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In hierarchical search the data structure holding the 
file keys is partitioned into substructures of the same 
type; these are searched consecutively until the queried 
key is found or the substructures are exhausted. The 
interest here is in the conditions under which the 
performance of a hierarchical organization of static 
files is superior to that of the nonhierarchical 
organization and in the construction of the hierarchy 
when these conditions are met. The performance 
criterion is the average number of comparisons in a 
successful search, where averaging extends over all 
keys and over all permutations of the keys' access 
probabilities. General properties of hierarchical search 
are first derived, and attention is then focused on the 
hierarchical binary organization--the special case 
where each of the data substructures is a sorted array 
(or a balanced binary tree) and where the keys are 
accessed by binary search. It is shown that an 
advantageous two-stage hierarchy is always 
implementable when the keys' access density function 
~(i)  is "steeper" than Zipf's density function ~(i)--the 
steeper it is, the greater the advantage. A simple 
method for constructing the two-stage hierarchy is 
formulated, based on finding the intersection of ~b(i) 
and ~(i). For the r-stage hierarchical organization, 
partitioning procedures are proposed which are based 
on the iterative application of the two-stage techniques. 
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I. Introduction 

We are given a set of  n keys X = (xl, x2 . . . .  , xn}, 
organized in a static data structure ~ (such as a linked 
list, a sorted array, a binary tree, etc.). We are also given 
a search algorithm d (suitable for accessing any key in 
~)  for which 

s(n) = average number  of  comparisons in a successful 
search of ~, 

u(n) = average number  of  comparisons in an unsuccess- 
ful search of  ~. 

We assume that s and u are dependent on the number  of  
keys only and not on the keys' access probabilities. This 
means that in computing s and u, the averaging extends 
not only over all n keys, but also over all permutations 
of  the n excess probabilities. We also assume that for all 
n, 

u(n) >_ s(n). (1.1) 

The organization of X in the single structure ~ will be 
referred to as a simple organization; the search for a key 
in ~ (using d )  will be referred to as a simple search. 

Consider now the reorganization of  Xin  the following 
manner  (see Figure 1): X is partitioned into r nonempty 
subsets X1, X2 . . . . .  Xr, where for j = 1, 2 . . . . .  r, Xj 
contains nj keys ( ~ 1  nj = n), organized in a data 
structure @j- which is identical to @ except for size (e.g., 
if  ~ is a sorted array, so is ~j). A search for a key x in 
this organization is carried out as follows: Using algo- 
ri thm ~¢, search Dr; if  x is found, quit, else search Dr-l; 
if  x is found, quit, else search @r-2; . . .  ; if X is found, 
quit, else search ~1. The organization of  X in this fashion 
will be referred to as a hierarchical organization of order 
r and the corresponding search scheme as a hierarchical 
search of order r. 

The average number  of  comparisons in a successful 
hierarchical search of order r is denoted by st. Our 
objective is to construct the partition {X1, X2 . . . . .  X~) 
which minimizes Sr (this partition will be referred to as 
the optimal one). We also want to compare the minimal 
s~ with s(n) and thus determine to what extent and under 
what conditions the hierarchical search has an advantage 
over the simple search, insofar as the average successful 
search time is concerned. This advantage is measured by 
the advantage index A = s(n)/s~. 

In the next section we derive some general properties 
of  the hierarchical organization described above. In the 
remaining sections we focus our attention on hierarchical 
binary search-- hierarchical search where ~ is a sorted 
array (or a balanced binary tree) and where ed is the 
binary search algorithm. We start with the special case 
where the partition of  X is a dichotomy (i.e., r = 2). 1 
Subsequently we extend our results to hierarchical binary 
search of  any order. 

