛾 ∈ Q(G,H)𝑑 }. (16)
This applies specifically to CCD where a min/max time, usually
0/1, is known. This minor adjustment is nothing remarkable, but
it is worth noting that 𝛾 ∈ [0, 1] is a separate constraint from the
𝑡 ∈ [0, 1] encoded in G.

4.2 SOS Collision Detection (CD) Certificates
Solutions to CD can possess the following certificates: Intersecting
Pair (IP), Earliest Collision (EC), or Non-Collision (NC). First, if a
pair of geometries already intersects at 𝑡 = 0, we call them inter-
secting pairs. Only if they do not already intersect do we try to find
the earliest time of collision on their trajectory. The non-collision
certificate straightforwardly certifies that the pair of geometries
do not intersect on their trajectories in the time interval [0, 1]. We
detail the algebraic versions of these certificates and how to obtain
them in the notation of §3.2. Minor differences when extending to
other geometries are detailed in §5.

A certificate of collision is a point u = [𝑢1, 𝑣1, 𝑢2, 𝑣2, 𝑡] satisfying
∀𝑔 ∈ G, 𝑔(u) ≥ 0 such that

𝒙1 (𝑢1, 𝑣1, 𝑡) = 𝒙2 (𝑢2, 𝑣2, 𝑡) . (17)
Earliest Collision (EC) is certified by u satisfying Eq. 17, which

guarantees collision, in conjunction with exact recovery of the CCD
problem. Exact recovery certifies that it is the earliest collision, and
is checked by ensuring the the second eigenvalue, 𝜆2, equals 0.
A problem occurs, however, if the configuration given to a CCD
problem is already intersecting at 𝑡 = 0. In this case, two surfaces
will generically intersect at more than one location, making exact
recovery impossible. The next certificate resolves this.

Intersecting Pair (IP) is certified by u satisfying Eq. 17 with 𝑡 = 0.
This is obtained by solving the SSI problem in §3.2. Since the objec-
tive polynomial of the SSI problem is not time, a unique solution is
generically obtained. Going forward, we consider collision detec-
tion on geometries of different dimensions so we will refer to the
surface specific SSI as the more general IP problem.

Non-Collision (NC) is certified by a positive value 𝛾 and trunca-
tion degree 𝑑 satisfying

𝐷2 (u) − 𝛾 ∈ Q(G, ∅)𝑑 , (18)
where 𝐷2 (u) = ∥𝒙1 (𝑢1, 𝑣1, 𝑡) − 𝒙2 (𝑢2, 𝑣2, 𝑡)∥2 is the squared dis-
tance between geometries. Note that maximizing 𝛾 subject to Eq. 18
is exactly the SOS formulation of minimizing 𝐷2 (u) over D. A key
difference however is that any positive 𝛾 suffices as a non-collision
certificate. As a result, unlike the CCD case, exact recovery is un-
necessary to certify non-collision. Additionally, we can truncate
the quadratic module more heavily than if 𝛾 needed to be a tight
bound, leading to a smaller overall optimization problem. If we do
happen to use a 𝑑 large enough for exact recovery, then √

𝛾 is a
certifiable minimum separation distance.

Numerical Issues. Since we solve SDPs with [MOSEK ApS 2020]
using finite precision, equations like 𝜆2 = 0, 𝛾 > 0, and Eq. 17 can
only be verified within a certain tolerance. With these tolerances,
the effective algebraic certificates are:

𝜆2 ≤ 𝜖𝜆, 𝛾 ≥ 𝜖𝛾 , 𝐷 (u) ≤ 𝜖𝑥 . (19)

These tolerances introduce the possibility of failing to certify any
of the listed cases algebraically. For example, if two non-colliding
Bézier triangles skim past each other with a minimum squared
separation distance of 10−9, and the non-collision tolerance was
chosen as 𝜖𝛾 = 10−8, it will be impossible to certify non-collision.
On the other hand, 𝜖𝛾 = 10−10 pushes the limits of finite precision
solvers like [MOSEK ApS 2020], i.e., it is possible to convince SDP
solvers that a polynomial 𝑥2 − 10−10 is non-negative. We take a
conservative approach, making sure that collision and non-collision
are never certified at the same time. The few remaining cases are la-
beled Inconclusive (I). Further discussion is included in supplemental
materials.

