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Figure 1: We present a method to simplify geometry while preserving targeted bandwidths in a customizable spectral domain.

The input to our algorithm is a generalized spectral domain, a combination of spectral bands from multiple discrete Laplacian

operators. Our method includes a simple łliftingž operator to enable the workflow shown on the right. The example shows

diffusion distances over a tetrahedral mesh of an engine part with 20 small holes that are preserved. Removing 80% of the input

simplices, and seeking to preserve topology (lower portion of the spectrum), leads to some visible differences with respect to

the ground truth but the quantitative comparisons indicate low error (≈ 3.6𝑒 − 7, shown in the supplemental material).

ABSTRACT

Many computational algorithms applied to geometry operate on

discrete representations of shape. It is sometimes necessary to first

simplify, or coarsen, representations found in modern datasets for

practicable or expedited processing. The utility of a coarsening

algorithm depends on both, the choice of representation as well as

the specific processing algorithm or operator. e.g. simulation using

the Finite Element Method, calculating Betti numbers, etc. We pro-

pose a novel method that can coarsen triangle meshes, tetrahedral

meshes and simplicial complexes. Our method allows controllable

preservation of salient features from the high-resolution geometry

and can therefore be customized to different applications.

Salient properties are typically captured by local shape descrip-

tors via linear differential operators ś variants of Laplacians. Eigen-

vectors of their discretized matrices yield a useful spectral domain

for geometry processing (akin to the famous Fourier spectrum

which uses eigenfunctions of the derivative operator). Existing

methods for spectrum-preserving coarsening use zero-dimensional

discretizations of Laplacian operators (defined on vertices). We

propose a generalized spectral coarsening method that considers

multiple Laplacian operators defined in different dimensionalities
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in tandem. Our simple algorithm greedily decides the order of con-

tractions of simplices based on a quality function per simplex. The

quality function quantifies the error due to removal of that simplex

on a chosen band within the spectrum of the coarsened geometry.
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1 INTRODUCTION

Discrete representations of shape are ubiquitous across computer

graphics applications. Meshes are specific instances of general ab-

stractions called simplicial complexes. While the vertices of a mesh

are commonly embedded (have explicit coordinates) in 2D or 3D,

simplicial complexes capture abstract relationships between nodes ś

as extensions of graphs by including 3-ary (triangles), 4-ary (tetrahe-

dra) and higher dimensional-relationships.We develop an algorithm

to coarsen simplicial complexes of arbitrary dimensionality.

The choice of discretization has a profound impact on down-

stream applications that operate on the geometry, both in terms

of efficiency as well as numerical stability. Simplification schemes
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are used to reduce the number of discrete elements while preserv-

ing quality. Quality can be defined either in terms of aesthetic

appeal (direct rendering, visualization, etc.) or functionally (finite

element simulation, topological data analysis, geometry processing

algorithms, etc.). We focus on the latter and propose a coarsen-

ing algorithm that can be tailored to different applications via a

versatile definition of functionally salient features.

We resort to classical spectral theory to formalize the definition

of qualities of the input representation which should be preserved

while coarsening. Just as the famous Fourier spectrum is obtained

via projection onto the eigenfunctions of the univariate derivative

operator, our spectral domain of choice is defined via a projection

onto a Laplacian operator. Unlike the univariate derivative operator,

a variety of definitions exist for Laplacians, which impact the utility

of the coarsened mesh in applications. For example, simplification

of the domain of a physics simulation requires the preservation of

the spectra of both 0- and 1-dimensional Laplacians [De Witt et al.

2012]. The input to our algorithm includes a list of Laplacians and

associated spectral bands ś spectral subspaces of these Laplacians.

Its output is a coarsened representation that strives to preserve the

spectral profile in the specified bands.

To summarize, we propose a coarsening algorithm for simplicial

complexes that can preserve spectral bands of different Laplacians,

across different dimensionalities of simplices. Our simple algorithm

operates by first evaluating a quality function per simplex, which

quantifies the error introduced by contracting (eliminating) that

simplex towards the specified spectral band(s) to be preserved.

Then, we greedily perform contractions iteratively by choosing

candidates with minimum error until the target coarsening level is

reached. Thus, our coarsening algorithm is agnostic to the specific

Laplacian considered. Our contributions in this paper are:

• a novel coarsening operator that is Laplacian-independent;

• a coarsening operator that simultaneously preserves spectral

bands associated with multiple Laplacians;

• an algorithm for band-pass filtering of simplicial complexes.

We evaluate our method using a variety of surface (triangular) and

volumetric (tetrahedral) meshes, as well as simplicial complexes.

2 RELATED WORK

Graphs. The spectrum of a combinatorial graph Laplacian reveals

fundamental geometric and algebraic properties of the underlying

graph [Chung 1999]. Several works attempt to preserve spectral sub-

spaces, while reducing the size of input graphs [Chen et al. 2022]. A

notable example [Loukas 2019] proposes an iterative, parallelizable

solution to preserve spectral subspaces of graphs by minimizing

undesirable projections.

Meshes. Seminal works for coarsening triangle meshes propose

localized and iterative operations via edge collapses based on geo-

metric criteria [Garland and Heckbert 1997; Ronfard and Rossignac

1996]. Similar methods have also been applied to tetrahedral mesh

simplification, based on volume, quadric-based, and isosurface-

preserving criteria [Chiang and Lu 2003; Chopra and Meyer 2002;

Vo et al. 2007]. Recent methods formulate coarsening as an optimiza-

tion problem subject to various sparsity conditions [Liu et al. 2019],

by detaching the mesh from the operator [Chen et al. 2020] and

localizing error computation to form a parallelizable strategy [Le-

scoat et al. 2020]. The cotan Laplacian is a popular choice, and is

used, via its functional maps [Ovsjanikov et al. 2016], to identify

correspondences between partial meshes [Rodolà et al. 2017] .

Simplicial complexes and computational topology. The link condi-

tion [Dey et al. 1998] is a combinatorial criterion ensuring homology

preservation while performing strong collapses (merging vertices),

extending to persistent homology [Boissonnat and Pritam 2019;

Wilkerson et al. 2013]. Edge collapses (edge removals) [Boisson-

nat and Pritam 2020; Glisse and Pritam 2022] is a state-of-the-art

method for simplifying filtered simplicial complexes while preserv-

ing their (persistent) homology. These methods focus on nullspace

dimensionality (kernel) of the Laplacian, rarely investigating the

spectral profile of the reduced complex. Notable exceptions [Black

andMaxwell 2021; Hansen and Ghrist 2019; Osting et al. 2017] apply

the method of effective resistances [Spielman and Srivastava 2011]

for coarsening complexes and sheaves, while Morse theory [Ebli

et al. 2022] enables signal compression and reconstruction.