~The hierarchical binary search of order 2 was suggested by 
Reingold, Nievergelt, and Deo (see [3, pp. 274-275]). 
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Fig. 1. Hierarchical organization of order r. 
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T h r o u g h o u t  the discussion we assume that  the set o f  
keys X is static, i.e., not subjected to any  addi t ion or 
delet ion operat ions.  We  also assume that  the access 
probabi l i t ies  o f  the keys are known in advance.  The  
lat ter  assumption,  however ,  is not as r igorous as it 
sounds; as we shall see, wha t  we require is a knowledge 
o f  the " ra te"  at which this probabi l i ty  drops  as we 
proceed f rom the more  active to the less active keys 
ra ther  than  the precise knowledge of  each key 's  access 
probabil i ty .  

2. S o m e  Propert ies  of  Hierarchical  Organizat ion 

Let us consider  the hierarchical  organizat ion o f  order  
r shown in Figure  1, where  X = )(1 tO Xz tO . . .  to X~ = 

{xt, x2 . . . . .  x , ) .  Let us define the density funct ion 

4 '(0 = Prob[accessing xi] (i = 1, 2 . . . . .  n). 

(We assume that  ~(i) > 0 for  all i (otherwise xi  can be 
discarded).)  The  access probabi l i ty  o f  the subset Xj is 

p j  = Y~ ~( i ) .  
i s u c h  t h a t  

xi~-X j 

(Since the Xj are nonempty ,  P1 > 0 for a l l j . )  
By sk (1 _ k _ r) we denote  the average  n u m b e r  o f  

compar i sons  in a successful hierarchical  search o f  order  
k conducted  on ~h, ~ - t  . . . . .  ~ t  (in that  order). Thus  

st = s(nt), (2.1) 
_ p~ q~-i 

sk - - -  s(nk) + [u(nk) + sk-t] (2 < k ~ r), 
q~ qk 

where  

q , - - - p l + p = + . " + p ,  (1 _< v_< r). 

F r o m  (2.1) sr can be compu ted  recursively. 
PROPOSITION 1. For all k and  j such that 1 <_ j < 

k <-- r we can write 

s~ = a + fls~, 

where a and  fl  are posit ive and  depend only on n~+t, n~÷e, 

. . . .  n~, py+l, p~+~ . . . . .  p , ,  and  p t  + p~ + . .  • + p~. 
PROOf. We show by induct ion on d that  for  all k and  

d such that 2 _< k _< r and l _ < d _ < k -  1, 
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sk = a + risk-a, (2.2) 

where a and  fl are positive and depend  only on nk-d+l, 
nk- -d+2,  • • . ,  n k ,  p k - - d + l ,  p k - - d + 2 ,  • • . ,  p k ,  and pa + p2 + • • • 
+ ph-a. 

Basis. By (2.1), for all k such that  2 _< k _< r we can 
write sk = a '  + fl 'sk-t,  where a '  and fl '  are positive and  
depend only on nk, pk, and p t  + p2 + . . .  + pk-1. Hence  
(2.2) holds for d = 1. 

Induct ion step. Hypothes ize  that  (2.2) is true for d. 
Using (2.1) we can write 

= (a + Ba') + q3B')sk-e-~ = a"  + B"sk-~- t ,  

where a and fl (by hypothesis)  are positive and depend  
only on nk-a+t, nk-a+z . . . . .  nk, pk-a+l, p,-a+z . . . .  , pk, and 
pt  + p c  + . . .  + p k - a ,  and where  a '  and fl '  (by (2.1)) are 
positive and  depend  only on nk-a, pk-d, and pl  + p2 + 
• • • + pk-d-t .  Hence  a" and r "  are positive and  depend  
only on nh-a, nk-a+t . . . . .  nk, pk-a, pk-a+l . . . . .  pk, and 
pl  + pz + " "  + pk-a- t .  Thus  (2.2) holds for  d + 1. []  

PROPOSITION 2. l f  sr is minimal,  so is sk f o r  k = 2, 3, 
. , , ~ r .  

