
25 

How Do Users Experience Traceability of AI Systems? 

Examining Subjective Information Processing Awareness 

in Automated Insulin Delivery (AID) Systems 

TIM SCHRILLS and THOMAS FRANKE , Universität zu Lübeck, Germany 

When interacting with artificial intelligence (AI) in the medical domain, users frequently face automated in- 
formation processing, which can remain opaque to them. For example, users with diabetes may interact daily 
with automated insulin delivery (AID). However, effective AID therapy requires traceability of automated 
decisions for diverse users. Grounded in research on human-automation interaction, we study Subjective In- 
formation Processing Awareness (SIPA) as a key construct to research users’ experience of explainable AI. 
The objective of the present research was to examine how users experience differing levels of traceability of 
an AI algorithm. We developed a basic AID simulation to create realistic scenarios for an experiment with 

N = 80, where we examined the effect of three levels of information disclosure on SIPA and performance. 
Attributes serving as the basis for insulin needs calculation were shown to users, who predicted the AID 

system’s calculation after over 60 observations. Results showed a difference in SIPA after repeated observa- 
tions, associated with a general decline of SIPA ratings over time. Supporting scale validity, SIPA was strongly 
correlated with trust and satisfaction with explanations. The present research indicates that the effect of dif- 
ferent levels of information disclosure may need several repetitions before it manifests. Additionally, high 

levels of information disclosure may lead to a miscalibration between SIPA and performance in predicting 
the system’s results. The results indicate that for a responsible design of XAI, system designers could utilize 
prediction tasks in order to calibrate experienced traceability. 
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 INTRODUCTION 

he availability of intelligent technology for type 1 diabetes mellitus (DMT1) therapy [ 33 ] has
ncreased, reflecting the general development of personalized medicine based on artificial intel-
igence (AI) . In DMT1, self-adapting learning algorithms are used for personalized calculation
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f insulin needs, e.g., at different times of the day, at different stages of the female period, or
epending on physical activity. The goal of these systems, also known as automated insulin de-
ivery (AID) systems, is to improve therapy while reducing the workload for people with DMT1.
he incidence of DMT1 has increased in recent years and was 15 per 100,000 cases in 2020 [ 83 ].

n order to improve therapy conditions and effectiveness, AID systems can provide fully or par-
ially automated diabetes therapy, for example, through integrating advanced wearable glucose
ensors and intelligent insulin pumps [ 116 ]. All in all, the core of AID technology is the auto-
ated processing of information, especially to regulate current blood glucose levels in relation

o therapy goals while dealing with high temporal dynamics, latency, and complexity of human
hysiology. 
The first empirical studies suggest that people with DMT1 can benefit significantly from AID

ystems [ 3 , 18 , 64 ]. Both long-term metrics (e.g., the “time in range” (TIR) referring to desired
lucose level) and the frequency of acute life-critical blood glucose levels can be reduced [ 6 ]. How-
ver, the positive effect of AID systems seems to depend on, for example, the previous quality of
herapy [ 15 , 80 ]. That is, individuals who had problematic long-term metrics before starting AID
herapy are more likely to discontinue AID-based therapy. Paradoxically, they would profit the
ost from AID systems. Thus, more inclusive methods that enable a wide diversity of users to

ontinue AID therapy are needed. Parallel to findings on the beneficial therapeutic effects of AID
herapy, several recent studies [ 4 , 40 , 80 ] explicate the need for human-centered development of
ID systems, referring to problems well known in human-automation interaction: positive effects
f AID can, e.g., be hindered by a high number of alarms [ 14 ] and the associated alarm fatigue [ 106 ].
hile reducing the burden of treatment [ 113 ] is one of the main goals of AID systems, the con-

inuous efforts while using AID systems as well as initial familiarization with this form of therapy
re considered important discontinuation criteria for therapies with AID systems [ 80 ]. Human-
entered improvement of the interaction between intelligent, highly adaptive AID systems and
eople with DMT1 is therefore a key scientific challenge to improve treatment options for indi-
iduals with different levels of experience and competence in using technology. At the same time,
ID systems also provide an excellent context to examine the dynamics of human-XAI interaction