Spectral analysis. Laplacians make frequent appearances across

geometry processing, machine learning and computational topol-

ogy. Specific definitions and flavours vary widely across discrete

exterior calculus [Crane et al. 2013; Desbrun et al. 2005], vector-field

processing [de Goes et al. 2016; Poelke and Polthier 2016; Vaxman

et al. 2016; Wardetzky 2020; Zhao et al. 2019b], fluid simulation [Liu

et al. 2015], mesh segmentation and editing [Khan et al. 2020; Lai

et al. 2008; Sorkine et al. 2004], topological signal processing [Bar-

barossa and Sardellitti 2020], random walks [Lahav and Tal 2020;

Schaub et al. 2020], clustering and learning [Ebli et al. 2020; Ebli

and Spreemann 2019; Keros et al. 2022; Nascimento and De Car-

valho 2011; Smirnov and Solomon 2021; Su et al. 2022]. Their ability

to effectively capture salient geometric, topological, and dynamic

information makes their spectrum a versatile basis.

The de-facto Laplacian operator used in mesh processing is the

Laplace-Beltrami operator, approximated via its discretization, the

cotan Laplacian defined on vertices (0D), with vertex and edge

weights. Amultitude of other Laplacians accommodate non-manifold

meshes [Sharp and Crane 2020], FEM simulations [Ayoub et al.

2020], digital surfaces [Caissard et al. 2019], polygonalmeshes [Bunge

et al. 2021] and arbitrary simplicial complexes [Ziegler et al. 2022].

Similarly, the spectrum of the total variation functional [Fumero

et al. 2020] and its corresponding flow allows for spectral filtering

of functions on and features of manifolds.

Motivation. The variety of definitions and properties of Laplacian

operators (see Figure 1) suggests that a unified spectral coarsening

algorithm could impact a range of applications. Our Laplacian-

agnostic spectral coarsening can be tailored by considering the

weightings as special cases of Hodge Laplacians. We achieve this

by adapting the cost function proposed for graph theory [Loukas

2019] to simplicial complexes.

3 BACKGROUND

3.1 Simplicial Complexes & Meshes

A simplicial complex 𝐾 is constructed from appropriate subsets of a

finite set𝑉 of vertices. Each element 𝑣 ∈ 𝑉 exists in 𝐾 as a singleton
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set {𝑣}. 𝐾 also contains 𝜎 = {𝑣0, . . . , 𝑣𝑘 } ⊂ 𝑉 which is called a

𝑘-simplex of dimension 𝑘 = dim𝜎 = |𝜎 | − 1. e.g. edges (𝑘 = 1),

triangles (𝑘 = 2), tetrahedra (𝑘 = 3), etc. For every such 𝜎 ∈ 𝐾 , all
of 𝜎’s subsets 𝜏 ⊂ 𝜎 are also included in 𝐾 . The dimension of the

simplicial complex is the maximal dimension of its simplices. A

graph 𝐺 = (𝑉 , 𝐸) is a 1-dimensional simplicial complex. A triangle

mesh (𝑉 , 𝐸, 𝐹 ) is a 2-dimensional embedded simplicial complex

often with additional manifold conditions on the adjacencies of 2-

simplices (faces) 𝐹 . A tetrahedral mesh is a 3-dimensional embedded

simplicial complex.

For a graph 𝐺 = (𝑉 , 𝐸), the incidence matrix 𝐴 : 𝐸 → 𝑉 where

𝐴𝑣,𝑒 = 1 (or −1) depending on whether 𝑒 : 𝑣 → 𝑣 ′ (or 𝑒 : 𝑣 ′ →
𝑣), represents directed connectivity between vertices and edges.

Boundary matrices 𝜗𝑘 : R[𝐾𝑘 ] → R[𝐾𝑘−1] extend this idea to

higher dimensions and capture connectivity between (the vector

space with real coefficients spanned by) the 𝑘-simplices 𝐾𝑘 and

their bounding 𝐾𝑘−1 simplices. Boundary operators are constructed

by imposing an ordering on the vertices 𝑉 = 𝐾0, such that each

𝑘-simplex can be expressed by an ordered list 𝜎 = [𝑣0, . . . , 𝑣𝑘 ].
The orientation of the simplices in a simplicial complex is dic-

tated by the ordering imposed on the vertices, and the orientation

of mesh elements given by the cyclic ordering of vertices. The

boundary operator acts on each simplex 𝜎 according to 𝜗𝑘 (𝜎) =∑𝑑
𝑖=0 (−1)𝑖𝜎−𝑖 , where 𝜎−𝑖 := [𝑣0, . . . , 𝑣𝑖 , . . . , 𝑣𝑘 ] indicates the dele-

tion of the 𝑖-th vertex from 𝜎 , resulting in a (𝑘 − 1)-dimensional

bounding simplex. We illustrate a complex along with its three

boundary matrices: white cells are zeros and grey cells are ±1.

3.2 Hodge Laplacian as a generalization

Hodge Laplacians [Rosenberg and Steven 1997] are differential op-

erators that extend the notion of the well-known graph and mesh

Laplacians to general simplicial complexes, acting as maps from

𝑘-simplices to 𝑘-simplices. For each dimension 𝑘 , they are formed

as the sum of two maps: one mapping down to (𝑘−1)-simplices and

another mapping up to (𝑘 + 1)-simplices, according to appropriate

boundary matrix compositions:

𝐿w
𝑘

= 𝐿down
𝑘

+ 𝐿up
𝑘

= 𝜗𝑇
𝑘
𝑊 −1
𝑘−1𝜗𝑘𝑊𝑘 +𝑊

−1
𝑘
𝜗𝑘+1𝑊𝑘+1𝜗

𝑇
𝑘+1 .

𝑊𝑘 are diagonal matrices that contain a weight per 𝑘−simplex. We

direct the reader to key works [Horak and Jost 2013; Lim 2020]

for an analysis of their spectral properties. We refer to 𝐿w
𝑘
as the

weighted 𝑘-Hodge Laplacian and to its unweighted (unit weights)

version 𝐿𝑘 as simply the 𝑘-Hodge Laplacian.

Most variants of Laplacians used in graph- and mesh-processing

may be derived as special cases of the weighted 𝑘-Hodge Laplacian.

The graph Laplacian is a 0-Hodge Laplacian with unit weight on

vertices 𝐿graph = 𝐿w
0
= 𝐿

up

0
= 𝜗1𝑊1𝜗

𝑇
1
. The cotan Laplacian is the

0-Hodge Laplacian with weights on vertices and edges:

𝑤𝑣𝑖 =
∑︁

∀𝜎={𝑣𝑖 ,𝑣𝑗 ,𝑣𝑘 }∈𝐾2

A𝜎/3, 𝑤𝑒𝑖 𝑗 =
1

2
(cot𝜃𝑙𝑖 𝑗 + cot𝜃𝑚𝑖 𝑗 ).

