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Figure 1: We propose a method to synthesize physically realistic nonprehensile pregrasp motions. Our method automatically
discovers various strategies to leverage contacts with the surrounding environment and the hand

ABSTRACT
Daily objects embedded in a contextual environment are often un-
graspable initially. Whether it is a book sandwiched by other books
on a fully packed bookshelf or a piece of paper lying flat on the
desk, a series of nonprehensile pregrasp maneuvers is required to
manipulate the object into a graspable state. Humans are proficient
at utilizing environmental contacts to achieve manipulation tasks
that are otherwise impossible, but synthesizing such nonprehensile
pregrasp behaviors is challenging to existing methods. We present
a novel method that combines graph search, optimal control, and a
learning-based objective function to synthesize physically realis-
tic and diverse nonprehensile pre-grasp motions that leverage the
external contacts. Since the “graspability” of an object in context
with its surrounding is difficult to define, we utilize a dataset of
dexterous grasps to learn a metric which implicitly takes into ac-
count the exposed surface of the object and the finger tip locations.
Our method can efficiently discover hand and object trajectories
that are certified to be physically feasible by the simulation and
kinematically achievable by the dexterous hand. We evaluate our
method on eight challenging scenarios where nonprehensile pre-
grasps are required to succeed. We also show that our method can
be applied to unseen objects different from those in the training
dataset. Finally, we report quantitative analyses on generalization
and robustness of our method, as well as an ablation study.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0159-7/23/08. . . $15.00
https://doi.org/10.1145/3588432.3591528

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
Character animation, Dexterous manipulation, Robotics
ACM Reference Format:
Sirui Chen, Albert Wu, and C. Karen Liu. 2023. Synthesizing Dexterous
Nonprehensile Pregrasp for Ungraspable Objects. In Special Interest Group
on Computer Graphics and Interactive Techniques Conference Conference
Proceedings (SIGGRAPH ’23 Conference Proceedings), August 6–10, 2023, Los
Angeles, CA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3588432.3591528

1 INTRODUCTION
Manipulating objects with a dexterous multi-fingered hand is a key
human ability. In particular, humans are proficient at leveraging
environmental contacts to perform tasks that are otherwise im-
possible, utilizing nonprehensile manipulation, a strategy to move
objects without establishing a firm grasp first. For instance, when
removing a book from a densely packed bookshelf, one would pivot
the book outwards with one finger while keeping the book stabi-
lized with lateral environment contacts. Once sufficient area of the
book is exposed, the book can be picked up with a simple grasp
(Figure 1). This type of non-prehensile “pregrasps” is an essential
skill for operating in an ecological human living space in which
objects are often initially ungraspable due to occlusions by other
surrounding objects.

Replicating human-like nonprehensile manipulation is challeng-
ing to existing motion planning methods. The inclusion of environ-
mental contacts leads to combinatorial complexity in the number of
possible contact configurations, which is intractable to even state-of-
the-art motion planners. Moreover, it is difficult to define heuristics
for the purpose of trajectory optimization. Consequently, many
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papers in both the dexterous grasp generation literature (e.g., [Jiang
et al. 2021; Karunratanakul et al. 2020; Taheri et al. 2020]) and
the motion generation literature (e.g., [Zhang et al. 2021]) involve
motion generation through learning-based methods. Nevertheless,
the rich contact constraints in manipulation makes it difficult for
learning methods to produce physically realistic motions with no
interpenetrating or telekinetic interactions. The tradeoff between
computational efficiency and physical realism remains a major
hurdle in synthesizing manipulation motion.

In this paper, we propose a method to synthesize physically
realistic nonprehensile pregrasp motions that make ungraspable
objects in cluttered environments graspable. In particular, this is
achieved through leveraging contacts with the surrounding envi-
ronment and the hand. Our key observation is that, for any object
placed in the environment, at most two finger contacts are necessary
for nonprehensile pregrasp since there exist at least one external
contact point which collectively achieves wrench closure with the
two finger contacts. This significantly reduces the search space of
our motion synthesis problem, and allows us to formulate pregrasp
planning as a reasonably sized mixed-integer optimization problem.
Under this observation, our method solves for sequences of at most
two contact points on the object by formulating a combination of
discrete graph search and trajectory optimization.

Defining an exact metric for “graspability” during the pregrasp
phase is not trivial. The obvious goal in this phase is to expose
the surface of the object, but it has to be done in such a way that
the finger contacts during the pregrasp phase can be fluidly tran-
sitioned to a firm grasp later. As such, the graspability we would
like to maximize depends on the current state of the object, the
environment, the fingers that have established contact points and
the fingers that are still free of contact. To define a generalizable
metric without relying on heuristics, we learn a general metric
of “graspability” through a dataset of dexterous grasps in various
scenarios. Using this metric, we perform particle-based trajectory
optimization in a physics-based simulator. This allows our method
to efficiently discover trajectories that are certified to be physically
feasible by the simulation.