4.3 Tapered Cubic Cylinder (TCC)
Motivated by the fact that production hair pipelines use cubic
splines for modeling and rendering but convert to linear segments
for simulation [Thyng et al. 2017], we algebraically formulate a
suitable geometry for curved hair bundle collision detection: the
tapered cubic cylinder.

A TCC is essentially a cubic spline centerline with a radius
varying linearly from 𝑙0 to 𝑙1. Algebraically, a TCC is

T =

{
𝑐 (𝜉, 𝑡) + [𝑥,𝑦, 𝑧]𝑇 :

𝑥2 + 𝑦2 + 𝑧2 = ((1 − 𝜉)𝑙0 + 𝜉𝑙1)2

and 𝜉, 𝑡 ∈ [0, 1]2

}
, (20)

where 𝑐 (𝜉, 𝑡) is a time-varying cubic Bézier curve (cubic in 𝜉 , linear
in 𝑡 ). Though stated as a cylinder, a TCC includes spherical endcaps.
§5.3 shows results on collision detection for this geometry.

4.4 CCD on Dual Quaternion Paths
4.4.1 Algebraic Path Formulations. As discussed in § 3.3, rigid
trajectories can be constructed by interpolating dual quaternions.
For SOSP to be applicable, though, these interpolations must be
algebraic. DQLERP applied to a point combines Eq. 9 and Eq. 10 pro-
ducing a rational expression compatible with SOSP. The more natu-
ral ScLERP path unfortunately includes trigonometric functions in
Eq. 11. To remedy this non-algebraicness, we introduce a novel in-
terpolation method, ScLERPTay, which approximates ScLERP qual-
itatively and quantitatively. This is achieved by replacing sin( 12𝜃𝑡)
and cos( 12𝜃𝑡) in the exp function Eq. 11 with their Taylor approx-
imations in 𝑡 from the base point 𝑥0. Applying Eq. 13 with this
modified exp function produces an interpolation method we denote
ScLERPTay,𝑥0 . This trajectory converges to ScLERP as the degree of
the Taylor approximation increases, but only exactly equals ScLERP
at 𝑥0. Since both the beginning and end points of the interpolation
are expected to adhere exactly to the input, we construct two Tay-
lor approximations centered about the beginning and end points,
and linearly blend between them. Finally, since the approximation
creates deviation from DH1 we renormalize:

𝑄𝑡 = 𝑡 · ScLERPTay,0 + (1 − 𝑡) · ScLERPTay,1 (21)

ScLERPTay =
𝑄𝑡

∥real(𝑄𝑡 )∥ . (22)

The resulting interpolation scheme, ScLERPTay, produces a rational
expression for the trajectory and approximates ScLERP. The de-
nominator of Eq. 22 is simpler than a general dual quaternion norm
thanks to the structure of screw space transformations. Recall from
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Eq. 8 that a unit dual quaternion 𝑄 = 𝑝 + 𝜖𝑞 satisfies ∥𝑝 ∥ = 1 and
𝑝 ·𝑞 = 0. In this case, 𝑝 ·𝑞 for𝑄𝑡 always yields 0, a fact derived from
the properties ∥𝒍 ∥ = 1 and 𝒍 ·𝒎 = 0 of the screw parameters. This
simplification drastically decreases the overall degree of ScLERPTay
paths, making them more tractable in CCD problems.

Fig. 2 shows a comparison of DH1 interpolation schemes. Even
with only a degree 1 Taylor approximation, ScLERPTay is dramat-
ically closer both quantitatively and qualitatively to the ScLERP
path than the DQLERP path is.

