
Programming R.L. Rivest
Techniques Editor

Hierarchical Binary
Search
Arthur Gill
University of California at Berkeley

In hierarchical search the data structure holding the
file keys is partitioned into substructures of the same
type; these are searched consecutively until the queried
key is found or the substructures are exhausted. The
interest here is in the conditions under which the
performance of a hierarchical organization of static
files is superior to that of the nonhierarchical
organization and in the construction of the hierarchy
when these conditions are met. The performance
criterion is the average number of comparisons in a
successful search, where averaging extends over all
keys and over all permutations of the keys' access
probabilities. General properties of hierarchical search
are first derived, and attention is then focused on the
hierarchical binary organization--the special case
where each of the data substructures is a sorted array
(or a balanced binary tree) and where the keys are
accessed by binary search. It is shown that an
advantageous two-stage hierarchy is always
implementable when the keys' access density function
~(i) is "steeper" than Zipf's density function ~(i)--the
steeper it is, the greater the advantage. A simple
method for constructing the two-stage hierarchy is
formulated, based on finding the intersection of ~b(i)
and ~(i). For the r-stage hierarchical organization,
partitioning procedures are proposed which are based
on the iterative application of the two-stage techniques.

Key Words and Phrases: data structures, file
organization, hierarchical file organization, searching,
binary search

CR Categories: 3.74, 4.34

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This research was supported by the National Science Foundation
under Grant MCS 76-15036.

Author's address: Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, CA 94720.
© 1980 ACM 0001-0782/80/0500-0294 $00.75.

294

I. Introduction

We are given a set of n keys X = (xl, x2 , xn},
organized in a static data structure ~ (such as a linked
list, a sorted array, a binary tree, etc.). We are also given
a search algorithm d (suitable for accessing any key in
~) for which

s(n) = average number of comparisons in a successful
search of ~,

u(n) = average number of comparisons in an unsuccess-
ful search of ~.

We assume that s and u are dependent on the number of
keys only and not on the keys' access probabilities. This
means that in computing s and u, the averaging extends
not only over all n keys, but also over all permutations
of the n excess probabilities. We also assume that for all
n,

u(n) >_ s(n). (1.1)

The organization of X in the single structure ~ will be
referred to as a simple organization; the search for a key
in ~ (using d) will be referred to as a simple search.

Consider now the reorganization of Xin the following
manner (see Figure 1): X is partitioned into r nonempty
subsets X1, X2 Xr, where for j = 1, 2 r, Xj
contains nj keys (~ 1 nj = n), organized in a data
structure @j- which is identical to @ except for size (e.g.,
if ~ is a sorted array, so is ~j). A search for a key x in
this organization is carried out as follows: Using algo-
ri thm ~¢, search Dr; if x is found, quit, else search Dr-l;
if x is found, quit, else search @r-2; . . . ; if X is found,
quit, else search ~1. The organization of X in this fashion
will be referred to as a hierarchical organization of order
r and the corresponding search scheme as a hierarchical
search of order r.

The average number of comparisons in a successful
hierarchical search of order r is denoted by st. Our
objective is to construct the partition {X1, X2 X~)
which minimizes Sr (this partition will be referred to as
the optimal one). We also want to compare the minimal
s~ with s(n) and thus determine to what extent and under
what conditions the hierarchical search has an advantage
over the simple search, insofar as the average successful
search time is concerned. This advantage is measured by
the advantage index A = s(n)/s~.

In the next section we derive some general properties
of the hierarchical organization described above. In the
remaining sections we focus our attention on hierarchical
binary search-- hierarchical search where ~ is a sorted
array (or a balanced binary tree) and where ed is the
binary search algorithm. We start with the special case
where the partition of X is a dichotomy (i.e., r = 2). 1
Subsequently we extend our results to hierarchical binary
search of any order.

~The hierarchical binary search of order 2 was suggested by
Reingold, Nievergelt, and Deo (see [3, pp. 274-275]).