We demonstrate our method on eight challenging scenarios
where nonprehensile manipulation is required to successfully grasp
the object. Our method is able to discover diverse strategies that
successfully completes the grasping tasks while satisfying physical
constraints. We compare our method to kinematic-based motion
generation( [Zhang et al. 2021]) and show the motions generated
by our method is visually superior with no hand-object interpene-
tration or telekinetic interaction.

2 RELATEDWORK
Manipulating objects with a dexterous hand is a long-standing
research challenge that interests both the graphics and robotics
communities. In this section, we review literature on physically
plausible manipulation planning.

2.1 Dexterous manipulation without
environmental interaction

Due to the increased complexity when considering physical laws,
many existing contributions assume either that manipulation tasks

are done in free space, or that the hand-object interaction is the
only relevant interaction. We review two of the most discussed
manipulation tasks in this domain.

2.1.1 Dexterous Grasping. Grasping describes the task of gener-
ating hand and finger configurations to firmly holds an object of
interest. To synthesize grasping motion analytically, some works
leverage motion data to design control laws [Pollard and Zordan
2005], compute contact interactions [Kry and Pai 2006], and formu-
late optimization problems [Zhao et al. 2013]. Other works assume
the object trajectory is known and use it as a basis to synthesize
hand motion through trajectory optimization [Gleicher 1998; Liu
2009; Ye and Liu 2012]. Additionally, physics-inspired grasp metrics,
such as matching geometry [Li et al. 2007], wrench closure and
no collision [Ciocarlie and Allen 2009; Ferrari and Canny 1992;
Pokorny and Kragic 2013], are commonly applied in these works.
More recently, advances in deep generative models(e.g., [Goodfel-
low et al. 2014; Sohn et al. 2015]) has given rise to learning-based
grasp-generation methods for different object geometries [Jiang
et al. 2021; Lu et al. 2020; Lundell et al. 2021; Mandikal and Grauman
2021; Romero et al. 2017; Shao et al. 2020; Taheri et al. 2020], some
of which also ensures physics feasibility and stability of the grasp
[Christen et al. 2022; Wu et al. 2022]. The common limitation of
these methods is that they only produce grasps for non-occluded
object in free space. We note that there is another branch in the
grasping literature, often dubbed as “grasping in clutter” or “bin
picking,” which studies cluttered-scene object picking with simple
grippers. As these works seldom use a dexterous hand, we excluded
them from our review.

2.1.2 In-hand manipulation. In-hand manipulation seeks to move
an object in a dexterous hand to a desired pose relative to the hand,
using only the hand itself. In recent years, in-handmanipulation has
become a popular task in the robotics community as a benchmark
for challenging physical interaction. Mordtach and colleagues [Mor-
datch et al. 2012] formulate in-hand manipulation as a trajectory
optimization problem with hand-object contact constraints. More
recently, reinforcement learning using physics-based simulation
has been applied to reorienting objects [Andrychowicz et al. 2020;
Chen et al. 2022; Qi et al. 2022] and solving a Rubik’s cube [Akkaya
et al. 2019]. The complexity of in-hand manipulation originates
from the hand-object interaction. Environment contacts do not
need to be considered in this task.

2.2 Extrinsic dexterity: dexterous
manipulation without environmental
interaction

Nonprehensile manipulationwith extrinsic dexterity [Lynch andMa-
son 1999] aims to utilize external contact forces from environment.
This is especially useful for manipulating objects in cluttered space
and greatly expands the scope of possible actions. For instance,
extrinsic dexterity may facilitate downstream tasks by exposing
previously occluded parts of an object in clutter [Serhan et al. 2022].
Common strategies that rely on external contact interactions in-
clude pushing, pivoting and tilting [Aiyama et al. 1993; Eppner et al.
2015]. Among these strategies, pushing has been most extensively
investigated. Researchers have explored how to manipulate objects
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on a two-dimensional plane with up to two active contact points
applied from a robot [Arruda et al. 2017; Lee et al. 2015; Lowrey
et al. 2018; Serhan et al. 2022; Woodruff and Lynch 2017]. Pivot-
ing has also been used in robotics for robot to grasp objects that
are initially not graspable [Sun et al. 2020; Zhou and Held 2022].
Combining those primitives, [Eppner and Brock 2015] proposed a
graph-based planner for a single DoF dexterous hand to grasp ob-
jects. However, general non-prehensile manipulation requires more
complex motion planning and often resorts to sampling-based plan-
ner [Pollayil et al. 2021]. Nevertheless, all these works use either
a fixed-geometry manipulator, simple parallel jaw grippers or un-
deractuated multi-finger hand. Motion synthesis for fully actuated
dexterous hand is more challenging because both finger movement
planning and grasp generation become much more complex. To
the best of our knowledge, no existing work is capable of gener-
ating physically plausible motion sequences for a fully actuated
multi-fingered dexterous hand using extrinsic dexterity.