Another consideration when selecting an interpolation method
is its polynomial degree. Applying the interpolated quaternion to a
point results in a rational polynomial

𝑄𝑣𝑡 := 𝑄𝑡 ⊗ 𝑄𝑣 ⊗ 𝑄†
𝑡 :=

𝑁𝑣𝑡

𝐷𝑣𝑡
(23)

with a polynomial dual quaternion numerator, 𝑁𝑣𝑡 , and a polyno-
mial scalar denominator, 𝐷𝑣𝑡 . The degree of the path is the degree
of the time variable 𝑡 in Eq. 23; these degrees are shown for the alge-
braic interpolation schemes we consider in Fig. 2. Since the degree
of the path is correlated with the runtime of the final SOSP problem,
DQLERP’s lower degree makes it sometimes advantageous over
ScLERPTay as it can make complex formulations feasible in a more
reasonable runtime.

4.4.2 Writing the CCD Problem. We now formulate the CCD prob-
lem for two objects with polynomial geometry following dual
quaternion paths using SOSP. We also consider the simpler prob-
lem of colliding a curved object with a stationary plane. These
formulations can be straightforwardly generalized to any geometry
expressible as an algebraic map 𝑷 (u) over a base domain.

The domain of the SOSP problem is specified by inequality con-
straints for the time interval and the geometric object as described
in § 3.2. Applying Eq. 23 with 𝑄𝑣 = 1 + 𝜖𝑷 (u) gives a rational
polynomial representation of every point on the object under rigid
motion. For CCD between a rigidly moving object and a stationary
plane defined by normal 𝒏 and offset 𝛼 , collision is encoded by one
equality constraint

𝒏 · dual {𝑁𝑣𝑡

} − 𝛼𝐷𝑣𝑡 = 0, (24)
where dual{·} extracts the vector part of the dual part of a dual
quaternion, which for a dual quaternion representing a point ex-
tracts the R3 coordinates of that point. For the CCD problem be-
tween two rigidly moving objects, there are three collision equality
constraints defined by equating points on the two objects and cross-
multiplying:

dual
{
𝑁𝑣𝑡 ,𝐴

}
𝐷𝑣𝑡 ,𝐵 − dual

{
𝑁𝑣𝑡 ,𝐵

}
𝐷𝑣𝑡 ,𝐴 = 0. (25)

Curved geometry and trajectory CCD ends up being the largest
problem we solve, leading us to use minimal bounding ellipsoids
from [Marschner et al. 2021] as a culling step. The CCD problem for
two ellipsoids moving along dual quaternion paths is its own SOSP.
Ellipsoids can be encoded as a dual quaternion rotation𝑄𝑒 and three
axis lengthsL ∈ R3. Let a time interval and two balls be specified by
variables {𝑡, 𝒙𝐴, 𝒙𝐵}, with 𝒙𝐴, 𝒙𝐵 ∈ R3, and inequalities G = {𝑡, 1−
𝑡, 1−∥𝒙𝐴∥2, 1−∥𝒙𝐵 ∥2}. We apply Eq. 23 with𝑄𝑣𝐴 = 1+𝜖 (𝒙𝐴⊙L𝐴)
(using the elemetwise product ⊙) and𝑄𝑡𝐴 = interp(𝑄0, 𝑄1, 𝑡) ⊗𝑄𝑒𝐴 ,
where interp is the desired DH1 interpolation, to encode a rigidly
moving ellipsoid. This yields 𝑁𝑣𝑡 ,𝐴 and 𝐷𝑣𝑡 ,𝐴, which along with

the analogous result for the second ellipsoid, allow us to construct
the collision equality constraint from Eq. 25.

5 RESULTS
To illustrate the effect of our speedups, §5.1 and §5.2 present results
for curve and triangle collision detection, the latter of which is com-
pared to [Marschner et al. 2021]. Enabled by these speedups, we
apply our collision detection formulation to the tapered cubic cylin-
der in §5.3 and demonstrate the solution of rigid body motion CCD
problems using SOSP in §5.4. Our SOSP problems require the choice
of degree of the multiplier polynomials. We report the degrees we
find empirically necessary to solve each problem in this section
and in the supplemental tables. We refer the reader to [Marschner
et al. 2021, §5] for further discussion on the choice of SOSP degree.
Our runtimes are obtained using Matlab 2021a, yalmip v20200116
and mosek 9.2, with the rigid body motion problems running on a
2.8 GHz 4-Core Intel i7 CPU and all other tests on a 3.7 GHz Intel
i7-8700K CPU. At a high level, our new formulations provide up to
a 338× speedup. A more detailed breakdown is provided in Table 1
and Fig. 5. Since Yalmip time is not incurred per collision problem,
we only report runtimes from the Mosek solver.