Communications May 1980
of Volume 23
the ACM Number 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F358855.358871&domain=pdf&date_stamp=1980-05-01

Fig. 1. Hierarchical organization of order r.

~1" ° " °

n2 X 2
Pr -I XI

P2

Pl

T h r o u g h o u t the discussion we assume that the set o f
keys X is static, i.e., not subjected to any addi t ion or
delet ion operat ions. We also assume that the access
probabi l i t ies o f the keys are known in advance. The
lat ter assumption, however , is not as r igorous as it
sounds; as we shall see, wha t we require is a knowledge
o f the " ra te" at which this probabi l i ty drops as we
proceed f rom the more active to the less active keys
ra ther than the precise knowledge of each key 's access
probabil i ty .

2. S o m e Propert ies of Hierarchical Organizat ion

Let us consider the hierarchical organizat ion o f order
r shown in Figure 1, where X =)(1 tO Xz tO . . . to X~ =

{xt, x2 x ,) . Let us define the density funct ion

4 '(0 = Prob[accessing xi] (i = 1, 2 n).

(We assume that ~(i) > 0 for all i (otherwise xi can be
discarded).) The access probabi l i ty o f the subset Xj is

p j = Y~ ~(i) .
i s u c h t h a t

xi~-X j

(Since the Xj are nonempty , P1 > 0 for a l l j .)
By sk (1 _ k _ r) we denote the average n u m b e r o f

compar i sons in a successful hierarchical search o f order
k conducted on ~h, ~ - t ~ t (in that order). Thus

st = s(nt), (2.1)
_ p~ q~-i

sk - - - s(nk) + [u(nk) + sk-t] (2 < k ~ r),
q~ qk

where

q , - - - p l + p = + . " + p , (1 _< v_< r).

F r o m (2.1) sr can be compu ted recursively.
PROPOSITION 1. For all k and j such that 1 <_ j <

k <-- r we can write

s~ = a + fls~,

where a and fl are posit ive and depend only on n~+t, n~÷e,

. . . . n~, py+l, p~+~ p , , and p t + p~ + . . • + p~.
PROOf. We show by induct ion on d that for all k and

d such that 2 _< k _< r and l _ < d _ < k - 1,

295

sk = a + risk-a, (2.2)

where a and fl are positive and depend only on nk-d+l,
nk- -d+2, • • . , n k , p k - - d + l , p k - - d + 2 , • • . , p k , and pa + p2 + • • •
+ ph-a.

Basis. By (2.1), for all k such that 2 _< k _< r we can
write sk = a ' + fl 'sk-t, where a ' and fl ' are positive and
depend only on nk, pk, and p t + p2 + . . . + pk-1. Hence
(2.2) holds for d = 1.

Induct ion step. Hypothes ize that (2.2) is true for d.
Using (2.1) we can write

= (a + Ba') + q3B')sk-e-~ = a" + B"sk-~- t ,

where a and fl (by hypothesis) are positive and depend
only on nk-a+t, nk-a+z nk, pk-a+l, p,-a+z , pk, and
pt + p c + . . . + p k - a , and where a ' and fl ' (by (2.1)) are
positive and depend only on nk-a, pk-d, and pl + p2 +
• • • + pk-d-t . Hence a" and r " are positive and depend
only on nh-a, nk-a+t nk, pk-a, pk-a+l pk, and
pl + pz + " " + pk-a- t . Thus (2.2) holds for d + 1. []

PROPOSITION 2. l f sr is minimal, so is sk f o r k = 2, 3,
. , , ~ r .

PROOF. Suppose sr is min imal but that some
sk (2 _< k < r) is not minimal . Hence it is possible
to reorganize)(1 tO)(2 (3 . • • to Xk so as to yield an aver-
age n u m b e r o f compar isons s~ < sk (which replaces sk)
and s~ (which replaces st). By Proposi t ion 1 we can
write

Sr = a + t~Sk,

where a and fl are positive and depend only on nk+l,
nk+z , nr, ph+t, pk+2 , pr, and pl + pz + " " • + p k .

