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DEEP LEARNING (DL)  systems have been widely adopted 
in many industrial and business applications, 
dramatically improving human productivity, and 
enabling new industries. However, deep learning has 
a carbon emission problem.a For example, training 
a single DL model can consume as much as 656,347 
kilowatt-hours of energy and generate up to 626,155 
pounds of CO2 emissions, approximately equal to the 
total lifetime carbon footprint of five cars. Therefore, 
in pursuit of sustainability, the computational and 
a	 http://bit.ly/3YzaDet

carbon costs of DL have to be re-
duced.

Modeled after systems in the 
human brain and nervous system, 
neuromorphic computing has the 
potential to be the implementation 
of choice for low-power DL systems. 
Neuromorphic computing features 
both neuromorphic algorithms, 
called spiking neural networks 
(SNNs), and neuromorphic hardware 
which are dedicated ASICs optimized 
for SNNs. Spiking neural networks 
are regarded as the third generation 
of artificial neural networks (ANNs), 
in which spikes (represented by “0” 
and “1” in the computing system, 
where “0” means the absence of a 
spike) are used to transmit informa-
tion between neurons. With such a 
spiking mechanism, costly multipli-
cations could be replaced by more 
energy-efficient additions, mitigat-
ing the intensity of the computation. 
Neuromorphic hardware, on the 
other hand, has a non-von Neumann 
“processing in memory” archi-
tecture, where computations are 
integrated into or near a distributed 
memory architecture. Combined 
with promising emerging memory 
devices such as non-volatile resistive 
and magneto-resistive memories 
(that is, RRAM and MRAM) to store 
synaptic  weights, both static power 
and power consumed by data move-
ment are significantly reduced.

Though neuromorphic comput-
ing is still in its infancy, the market 
is expected to grow from ∼$200M in 
2025 to ∼$20B in 2035.b Significant 
efforts have been devoted to neu-
romorphic computing research. As 
shown in Figure 1(a), players in both 
academia, including Stanford, and 
industry, including Intel and IBM, 
have developed neuromorphic com-
puting systems.

To promote research in neuro-
morphic computing, Singapore 
launched an ambitious program 
in 2017 covering everything from 

b	 http://bit.ly/3mDqviU
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Figure 1. Neuromorphic Computing Projects Zoo.

Includes (a) A*STAR’s Novena, (b) Overall Novena chips 
organization and the host CPU Core layout, (c) Area breakdown of 
each core, (d) Details microarchitecture of each core design,  
(e) On-chip router supporting 5-input-5-output communication.
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a popular regional hub for datacen-
ters, is working to develop a smart 
nation while ensuring sustainability 
as part of its Research, Innovation 
and Enterprise 2025 Plan (RIE2025). 
The sheer number of smart devices 
running DL-related algorithms in 
datacenters or at edge terminals 
is expected to have a significant 
impact on the total carbon foot-
print of computing. Reducing the 
energy consumption of such devices 
is therefore imperative to attain 
green AI. The project is Singapore’s 
contribution to the advancement of 
sustainable science and engineering 
that stands to benefit all of human-
ity. In this article, we introduce this 
program and its four aspects, includ-
ing hardware, middleware, software, 
and system integration.

Hardware
The Novena chip was fabricated in 
a 40-nm CMOS process, occupying 
a total area of 3.6×5.4 mm2. Fig-
ure 1(b) shows the overall Novena 
chip4,5 organization and a host CPU. 
The CPU configures the NC chip via 
a separate programming interface. 
A separate 64-bit bus is used for 
spike communication. The chip has 

hardware to middleware to software, 
as shown in Figure 2. Through col-
laborations between the Agency for 
Science, Technology and Research 
(A*STAR) and the National University 
of Singapore (NUS), this program 
developed an end-to-end neuromor-
phic computing solution with < 2.1 
pJ energy per synaptic operation 
achieved on our ASIC neuromorphic 
computing (NC) chip code-named 
Novena, advancing the current 

neuromorphic computing research 
within Singapore.

Designed to develop application-
driven solutions for real-world 
problems, the vision of this program 
is for every conventional von Neu-
mann computer in the near future 
to be augmented with a neuromor-
phic co-processor to handle big 
data such as text, speech, images, 
video, and bio-signals that require 
DL-related solutions. Singapore, as 

Figure 2. Features of the hardware, middleware, and software for the neuromorphic  
computing program.