A𝜎 is the area of face 𝜎 , and 𝜃𝑙𝑖 𝑗 is the angle at vertex 𝑣𝑙 facing the

edge 𝑒𝑖, 𝑗 = {𝑣𝑖 , 𝑣 𝑗 }. Figure 1 (left) depicts the impact of the choice

of Laplacian on the coarsened Fertility triangle mesh.

Hodge Spectra. The basis of the homology group H𝑘 (a vec-

tor space) of a complex 𝐾 is spanned by equivalence classes of

𝑘-dimensional nontrivial loops, and is isomorphic to the kernel

of the 𝑘-Hodge Laplacian [Eckmann 1944]: ker𝐿𝑘 ≃ H𝑘 (𝐾). The
eigenvectors of 𝐿𝑘 corresponding to zero eigenvalues form the har-

monic part of the spectrum. An eigenvector corresponding to a

non-zero eigenvalue of 𝐿w
𝑘
, must either be an eigenvector of 𝐿

up

𝑘
or

𝐿down
𝑘

with the same eigenvalue. Furthermore, an element of the

nullspace of 𝐿w
𝑘
must be in the kernel of both of its components.

Given an eigenpair (𝜆𝑖 , 𝑣𝑖 ) of 𝐿down𝑘
then (𝜆𝑖 , 𝜗𝑘𝑣𝑖 ) is an eigenpair

of 𝐿
up

𝑘−1 [Horak and Jost 2013; Torres and Bianconi 2020]. TheHodge
decomposition ties everything together, by expressing the space of

𝑘-simplices 𝐾𝑘 as a direct sum of gradients, curls, and harmonics:

𝐾𝑘 = im𝜗𝑇
𝑘
⊕ im𝜗𝑘+1 ⊕ ker𝐿𝑘 . We refer to several excellent intro-

ductions [Chen et al. 2021; Lim 2020] to Hodge decompositions.

4 METHOD

We propose a simple iterative algorithm for coarsening a simpli-

cial complex based on two inputs: the fraction of simplices to be

reduced and the portion of the input spectrum to be preserved.

We use the latter to construct a quality function that is evaluated

at each simplex. Then we greedily contract a simplex (or a group

of simplices with low spectral-quality scores). We recalculate the

quality function for simplices in the coarsened complex and iterate

until the specified number of simplices have been reduced.

spectral constraint

input quality function contract

c

select set

iterate
+

Figure 2: An illustrated overview of our algorithm.

4.1 Quality function

Each contraction (e.g. edge collapse) can be defined as a projec-

tion 𝑃𝑘 : 𝐾𝑘 → 𝐾̂𝑘 mapping 𝑘-simplices in the input complex to

those in the coarsened complex. Ideally, the eigenspace to be pre-

served should be perpendicular to that induced by the contraction.

Intuitively the projection of the former onto the latter measures

łspectral leakž, with a large value indicating that the contraction

leads to loss of fidelity with respect to the specified target spectrum.

Let the eigenspace to be preserved be represented by eigenvec-

tors𝑈 and eigenvalues 𝑆 (diagonal matrix) of the Hodge Laplacian

𝐿w
𝑘

(or 𝐿𝑘 ) of the input complex, and let 𝐴𝑘 = 𝑈
√
𝑆+ be the pre-

served subspace. Since 𝑃 and its pseudoinverse 𝑃+
𝑘
map in opposite
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directions to and from the output complex, the operator Π = 𝑃+
𝑘
𝑃𝑘

projects a signal defined on the fine complex down to the coarsened

complex and back up to the fine complex.

Ideally, we seek contractions where Π𝑘𝐴𝑘 is identical to 𝐴𝑘 by

minimizing ∥Π𝑘𝐴𝑘 −𝐴𝑘 ∥•. Our quality function 𝑐𝑘 : 𝐾𝑘 → R

𝑐𝑘 = ∥Π⊥
𝑘
𝐴𝑘 ∥𝐿, (1)

where the perpendicular projection Π
⊥
𝑘
= (I − Π𝑘 ), quantifies spec-

tral error. Here ∥𝑥 ∥𝐿 =

√
𝑥𝑇 𝐿𝑥 denotes the 𝐿-norm. The definition

of 𝑐 in terms of Π
⊥
𝑘
allows for localized error computations, facili-

tating parallelization, since the nonzero entries of Π
⊥
𝑘
only refer to

simplices affected by the contraction. This quality function has de-

sirable theoretical properties when applied to graph simplification

and general positive semidefinite matrices [Loukas 2019].

4.2 Contraction

The first step to performing contractions is to identify a set Φ of

candidate contraction sets 𝜙𝑖 ∈ Φ. We execute edge collapses by

setting each 𝜙𝑖 to be an edge. More complicated contractions, such

as collapsing stars around vertices, may be performed by identifying

the relevant Φ = {𝜙𝑖 }.
Then, we evaluate the quality function over each candidate set

and greedily contract the 𝜙∗ with minimum quality, identifying all

the simplices in 𝜙∗ to one, target, vertex. As a result, the complex

is coarsened while best preserving the spectral band (𝑈 , 𝑆) of 𝐿𝑘 .
We apply such contractions iteratively until a specified ratio of sim-

plices has been contracted, with some additional bookkeeping at

each level ℓ : starting from𝐴ℓ=0
𝑘

= 𝑈
√
𝑆+, we update the correspond-

ing projection and target subspace matrices 𝑃 ℓ
𝑘
and 𝐴ℓ

𝑘
, the latter

tracking the evolution of the desired spectrum at each iteration.

4.3 Multiple Laplacian subspaces

The quality function (Equation 1) can be adapted so that the target

subspace is shaped via multiple spectral bands. We define cost func-

tions 𝑐ℓ, 𝜈
𝑘

at level ℓ independently for 𝐵 different spectral bands 𝜈 =

1, 2, · · · , 𝐵. Each of these is associated with a potentially different

Laplacian. The aggregate cost function can then be tailored based

on the specific downstream application as 𝑞agg : R
𝐵 → R to obtain

the final quality function 𝑐ℓ
𝑘
= 𝑞agg ({𝑐ℓ, 𝜈𝑘 }), 𝜈 ∈ [0, 1, · · · , 𝐵] .

In our experiments in Section 5, where 𝐿0, 𝐿1 and 𝐿2 are con-

sidered in tandem, we simply average the contributions of the

different Laplacians 𝑞agg (𝑐𝑣𝑘 ) =
1

𝐵

∑
𝑘,𝑣 𝑐

𝑣
𝑘
. Algorithm 1 shows our

generalized coarsening procedure by assembling the above stages.

4.4 Implementation details

Terms of the Hodge Laplacian. Due to the interplay of spectra

of 𝐿𝑘 and 𝐿𝑘+1 discussed in Section 3.2, constraints on Laplacians

for multiple 𝑘 can potentially introduce ‘spectral conflicts’. We

avoid this by considering only the 𝐿
up

𝑘
components of the chosen

Laplacians for each 𝑘 . For wide spectral bands and appropriate

choice of 𝑘 , the spectral region of interest will be a subspace of the

spectrum of 𝐿
up

𝑘
and thus preserved.