PROOF. Suppose sr is min imal  but that  some 
sk (2 _< k < r) is not minimal .  Hence  it is possible 
to reorganize )(1 tO )(2 (3 . • • to Xk so as to yield an aver-  
age n u m b e r  o f  compar isons  s~ < sk (which replaces sk) 
and s~ (which replaces st). By Proposi t ion 1 we can 
write 

Sr = a + t~Sk, 

where a and fl are positive and depend  only on nk+l, 
nk+z . . . .  , nr, ph+t, pk+2 . . . .  , pr, and  pl  + pz + " " • + p k .  

Since the reorganizat ion o f  X1 to Xz tO • • • to Xk leaves 
all these quantit ies unchanged,  we can write 

, r ,  S r "~" Ol "q- S k.  

Hence 

s ;  - s~ = # ( s ~  - s~) .  

Since fl > 0 and  s~ < sk, we have  s',. < s~, which 
contradicts the assumpt ion  that  s~ is minimal .  Hence  sk 
must  also be minimal .  [ ]  

PROPOSITION 3. L e t  x7  and  x~ be keys  in Xt and  Xh, 
respectively, where l > h and  q~(7) < if(h). Then f o r  some  

j (1 _< j _< r - 1) there exist  keys  x7  and  xTgi in Xj  and  

Xj+I, respectively, such that q , ( j  + 1) < 4~(j). 
PROOF. L e t j  be the largest integer such that  h _<j < 

I and Xj contains a key xy which satisfies ~(7) < ~( j ) .  I f  
j = l - 1, the p roof  is complete.  Otherwise,  pick up any  
key x}~-i in Xj+~. F r o m  the choice o f j  and  x 7 it follows 

that  ~,(7) _> ~b(j + 1). Hence  qs(j + 1) < ~ ( f ) .  [ ]  
PROPOSITION 4. Suppose  s~ is minimal.  L e t  x7  and  x~ 

be any keys  in Xl and  Xh, respectively, where 1 > h. Then 

epj) >_ ~(h). 
PROOV. Suppose ~(7) < q~(h). By Proposi t ion 3 there 

exists k (2 _< k _< r) such that  there are keys x~ and  xz-~ 

in Xh and Xk-1, respectively, where  4'(k) < 4 , ( k -  1). 
F r o m  (2.1) we have  (defining qo = So = 0) 
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1 
Sk ~- - -  {pks(nk) + pk-l[u(nD + s(nk-1)] 

qk 
+ qk-2[u(n D + u(nk-1) + Sk-2]}. 

Let us now reorganize X by interchanging x-~ and xZ-=i. 
As a result, pk is replaced by p~ = p k  + f  and pk-1 by 

p~-i = pk-1 - f ,  w h e r e f  = ¢(k - 1) - ~(k) > 0; and qk, 
qk-2, and sh-2 remain unchanged. Hence sk changes to 

s '  1 k = - -  {p'ks(nk) + p'k-l[u(nD + s(nk-1)] 
qk 

+ qk-2[u(nk) + u(nk-a) + sk-2]}. 

Thus 

1 P 
S k  - -  S k  ~ - -  

qk 

1 

qk 

{(pk - p'k)s(nk) + (pk-1 -- p~-l)[U(nk) 

+ S(nk-1)]} 

-- - -  ( f [u(nk)  -- s(nk)] ÷fs(nk-x)}. 

By (1.1), u(n) >- s(n) for all n, and hence u(nk) - s(nk) >-- 
0. Since f >  0, we have sk > s~, which implies that Sk is 
not minimal. But this, by Proposition 2, implies that Sr is 
not minimal - -a  contradiction. Hence we must have 
¢(7) _ ¢(~). [] 

Proposition 4 is intuitively plausible: It is always 
advantageous to place the more active keys in those 
subsets which are searched earlier. What is not obvious, 
however, is the dependence of  this result on condition 
(1.1), i.e., on the assumption that u(n) >_ s(n). 

Incidentally, under the assumption that for each sub- 
set Xj the IX j[ keys are equally likely and so are the 
I XJl ÷ 1 "unsuccessful" intervals (see [2, p. 410]), it is 
always true that u(n) >__ s(n): It is known that for every 
search algorithm describable by a binary search tree, we 
have, under the equal probability assumption, 

s(n)= 1+-~ u ( n ) -  I 

(see [2, p. 4271); thus u(n) < s(n) if  and only if s(n) > n, 
which is an impossible condition in a binary search tree. 