Since this section formulates many SOS programs, we label them
based on the problem they solve (CCD, IP, NC), subscripted with
the truncation degrees of their quadratic modules (𝑑 or 𝑑1, 𝑑2), and
superscripted with geometry type (1D for curves, 2D for triangles,
or TCC). We reference these problems in supplemental Tables 1 and
2 with specific truncation degrees subbed in. Expanded descriptions
of all SOSPs are provided in the supplementary materials.

5.1 Speeding up CD on Bézier Curves
CCD for Bézier Curves. Let c1 (𝜉, 𝑡) =

∑𝑛𝐵

𝑖 (p𝑖 + 𝑡v𝑖 )𝜙𝑖 (𝜉) and
c2 (𝜁 , 𝑡) =

∑𝑛𝐵

𝑖 (q𝑖 + 𝑡w𝑖 )𝜙𝑖 (𝜁 ) denote two Bézier curves with ba-
sis functions 𝜙𝑖 of degree 𝑑𝜙 = {1, 2, 3}. The basic CCD problem
following [Marschner et al. 2021] is specified with polynomial sets
G𝑎 = {𝜉, 1 − 𝜉, 𝜁 , 1 − 𝜁 , 𝑡, 1 − 𝑡},H = {c1 (𝜉, 𝑡) − c2 (𝜁 , 𝑡)}.

max
𝛾 ∈R

𝛾 : 𝑡 − 𝛾 ∈ Q(G𝑎,H)𝑑 (CCD1𝐷
𝑑

)

Combining the speedups in §4.1.1, § 4.1.2, and §4.1.4, we arrive
at the alternative formulation specified with polynomials G𝑏 =
{𝜉 (1 − 𝜉), 𝜁 (1 − 𝜁 ), 𝑡 (1 − 𝑡)}:

max
𝛾 ∈[0,1]

𝛾 : 𝑡 − 𝛾 ∈ Q(G𝑏 ,H)𝑑1,𝑑2 . (CCD1𝐷
𝑑1,𝑑2

)

Modifications made to the basic formulation in CCD1𝐷
𝑑

to obtain
the formulation CCD1𝐷

𝑑1,𝑑2
are highlighted in red.

NC for Bézier Curves. Since static Bézier curves do not generically
intersect, we do not consider the IP problem. On the non-collision
side using speedups from §4.1.2 and §4.1.4 we get

max
𝛾≥0 𝛾 : ∥c1 (𝜉, 𝑡) − c2 (𝜁 , 𝑡)∥22 − 𝛾 ∈ Q(G𝑏 , ∅)𝑑 . (NC1𝐷

𝑑
)

Since there are no equality constraints, we do not use mixed degree.
Any solution to NC1𝐷

𝑑
is a lower bound to separation distance, but

if we also obtain exact recovery, the bound is tight.
We perform a batch test on 1000 configurations of {p𝑖 , q𝑖 , v𝑖 ,w𝑖 }

randomly generated according to a standard normal distribution.
We then uniformly sample a directional vector 𝒅 of length 1

3 and
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Table 1: Batch CD results for curves and triangles of degree 𝑑𝜙 = {1, 2, 3}. Average runtimes are provided for CCD using our new
speedups, compared to [Marschner et al. 2021] without culling strategies. Our improvements produce significant speedups in
all cases. Additionally, culling gives even greater speedups by certifying non-collision or intersecting-pair and thus allowing us
to skip trying to certify earliest-collision with CCD. Culling is especially effective for larger problems.