� Prototype: 
43 × 256×256×4b core

 + 1 × 256×16×8b on-chip
� Scalable architecture
� Discrete LIF neuron
� On-chip learning
� Energy/operation: <2.1pJ

� Easy to use domain-specific
language

� Supports on-chip learning
� Optimize resource usage and

map efficiently to hardware

� Entire event-driven processing
chain, with event-driven neural
encoding scheme

� Able to utilize existing deep
convolutional network by
mapping to spiking neural network

� On-chip learning to adapt network
to specific data during deployment

� Tightly integrated 
hardware-software optimization

Hardware Middleware Software
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44 cores, 43 of which are inference 
cores while the last is the on-chip 
learning (OCL) core powered with 
circuit implementation of an OCL 
algorithm called Delta Spike Time 
Dependent Plasticity (Delta STDP). 
Delta STDP is fundamentally an 
error-modulated supervised STDP 
that is customized to perform few-
shot learning only on a single layer 
(the last output layer) of an SNN, 
where the error is the deviation 
from target output spike count. 
Details of the Delta STDP circuits 
and algorithm can be found in 
Wong et al.5 Each inference core 
has 256 neurons, 256×256 synapses, 
and 4-bit neurosynaptic weight 
while the OCL core has 16 neurons, 
256×16 synapses, and 8-bits neuro-
synaptic weight. Details of the area 
breakdown of each inference core is 
shown in Figure 1(c).

Figure 1(d) details the neuronal 
circuit which consists of a 256×256 
synaptic crossbar, neuron computa-
tion circuit, a look-up table (LUT), 
and a network interface. Ultra-high-
Vth is used in SRAM cells, reducing 
more than 60% of total chip leakage 
power. To save area, neuron compu-
tations such as leak, integrate, and 
fire are time-multiplexed by a single 
circuit. To support different applica-
tions, neuron leakage profile (that is, 
fractional or linear) and membrane 
threshold value θ are configurable. 
We constrained our fractional leak-
age to 1-(1/2d) so that a bit-shift 
operator can be used instead of a 
full division logic to further reduce 
power and area. Once the membrane 
potential ui of a neuron exceeds its 
threshold θ, a spike will be gener-
ated, and ui is then reset to a default 
level which is usually zero. By looking 
up its address in the LUT, a spike will 
be sent to the corresponding destina-
tion neuron. Output addresses from 
the lookup table will be queued at 
the network interface buffer and will 
only be sent to the corresponding 
router when it can be assured that no 
spikes will be dropped.

Figure 1(e) shows the block 
diagram of the router and neuronal 
circuit design. The router consists 
of a round-robin arbiter, interface 
links, XY routing algorithm logic, 
and crossbar switch. Each router 

communicates directly with its own 
core and sends/receives spikes to/
from its four neighbors via its four 
ports. It is capable of handling 
spikes as well as debug packets, 
and can handle indirect addressing 
for partial summation configura-
tions. The router uses handshaking 
protocol and thus enables globally 
asynchronous locally synchronous 
(GALS) operations for lower power 
consumption by removing all timing 
constraints and power overhead on 
the global clock tree at the top-level 
integration.

Middleware
Designing a neuromorphic processor 
with RRAM synaptic memory, on-
chip learning circuits, and an archi-
tecture that allows system scaling for 
applications of increasing complex-
ity is not easy. It requires careful soft-
ware and hardware co-design, with 
careful considerations to be made on 
many design choices, with respect to 
the performance, energy, and area 
constraints. After the hardware is de-
signed and fabricated, there is also a 
need for end users to easily program 
and make use of the chip. To tackle 
these challenges, in this program, 
we developed a middleware compo-
nent to support the development of 
neuromorphic processors and bridge 
the gap between applications and 
the hardware platform.

Figure 2 also shows the archi-
tecture of the middleware for the 
neuromorphic hardware, whose 
components are specialized to the 
neuromorphic computing chip. 
Firstly, a system-level simulator was 
developed that uses CPUs and GPUs 
to perform neural core simulation 
and network-on-chip simulation.2 
It supports simulation of different 
RRAM material and various RRAM 
characteristics including stuck-at 
faults, random telegraph noise, and 
write variability. The simulator is de-
veloped to have high scalability and 
to support simulation of a neuromor-
phic chip with up to around 20,000 
neural cores that was tested to run 
on 512 Nvidia A100 GPUs. In addi-
tion to the simulator, an FPGA-based 
hardware emulator for the neuro-
morphic chip was also developed 
to accelerate the simulation, which 

The sheer number 
of smart devices 
running deep 
learning-related 
algorithms in 
datacenters or  
at edge terminals  
is expected to have 
a significant impact 
on the total  
carbon footprint  
of computing.
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ing algorithms train the deep SNN 
in an event-driven manner, in which 
the spike timing is regarded as a 
relevant signal for synaptic weights 
updating.8

In this program, we made great 
progress in training deep SNNs by 
majorly proposing tandem learning6 
and spike timing dependent back-
propagation learning (STDBP).8 The 
tandem learning applies rate-based 
coding and transforms the ANN 
knowledge to the coupled SNN in a 
layer-wise manner to reduce conver-
sion errors, achieving competitive 
performance on both frame-based 
and event-based datasets. The 
STDBP places the information in the 
timing of a single spike, namely tem-
poral coding, and both the inference 
and learning are in an event-driven 
manner. STDBP achieves state-of-
the-art 99.5% accuracy on the Caltech 
face/motorbike dataset among spike-
driven learning algorithms.