3. Hierarchical Binary Search of Order 2 

We now turn our attention to the hierarchical binary 
search- - the  special case where the data structure @ (as 
well as ~1, ~z . . . . .  ~r) is an array sorted by key (or a 
balanced binary search tree), and where algorithm ~¢ is 
the binary search algorithm. In this case, under the 
assumption that all keys are equally likely we have for 
large n, 

s(n) =, log n - 1 (see footnote 2) (3.1) 
u(n) .~ log n 

(see 12, p. 411]). When the keys are not equally likely, 

Fig. 2. Hierarchical organization of order 2. 
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(3.1) is valid if in computing s and n the averaging is 
extended over all permutations of  the n access probabil- 
ities, as well as over the n keys. The effect is the same as 
that of  assuming that there is no correlation between the 
key ordering and the frequency ordering. 

Note that s(n) and u(n) of  (3.1) satisfy condition (1.1). 
Thus, in conformance with Proposition 4 an optimal 
hierarchical binary organization involves two sorting 
operations: First, the n keys are sorted in ascending order 
by frequency; the first nl keys are then assigned to X1, 
the next n2 keys are assigned to X2, etc. (assuming that 
nl, n2 . . . . .  nr have been determined); finally each one of  
the subsets X~, X2 . . . . .  Xr is sorted by key. (This double 
sorting, which is done only once for the static file, 
requires O(n log n) comparisons.) Since our objective is 
to construct an optimal organization, we shall henceforth 
assume that for all i and j,  i _ j  implies q~(i) _ ~( j )  (i.e., 
that if(i) is a monotonically nonincreasing density func- 
tion). 

Using (3.1) in (2.1) we get 

sl = log nl - 1 (3.2) 
pk qk--1 

sk = log nk -- - -  + sk-1 
qk qk 

In this section we focus on the hierarchical binary 
search of  order 2. Denoting m = n2 and p = p2 (see 
Figure 2), we have from (3.2), 

s2 = log m + (1 - p ) l o g ( n  - m) - 1. (3.3) 

In this case hierarchical search is superior to simple 
search if  

s(n) 
A(n,  m) - 

s2 (3.4) 
log n - 1 

> 1 .  
log m + (1 -p ) l o g (n  - m) - 1 

From (3.4) we get the condition on p for which A > i,3 

log(n/m)  
p > l -  

log n + log(1 - (m/n))"  

The corresponding lower bound on p is denoted by 

log(n/m)  (3.5) 
15(n, m) = 1 - log n + log(1 - (m/n))"  
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2 log k stands for log2 k throughout. 
3 This result is essentially the same as in the Solutions Manual to 

[3]. 

Communications May 1980 
of Volume 23 
the ACM Number 5 



Fig. 3. if(n, m) and z(n, m). 
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In what follows a key role is played by the density 
function known as Zipf's density function, 4 defined by 

~'(i) = _c. (i = 1, 2 . . . . .  n), (3.6) 
I 

where 

C - H ,  H , =  - .  
n p ~ l  P 

For large n, H ,  can be approximated (see [1, p. 74]) by 

an ~ 1Oge n + 0.577 = (IOge 2) log n + 0.577. (3.7) 

The corresponding Zipf's distribution is 

z(n, m) = f(i) - 
i=l H n  ' 

or for large n, 

z(n, m) = (log~ 2)log m + 0.577 
(loge 2)log n + 0.577 ' 

which can be written as 

z(n, m) = 1 log(n/m) (3.8) 
log n + 0.833" 

4 This density was observed by Zipf [4] to approximate the relative 
frequency of words in natural-language texts. 
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Comparing (3.5) and (3.8), we see that z(n, m) and 
/~(n, m) approximate each other. In fact, computation 
shows that for large n the two functions differ by less 
than 5 percent (see Figure 3). Thus Zipf's distribution 
can be taken as the limiting distribution for judging the 
profitability of  a hierarchical binary search of order 2. I f  
the given distribution is "higher" than Zipf's, then one 
can implement hierarchical binary search of  order 2 
which is, on the average, faster than a simple binary 
search. 