Since the reorganizat ion o f X1 to Xz tO • • • to Xk leaves
all these quantit ies unchanged, we can write

, r , S r "~" Ol "q- S k.

Hence

s ; - s~ = # (s ~ - s~) .

Since fl > 0 and s~ < sk, we have s',. < s~, which
contradicts the assumpt ion that s~ is minimal . Hence sk
must also be minimal . []

PROPOSITION 3. L e t x7 and x~ be keys in Xt and Xh,
respectively, where l > h and q~(7) < if(h). Then f o r some

j (1 _< j _< r - 1) there exist keys x7 and xTgi in Xj and

Xj+I, respectively, such that q , (j + 1) < 4~(j).
PROOF. L e t j be the largest integer such that h _<j <

I and Xj contains a key xy which satisfies ~(7) < ~(j) . I f
j = l - 1, the p roof is complete. Otherwise, pick up any
key x}~-i in Xj+~. F r o m the choice o f j and x 7 it follows

that ~,(7) _> ~b(j + 1). Hence qs(j + 1) < ~ (f) . []
PROPOSITION 4. Suppose s~ is minimal. L e t x7 and x~

be any keys in Xl and Xh, respectively, where 1 > h. Then

epj) >_ ~(h).
PROOV. Suppose ~(7) < q~(h). By Proposi t ion 3 there

exists k (2 _< k _< r) such that there are keys x~ and xz-~

in Xh and Xk-1, respectively, where 4'(k) < 4 , (k - 1).
F r o m (2.1) we have (defining qo = So = 0)

Communications May i980
of Volume 23
the ACM Number 5

1
Sk ~- - - {pks(nk) + pk-l[u(nD + s(nk-1)]

qk
+ qk-2[u(n D + u(nk-1) + Sk-2]}.

Let us now reorganize X by interchanging x-~ and xZ-=i.
As a result, pk is replaced by p~ = p k + f and pk-1 by

p~-i = pk-1 - f , w h e r e f = ¢(k - 1) - ~(k) > 0; and qk,
qk-2, and sh-2 remain unchanged. Hence sk changes to

s ' 1 k = - - {p'ks(nk) + p'k-l[u(nD + s(nk-1)]
qk

+ qk-2[u(nk) + u(nk-a) + sk-2]}.

Thus

1 P
S k - - S k ~ - -

qk

1

qk

{(pk - p'k)s(nk) + (pk-1 -- p~-l)[U(nk)

+ S(nk-1)]}

-- - - (f [u(nk) -- s(nk)] ÷fs(nk-x)}.

By (1.1), u(n) >- s(n) for all n, and hence u(nk) - s(nk) >--
0. Since f > 0, we have sk > s~, which implies that Sk is
not minimal. But this, by Proposition 2, implies that Sr is
not minimal - -a contradiction. Hence we must have
¢(7) _ ¢(~). []

Proposition 4 is intuitively plausible: It is always
advantageous to place the more active keys in those
subsets which are searched earlier. What is not obvious,
however, is the dependence of this result on condition
(1.1), i.e., on the assumption that u(n) >_ s(n).

Incidentally, under the assumption that for each sub-
set Xj the IX j[keys are equally likely and so are the
I XJl ÷ 1 "unsuccessful" intervals (see [2, p. 410]), it is
always true that u(n) >__ s(n): It is known that for every
search algorithm describable by a binary search tree, we
have, under the equal probability assumption,

s(n)= 1+-~ u (n) - I

(see [2, p. 4271); thus u(n) < s(n) if and only if s(n) > n,
which is an impossible condition in a binary search tree.