System Integration
To implement a complete neuromor-
phic computing system, the neuro-
morphic chip needs to be integrated 
with a host processor, along with the 
required sensors. We have chosen to 
use an FPGA board with ARM cores 
as the host processor.

First, the FPGA’s programmable 
logic (PL) is programmed with a 
bridging module to interface with 
the Novena chip over an FPGA Mez-
zanine Card low-pin count con-
nector. The PL may also contain 
other modules such as FFT library 
implementation to accelerate certain 
pre-processing steps that would 
otherwise take considerable cycles in 
the ARM cores.

Second, the ARM cores, as part 
of the FPGA processing subsystem, 
run embedded Linux, which facili-
tates sensor integration thanks to 
the availability of device drivers for 
a wide range of commercial sensors 
including some event-based sensors. 
The sensors are then consolidated 
under a unified sensor interface 
module, followed by further pre-pro-
cessing as necessary. One example of 
pre-processing is to perform region-
of-interest (ROI) extraction such as 
on event-based visual inputs,1 so as 
to reduce input dimension and allow 

achieves ∼2,000× speedup compared 
with multi-threaded execution on the 
CPU simulator.3

Secondly, to allow end users to 
easily program and use the chip, an 
end-to-end design framework for 
neuromorphic computing was devel-
oped. It includes a design front-end 
software compatible with the main-
stream design framework including 
PyTorch and TensorFlow, with exten-
sions to facilitate the design and 
training of SNNs, and a compilation 
middleware and analysis tool chain 
that compiles SNNs from the design 
front-end to produce configuration 
data required by our neuromorphic 
chip. It also optimizes the usage of 
hardware resources on the neuro-
morphic chip.7

Finally, with the simulator/emu-
lator and end-to-end design frame-
work, software/hardware co-explora-
tion is performed. As the first work 
of its kind, we successfully tested 
the ImageNet dataset on a hardware-
aware model on our neuromorphic 
chip architecture using 9,074 neural 
cores, demonstrating the advantages 
of our neuromorphic system over the 
state-of-the-art, achieving promising 
performance in terms of accuracy, 
number of neural cores, latency, and 
energy cost.

Software
Due to the non-differentiable spike 
function and the complex temporal 
dependence between spikes, how to 
efficiently train deep SNNs remains 
an open question. Various learning 
algorithms have been proposed. 
ANN-to-SNN conversion methods 
transform the knowledge from 
trained ANNs to SNN counterparts to 
achieve low-power and low-latency 
in the inference process.6 However, 
ANN-to-SNN methods are unable 
to yield SNNs that can deal with 
sequence data processing. Inspired 
by back propagation through time, 
surrogate gradient-based learning 
algorithms have been proposed to 
resolve the non-differentiable spike 
function by introducing continuous 
surrogate derivatives, which how-
ever require large computing and 
memory resources due to frequent 
update of the synaptic weights at 
every time step. Spike-driven learn-

Surrogate  
gradient-based 
learning algorithms 
have been proposed 
to resolve the 
non-differentiable 
spike function 
by introducing 
continuous 
surrogate 
derivatives.
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resource-efficient implementation 
on the neuromorphic chip.

Furthermore, a system software 
programming framework based on 
a Xilinx SDx environment has been 
developed to streamline communica-
tions between embedded Linux and 
FPGA PL and to facilitate interfacing 
with Novena from embedded Linux 
applications, so that the developer 
need not be overwhelmed by the 
low-level details of the Novena bridge 
interface module in FPGA PL.

Once the Novena chip returns 
computed outputs, a post-processing 
module may be used, for example, to 
further filter outputs over time and 
improve final accuracy. An illustra-
tion of the overall neuromorphic sys-
tem diagram is shown in the white 
inset of Figure 3.

Finally, to showcase the capabili-
ties of neuromorphic computing, 
several demonstrator applications 
have been built, including live key-
word spotting (KWS), live gesture 
detection at variable distances,1 and 
human plus body-part detection 
for search and rescue applications. 
Among these, KWS and human 
detection demos were integrated 
onto a legged robot, where an opera-
tor can use keywords to guide the 
robot, with the legged robot using a 
combination of thermal camera and 
RGB camera where thermal images 
were used for ROI extraction based 

on hotspots, followed by human and 
body-part classification on associ-
ated RGB image ROI patch. A snap-
shot of the human detection demo 
is shown in Figure 3, along with a 
zoomed-in view of the FPGA board 
and Novena chip.

Conclusion
This article gives a description of the 
six-year effort to develop an end-
to-end neuromorphic computing 
solution in Singapore. From next-
generation memory devices, chips, 
algorithms, middleware, to appli-
cations, this ambitious program 
covered all aspects of neuromorphic 
computing. Currently, the program 
is looking into the commercializa-
tion of its innovations, especially for 
energy-efficient edge AI.
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Figure 3. Example neuromorphic computing system using a legged robot as mechanical platform and thermal + RGB camera-based  
human detection.
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