Building coarseningmatrices. Matrices 𝑃∓
𝑘
encode simplicial maps

𝜙 : 𝐾𝑘 → 𝐾̂𝑘 where every 𝑘−simplex of 𝐾 maps to a valid simplex

ALGORITHM 1: Iterative generalized spectral coarsening

inputs :

𝐾 = {𝐾𝑘 }; // high-resolution simplicial complex

𝜌 ; // fraction of simplices to reduce

{ (𝑆0,𝑈0 ), . . . , (𝑆𝐵,𝑈𝐵 ) } ; // target subspaces to preserve

𝐿 = {𝐿0, . . . , 𝐿𝐵 } ; // Laplacians corresponding to subspaces

output :

𝐾̂ ; // Coarsened complex

𝑃𝑘 ; // projection matrices (fine to coarse)

𝐾̂ ← 𝐾 ;

ℓ ← 0 ;

while 1 − |𝐾̂ |/|𝐾 | < 𝜌 do

Define Φ ; // say, set of all edges of 𝐾̂

foreach subspace (𝑆𝜈 ,𝑈𝜈 ) do
if ℓ = 0 then

𝑀ℓ
𝜈 ← 𝑈𝜈𝑆

+1/2
𝜈 ;

𝐴ℓ
𝜈 ← 𝑀ℓ

𝜈 ;

else

𝐿ℓ𝜈 ← 𝑃 ℓ∓𝐿ℓ−1𝜈 𝑃 ℓ+ ; // coarsened Laplacian

𝑀ℓ
𝜈 ← 𝑃 ℓ𝑀ℓ−1

𝜈 ;

𝐴ℓ
𝜈 ← 𝑀ℓ (𝑀ℓ

𝜈
𝑇
𝐿ℓ𝜈𝑀

ℓ
𝜈 )+1/2 ; // coarse target subspace

foreach set of simplices 𝜙 ∈ Φ do

Π
⊥ ← (I − 𝑃+𝑃 ) ;

foreach subspace (𝑆𝜈 ,𝑈𝜈 ) do
𝑐ℓ, 𝜈
𝜙
← ∥Π⊥𝐴ℓ

𝜈 ∥ ;

𝑐ℓ
𝜙
← 𝑞agg ({𝑐ℓ, 𝜈𝜙

}) ; // user-specified aggreg. function

(𝐾̂, 𝑃 ℓ ) ← Contract(𝐾̂, argmin𝜙 {𝑐ℓ𝜙 }) ;
ℓ ← ℓ + 1;

of 𝐾̂ , or to zero. The simplices affected by the collapse of an edge

𝑒 = {𝑣𝑠 , 𝑣𝑡 }, where 𝑣𝑡 is set to 𝑣𝑠 , are the ones having 𝑒 as a face,
i.e. belonging to the star of the closure of 𝑒 , denoted st(𝑒). Starting
with the trivial projection, where 𝑃∓

𝑘
is an identity matrix, we mod-

ify its entries according to simplex identifications induced by the

simplicial map 𝜙 . For each 𝑘-dimensional simplex 𝜎𝑘 ∈ st(𝑒) we
consider two cases. If both vertices 𝑣𝑠 , 𝑣𝑡 ∈ 𝜎𝑘 then the simplex is

deleted and 𝑃∓𝜎𝑘 ,𝜎𝑘 = 0. If only one of the involved vertices, namely

𝑣𝑡 , belongs to 𝜎𝑘 , we are faced with two alternatives, either the

new simplex 𝜎′
𝑘
= 𝜙 (𝜎𝑘 ) already exists in the complex 𝐾𝑘 , or it is

a newly created simplex that is first introduced in 𝐾̂𝑘 . In the for-

mer case where 𝜎′
𝑘
∈ 𝐾𝑘 , we set 𝑃∓𝜎 ′

𝑘
,𝜎

𝑘

= 1 and 𝑃∓
𝜎 ′
𝑘
,𝜎 ′

𝑘

= 1, while

𝑃∓𝜎𝑘 ,𝜎𝑘 = 0. Otherwise, if 𝜎′
𝑘
did not previously exist in 𝐾𝑘 , and is

only introduced in 𝐾̂𝑘 , then 𝜎𝑘 just necessitates an appropriate rein-

dexing of its constituent vertices. Finally, we remove zero rows from

𝑃∓. Theorem 4.1 (proof in the supplementary material) guarantees

consistency across dimensions, and applies to contractions of larger

(connected) families of simplices (not just edge collapses) since they

can always be decomposed to a sequence of edge collapses.

Theorem 4.1. Coarsening matrices 𝑃∓
𝑘
commute with boundary

operators

𝜗𝑘𝑃
∓
𝑘
= 𝑃∓

𝑘−1𝜗𝑘 . (2)
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For the spectral approximation guarantees [Loukas 2019] to

apply to our generalized coarsening matrices, and for 𝑃+ = 𝑃𝑇𝐷−2

to hold, we set the elements of each contraction set Φ of affected

simplices as 𝑃𝜎 ′
𝑘
,𝜎

𝑘
=

1

|Φ | , for all 𝜎𝑘 ∈ Φ and 𝜎′
𝑘
∈ 𝑃∓ (Φ), unless it

is a deleted simplex where 𝑃𝜎𝑘 ,𝜎𝑘 = 0. We resolve the ambiguity

of the choice of target simplex by consistently selecting the target

simplex as the one with minimum index.

Choosing candidate families Φ. Our algorithm is agnostic to the

choice of combinations of simplices Φ to be contracted. We tested

with various candidate families: edges (pairs of vertices), faces

(triplets of vertices) and more general vertex neighborhoods con-

sisting of closed-stars. Larger contraction sets result in aggressive

coarsening at each iteration which leads to larger spectral error. All

results in this paper use only edge collapses. This also simplifies

comparison to related work (which are restricted to edge collapses).

Harmonic subspaces. For 𝑘 > 0, the harmonic portion of the

spectrum of 𝐿𝑘 is non-trivial and encodes information about non-

trivial cycles called homology generators. A homology groupH𝑘 is

a vector space of cycles that are not bounding higher dimensional

simplices and therefore manifest as the null space of 𝐿𝑘 . It is often

desirable to preserve these eigenvectors, despite their coresponding

zero eigenvalue, to maintain topological consistency. In practice,

for all experiments we use modified eigenvalues 𝑆 = I + 𝑆 when

dealing with spectra of higher-dimensional Laplacians.

Local Delaunay vertex position optimization. Edge contractions

may produce self-intersections, particularly if a fixed vertex-placement

policy is followed, say, at the midpoint of an edge. While there are

methods to avoid this effectively [Sacht et al. 2013], we adopted a

simple vertex positioning scheme for tetrahedral meshes to prevent

intersections.