Status Time w/o culling (ms) Time w/ culling (ms)
𝑑𝜙 IP EC NC I Old New Speedup New Speedup
1 - 115 885 0 4.2 3.0 1.4x 6.9 0.62x

Curves 2 - 216 784 0 43 4.1 10x 9.0 4.8x
3 - 691 308 1 669 127 5.3x 25 26x
1 261 295 442 2 798 204 3.9x 21 38x

Triangles 2 702 260 35 3 22571 913 25x 430 53x
3 393 531 76 0 7.0 · 105 32581 21x 2070 338x

translate p𝑖 ,w𝑖 by 𝒅 and q𝑖 , v𝑖 by −𝒅. This shifting step encourages
collisions between splines c1 and c2. We provide a detailed break-
down of our culling strategy in supplemental Table 1 and compare
to CCD from [Marschner et al. 2021]. Additionally, Fig. 3 illustrates
the relative impacts of speedups applied in different combinations.
Tolerances are 𝜖𝜆 = 𝜖𝑥 = 10−4, 𝜖𝛾 = 10−6. Our improvements show
speedups in Table 1 as high as 26×. The only slow-down comes
from aggregated runtime of linear CD because, unlike [Marschner
et al. 2021], our new method provides a certificate for non-colliding
cases.

The only method we are aware of targeting collision detection
in as much generality as we do is [Snyder 1992] and its followup
[Snyder et al. 1993] to handle multi-point collisions. Wang et al.
[2021] provide a modern implementation of [Snyder 1992] for linear
segment CCD, resulting in an average runtime of .0124 seconds
per collision on a 2.35 GHz AMD EPYC 7452. Though not directly
comparable, our linear segment CCD runtime averages .0030 per
collision, which is on par with the method of Wang et al. [2021].
On their challenging benchmark dataset for linear segment CCD,
we report 269 false positives compared to the 214 from [Wang
et al. 2021] and 141 from [Snyder 1992]. All methods report 0 false
negatives.

5.2 Speeding up CD on Bézier Triangles
We compare our runtimes to [Marschner et al. 2021] where a single
𝑑 is chosen large enough to detect collision, and is then applied
uniformly to the batch.

CCD for Bézier Triangles. To align with our equation label format,
the old Bézier triangle CCD formulation described in §3.2 will be
referred to as CCD2𝐷

𝑑
going forward. Using the same notation, we

introduce two modified CCD formulations

max
𝛾 ∈[0,1]

𝛾 : 𝑡 − 𝛾 ∈ Q(G1 ∪ G2 ∪ {𝑡 (1 − 𝑡)},H)𝑑1,𝑑2 (CCD2𝐷𝑎
𝑑1,𝑑2

)

max
𝛾 ∈[0,1]

𝛾 : 𝑡 − 𝛾 ∈ Q(G1 ∪ G2 ∪ G𝑡 ,H)𝑑1,𝑑2 (CCD2𝐷𝑏
𝑑1,𝑑2

)

with the difference between CCD2𝐷𝑎
𝑑1,𝑑2

and CCD2𝐷𝑏
𝑑1,𝑑2

highlighted.

IP for Bézier Triangles. The IP formulation is

max
𝛾 ∈R

𝛾 : 𝒙1 (𝑢1, 𝑣1, 0)𝑥 − 𝛾 ∈ Q(G1 ∪ G2,H)𝑑1,𝑑2 (IP2𝐷
𝑑1,𝑑2

)

The IP objective has notably asymmetric dependence on 𝒙1. For
symmetric coverage, if the first application of the IP problem fails

to return a certificate, we apply the same IP problem again with
swapped parameters p𝑖 ↔ q𝑖 , v𝑖 ↔ w𝑖 .

NC for Bézier Triangles. Lastly, the sped up NC problem is

max
𝛾≥0 𝛾 : 𝐷2 (u) − 𝛾 ∈ Q(G1 ∪ G2 ∪ {𝑡 (1 − 𝑡)}, ∅)𝑑 . (NC2𝐷

𝑑
)

Again, we generate 1000 random {p𝑖 , q𝑖 , v𝑖 ,w𝑖 } configurations as
in § 5.1, with the modification that the length of 𝒅 is 1

3 ,
1
2 ,

1
1.625

for 𝑑𝜙 = 1, 2, 3 respectively. We choose these lengths to roughly
balance the number of IP and CCD cases.