3 PRELIMINARY
Before describing our method, we first formally define the “fea-
sibility” of a grasp. A grasp is represented by at most five con-
tact points on the object surface, corresponding to five finger tips:
[𝒑1,𝒑2,𝒑3,𝒑4,𝒑5]. A feasible grasp needs to be both dynamically
and kinematically feasible [Wu et al. 2022].

Dynamic feasibility requires each finger tip to apply a minimal
normal force 𝑓min on the object while maintaining zero net wrench.
This is referred to as wrench closure [Miller and Allen 2004]. Mean-
while, the contact force applied on each contact point must be
bounded within the friction cone specified by the friction coeffi-
cient `. To summarize, the two requirements for a dynamically
feasible grasp are:

min
𝒇
∥

5∑︁
𝑖=1

𝒇 𝑖 ∥22 + ∥
5∑︁
𝑖=1

𝒑𝑖 × 𝒇 𝑖 ∥22 = 0,

subject to 0 < 𝑓min < −𝒇 𝑖 · �̂�𝑖 ,∀𝑖 ∈ {1, · · · , 5}
|𝒇 𝑖 · �̂�𝑖, 𝑗 | ≤ `𝒇 𝑖 · �̂�𝑖 ,∀𝑖 ∈ {1, · · · , 5},∀𝑗 ∈ {1, 2}

where 𝒇 𝑖 is the contact force at the contact point 𝒑𝑖 and �̂�𝑖 is the
surface normal at the contact point. �̂� 𝑗 ,∀𝑗 ∈ {1, 2} are orthogonal
basis vectors used to approximate the projection of the friction
cone. If the above constrained quadratic optimization problem can
be solved with zero optimal value, the grasp is dynamically feasible.

Kinematic feasibility requires the contact points to be reachable
by the dexterous hand. Such reachability can be confirmed by solv-
ing the inverse kinematics problem for the given contact points.

4 METHOD
We introduce a method to synthesize nonprehensile manipulation
given the point cloud of the object of interest O, the environment
state relative to the initial object pose S0, the learned score function
𝑓\ : (𝒑1,𝒑2,S,O) ↦→ R, and the learned grasp generator 𝑔𝜙 :

(𝒑1,𝒑2,O) ↦→ (𝒑1,𝒑2,𝒑3,𝒑4,𝒑5). The initial environment state
S0 is represented as a signed distance function (SDF) from the point
cloud of the object to its surrounding. 𝒑𝑖 , 𝑖 = 1 · · · 5 indicates the
position of the five fingertips of an anthropomorphic hand, ordered

from the thumb to the little finger and represented in the object
coordinate frame. Given the object state, the thumb’s and the index
finger’s locations on the object, the score function 𝑓\ evaluates how
likely such a two finger contacts may lead to a feasible grasp. With
the same finger contact locations, the grasp generator 𝑔𝜙 , which
is the decoder of a conditional variational autoencoder (CVAE),
predicts the best locations for the other three fingers. 𝑓\ and 𝑔𝜙 are
produced by an offline training process described in Section 4.3.

Our method consists of three steps: 1) Construct the contact
state graph; 2) Optimize dynamically feasible contact trajectories
and the object trajectory for nonprehensile manipulation; and 3)
Synthesize animation. We first construct a contact state graph G
based on the input object O, the initial environment SDF S0, and
the learned score function 𝑓\ . Since at most two finger contacts
are required to achieve nonprehensile pregrasp, we can efficiently
optimize contact trajectories of the thumb and the index finger on
the contact state graph via a sampling-based optimization process.
We take a learning approach to define optimality that rewards the
hand to manipulate the object into a graspable configuration in a
cluttered environment, subject to dynamic constraints. Finally, we
solve a sequence of inverse kinematic (IK) problems to produce the
animation of a dexterous hand, conditioned on the fingertip contacts
and the object motion produced by the previous step. Figure 2 gives
an overview of our method.

4.1 Contact state graph
Given an object point cloud O and an initial environment SDF S0,
we construct a contact state graph G to encode the relationships be-
tween different different regions of the object surface. G allows our
method to efficiently explore the rich hand-object contact behaviors
with optimization (Section 4.2).