It is clear from (3.4) (as well as intuitively) that A 
becomes larger as p becomes larger. The upper bound 
on A is given by 

A _< log n - 1 
log m - 1 ' 

which for given n and m is approached asymptotically as 
p approaches 1. 

In the remainder of this section we deal with hierar- 
chical binary organizations of order 2 where A is "large," 
i.e., where p is close to 1 and where n/m is large (and 
hence n - m is close to n). 

Let rh denote the value of m which maximizes A for 
specified n and p(n, m). To find rh we can maximize 
A(n, m) of (3.4) or, equivalently, minimize s2 of  (3.3): 

ds2 

dm (3.9) 

1 [ 1  d P l o g ~ ( n _ m ) l ~ p ]  = 0 .  
log¢ 2 dm n 

For large values of n, (3.9) can be approximated by 

1 dp log~ n = 0 
m dm 

or  

dp .~ . (3.10) 
dm m log, n 

If  the density function for the distribution p(n, m) 
is 4ffi), then (3.10) implies that 

1 
¢(rh) ~ th 1Oge n" (3.11) 

Thus rh can be found graphically by locating the inter- 
section of ~b(i) and 1/i loge n (see Figure 4). 

PROPOSITION 5. Let ¢(i) be a density function used 
in a hierarchical binary organization of  order 2. Then rh 
is approximately the value of  i for  which 

¢p(i) = f(i) 

(where ~(i) is Zipf' s density function). 

PROOf. From (3.6) and (3.7) we can write 

1 1 
~ ( i )  = = 

i l l ,  i(loge n + 0.577)' 

which for large n becomes 
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1 
~(i) 

i log~ n" 

The proposition then follows from (3.11). [] 
We thus see that while Zipf's distribution serves as a 

yardstick for deciding whether or not a given distribution 
can yield an advantageous hierarchical binary organi- 
zation of order 2, Zipf's density helps in the actual design 
of  such an organization (by determining rh and hence 
the optimal partition {X~, X2}). 

Examining Figure 4, we can also see that the 
"steeper" <h(i) is, the smaller is the value of  n~ and hence 
the larger is the advantage index A. For example, con- 
sider the family of density functions 

C ~ 
¢8(i) = (8 > 0) 

(8 being a measure of the "steepness" of  the function 
08), where 

/z 

c = v iz~" 

Fig. 4. Finding rh. 

ge n 

L i 
m n 

. i  

In practical cases the value of  rh obtained via Prop- 
osition 5 may be correct only within an order of  magni- 
tude. In these cases it can serve as a good starting point 
for the trial-and-error evaluation of  the correct optimal 
value. 

When n is large, we have 

1 {'~ d v  1 
- - - ~ 0 . 5 + J l  = 0 . 5 +  
c' 

By Proposition 5, rh is the solution of 

c' 1 

i x+~ i loge n 

o r  

When n is large, we have 

1 
s2 ~ log rh ~ ~ log log n 

and hence 

8 log n 
A ~ (3.12) 

log log n" 

Thus A is proportional to 8, i.e., to the "steepness index" 
of  the density function. 

It should be noted that Proposition 5 entails a number 
of  approximations which cumulatively may cause rh to 
be incorrect unless certain assumptions are valid• First, 
it should be recalled that (3.1), and hence (3.3) and (3.4), 
are good approximations only when n and m are not too 
small (say, greater than 20) and when the key and 
frequency orderings are not correlated. In deriving (3.11) 
we further assumed that n is much larger than m (say, 
n > 10m) and thatp  and q~ can be regarded as continuous 
functions (a reasonable assumption when n is large). We 
also assumed tacitly that ff is consistently "'steeper" than 

and hence that ~ intersects ~ only once, thus yielding 
a unique value for rh. 