3. Hierarchical Binary Search of Order 2

We now turn our attention to the hierarchical binary
search- - the special case where the data structure @ (as
well as ~1, ~z ~r) is an array sorted by key (or a
balanced binary search tree), and where algorithm ~¢ is
the binary search algorithm. In this case, under the
assumption that all keys are equally likely we have for
large n,

s(n) =, log n - 1 (see footnote 2) (3.1)
u(n) .~ log n

(see 12, p. 411]). When the keys are not equally likely,

Fig. 2. Hierarchical organization of order 2.

p
n - m

,Oi

×t

I-0

(3.1) is valid if in computing s and n the averaging is
extended over all permutations of the n access probabil-
ities, as well as over the n keys. The effect is the same as
that of assuming that there is no correlation between the
key ordering and the frequency ordering.

Note that s(n) and u(n) of (3.1) satisfy condition (1.1).
Thus, in conformance with Proposition 4 an optimal
hierarchical binary organization involves two sorting
operations: First, the n keys are sorted in ascending order
by frequency; the first nl keys are then assigned to X1,
the next n2 keys are assigned to X2, etc. (assuming that
nl, n2 nr have been determined); finally each one of
the subsets X~, X2 Xr is sorted by key. (This double
sorting, which is done only once for the static file,
requires O(n log n) comparisons.) Since our objective is
to construct an optimal organization, we shall henceforth
assume that for all i and j, i _ j implies q~(i) _ ~(j) (i.e.,
that if(i) is a monotonically nonincreasing density func-
tion).

Using (3.1) in (2.1) we get

sl = log nl - 1 (3.2)
pk qk--1

sk = log nk -- - - + sk-1
qk qk

In this section we focus on the hierarchical binary
search of order 2. Denoting m = n2 and p = p2 (see
Figure 2), we have from (3.2),

s2 = log m + (1 - p) l o g (n - m) - 1. (3.3)

In this case hierarchical search is superior to simple
search if

s(n)
A(n, m) -

s2 (3.4)
log n - 1

> 1 .
log m + (1 -p) l o g (n - m) - 1

From (3.4) we get the condition on p for which A > i,3

log(n/m)
p > l -

log n + log(1 - (m/n))"

The corresponding lower bound on p is denoted by

log(n/m) (3.5)
15(n, m) = 1 - log n + log(1 - (m/n))"

296

2 log k stands for log2 k throughout.
3 This result is essentially the same as in the Solutions Manual to

[3].

Communications May 1980
of Volume 23
the ACM Number 5

Fig. 3. if(n, m) and z(n, m).

1.00-

0 . 9 5 -

0.90-

0.85-
V
p , z

0.80-

0.75-

0.7 0 ~

0 . 6 5 ~

n - 2 jo

/

/ I0
/ / / ~ n : 2

In,m)

- - ~ z (n,m)

i , r J

0.2 0.4 0.6 08.

mln

In what follows a key role is played by the density
function known as Zipf's density function, 4 defined by

~'(i) = _c. (i = 1, 2 n), (3.6)
I

where

C - H , H , = - .
n p ~ l P

For large n, H , can be approximated (see [1, p. 74]) by

an ~ 1Oge n + 0.577 = (IOge 2) log n + 0.577. (3.7)

The corresponding Zipf's distribution is

z(n, m) = f(i) -
i=l H n '

or for large n,

z(n, m) = (log~ 2)log m + 0.577
(loge 2)log n + 0.577 '

which can be written as

z(n, m) = 1 log(n/m) (3.8)
log n + 0.833"

4 This density was observed by Zipf [4] to approximate the relative
frequency of words in natural-language texts.

297

Comparing (3.5) and (3.8), we see that z(n, m) and
/~(n, m) approximate each other. In fact, computation
shows that for large n the two functions differ by less
than 5 percent (see Figure 3). Thus Zipf's distribution
can be taken as the limiting distribution for judging the
profitability of a hierarchical binary search of order 2. I f
the given distribution is "higher" than Zipf's, then one
can implement hierarchical binary search of order 2
which is, on the average, faster than a simple binary
search.