Algorithm 1 summarizes the process of constructing the con-
tact graph G. We first approximate the object surface by fitting a
mesh containing 30 to 50 triangles to O via an off-the-shelf mesh
simplification algorithm [Garland and Heckbert 1997]. Since we
only need to consider the thumb and the index finger thanks to
external contacts, we define each node in G as 𝒗 = (T 1,T 2). T 1

and T 2 are the triangles in the mesh that the thumb and the index

ALGORITHM 1: Building contact state graph
Input: Object point cloud O; SDF of environment obstacles S0
M ←− create_mesh(O)
Vall ←− ordered_triangle_pairs(M)
S𝑐 ←− calc_nodal_score_in_context(Vall, 𝑓\ )
S𝑛 ←− calc_nodal_score_no_context(Vall, 𝑓\ )
# Remove low scoring nodes
V𝑐 ←− select_top_M(S𝑐 ,Vall)
V ←− V𝑐 ∪ select_top_M(S𝑛,Vall)
# Connect nodes with edges
E ←− ∅
for 𝑢, 𝑣 in V do

if T1
𝑢 = T1

𝑣 or T2
𝑢 = T2

𝑣 then
E.add(𝑢, 𝑣)

end
end
G ←− {V, E}
Output: Nodes for initial state V𝑐 ; Contact state graph G
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Figure 2: An overview of our pipeline. Using plate grasping as an example, (a)-(e) illustrate the steps. (a) Input point cloud. (b)
Contact state graph. (c) Thumb and index fingertip motion, as well as object motion obtained from the trajectory optimizer.
(d) A full grasp generated conditioned on the last frame of the trajectory. (e) Resulting hand motion after the IK process.

finger are in contact with respectively. Because many of the triangle
pairs are not ideal contact locations for nonprehensile pregrasp,
we use the learned score function 𝑓\ to prune G and only keep
the high-scoring nodes. For each node 𝒗, we compute a score 𝑠𝑐
that approximates the success likelihood of the node within the
context of the environment, and a score 𝑠𝑛 that does not consider
the environment:

𝑠𝑐 = 𝑓\ (𝒑1,𝒑2,S0,O′); 𝑠𝑛 = 𝑓\ (𝒑1,𝒑2, ∅,O), (1)

where O′ is a subset of O with occluded points removed.
We sample five fingertip locations within T 1 and T 2 associated

with 𝒗 for each of the three scenarios: thumb-only contact, index-
finger-only contact, and two-finger contact. We query 𝑓\ for these
15 fingertip placements and compute the average 𝑠𝑐 and 𝑠𝑛 for 𝒗. If
either 𝑠𝑐 or 𝑠𝑛 is within the top𝑀 percentile among all nodes, we
include 𝒗 in G. If 𝑣 is selected due to a high 𝑠𝑐 , we put it in a subset
of selected nodes calledV𝑐 . This subset of nodes will be used for
the initial contact state in the optimization process (Section 4.2).

Each edge of G represent a feasible contact state transition. To
prevent both fingers from simultaneously changing contact loca-
tions, we only connect two nodes by an edge if they share either T 1

or T 2. Each node also connects to itself to allow for consecutive
unchanged contact states. This is illustrated in Figure 3.

4.2 Trajectory optimization
Once G is constructed, the next step is to search for optimal trajec-
tories for the thumb contact, the index-finger contact, and the 6D
pose of the object such that a wrench-closure grasp using all five
fingers can be achieved successfully at the end. The optimization
is a double-loop iterative process. The outer loop solves a discrete
path planning problem while the inner loop solves a continuous
optimal control problem. Algorithm 2 shows the detailed procedure
of this optimization.

A path is a sequence of 𝑁 nodes connected by edges on G. It
determines the 𝑁 contact stages of the animation. Since the object
is positioned in the context of the environment initially, we restrict
the first node of each path to be a node in the subset V𝑐 . The
remaining 𝑁 − 1 nodes can be any node on G. The score of a path

Figure 3: Different types of connectivity between nodes in
the contact graph.

is computed by accumulating the score at each contact stage:

𝑠𝑝 = 𝑠𝑐 (𝒗1) +
𝑁∑︁
𝑖=2

𝑠𝑛 (𝒗𝑖 ), (2)

where 𝑠𝑐 and 𝑠𝑛 are overloaded to indicate functions that return the
respective score of the input node. Using Equation 2, we compute
the scores for all possible paths and sort the paths by their scores
from high to low.