1 2 3 4

X

midpt. rule

Our scheme operates in four steps: (1) identify the faces in the link

of the edge being collapsed; (2) construct the Delaunay tetrahedral-

ization of the vertices of these faces; (3) choose barycenters of the

new tetrahedra that are on the same side of the faces in step (1); (4)

the output vertex is the centroid of barycenters that pass the test

in step (3), otherwise, we do not perform the collapse.

5 RESULTS

Unless otherwise specified, we use a common low-pass constraint

as the default for experiments: to preserve the space spanned by

the first 100 eigenvectors of the specified Laplacian(s).

5.1 Meshes

2D Baseline. To enable comparisons of 𝐿1 for triangle meshes

we extend previous work [Lescoat et al. 2020] as a baseline. Their

method minimizes spectral error 𝐸 = ∥𝑃𝑀−1𝐿𝐹 − 𝑀̃−1𝐿̃𝑃𝐹 ∥2
𝑀̃
,

where 𝑃 is a coarsening projection matrix, 𝑀 is a mass matrix,

𝐿 the Laplacian, and 𝐹 is the spectrum of interest as a matrix of

eigenvectors. A tilde above the respective notations denotes their

coarsened versions. From their output coarsening matrix 𝑃0 we

Ref . (11385 v.) 5000 verts. 3000 verts. 1000 verts.

𝑘 ∥ · ∥Π⊥ ∥ · ∥𝐿c ∥ · ∥𝐶conf
∥ · ∥sub ∥ · ∥Θ ∥ · ∥𝜆

5
0
0
0
v
.

0 39.126 1.023 7.855 0.010 13.8 9.07

1 73.351 0.007 1.251 0.183 8.4 5.165

2 83.015 0.003 1.241 0.174 2.95 2.52

3
0
0
0
v
.

0 61.272 3.298 13.506 0.002 8.17 19.51

1 91.813 0.013 1.723 0.381 2.48 10.138

2 97.56 0.004 1.583 0.489 0.44 4.89

1
0
0
0
v
.

0 87.90 8.266 26.511 0.009 2.45 55.53

1 97.72 0.026 2.804 0.532 0.75 23.139

2 99.60 0.011 2.434 0.709 0.07 11.34

1
0
0
0
v
.

(l
in
k
c
.) 0 57.295 0.006 0.816 1.748 11.906 5.441

1 97.676 0.026 2.760 0.519 0.755 21.836

2 99.437 0.012 2.396 0.675 0.085 11.053

Figure 3: Spectral error increases controllably as the refer-

ence tetrahedral mesh (top left) with 11, 385 vertices is pro-

gressively coarsened while preserving the spaces spanned by

the first 100 eigenvectors of three Laplacians: 𝐿𝑘 , 𝑘 = 0, 1 and 2.

additionally infer coarsening matrices 𝑃1 and 𝑃2 which operate on

the space of edges and faces respectively. However, they do not

consider higher dimensional mappings in their error metric. Since

they only consider one Laplacian 𝐿cot
0

, we include this as one of the

targets in all our comparisons, unless stated otherwise. We visualize

spectral preservation via functional maps [Chen et al. 2020; Liu et al.

2019; Ovsjanikov et al. 2016]𝐶 = 𝑈𝑇𝑐 𝑃𝑈 which is a diagonal matrix

when the input and output spectramatch perfectly. Unfortunately, it

is not straightforward to comparewith prior non-spectal tetrahedral

coarsening methods, or to extend previous spectral coarsening

methods to tetrahedral meshes (Section 2).

Quantitative comparisons. We visualize coarsened triangular (Fig-

ure 6) and tetrahedral (Figure 9) meshes along with a few eigen-

vectors (as heat maps on vertices). The results are reassuring that

for the special case of coarsening triangle meshes our algorithm

produces similar spectral results to previous work. Using 𝐿1 subtly

improves the preservation of structures such as the jaw-line, the

mouth and the nose of the Suzannemodel (Figure 6). The boundary

loops around the eyes (eigenvectors of the null space of 𝐿1) aim to

preserve their original size compared to when only 𝐿cot
0

is used. Fig-

ure 6 contains quantitative comparisons of our eigenvalues against

the baseline and reference. The approximation is good for 𝐿cot
0

, but

curiously spectral divergence is observed for both methods in 𝐿1 .

This is also observed on a tetrahedral mesh (Fertility model)

as shown in Figure 9. However, the profile of eigenvalues for 𝐿1
and the eigenvalues of 𝐿2 are approximated well. We also show
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functional maps to support these observations. The Laplacians con-

sidered were 𝐿cot
0

and 𝐿1 for the triangle mesh (2D), and additionally

𝐿2 for the tetrahedral mesh. We report errors in Figures 6 and 9

using the following error metrics: a local volume-preserving mea-

sure ∥𝐶 ∥Π⊥ = ∥𝐶𝑇𝐶 − I∥2
𝐹
, an isometry measure ∥𝐶 ∥𝐿c = ∥𝑆𝑐𝐶 −

𝐶𝑆 ∥2
𝐹
/∥𝐶 ∥2

𝐹
, a conformality measure ∥𝐶 ∥conf = ∥𝐶𝑇 𝑆𝐶 − 𝑆𝑐∥2𝐹 , a

subspace approximation measure ∥𝐶 ∥sub = | ∥𝑆1/2𝑈𝑇Π𝑈𝑆−1/2∥2 −
1|, subspace alignment ∥𝐶 ∥𝜃 = ∥ sinΘ(𝑈 , 𝑃+𝑈𝑐 )∥2𝐹 and relative

eigenvalue error ∥𝑆 ∥𝜆 = ∥(𝑆 − 𝑆𝑐)/𝑆 ∥2.
The above results indicate comparable performance against the

baseline for for triangle meshes and the added capability of han-

dling higher dimensional Laplacians for tetrahedral (3D) meshes.

Additional examples are included in the supplementary material.

We illustrate the evolution of spectral errors for the Tree root

model over three levels of coarsening (Figure 3).

5.2 Simplicial Complexes

We compare our coarsening algorithm to the state-of-the-art edgecol-

lapser of the Gudhi library [The GUDHI Project 2015], that guaran-

tees homology preservation, and a simple baseline where edges are

collapsed at random.

Band-pass filtering. Wedemonstrate the versatility of ourmethod

by coarsening an input complex with two different spectral bands

to be preserved: 𝛽1 + 1 lowest, and 10 largest eigenpairs of 𝐿1.

Here, 𝛽1 is the betti number (rank of the homology group H1).

Figure 4 presents these results along with the functional maps 𝐶 as

explained above. As expected (by design), Gudhi exactly preserves

the homology rank 𝛽1, with no regard for other features. On the

contrary, our method can be tuned to a spectral band of choice.

Either the nullspace-encoded harmonic information (first row of

functional maps) or the high frequency band(second row of maps).

Homology preservation. We constructed a diverse dataset of 100

simplicial complexes [Keros et al. 2022] with non-trivial topology by

randomly sampling 400 points repeatedly on multi-holed tori, and

subsequently constructing alpha complexes at various thresholds.