It is clear from (3.4) (as well as intuitively) that A
becomes larger as p becomes larger. The upper bound
on A is given by

A _< log n - 1
log m - 1 '

which for given n and m is approached asymptotically as
p approaches 1.

In the remainder of this section we deal with hierar-
chical binary organizations of order 2 where A is "large,"
i.e., where p is close to 1 and where n/m is large (and
hence n - m is close to n).

Let rh denote the value of m which maximizes A for
specified n and p(n, m). To find rh we can maximize
A(n, m) of (3.4) or, equivalently, minimize s2 of (3.3):

ds2

dm (3.9)

1 [1 d P l o g ~ (n _ m) l ~ p] = 0 .
log¢ 2 dm n

For large values of n, (3.9) can be approximated by

1 dp log~ n = 0
m dm

or

dp .~ . (3.10)
dm m log, n

If the density function for the distribution p(n, m)
is 4ffi), then (3.10) implies that

1
¢(rh) ~ th 1Oge n" (3.11)

Thus rh can be found graphically by locating the inter-
section of ~b(i) and 1/i loge n (see Figure 4).

PROPOSITION 5. Let ¢(i) be a density function used
in a hierarchical binary organization of order 2. Then rh
is approximately the value of i for which

¢p(i) = f(i)

(where ~(i) is Zipf' s density function).

PROOf. From (3.6) and (3.7) we can write

1 1
~ (i) = =

i l l , i(loge n + 0.577)'

which for large n becomes

Communications May 1980
of Volume 23
the ACM Number 5

1
~(i)

i log~ n"

The proposition then follows from (3.11). []
We thus see that while Zipf's distribution serves as a

yardstick for deciding whether or not a given distribution
can yield an advantageous hierarchical binary organi-
zation of order 2, Zipf's density helps in the actual design
of such an organization (by determining rh and hence
the optimal partition {X~, X2}).

Examining Figure 4, we can also see that the
"steeper" <h(i) is, the smaller is the value of n~ and hence
the larger is the advantage index A. For example, con-
sider the family of density functions

C ~
¢8(i) = (8 > 0)

(8 being a measure of the "steepness" of the function
08), where

/z

c = v iz~"

Fig. 4. Finding rh.

ge n

L i
m n

. i

In practical cases the value of rh obtained via Prop-
osition 5 may be correct only within an order of magni-
tude. In these cases it can serve as a good starting point
for the trial-and-error evaluation of the correct optimal
value.

When n is large, we have

1 {'~ d v 1
- - - ~ 0 . 5 + J l = 0 . 5 +
c'

By Proposition 5, rh is the solution of

c' 1

i x+~ i loge n

o r

When n is large, we have

1
s2 ~ log rh ~ ~ log log n

and hence

8 log n
A ~ (3.12)

log log n"

Thus A is proportional to 8, i.e., to the "steepness index"
of the density function.

It should be noted that Proposition 5 entails a number
of approximations which cumulatively may cause rh to
be incorrect unless certain assumptions are valid• First,
it should be recalled that (3.1), and hence (3.3) and (3.4),
are good approximations only when n and m are not too
small (say, greater than 20) and when the key and
frequency orderings are not correlated. In deriving (3.11)
we further assumed that n is much larger than m (say,
n > 10m) and thatp and q~ can be regarded as continuous
functions (a reasonable assumption when n is large). We
also assumed tacitly that ff is consistently "'steeper" than

and hence that ~ intersects ~ only once, thus yielding
a unique value for rh.