The outer loop of the optimization iterates over the sorted list
of paths until a successful trajectory is found by the inner loop.
For each given path (𝒗1, · · · , 𝒗𝑁 ), the inner loop solves for contact
locations of the fingertips subject to staying within the triangles
associated with the nodes in the path. Formally, we optimize the
state variable 𝒙𝑖 = (𝒑1

𝑖
,𝒑2
𝑖
, 𝑏1
𝑖
, 𝑏2
𝑖
) where 𝑖 = 1 · · ·𝑁 , and the con-

trol variables 𝒖𝑡 = (𝒑1
𝑡 ,𝒑

2
𝑡 ) where 𝑡 = 𝐾 · 𝑁 . 𝒑1

𝑖
and 𝒑2

𝑖
are the

thumb position and the index-finger position in the object coordi-
nate frame at contact stage 𝑖 . To distinguish between thumb-only,
index-finger-only, or two-finger contact scenarios, we define binary
variables 𝑏1

𝑖
and 𝑏2

𝑖
to indicate whether the respective finger is in

contact with the object at contact stage 𝑖 . We use a proportional
derivative-like control scheme to control the contact forces exerted
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by the fingers on the object: 𝒇 = −𝑘 (𝒑 𝑗 − 𝒑 𝑗 ), where 𝑘 = 50 is a
predefined coefficient. 𝒑 𝑗 and 𝒑 𝑗 are the current fingertip location
and its target location. We define the control variables (𝒑1

𝑡 ,𝒑
2
𝑡 ) as

the target locations of the thumb and the index fingertip in the
world coordinate frame at frame 𝑡 . Because the contact forces tend
to change at a higher rate than the contact locations, we allow the
control variables to change 𝐾 times within each contact stage.

The objective function of the inner optimization is as follows:

L(𝒙1:𝑁 , 𝒖1:𝐾𝑁 ) =
𝑁∑︁
𝑖=𝑖

𝑓\ (𝒑1
𝑖 ∧ 𝑏

1
𝑖 ,𝒑

2
𝑖 ∧ 𝑏

2
𝑖 ,S𝑖 ,O

′
𝑖 ), (3)

where we use 𝒑 ∧ 𝑏 to denote “𝒑 if 𝑏 is true, ∅ otherwise.” Note
that the environment SDF S𝑖 depends on the object pose and is
essentially a function of 𝒙 and 𝒖 via physics simulation.We compute
S𝑖 as the environment SDF corresponding to the object pose at the
beginning of contact stage 𝑖 . Similarly, we remove occluded points
from O to form O′

𝑖
based on the object pose at the beginning of

contact stage 𝑖 .
To ensure the contact locations staying within the boundary of

the given triangles, we use barycentric coordinates to parameterize
𝒑1 and 𝒑2. To further ensure the physical plausibility of the finger
motion, a finger can only change its location after it is detached
from the object in the previous contact stage. For example, 𝑏2

𝑖−1
must be false for the index finger to change the location at contact
stage 𝑖 . This additional constraint prevents fingers from jumping
instantaneously from one location to another.

We use a sampling-based optimizer, MPPI [Williams et al. 2017]
since gradient-based optimization algorithms tend to be stuck in
local minima when solving contact-rich control tasks [Suh et al.
2022]. After solving each trajectory optimization problem, we query
the grasp generator 𝑔𝜙 to complete a five-finger grasp based on the
final locations of thumb and/or the index fingertips, as well as the
object point cloud:

(𝒑1,𝒑2,𝒑3,𝒑4,𝒑5) = 𝑔𝜙 (𝒑1
𝑁 ,𝒑

2
𝑁 ,O) (4)

There are three possible outcomes during the nonprehensile manip-
ulation phase: 1) only thumb is in contact, 2) only index finger is in
contact 3) both thumb and index finger are in contact. [100,100,100]
is used as a invalid token if a finger is not in contact. Lastly, we test
whether a force-closure grasp can be formed by any combination of
the three finger contacts from the set (𝒑1

𝑁
, 𝒑2

𝑁
, 𝒑3, 𝒑4, 𝒑5). Since

𝑔𝜙 is the decoder of a CVAE, we sample the latent space 20 times
to generate 20 different grasps. If any one of them is feasible, we
exit the outer loop and the optimization is complete.

4.3 Grasp generator and score function
Grasp generator: We train the grasp generator, 𝑔𝜙 , as three condi-

tional variational autoencoders (CVAE). Once trained, the decoder
is used to predict the contact locations for the middle, ring, and little
fingers conditioned on the initial contact locations of the thumb
and/or the index finger, as well as the object point cloud expressed
in the object coordinate frame (Figure 4). The training data for the
grasp generator is a synthetic dataset of feasible grasps of various
objects in different environmental contexts. We create the dataset
using the YCB object set [Calli et al. 2015]. For each object, we
first manually define 3 feasible grasps as seed grasps. For each seed

Figure 4: Overviewof the graspCVAEand the score function.

grasp, we perturb the finger contact locations and check whether
the perturbed grasp is still both kinematically and dynamically
feasible. If so, the perturbed grasp becomes a new seed grasp and
added to the dataset. The process repeats until sufficient feasible
grasps are generated for this object.