n a situation where high risks and high benefits for users are juxtaposed. 
Problematic expectations and experiences with AID systems play a decisive role in the current

cceptance of these systems [ 72 ]. For instance, if users have an incorrect understanding (e.g., in the
ense of an inaccurate mental model, c.f. [ 59 ]), this can lead to incorrect predictions of the results
nd capability of the system [ 9 ]. Such false mental models could result from people being uncertain
bout how system adaptability affects information processing in AID systems, e.g., whether they
re able to change therapy goals or not [ 67 ]. In addition, AID systems often work differently than
sers did when they manually regulated their glucose levels: for example, information is processed
y AID systems every 5 minutes [ 12 ], while in other forms of therapy (e.g., before using an AID
ystem) the blood glucose level is sometimes only checked, e.g., four times a day with fingerstick
lucose measurements [ 120 ]. Therefore, AID systems as a case for examining the real-time coop-
ration of humans with intelligent algorithms potentially lead to an advanced understanding of
ooperative disease management between humans and AI. The performance of many AID systems
egularly relies on information from the user [ 20 , 116 ], so correct communication between both
artners may lead to increased performance. On the other side, an incorrect understanding of the
ID system could also have a critical impact on the success of the therapy [ 21 ]. While regula-

ory technical briefing is mandatory, the extent to which the functions and capabilities of such a
ystem are understood is not tested prior to its use. If users have an incorrect mental model, the
bility to correctly predict the information processing of the system may decrease. However, the
elf-assessment of how well one understands the information processing of a system may differ
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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rom the actual correctness. Explanations could help individuals to recognize errors in their men-
al model, leading to a better fit between experienced traceability and performance. However, they
ould also erroneously increase the confidence in an incorrect mental model and thus worsen the
alibration [ 34 ], which results in wrong expectations about system behavior and potentially con-
uses users, ultimately leading to a reduction of trust [ 110 ]. Explanations can have an ambiguous
ffect on the calibration between the experienced traceability of a system and the user’s ability to
orrectly predict information processing. To address inaccurate calibration, metrics for both expe-
ience and performance need to be measured at the same time. All in all, AID systems represent
 prototypical example of interactive systems where human-machine cooperation is centrally in-
uenced by user experience and where incorrect mental models or disparity between experienced
raceability and performance may lead to unexpected issues in therapy quality. 

The goal-oriented communication of information and the correct predictability of, e.g., an in-
ulin calculation are two central characteristics of human-machine cooperation [ 62 ]. In the field
f explainable AI (XAI) , various approaches exist that are intended to help users cooperate with
I systems by addressing the challenge of opacity (such as [ 25 , 84 , 96 ]. As demonstrated in exam-
les outside of AID therapy, the calculation of results can be presented transparently by revealing
eights of relevant factors [ 100 ]. Furthermore, the elements that particularly favored certain re-

ults can be highlighted [ 70 ], or alternatives close to the given result can be presented [ 23 ]. In
ddition to improving predictability, explanations in AID systems could also help improve users’
pportunities to exert directability (see [ 58 ] and [ 28 ]). In DMT1, a loss of “sense of control” is a
ypical problem users experience [ 105 ]. Thus, when using intelligent AID systems, increasing di-
ectability could play an important role and influence acceptance. Ultimately, “common ground”
s an important prerequisite for cooperation [ 62 ]. In the case of AID systems, a common ground
ould consist of (1) current information on blood glucose levels, physical activity, or food intake;
2) reference values for therapy, i.e., goals; or (3) personalized parameters like insulin sensitiv-
ty. Therefore, it is important to disclose relevant elements or information that users can process
hemselves and use to manually adjust the therapy [ 95 ]; see also [ 111 ]. However, in order to reduce
he workload, many AID systems process information automatically and do not actively share it
ith the users. These barriers have already led to user-initiated projects enabling access to their
ata (cf. [ 97 ]). Yet, in relation to the clinical relevance and the opportunities for human factors
esearch, empirical studies on how and when to present detailed information on the AID’s infor-
ation processing are still in an early stage of development. Comprehensive and empirical work
ith a high ecological validity to derive guidelines on how AID systems can be improved to en-

ble cooperation is needed and constitutes an important next step in human-centered diabetes
echnology. 