Supplemental Table 1 shows a detailed breakdown of our culling
strategy compared to formulations from [Marschner et al. 2021].
Tolerances are 𝜖𝜆 = 𝜖𝑥 = 10−4, 𝜖𝛾 = 10−7 for flat and quadratic tri-
angles and 𝜖𝜆 = 𝜖𝑥 = 10−3, 𝜖𝛾 = 10−6 for cubic triangles. Speedups
are summarized in the first three rows of Table 1 and are as high as
338×.

Inconclusive Cases. The one inconclusive case from cubic spline
CD is correctly classified as non-collision if 𝜖𝛾 = 5 · 10−7. Similarly,
the two inconclusive flat triangle CD cases can be correctly certified
as non-collision with 𝜖𝛾 = 3 · 10−8. The 3 inconclusive cases from
quadratic triangle CD can be correctly classified as collisions if
𝜖𝜆 = 𝜖𝑥 = 2 · 10−3. These parameter choices would still maintain
that no cases are double-certified but would require careful selection
based on empirical data. We expect that in practice inconclusive
cases are inevitable and leave them for a robust collision response
method to handle.

5.3 CD on TCC
Our speedups allow us to tackle more complex problems like colli-
sion detection on TCC. Using notation from §5.1, two time-varying
TCCs are specified with {p𝑖 , q𝑖 , v𝑖 ,w𝑖 } indicating parameters of the
time-dependent cubic spline centerlines c1 (𝜉, 𝑡), c2 (𝜁 , 𝑡). The first
(second) TCC has radii interpolating linearly from 𝑙0 (𝑚0) to 𝑙1 (𝑚1)
w.r.t. 𝜉 (𝜁 ). Let G𝑏1 = {𝜉, 1 − 𝜉, 𝜁 , 1 − 𝜁 }, G𝑏2 = {𝜉 (1 − 𝜉), 𝜁 (1 − 𝜁 )},
G𝑐 = {𝑡 (1− 𝑡)} be the inequality sets constraining (𝜉, 𝜁 , 𝑡) ∈ [0, 1]3.
From Eq. 20 we read off equalities parameterizing two spheres of
linearly varying radius

H1 =

{
𝑥21 + 𝑦21 + 𝑧21 − ((1 − 𝜉)𝑙0 + 𝜉𝑙1)2,
𝑥22 + 𝑦22 + 𝑧22 − ((1 − 𝜁 )𝑚0 + 𝜁𝑚1)2

}
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and collision equalities

H2 = {c1 (𝜉, 𝑡) + [𝑥1, 𝑦1, 𝑧1]𝑇 − c2 (𝜁 , 𝑡) − [𝑥2, 𝑦2, 𝑧2]𝑇 }.
Combining these polynomials gives us the CCD problem:

max
𝛾 ∈[0,1]

𝛾 : 𝑡 − 𝛾 ∈ Q(G𝑏2 ∪ G𝑐 ,H1 ∪H2)𝑑1,𝑑2 . (CCD𝑇𝐶𝐶
𝑑1,𝑑2

)

Non-collision is certified by ensuring spline centerlines have a sep-
aration distance larger than the sum of their radii. Let 𝐷2 (𝜉, 𝜁 , 𝑡) =
∥c1 (𝜉, 𝑡) − c2 (𝜁 , 𝑡)∥22 be the squared distance between centerlines
and 𝑟2 (𝜉, 𝜁 ) = ((1−𝜉)𝑙0+𝜉𝑙1+(1−𝜁 )𝑚0+𝜁𝑚1)2 be the squared sum
of TCC radii. The NC problem is then just a feasibility problem—no
optimization variable is necessary:

𝐷2 (𝜉, 𝜁 , 𝑡) − 𝑟2 (𝜉, 𝜁 ) ∈ Q(G𝑏2 ∪ G𝑐 , ∅)𝑑 . (NC𝑇𝐶𝐶
𝑑

)
Finally, we use two different IP formulations.