Score function: Given the thumb and the index finger contact lo-
cations, the environment SDF, and the object point cloud expressed
in the object coordinate frame, we train a Multilayer Perceptron
(MLP), 𝑓\ , to evaluate how likely the two finger contacts will lead
to a successful feasible grasp (Figure 4). We use PointNet++ [Qi
et al. 2017] to encode the input point cloud and the SDF. The output
encoding is concatenated with the contact locations of the thumb
and the index finger to form the input of the MLP. We leverage the
grasp generator to create the labels for our training data. For each
data point, we first randomly select one or two contact points on
the object which are allocated as thumb and/or index finger contact
location. Conditioned on these contact points, we sample the latent
space of the corresponding grasp generator 𝑃 times to complete 𝑃
grasps. We then check the feasibility of the 𝑃 grasps and assign the
label as “the ratio of the number of feasible grasps to 𝑃 .”

ALGORITHM 2: Pregrasp nonprehensile manipulation optimiza-
tion

Input: Contact state graph G; Initial nodes V𝑐 ; Path length 𝑁
P ←− all_paths_from_graph(V𝑐 , G, 𝑁 )
# Compute path score
SP ←− ∅
for 𝑽path in P do

𝑠𝑝 ←− 𝑠𝑐 (𝑣1) +
∑𝑁
𝑖=2 𝑠𝑛 (𝑣𝑖 )

SP.add(𝑠𝑝 )
end
Psorted ←− sort_by_score(P, SP )
# Solve Trajectory Optimization
for 𝑽pathinPsorted do

# Do MPPI trajectory optimization
(𝒙∗1:𝑁 , 𝒖

∗
1:𝐾𝑁 ) ←− MPPI_optimization(𝑽path, 𝑓\ )

# Generate grasp with grasp generator
O, (𝒑1

𝑁
, 𝒑2
𝑁
) ←− simulate(𝒙∗1:𝑁 , 𝒖

∗
1:𝐾𝑁 )

𝒑1:5 ←− 𝑔𝜙 (𝒑1
𝑁
, 𝒑2
𝑁
, O)

if 𝒑1:5 is feasible then
break

end
end
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4.4 Hand motion synthesis
Given the finger contact trajectories and the object trajectory from
the previous step, we solve an inverse kinematics (IK) problem to
obtain the detailed hand pose for each frame of the final anima-
tion. We frame the IK problem as an optimization with an objective
function that (1) ensures the fingertips of the hand satisfy the con-
tact trajectories, (2) avoids collisions with the other objects in the
environment and self-collision with the hand, and (3) encourages
smoothness in the kinematic trajectory.

The solution to such a nonconvex optimization is very sensitive
to the initial guess. A typical strategy is to solve the IK problem
frame-by-frame in chronological order, so the decision variables of
the current frame can be initialized with the solution from the pre-
vious frame for increaseed motion continuity. However, we found
that using a reverse chronological order, multi-layered strategy to
solve the animation frames results in higher quality animation. We
first solve IK for the𝑁 +1 “keyframes”, which include the first frame
of each contact stage and the last frame of the animation. Once all
keyframes are solved, we can interpolate the hand poses to create
initial guesses for the in-between frames. The key frames are solved
in a reverse chronological order such that the current keyframe’s
optimization is initialized with the solution of the optimizating for
the next keyframe in the optimization. This is because the final
keyframe involves all five fingers, resulting in a more constrained
IK problem than keyframes earlier in the animation sequence. In
practice, the IK almost always solved. If the IK solver fails after
multiple attempts, we make a slight compromise on quality and
manually loosen the optimization’s constraint tolerances, such as
those for avoiding collision and matching desired contact locations.

5 EVALUATION
We evaluate our method qualitatively by demonstrating a rich and
diverse set of synthesized hand animations. We also provide quan-
titative analysis on our method’s robustness, generalizability, and
ablations. Finally, we compare with the most relevant method in lit-
erature, ManipNet[Zhang et al. 2021]. We use a five-finger Shadow
Hand model with 28 degrees of freedom (22 joints and 6𝐷 wrist
pose) in our implementation. Our approach can be applied to other
hand models as long as all relevant training is done with the new
hand model. We use PyBullet [Coumans and Bai 2016] for physics
simulation and MPPI [Williams et al. 2017] for trajectory optimiza-
tion. Inverse kinematics problems are solved using the collision-free
IK Module in Drake [Tedrake et al. 2019], which uses [Gill et al.
2005] as the backend optimizer.