4. Hierarchical Binary Search of Order r 

The recursion (3.2) can be written for large n~, nz, 
• . . ,  nr as 

sl = log nl 

sk ~ log nk + qk-1 Sk-1 
qk 

(2 _ k ___ r) 

(4.1) 

The solution of  (4.1) for k --- r is given by 

r 

s ~  ~ qjlog nj 
j = l  

(4.2) 

(where qr = 1). We have not discovered a simple way for 
minimizing Sr in this general case (i.e., for finding the 
values of  r, qi, and n1 for specified n and if(i) which 
minimize Sr). What we propose, instead, is to apply the 
technique of Section 3 (for r = 2) iteratively to obtain an 
improvement in the advantage index A in a relatively 
simple fashion. It should be noted that in those cases 
where A > 1 corresponds to pr >> pr-1, the improvement 
achieved either by minimizing (4.2) or b y  the methods 
proposed below is only marginal compared to the value 
of  A obtained with r = 2. 

Using (4.1) we can write 

A - m 
s(n) s(n) 

Sr log nr + (1 -- p~)Sr-l" 

Let us determine n~ as if we designed a hierarchical 
binary organization with r = 2. Using the technique 
of  Section 3, we can find the optimal nr = rhr and 
the corresponding value /~r of  p,  by intersecting ~(i) 
with ~(i) = l / i  loge n (see Fig. 5(a)). As a result we 
obtain 
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Fig. 5. Constructing Binary Hierarchical Organization of Order r. 
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The  advantage  index A can be improved  by reducing 
Sr-~; we do this by part i t ioning X~ = X - Xr in the same 
m a n n e r  that  X has just  been part i t ioned,  i.e., by again 
using the technique o f  Section 3. In  proceeding with the 
part i t ioning o f  X" (whose access probabi l i ty  is 1 - / ~ ) ,  
let us r ename  the keys x,a,+~, x,a~+2 . . . . .  Xn as x~, x~ . . . . .  
x ' - ,a~  respectively. Correspondingly,  let us define the 
new density functions 

~b'(i) -- ~bQh~ + i) 
1 - - / 3 r  ' 

1 
~"(i) = 

i log~(n - rh~)' 

and  use these to find the opt imal  nr-1 = rhr-~ at which 
~ ' ( i )  and  ~'(i) intersect (see Fig. 5(b)). The  same part i-  
t ioning procedure  can be repeated  now with X~-I = 
X~ - Xr-~, and  so forth. The  process can be cont inued 
until the access probabi l i ty  o f  the " r ema inde r "  keys 
becomes  sufficiently small  to make  cont inuat ion imprac-  
ticable. 

A s impler  method,  but  equally effective in practice, 
is to find rh for  the hierarchical  b inary  organizat ion of  
order  2 and then let [ Xj I = rh for j = 2, 3 . . . . .  r and 
IX1 I = n - rh(r - 1), where  r is any  integer such that  
rh(r - I) << n (see Figure  6). We call this organizat ion a 
uniform hierarchical  organizat ion of  order  r. Using (4.2), 
we obtain  in this case 

r 

sr = ql log[n - rh(r - 1)] + ~.. qj log rh, 
j=2 

or, approx imat ing  further,  

Sr ~ log rh + p l  log n. 

Thus,  in a un i form hierarchical  organizat ion o f  order  r 
we have  

log n 
A m  

log rh + (1 - / 3 ) l og  n" 
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5. An Illustrative Example 

To illustrate the preceding discussion, let us consider 
a set o f  keys xl, x2, . . . ,  xn, where  n = 21~ and where the 
access probabi l i ty  o f  xi is inversely propor t iona l  to i 2. In  
this case (see [1, pp. 74--75]), 

6 0.608 
~(i) ~ ~r2i 2 - -  i~ 

Fo r  the b inary  hierarchical  search of  order  2, we have  

s(n) 15 
A---- 

S2 ps(m)  + (1 - p ) [ u ( m )  + 15]" 

Tr ia l -and-er ror  calculations show that  A is maximized  
when  m = 7 and  correspondingly  when  

p = 0.919, s(m) -~ 2.43, u(m) ~ 3.00, 

in which case 

15 
A ~ = 4.07. 

3.69 

(Note  that  the approx imate  formula  (3.12) gives in this 
case A = 4.00. However ,  the proximity  of  the two values 
in this case m a y  not be significant, since m = 7 is not 
sufficiently large for (3.12) to be  reliable.) 