max
𝛾 ∈R

𝛾 : 𝐷2 (𝜉, 𝜁 , 0) − 𝑟2 (𝜉, 𝜁 ) − 𝛾 ∈ Q(G𝑏1 , ∅)𝑑 (IP𝑇𝐶𝐶𝑎
𝑑

)

max
𝛾 ∈R

𝛾 : u𝑇 ®𝑟 − 𝛾 ∈ Q(G𝑏2 ∪ G𝑐 ,H1 ∪H2)𝑑1,𝑑2 (IP𝑇𝐶𝐶𝑏
𝑑1,𝑑2

)

where u = [𝜉, 𝜁 , 𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2]𝑇 is a vector of all variables in
the problem and ®𝑟 is a random vector. IP𝑇𝐶𝐶𝑏

𝑑1,𝑑2
is an application of

§4.1.3 to IP𝑇𝐶𝐶𝑎
𝑑

: by introducing six variables 𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2,
the objective drops from degree 8 to 1.

As in previous subsections, we perform 1000 random CD tests.
Spline centerlines are generated in the same way as §5.1. Radii 𝑙,𝑚
are sampled uniformly in the range [0, 0.2] + 0.01. Tolerances are
𝜖𝜆 = 𝜖𝑥 = 10−4. The NC problem only requires feasibility so no 𝜖𝛾
is needed. We were able to certify answers for all 1000 cases, with
459 NC, 210 IP, and 331 CCD cases. A more detailed breakdown
and runtimes are given in supplemental Table 2.

5.4 Rigid Body Motion CCD
The rigid body motion CCD problems described in §4.4 have ex-
ceptionally large degrees, making the application of our speedups
especially important.

Fig. 1 demonstrates the collision problem between a stationary
plane and various polynomial geometries moving along ScLERPTay
paths with Taylor approximation degree 1. For each of the geometry
types, we acheive a speedup by using a reformulated domain as de-
scribed in §4.1.2. The largest speedups come from combining pairs
of linear domain constraints involving the same variable into a sin-
gle quadratic constraint. For example, when colliding bicubic Bézier
patches, we use the inequalities G = {𝑡 (𝑡 − 1), 𝑢 (1 − 𝑢), 𝑣 (1 − 𝑣)},
where 𝑢, 𝑣 denote coordinates in the unit-square pre-image of the
patch. This exact formulation is not applicable to the pre-image of
Bézier triangles, so we instead use G = {𝑡 (𝑡 − 1), 𝑢, 𝑣, 1−𝑢 − 𝑣}. We
then apply the speedupmethod from §4.1.1, and achieve exact recov-
ery on all colliding examples tested with degree [𝑑1, 𝑑2] = [2, 1] for
linear triangle collisions and [𝑑1, 𝑑2] = [6, 2] for all other problems.
A detailed summary of these tests is presented in supplemental
Table 3.

The CCD problem between two rigidly moving bicubic patches is
the largest we consider. Even with our speedups applied, it is infea-
sible to use the ScLERPTay interpolation. Instead we use DQLERP,
which lowers the degree of the largest polynomial by 4. Since the
runtime of SOSP problems grow factorially with degree, this leads

to a large reduction in runtime. Before applying our speedups, the
problem on a DQLERP path is also infeasible—it runs out of mem-
ory with a largest SDP matrix of size 501 × 501. Our speedups
decrease this size to 158 × 158. Furthermore, we cull the number
of expensive patch-patch CCD problems by first computing CCD
between bounding ellipsoids for the two objects. We use ellipsoids
over alternatives such as axis aligned bounding boxes (AABBs)
since they provide a tighter bounding volume and better demon-
strate application of SOSP to collision detection. After applying
the bounding volume check to the experiment in Fig. 6, we only
need to solve 76 cases of patch-patch CCD, speeding up the over-
all computation time by 12.7×. For the ellipsoid-ellipsoid CCD
problem, we combine the 𝑡, 1 − 𝑡 constraints into a quadratic con-
straint. We also make use of §4.1.3 by introducing new variables
𝑦𝐴 and 𝑦𝐵 which are constrained to equal the denominators of the
interpolated point dual quaternions through equality constraints
{𝑦𝐴 −𝐷𝑣𝑡 ,𝐴 = 0, 𝑦𝐵 −𝐷𝑣𝑡 ,𝐵 = 0}. This changes the structure of the
problem, bringing the mixed degree needed to solve it from [2, 3]
to [2, 2] and decreasing the overall problem size. The results of this
test are summarized in Fig. 6.