5.1 Motion quality and diversity
We design eight diverse scenarios to test our method, including (1)
adjacent books on a bookshelf, (2) a ruler lying flat on the edge of a
table, (3) a computer keyboard and (4) a flat cardboard placed on a
shelf against a wall, (5) a dinner plate and (6) a food container placed
on a the table, (7) a densely packed spice rack, and (8) a marker
stored in a pencil box. We show that in all scenarios, our method is
able to synthesize natural and physically plausible nonprehensile
pregrasps to manipulate the objects into a graspable configuration.
We observe four distinct strategies used by the dexterous hand:
(1) repositioning the object to expose the bottom surface (ruler,

cardboard), (2) pivoting the object against its surroundings (marker,
keyboard, book, spice bottle), (3) utilizing finger friction (food con-
tainer), and (4) utilizing geometric features (plate). Figure 5 and the
supplemental video show animations of our results.

To further demonstrate the diversity of motions generated by our
method, we showcase some scenarios where multiple successful
pregrasp strategies exist. By searching over more paths on the
contact graph instead of exiting upon the first successful path as in
2, our method is able to generate visually and functionally different
manipulation strategies. Figure 6(a) and 6(b) show two different
ways to pick up the cardboard: one uses the index finger to pull the
cardboard outward, while the other one uses the thumb. Changing
the surrounding of the object can also result in different strategies.
If the keyboard is placed near the backboard of the shelf, the hand
will push the keyboard against the backboard to pivot it up (Figure
6(c)). If the keyboard is placed near the edge of the shelf, the hand
will lift the keyboard from the corner that is fully exposed.

5.2 Quantitative evaluation of algorithms
We define two metrics to evaluate our method. Based on these two
metrics, we analyze the generalizability of our method to unseen
objects and conduct ablation studies on the design of score function.

Grasp success rate Feasibility of the grasp generated by the
grasp generator is the most critical indicator of the success of our
method. A feasible grasp must satisfy both dynamic and kinematic
constraints (Section 3). Since we use a sampling-based grasp gener-
ator (i.e. a CVAE), we compute the grasping success rate 𝑟suc based
on the first feasible path. 𝑟suc is defined as the ratio between the
number of feasible grasps and the total number of samples (20 in
our implementation) drawn from the latent space.

Number of paths attempted: The sampling-based optimizer
may need to sample multiple candidate contact paths before a feasi-
ble one is found. The number of paths attempted is another metric
to measure the efficiency of our algorithm. For each candidate path,
we test a set of 20 grasps generated by different latent space sam-
ples of the grasp generator. If there exists one feasible grasp, the
path is considered successful. The total number of paths attempted
to obtain a feasible grasp is denoted as 𝑁paths.

We evaluate 𝑟suc and 𝑁paths on all eight scenarios in Figure 5
and report the results in Table 1. The results demonstrate that our
grasp generator can reasonably predict full grasp condition on final
object pose and thumb and index finger contact location with high
success rate. All tasks are completed within 20 minutes of runtime
on a desktop computer with Intel i9-9900K and NVIDIA RTX2080.

5.3 Generalization to unseen objects
Since our method contains learning-based components trained on
a dataset of objects, it is crucial to demonstrate generalizability
to unseen objects. All eight aforementioned scenarios were tested
with unseen objects not included in the YCB training dataset. In
addition, we evaluate the method on two nonconvex objects. For
those objects that can be reasonably approximated by their convex
hulls, such as a paper roll and a cookie jar, our method can success-
fully synthesize physically plausible motions. However, for highly
non-convex objects, our current implementation is limited by two
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𝑟suc and 𝑁path of all tasks
Bookshelf Plate Marker Ruler

𝑟suc 0.917(0.058) 0.800(0.050) 0.933(0.058) 0.817(0.144)
𝑁path 1.667(1.155) 1.667(1.155) 3.667(2.082) 3.333(1.528)

Waterbottle Food container Keyboard Cardboard
𝑟suc 0.850(0.180) 0.733(0.340) 0.817(0.076) 0.800(0.229)
𝑁path 3.000(1.732) 2.000(1.000) 1.667(0.577) 1.333(0.577)

Table 1: Quantitative result of all environments. Means and
standard deviations are obtained from 3 experiments. Com-
putational budget is 10 paths.

components that requires convexity: the mesh reconstruction al-
gorithm, and the collision avoidance objective in Drake’s IK solver
(Figure 9). More failures and limitations are in our video.

We also evaluate generalizability across object size scaling using
𝑟suc and 𝑁paths as metrics. Table 2 shows that our method could
perform reasonably well with different scale of object in Keyboard
environment. In more challenging Bookshelf environment, chang-
ing object scale may affect object’s physics property such as center
of mass and accessibility, causing performance fluctuation.