Employ ing  the me thod  of  Section 3, the (approxi-  
mate)  value o f  the maximiz ing  m is the solution of  

Fig. 6. Uniform hierarchical organization of order r. 

'Dr  ~ r - I  

Pr ='P Pr-I 

/92 

P2 

n - ~ ( r - I }  
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0.608 1 
i s i loge 2 a6 

or 

i = 0.608 × 16 × loge 2 = 6.74, 

which agrees with the exact result. 
Using the value rh = 7, let us now design a uniform 

hierarchical organization with r = 6. Thus we have 
[ Xjl = 7 f o r j  = 2, 3 . . . . .  6 and I X1 I = 216 - 35. In this 
case (see (2.1)), 

sl ~, 15, 

_ pk qk-1 
Sk - -  - -  $ ( r~ / )  "-I- [ U ( ~ I )  -'1- $ k - 1 ]  (2 <_ k ----- 6), 

qk qk 

where 

s(rh) = 2.43, u(rh) = 3.00 
/71 • 0.017, p2 = 0.004, pa = 0.007, 
p4 = 0.014, p5 = 0.039, p6 = 0.919 
ql ~ 0.017, qz = 0.021, qa = 0.028, 
q4=0.042,  q~ =0.081, q6= 1.000 

Thus we obtain 

15 
Sr~,3.21 and A =  =4.67.  

3.21 

Summarizing this example: A hierarchical binary 
organization of  order 2 speeds up the search time by a 
factor of  approximately 4.1, while a uniform hierarchical 
organization of  order 6 speeds up the search by a factor 
of  approximately 4.7. 

ness" of  if(i) relative to ~(i), is known in advance. In such 
files, with appropriate if(i), the speedup in search time 
achievable with hierarchical organization can be of  order 
log n/log m, where m is the cardinality of the most active 
subset in the hierarchy. 

It is known that when the n keys are equally likely, 
the average number of  comparisons required by any 
search algorithm based on key comparisons is at least 
log n for large n. The advantage of a binary search is 
that it achieves this lower bound without requiring ad- 
ditional memory. In this paper we showed that when the 
keys are not equally likely, the log n bound may be 
further lowered (sometimes considerably--by a factor of  
log m) by means of  hierarchical organization. Assuming 
key access distributions for which such an organization 
is practicable, the search method offered by the hierar- 
chical binary scheme constitutes an improvement over 
known conventional search schemes based on key com- 
parison. 
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6. Conclus ions  

We have explored the conditions under which hier- 
archical binary search is faster, on the average, than 
nonhierarchical binary search. We have shown that an 
advantageous two-stage hierarchy can always be con- 
structed when the keys' access density function if(i) is 
"steeper" (in the graphical sense) than Zipf's density 
function ~(i). The steeper it is, the greater the advantage. 
A simple method has been formulated in this case for 
approximating the optimal partition of  the keys by fmd- 
ing the intersection of if(i) and ~(i). 

For the r-stage hierarchical search we have not found 
a simple procedure for constructing the optimal partition. 
However, we have proposed procedures which are close 
to optimal in practical cases. The first procedure consists 
of  a repetitive application of  the technique developed for 
the two-stage case. The second--which is the simpler of  
the two--produces a partition in which the r - 1 most 
active subsets have the same cardinality, which equals 
that derived for the two-stage case. 

The practicality of  the results and techniques de- 
scribed in this paper is confined to static data files of  
moderate to large size (say, n > 21°), where the access 
density function if(i) of  the keys, or at least the "steep- 
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