It contains from zero up to 66 homology cycles. On this dataset,

we computed mean spectral error metrics (Table 1), alongside a

homology preservation error 𝐸𝛽 = |𝛽fine
1
− 𝛽coarse

1
|. Intuitively, this

is the error in the number of 1-cycles destroyed by coarsening. The

number of simplices reduced by Gudhi was consistent across both

experiments. We ran two variants of our method which preserved

the first 30 eigenpairs of 𝐿1, reducing the input complexes by a

factor of 0.8, and the first 𝛽1 + 1 eigenpairs of 𝐿1, matching the

target number of vertices to the result of Gudhi. The results are

summarized in Table 1 with standard deviations in parentheses.

Gudhi, as designed, preserves 𝛽1 exactly but exhibits spectral leak

elsewhere. With random contractions, the leak is amortized across

spectral bands but it destroys about 1 cycle on average. Our method

is controllable, highlighting that it can be particularly effective if

the spectral constraints are known for a particular application.

5.3 Applications

Denoising. A straightforward application of our method is to

suppress frequencies associated with noise. We filtered a noisy

Bunny model (43K vertices) using a very narrow low-pass filter:

Table 1: Spectral approximation metrics averaged over 100

complexes. Our algorithm preserves the first 30 and the first

𝛽1 + 1 dimensions of the eigenspace respectively. The various

error metrics (columns) are described in Section 5.2. Standard

deviations are shown in parentheses.

k 𝜌 ∥ · ∥𝐿c ∥ · ∥Π⊥ ∥ · ∥sub ∥ · ∥𝜆 𝐸𝛽

30 Gudhi 0.9
3.84

(4.2)

29.1

( 2.9)

2.5

(16.8)

71.5

(664)

0.0

(0.0)

Ours 0.8
0.49

(0.5)

8.98

(3.5)

1.52

(12.2)

2.76

(10.5)

0.07

(0.2)

Random 0.8
3.08

(2.2)

20.8

(3.5)

0.32

(0.4)

400000

(3 e6)

.98

(1.2)

𝛽1 + 1 Gudhi 0.9 -
2.94

(1.0)

0.91

(0.2)
-

0.0

(0.0)

Ours 0.9 -
1.78

(1.2)

0.78

(0.3)
-

0.21

(0.6)

Random 0.9 -
2.76

(1.1)

0.88

(0.2)
-

1.29

(1.4)

Input Random Gudhi Ours (low) Ours (high)

0
-1
0

7
9
0
-8
0
0

Figure 4: Low-pass and high-pass filtering of a simplicial

complex using our method. Top row shows the input and

coarsened complexes. Rows 2 and 3 depict the functional

maps of the lowest 10 and highest 100 frequencies of 𝐿1.

Gudhi is designed to preserve homology so its map is only

diagonal for the first 4 (number of holes) elements. Our algo-

rithm can controllably coarsen the input complex.

only the first three eigenvectors of 𝐿0 and 𝐿1. Figure 7 visualizes

our result along with the baseline, which filters unevenly, possibly

due to noisy geometric information in its cotan weighting.

Finite Element Method (FEM). We solve the Poisson equation

−Δ𝑢 = 1withDirichlet boundary condition𝑢 = 0 on the Plate-hole

model, using piece-wise linear (triangular) elements. In addition

to solving it on the discretized mesh, we test robustness by apply-

ing planar pertubations to the vertices with increasing levels of

Gaussian noise. For each setting, we coarsen the noisy mesh with

𝜌 = 0.75 (8000 to 2000 vertices) using 𝐿cot
0

and 𝐿1, run a standard

FEM solver on the coarse mesh and lift the solution to the input
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mesh. Figure 8 shows a plot of error vs noise (top left), the refer-

ence solution (top right) and error maps for different noise settings

(columns) and methods (rows). We compare our method against pre-

vious work [Lescoat et al. 2020], with (optpos) and without (noopt)

vertex position optimization, a quadric-based method [Garland and

Heckbert 1997] and a uniform mesh decimation baseline where

edges are collapsed uniformly at random (Uniform). We further

compare against a multigrid approach [Liu et al. 2021] via its full

solver (MG-F) versus just the prolongation operator for lifting our

computed Poisson solution (MG-P) to the original mesh. The mesh

is coarsened with QSlim [Garland and Heckbert 1997], a shortest-

edge midpoint collapse strategy (MP), and a vertex removal strategy

(VR). The coarse mesh is overlaid on the error maps and can be

viewed by magnifiying the figure. Our method exhibits robustness

against noise when compared to the baselines. Although the spe-

cialized (multigrid) solver [Liu et al. 2021] performs better at low

noise levels, it fails to reach the desired number of vertices when

the standard deviation of Gaussian noise is increased beyond 0.5.

Spectral distances. We evaluate the fidelity (Figure 10) of spectral

distance measures computed on the coarse mesh and łliftedž to

the fine mesh, between vertices 𝑤, 𝑣 of a triangle surface mesh

(Suzanne) and a volume tetrahedral mesh (Fertility), using the

same parameters as Figures 6 and 9. Figure 1 illustrates the spectral

distance approximation on the Engine tetrahedral model, coarsened

with 𝜌 = −.8 (from 46220 to 10000 vertices) while preserving the

first 50 eigenvectors of 𝐿cot
0

and the first 25 eigenvectors of 𝐿1 and

𝐿2. The model has 20 holes that are retained in the coarse mesh.The

metrics used are the diffusion distance, the biharmonic distance, the

commute distance, the wave kernel signature and distance [Aubry

et al. 2011], and the heat kernel signature and distance [Sun et al.

2009]. Formulas are provided in the supplementary material.

Spectral distance approximation on Suzanne outperforms the

baseline by orders of magnitude in most cases, with error remain-

ing low even for the tetrahedral Fertility mesh. The qualitative

comparison indicates agreement between our łlifted" version and

the reference, despite some localized distortions.

6 DISCUSSION

Execution time. We implemented our method in C++, and per-

formed experiments on a 16-core workstation (Intel E5-2630 v3,2.4

GHz) with 64GB RAM. Our method compares favorably (orders

of magnitude faster) against the spectral coarsening baseline in

Figure 5. Although it appears that we are competitive with the

quadric-based method [Garland and Heckbert 1997]) it should be

noted that ours (like the baseline) requires eigenspaces of Laplacians

as input while the latter does not. The time for the eigendecompo-

sition is not reflected in the plot (which only measures geometric

operations) and should be added to both our method and the base-

line. The triangle meshes used in the comparison contain 10772

(Fertility) and 29690 (Dinoskull) vertices, respectively. We use

𝐿cot
0

for the baseline, and 𝐿cot
0

& 𝐿1 for our method.