𝑟suc and 𝑁path of different scales
Bookshelf keyboard

scale(x,y,z) 𝑟suc 𝑁path 𝑟suc 𝑁path
[1,1,1] 0.917(0.058) 1.667(1.155) 0.816(0.076) 1.667(0.577)
[0.5,1,1] 0.967(0.029) 1.000(0.000) 0.683(0.126) 1.333(0.577)
[1,0.5,1] NA∗ NA∗ 0.816(0.104) 2.333(1.155)
[1,1,0.5] 0.833(0.104) 1.667(0.577) 0.900(0.050) 2.333(1.528)
[1,1,0.02] 0.500(0.071)∗ 2.000(1.414)∗ 0.800(0.218) 3.000(2.000)

Table 2: Results of various object sizes. Means and standard
deviations are obtained from 3 optimizations. Computation
budget is 10 paths. * indicates the algorithm occasionally
failed within budget. NA∗ means all 3 executions failed.

5.4 Ablation on score function design
We perform an ablation study on the design choice of the score
function. We evaluate two variants of the score function: 1) No SDF:
only use positions of the points on the object surface as input to the
point cloud encoder; 2) No Shape: only use signed distance values
as input to the point cloud encoder. We compute 𝑟suc and 𝑁paths
on these two variants using the plate and the marker examples. 3
shows that having both SDF and object shape information is crucial
for accurately assessing the score of a grasp.

5.5 Ablation on different orders of solving IK
We compare solving sequential IK in a forward and reverse order.
It shows that the reverse order achieves better consistency (Figure
7). Solving IK in a forward order results in palm flipping abruptly
because the IK solver cannot foresee the next grasping pose.

𝑟suc and 𝑁path of score function variants
Plate Food container

𝑟suc 𝑁path 𝑟suc 𝑁path
Ours 0.800(0.050) 1.667(1.155) 0.733(0.340) 2.000(1.000)
No SDF 0.583(0.058) 5.333(2.887) 0.450(0.436) 2.667(1.528)
No pretrain 0.400(0.132) 6.333(1.155) NA NA

Table 3: Result of the ablation study. Means and standard
deviations are obtained from 3 experiments. Computational
budget is 10 paths. NA denotes infeasible with budget.

5.6 Comparison with ManipNet
Due to the lack of literature on non-prehensile manipulation for
dexterous hand, we compare our method with the state-of-the-
art, kinematics-based method, ManipNet [Zhang et al. 2021], in
a scenario similar to the spice rack example. We pick this exam-
ple because ManipNet is trained on grasping objects with similar
cylinder shapes. In experiment, the object and wrist trajectory is
obtained from running our method as ManipNet assumes this infor-
mation as input. Figure 8 shows that, despite the ability to sense the
manipulated object, ManipNet attempts to grasp the bottle with-
out considering the surrounding objects. This results in significant
finger-object interpenetration. In contrast, our method pulls out
then grasps the bottle while avoiding collision with other objects.
While the comparison may arguably be more fair if ManipNet was
trained with similar context, recording training data that covers all
possible surroundings for all different objects is impractical. This
makes ManipNet difficult to extend to contextual environments.

6 CONCLUSIONS
We propose a physics-based method for synthesizing nonprehensile
pregrasp animations that grasp an initially ungraspable object. Our
method leverages extrinsic dexterity and uses a learned function
to evaluate the “graspability” of an object in the context of the
environment. We show that our method is capable of discovering
a diverse set of pregrasp strategies and producing realistic and
physically plausible hand and object motions.

7 LIMITATIONS
Our method has a number of limitations. First, the duration of con-
tact stages is predefined and may lead to unnatural behaviors in
some scenarios. Nevertheless, optimizing the timing of pregrasp
behaviors is possible once motion data is available. Our approach is
also limited to grasping rigid object as the contact graph construc-
tion assumes the distances between triangles on the mesh are fixed.
Furthermore, the point contact assumption in this work makes
two-finger grasps unstable and challenging to achieve. A potential
extension is to incorporate other contact points, such as the palm
and the knuckles, for exploring different grasp strategies. Lastly,
our pipeline is limited by a number of implementation choices.
Currently, it cannot manipulate nonconvex objects that are poorly
approximated by their convex hulls due to the selected mesh recon-
struction method and IK solver. Improving the implementation can
remove the convexity requirement and speed up the pipeline.
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Figure 5: Results of our method in different scenarios
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Figure 6: (a), (b) are of same configuration. (c), (d) are different. Keyboard in (c) is closer to the wall, in (d) it is closer to the
edge.

Figure 7: Comparison of normal and reverse order of solving IK.
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Figure 8: Comparison with ManipNet on spice rack.

Figure 9: Performance of our method on nonconvex objects.
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