6 CONCLUSION & FUTUREWORK
The speedups presented in this paper make problems formulated in
[Marschner et al. 2021] far more tractable. We apply these speedups
towards high degree collision detection problems and demonstrate
improved guarantees and runtime. We additionally enable collision
detection on tapered cubic cylinders and rigid trajectories through
a novel dual quaternion interpolation method.

In addition to further speedups, robust collision response meth-
ods are clearly necessary for high-order simulation. High-order
simulation will also require the ability to prevent self-intersection.
One approach may be to constrain the conveniently rational repul-
sive surfaces energy [Yu et al. 2021]. These challenges merit further
study to enable reliable high-order geometry processing.
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Figure 2: A comparison of the paths generated by different
DH1 interpolation methods, with one direction in the rota-
tion frame plotted at equally spaced t values along the paths.
The rotation angle and translation vary linearly over time in
the non-polynomial ScLERP path corresponding to a screw
motion. The ScLERPTay paths using approximation degree
1 and 3 have exactly linearly varying translation compo-
nents and are both much closer to the ScLERP path than the
DQLERP path is. Applying these paths to a point results in
Eq. 23 with the shown numerator and denominator degrees.
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Figure 3: Median runtimes (ms) over 40 cubic spline CCD
problems with different speedups applied. Case 0 is CCD1𝐷

4 .
Case A adds the constraint 𝛾 ∈ [0, 1]. Case B swaps G𝑎 for G𝑏 .
Case C uses mixed degree [𝑑1, 𝑑2] = [4, 3]. Pair cases combine
straightforwardly. Case ABC is CCD1𝐷

4,2 . Degree choices are
minimal while ensuring correctness. Notably, A has low ef-
fect relative to B or C. The total speedup is almost 4x.

Figure 4: Example of collision detection between two TCCs.
On the left, the TCC is visualized at 𝑡 = 0 (tail of arrows) and
𝑡 = 1 (head of arrows), showing the deformation due to the
spline centerline parameters varying linearly in time. On
the right, the first collision time is shown, with the earliest
collision marked by a red point.
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Figure 6: Two bicubic Bézier teapots are swept rigidly along a DQLERP trajectory. Their earliest collision state is shown
mid-sweep. Bounding ellipsoids are computed for each bicubic patch and are used to perform a culling step; the bounding
ellipsoids for which we find collisions are shown in red. In the last view, we show the patches that were not culled by the
ellipsoid CCD problem, each colored based on the time they first collide with any patch in the other teapot. Below, numerical
details accompanying the figure are shown. Out of (N) total CCD problems per geometry, we find (C) collisions. The Ellipsoid
CCD problem used for culling is much smaller and faster than bicubic patch CCD on DQLERP. Bicubic patch CCD reveals 52
collisions, though only 40 of those obtain exact recovery with 𝜖𝜆 = 10−4. Similarly to [Marschner et al. 2021], cases without
exact recovery are still correct by inspection and in all cases tested the optimal point provides a certificate of collision.

Figure 6: Two bicubic Bézier teapots are swept rigidly along a DQLERP trajectory. Their earliest collision state is shown
mid-sweep. Bounding ellipsoids are computed for each bicubic patch and are used to perform a culling step; the bounding
ellipsoids for which we find collisions are shown in red. In the last view, we show the patches that were not culled by the
ellipsoid CCD problem, each colored based on the time they first collide with any patch in the other teapot. Below, numerical
details accompanying the figure are shown. Out of (N) total CCD problems per geometry, we find (C) collisions. The Ellipsoid
CCD problem used for culling is much smaller and faster than bicubic patch CCD on DQLERP. Bicubic patch CCD reveals 52
collisions, though only 40 of those obtain exact recovery with 𝜖𝜆 = 10−4. Similarly to [Marschner et al. 2021], cases without
exact recovery are still correct by inspection and in all cases tested the optimal point provides a certificate of collision.
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