Boundary. The intricacies of boundary values problems involv-

ing Hodge Laplacians [Mitrea 2016] complicate practical computa-

tions. The differential operators need to be constructed carefully

to guarantee coverage of tangential and normal conditions [Zhao

Baseline

G & H97

Baseline

G & H97

Figure 5: Computation time vs reduction ratio.

et al. 2019a]. Since our method is Laplacian-agnostic, any positive

semi-definite operator, with its spectrum, can be provided as input.

Implementation of vertex positioning. We used the Tetgen soft-

ware [Hang 2015] for local tetrahedralization. We observed stray

cases where Tetgen would not terminate, due to degeneracies. We

jittered the vertices of the link of the collapsing simplex by a small

(1e−5) amount to resolve this. Despite this, extreme simplifcation

can cause occasional (0.01% of initial tetrahedra) intersections ( at

1e−5 detection tolerance), which we fix via extra collapses.

Link condition. Wedo not explicitly enforce the link condition [Dey

et al. 1998] in our experiments, which explains the non-zero error

in experiments on homology preservation. However, we found that

explicit enforcement does not necessarily limit the extent to which

coarsening can be performed, possibly due to the greedy nature of

our algorithm, e.g. the last set of results in Figure 3 show errors

under coarsening with 𝜌 = 0.9, and the link condition enforced.

Lifting operator. Although our method includes a simple lifting

operator, we do not expect it to outperform sophisticated operators

that construct functional correspondences between meshes [Jiang

et al. 2020; Liu et al. 2021; Panozzo et al. 2013]. However, our op-

erator exhibits two desirable properties: It generalizes vertex cor-

respondence maps to arbitrary dimensions and simplex-spanned

vector spaces, and it does not involve numerical pseudoinversion,

since it is assembled during spectral coarsening, which is our pri-

mary focus. Projection [Jiang et al. 2020] and prolongation [Liu

et al. 2021] operations between fine and coarse geometry depend on

the decimation strategy. It is interesting to investigate the interplay

between such approaches and our method in future work.

Limitation and future work. The utility of our tool hinges on

knowledge of spectral constraints imposed by downstream tasks.

While this is known in some cases (homology, spectral distances

and denoising), such constraints are not typically known across

applications. The need for the use of higher dimensional Lapla-

cian operators has been identified in some applications such as for

PDE discretization in higher dimensions [Arnold 2018] and signal

analysis over arbitrary simplicial complexes [Barbarossa and Sardel-

litti 2020]. However, we are hopeful that the availability of a tool

such as ours will inspire the graphics communities (particularly

geometry processing and simulation) to explore the applicability

of mixed-dimensional Laplacian spectral constraints.
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7 CONCLUSION

We presented a simple and efficient algorithm for coarsening simpli-

cial complexes, while preserving targeted spectral subspaces across

multiple dimensions. We exemplified the impact of the choices of

spectral domain on applications such as denoising, FEM and ap-

proximate distance calculations on coarsened meshes. We hope that

this work will pave the way towards unleashing the potential of

using mixtures of Laplacians in discrete geometry processing.
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Figure 6: The input mesh, coarsened meshes (first column)

and four eigenvectors of their 𝐿cot
0

(right) computed using

our method (second row) and the baseline (third row). The

meshwas coarsened from 1640 to 400 vertices, preserving 𝐿cot
0

and 𝐿1. Our method is mostly similar with subtle differences

around the square jaw and button nose. The eigenvalues of

the preserved spectrum are plotted below with those corre-

sponding to 𝑘 = 0 on the left and 𝑘 = 1 on the right, along

with spectral errors at the bottom.
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Figure 7: Denoising. A noisy Bunny model (43645 vertices)

is coarsened to 2% of its size (1000 vertices), to preserve only

the first 3 eigenvectors of 𝐿0 & 𝐿1 using our method, and the

first 3 eigenvectors of 𝐿cot
0

for the baseline.
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Figure 8: FEM on our coarsened mesh is robust to Gaussian

noise added to the vertices (top left). The solution to −Δ𝑢 = 1

on the fine mesh (zoom in to view) is shown on the top right.

The table below compares error as heat maps of simulation

error (blue is low and red is high), with the coarsemesh (zoom

to view) overlaid, for ours and two other coarsening methods

(rows).
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Figure 10: Different distance metrics from a point (blue dot on each mesh) are computed on a coarse mesh and visualized using
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row of 3D plots). The tables report mean squared error error for various distance metrics. The insets in the 3D plots depict

slices through the mesh.
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SUPPLEMENTARY RESULTS

This document provides additional results for experiments that

have already been described and demonstrated in the main paper.

It demonstrates those applications on additional triangle (2D) and

tetrahedral (3D) meshes and provides further evidence for robust-

ness in the application of our method to solving a Poisson equation

with FEM .

Proof of Theorem 4.1

Theorem. Coarsening matrices 𝑃∓
𝑘
commute with boundary opera-

tors

𝜗𝑘𝑃
∓
𝑘
= 𝑃∓

𝑘−1𝜗𝑘 . (1)

Proof. We show this with a simple inductive argument. Let the

collapse of an edge 𝑒 = {𝑣𝑠 , 𝑣𝑡 }where 𝑣𝑡 ↦→ 𝑣𝑠 . (Base case) For 𝑘 = 1

if 𝜎1 = {𝑣𝑠 , 𝑣𝑡 } we have 𝜗1𝑃∓1 𝜎1 = 0 and 𝑃∓
0
𝜗1𝜎1 = 𝑃∓

0
(𝑣𝑠 − 𝑣𝑡 ) =

𝑃∓
0
𝑣𝑠 − 𝑃∓0 𝑣𝑡 = 0. If 𝜎1 = {𝑣𝑡 , 𝑣𝑧 } ∈ 𝐾𝑘 and 𝜎 ′

1
= {𝑣𝑠 , 𝑣𝑧 } ∈ 𝐾̂𝑘

for any 𝑣𝑧 ≠ 𝑣𝑠 , then 𝜗1𝑃
∓
1
𝜎1 = 𝜗1𝜎

′
1
= 𝑣𝑠 − 𝑣𝑧 and 𝑃∓

0
𝜗1𝜎1 =

𝑃∓
0
(𝑣𝑡 − 𝑣𝑧) = 𝑃∓

0
𝑣𝑡 − 𝑃∓0 𝑣𝑧 = 𝑣𝑠 − 𝑣𝑧 . (Inductive step) Let Eq. (1)

hold for dimension 𝑘 . Then for a simplex 𝜎𝑘+1, by applying 𝜗𝑘 to

both sides we get

𝜗𝑘𝜗𝑘+1𝑃
∓
𝑘+1𝜎𝑘+1 = 𝜗𝑘𝑃

∓
𝑘
𝜗𝑘+1𝜎𝑘+1 .
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The LHS is trivially zero since 𝜗𝑘𝜗𝑘+1 = 0. For the RHS if we let