4. Hierarchical Binary Search of Order r

The recursion (3.2) can be written for large n~, nz,
• . . , nr as

sl = log nl

sk ~ log nk + qk-1 Sk-1
qk

(2 _ k ___ r)

(4.1)

The solution of (4.1) for k --- r is given by

r

s ~ ~ qjlog nj
j = l

(4.2)

(where qr = 1). We have not discovered a simple way for
minimizing Sr in this general case (i.e., for finding the
values of r, qi, and n1 for specified n and if(i) which
minimize Sr). What we propose, instead, is to apply the
technique of Section 3 (for r = 2) iteratively to obtain an
improvement in the advantage index A in a relatively
simple fashion. It should be noted that in those cases
where A > 1 corresponds to pr >> pr-1, the improvement
achieved either by minimizing (4.2) or b y the methods
proposed below is only marginal compared to the value
of A obtained with r = 2.

Using (4.1) we can write

A - m
s(n) s(n)

Sr log nr + (1 -- p~)Sr-l"

Let us determine n~ as if we designed a hierarchical
binary organization with r = 2. Using the technique
of Section 3, we can find the optimal nr = rhr and
the corresponding value /~r of p, by intersecting ~(i)
with ~(i) = l / i loge n (see Fig. 5(a)). As a result we
obtain

298 Communications May 1980
of Volume 23
the ACM Number 5

Fig. 5. Constructing Binary Hierarchical Organization of Order r.

0 I m r n

X r Xf

(a)

=i
o

o

(b)

< (i): ¢ (~ ,+i) / (~-~,)

~ l oge(n-~n r)

l I ,,,i

Xr- I Xr-I
J

s(n)
log rhr + (1 - /3,)sr-~"

The advantage index A can be improved by reducing
Sr-~; we do this by part i t ioning X~ = X - Xr in the same
m a n n e r that X has just been part i t ioned, i.e., by again
using the technique o f Section 3. In proceeding with the
part i t ioning o f X" (whose access probabi l i ty is 1 - / ~) ,
let us r ename the keys x,a,+~, x,a~+2 Xn as x~, x~
x ' - ,a~ respectively. Correspondingly, let us define the
new density functions

~b'(i) -- ~bQh~ + i)
1 - - / 3 r '

1
~"(i) =

i log~(n - rh~)'

and use these to find the opt imal nr-1 = rhr-~ at which
~ ' (i) and ~'(i) intersect (see Fig. 5(b)). The same part i-
t ioning procedure can be repeated now with X~-I =
X~ - Xr-~, and so forth. The process can be cont inued
until the access probabi l i ty o f the " r ema inde r " keys
becomes sufficiently small to make cont inuat ion imprac-
ticable.

A s impler method, but equally effective in practice,
is to find rh for the hierarchical b inary organizat ion of
order 2 and then let [Xj I = rh for j = 2, 3 r and
IX1 I = n - rh(r - 1), where r is any integer such that
rh(r - I) << n (see Figure 6). We call this organizat ion a
uniform hierarchical organizat ion of order r. Using (4.2),
we obtain in this case

r

sr = ql log[n - rh(r - 1)] + ~.. qj log rh,
j=2

or, approx imat ing further,

Sr ~ log rh + p l log n.

Thus, in a un i form hierarchical organizat ion o f order r
we have

log n
A m

log rh + (1 - / 3) l og n"

299

5. An Illustrative Example

To illustrate the preceding discussion, let us consider
a set o f keys xl, x2, . . . , xn, where n = 21~ and where the
access probabi l i ty o f xi is inversely propor t iona l to i 2. In
this case (see [1, pp. 74--75]),

6 0.608
~(i) ~ ~r2i 2 - - i~

Fo r the b inary hierarchical search of order 2, we have

s(n) 15
A----

S2 ps(m) + (1 - p) [u (m) + 15]"

Tr ia l -and-er ror calculations show that A is maximized
when m = 7 and correspondingly when

p = 0.919, s(m) -~ 2.43, u(m) ~ 3.00,

in which case

15
A ~ = 4.07.

3.69

(Note that the approx imate formula (3.12) gives in this
case A = 4.00. However , the proximity of the two values
in this case m a y not be significant, since m = 7 is not
sufficiently large for (3.12) to be reliable.)