𝜉𝑖 ∈ 𝜗𝑘+1𝜎𝑘+1 be the boundary simplices of 𝜎𝑘+1, we obtain

𝜗𝑘𝑃
∓
𝑘
𝜗𝑘+1𝜎𝑘+1 = 𝜗𝑘𝑃

∓
𝑘

(
𝑘+1∑︁

𝑖=0

(−1)𝑖𝜉𝑖

)

=

𝑘+1∑︁

𝑖=0

(−1)𝑖𝜗𝑘𝑃∓𝑘 𝜉𝑖

(1)
=

𝑘+1∑︁

𝑖=0

(−1)𝑖𝑃∓
𝑘−1𝜗𝑘𝜉𝑖

= 𝑃∓
𝑘−1𝜗𝑘

(
𝑘+1∑︁

𝑖=0

(−1)𝑖𝜉𝑖

)

= 𝑃∓
𝑘−1𝜗𝑘𝜗𝑘+1𝜎𝑘+1 = 0,

where at (1) we used the inductive hypothesis. □

Spectral Distances

Let L = 𝑈𝑇 𝑆𝑈 the eigendecomposition of the Laplacian 𝐿, with

𝑠𝑖 denoting the 𝑖-th eigenvalue corresponding to eigenvector 𝑢𝑖 .

𝑢𝑖 (𝑤) is the entry of 𝑢𝑖 corresponding to simplex𝑤 .

Distance Inputs Formula

diffusion 𝑤, 𝑣, 𝑡
∑
𝑖 (𝑢𝑖 (𝑣) − 𝑢𝑖 (𝑤))2𝑒−2𝑠𝑖𝑡

biharmonic 𝑤, 𝑣
∑
𝑖 (𝑢𝑖 (𝑣) − 𝑢𝑖 (𝑤))2/𝑠2𝑖

commute 𝑤, 𝑣
∑
𝑖 (𝑢𝑖 (𝑣) − 𝑢𝑖 (𝑤))2/𝑠𝑖

WKS 𝑣, 𝑡
∑
𝑖 𝑢

2

𝑖 (𝑣)𝑒
− (𝑡−log𝑠𝑖 )2

2𝜎2 /∑𝑖 𝑒−
(𝑡−log𝑠𝑖 )2

2𝜎2

WKD 𝑤, 𝑣
∫ 𝑡max

𝑡min

���𝑊𝐾𝑆 (𝑤,𝑡 )−𝑊𝐾𝑆 (𝑣,𝑡 )
𝑊𝐾𝑆 (𝑤,𝑡 )−𝑊𝐾𝑆 (𝑣,𝑡 )

���𝑑𝑡 ,
HKS 𝑣, 𝑡

∑
𝑖 𝑢

2

𝑖 (𝑣)𝑒
−𝑠𝑖𝑡

HKD 𝑤, 𝑣, 𝑡
∑
𝑖 𝑢𝑖 (𝑤)𝑢𝑖 (𝑣)𝑒−𝑠𝑖𝑡

Triangle Meshes

In Figures 1,2 and 4 we compare our method against the baselines

for a variety of meshes, in terms of their functional maps, their

eigenvalue preservation, and over a range of spectral metrics. Our

method consistently achieves better eigenvalue approximation of

the (weigthed) 0-Hodge Laplacian, and at least as good eigenvalue

approximation as the baseline methods for 𝐿1. Spectral approxima-

tion metrics quantitatively validate our observations, as our method

outperforms the baselines on most cases.

Figure 3 evaluates our method against the reference model and

the baselines over a range of spectral distances. Since the pseu-

doinverse operator was not able to be computed for the baseline

methods, we show the łlifted" results of our method for all distances

in the last row of the table.

https://orcid.org/0000-0003-2716-9634
https://orcid.org/0000-0002-7302-4383
https://doi.org/10.1145/3588432.3591544
https://doi.org/10.1145/3588432.3591544
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Volume Meshes

Figure 5 shows the eigenvalues, functional maps, and error metrics

for the EnginePart volume mesh. Spectral distances are evaluated

in Figures 6 and 7.

Finite Element Method (FEM)

In Figure 8 we show heatmaps of aggregate MSE over 100 FEM

simulations, for standard deviation of noise ranging from 0.0 to 3.0,

and target vertices from 8000 to 800.
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𝑘 ∥ · ∥Π⊥ ∥ · ∥𝐿c ∥ · ∥𝐶conf
∥ · ∥sub ∥ · ∥Θ ∥ · ∥𝜆

Ours 0 2.390 2.91 × 10
4

1699.709 6.77 × 10
4

25.374 0.467

Baseline 0 99.970 94.789 7273.875 NaN 0.002 0.268

G. & H. 1997 0 99.971 194.309 7285.256 NaN 0.003 0.236

Ours 1 84.764 0.002 0.410 0.185 3.701 31.008

Baseline 1 82.718 0.002 0.442 NaN 5.619 34.214

G. & H. 1997 1 86.280 0.003 0.454 NaN 3.489 34.059

Figure 1: A comparison of functional maps, eigenvalues, and spectral errors between coarsenings produced by our method and

the baseline on the Owl model. The model is reduced from 12795 to 3000 vertices. NaN values indicate that the computation of

the pseudoinverse surpassed the 1 hour mark we set as threshold.
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Figure 2: A comparison of functional maps, eigenvalues, and spectral errors between coarsenings produced by our method

and the baseline on the Dinoskull model. The model is reduced from 27690 to 5000 vertices. NaN values indicate that the

computation of the pseudoinverse surpassed the 1 hour mark we set as threshold.
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Figure 3: A comparison of spectral distances evaluated on coarsenings produced by our method and the baselines on the

Dinoskull model. łLifted" versions of the baselines cannot be shown, as the computation of the pseudoinverse surpassed the 1

hour mark we set as threshold.
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Figure 4: A comparison of functional maps, eigenvalues, and spectral errors between coarsenings produced by our method

and the baseline on the Yeahright model. The model is reduced from 94059 to 10000 vertices. NaN values indicate that the

computation of the pseudoinverse surpassed the 1 hour mark we set as threshold.
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Figure 5: The functional maps, eigenvalues, and spectral errors of our method on the EnginePart model. The model is reduced

from 46220 to 10000 vertices. For the coarsening we used the first 50 eigenvectors of 𝐿cot
0

, and the first 25 eigenvectors of 𝐿1.
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Figure 6: Comparison of the Heat Kernel Distance and the Heat Kernel Signature between our coarsened volume mesh and the

reference EnginePart model.
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Figure 7: Comparison of the Diffusion distance and the Wave Kernel Signature distance between our coarsened volume mesh

and the reference EnginePart model.
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Figure 8: For the FEM application of the main paper (Figure 9) we run 100 FEM simulations per noise level and number of

target vertices, and plot the heatmap of MSE error averaged over all iterations. The initial Platehole model has 8549 vertices,

and we used the first 100 eigenvectors of 𝐿cot
0

and 𝐿1.
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