Employ ing the me thod of Section 3, the (approxi-
mate) value o f the maximiz ing m is the solution of

Fig. 6. Uniform hierarchical organization of order r.

'Dr ~ r - I

Pr ='P Pr-I

/92

P2

n - ~ (r - I }

Communications
of
the ACM

May 1980
Volume 23
Number 5

/)l

X I

Pl

0.608 1
i s i loge 2 a6

or

i = 0.608 × 16 × loge 2 = 6.74,

which agrees with the exact result.
Using the value rh = 7, let us now design a uniform

hierarchical organization with r = 6. Thus we have
[Xjl = 7 f o r j = 2, 3 6 and I X1 I = 216 - 35. In this
case (see (2.1)),

sl ~, 15,

_ pk qk-1
Sk - - - - $ (r~ /) "-I- [U (~ I) -'1- $ k - 1] (2 <_ k ----- 6),

qk qk

where

s(rh) = 2.43, u(rh) = 3.00
/71 • 0.017, p2 = 0.004, pa = 0.007,
p4 = 0.014, p5 = 0.039, p6 = 0.919
ql ~ 0.017, qz = 0.021, qa = 0.028,
q4=0.042, q~ =0.081, q6= 1.000

Thus we obtain

15
Sr~,3.21 and A = =4.67.

3.21

Summarizing this example: A hierarchical binary
organization of order 2 speeds up the search time by a
factor of approximately 4.1, while a uniform hierarchical
organization of order 6 speeds up the search by a factor
of approximately 4.7.

ness" of if(i) relative to ~(i), is known in advance. In such
files, with appropriate if(i), the speedup in search time
achievable with hierarchical organization can be of order
log n/log m, where m is the cardinality of the most active
subset in the hierarchy.

It is known that when the n keys are equally likely,
the average number of comparisons required by any
search algorithm based on key comparisons is at least
log n for large n. The advantage of a binary search is
that it achieves this lower bound without requiring ad-
ditional memory. In this paper we showed that when the
keys are not equally likely, the log n bound may be
further lowered (sometimes considerably--by a factor of
log m) by means of hierarchical organization. Assuming
key access distributions for which such an organization
is practicable, the search method offered by the hierar-
chical binary scheme constitutes an improvement over
known conventional search schemes based on key com-
parison.

Received 1/79; accepted 7/79; revised 1/80

References
I. Knuth, D.E. The Art of Computer Programming, Vol. 1. Addison-
Wesley, Reading, Mass., 1973.
2. Knuth, D.E. The Art of Computer Programming, Vol. 3. Addison-
Wesley, Reading, Mass., 1973.
3. Reingold, E.M., Nievergelt, J., and Deo, N. Combinatorial
Algorithms. Prentice-Hall, Englewood Cliffs, N.J., 1977.
4. Zipf, G.K. Human Behavior and the Principle of Least Effort.
Addison-Wesley, Reading, Mass., 1949.

6. Conclus ions

We have explored the conditions under which hier-
archical binary search is faster, on the average, than
nonhierarchical binary search. We have shown that an
advantageous two-stage hierarchy can always be con-
structed when the keys' access density function if(i) is
"steeper" (in the graphical sense) than Zipf's density
function ~(i). The steeper it is, the greater the advantage.
A simple method has been formulated in this case for
approximating the optimal partition of the keys by fmd-
ing the intersection of if(i) and ~(i).

For the r-stage hierarchical search we have not found
a simple procedure for constructing the optimal partition.
However, we have proposed procedures which are close
to optimal in practical cases. The first procedure consists
of a repetitive application of the technique developed for
the two-stage case. The second--which is the simpler of
the two--produces a partition in which the r - 1 most
active subsets have the same cardinality, which equals
that derived for the two-stage case.

The practicality of the results and techniques de-
scribed in this paper is confined to static data files of
moderate to large size (say, n > 21°), where the access
density function if(i) of the keys, or at least the "steep-

300 Communications May 1980
of Volume 23
the ACM Number 5