The objective of the present research was to examine the effects of explanations that vary in the
mount of disclosed information as well as repeated interaction on users’ subjective perception of
rust and traceability in AID systems. To this end, we trained a basic yet prototypical AID algo-
ithm based on artificial yet plausible data and designed a minimalistic AID simulation to create
timuli for an online experiment, where people with DMT1 repeatedly interacted with AID calcu-
ations and also predicted AID results. The information available to the algorithm was disclosed to
articipants to a different extent, in order to create three different experimental conditions. It was
nvestigated whether a greater amount of information leads to higher experienced traceability and
rust while task completion time and perceived workload increase. Furthermore, it was analyzed
o what extent repeated viewing of explanatory information can lead to an increase in experienced
raceability. Similarly, the relationship between experienced traceability and the ability to make
orrect productions was assessed to allow evaluation of the calibration of the mental model with
he system’s information processing. 
ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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 RELATED WORK 

.1 Automation in Diabetes Mellitus Type 1 

he continuous therapy of DMT1 sometimes can represent a great burden in everyday life for
hose affected [ 112 ]. Many therefore expect the digitalization of diabetes therapy to improve the
uality of treatment while at the same time reducing the burden of treatment for patients [ 68 ]. This
oal is also being pursued by the development of an “artificial pancreas,” which allows complete
utomation of diabetes management [ 116 ]. For now, full automation is only possible to a limited
xtent due to various factors or may be associated with reduced precision of the therapy (c.f. [ 20 ]).

AID systems in the form of so-called hybrid closed-loop systems acknowledge those limits while
till offering relief for patients. These systems are not fully automated, since a system-dependent
evel of information or decisions by the user is required. [ 89 ] provides a suitable framework that
istinguishes four stages of information processing (1) information acquisition, (2) information
nalysis, (3) decision making, and (4) action implementation) and therefore allows a characteri-
ation of AID systems’ level of automation. For example, there are already differences between
xisting systems in information acquisition (1): the system described by [ 12 ] only requires in-
ormation on physical activity and food intake, while [ 45 ] already no longer requires information
n physical activity. In information analysis (2), AID systems show a high degree of automation,
s this is supposed to be a crucial element of relief for the users. Here, learning systems such as [ 12 ]
an be distinguished from static systems such as [ 19 ]; the latter requires users to manually adjust
arameters and thereby increase the quality of information analysis, whereas this is not neces-
ary for self-learning systems. Thus, self-learning AID systems promise continuous improvement
n therapy with greater automation, yet may be more complex to understand and to predict for
sers. The (3) decision making of, e.g., administration of insulin can be illustrated very well by
he levels of automation presented by [ 89 ] and at the same time represents an important feature
or interaction design in AID systems. For example, after input, a single suggestion for the admin-
stration of insulin can be made (level 4, cf. [ 92 ]) or an automatic administration of insulin occurs
here the user can intervene but is not informed in any case (level 8). Action implementation

4) is performed automatically by many systems in the event of identified insulin needs. However,
ystems currently available do not offer the injection of, e.g., glucose in case of hypoglycemia, so
ction implementation for low glucose levels is not automated. All in all, AID systems in their
arious forms represent not only a broad field of automation in medical systems but also systems
hat are highly dependent on cooperation between humans and technology. 

However, various studies also show the challenges of automation: for example, people fear an
rror-proneness of digital systems in the field of DMT1, with simultaneous fears to be faced with
igh complexity [ 80 ]. But also, for example, too high expectations of performance or degree of sys-
em autonomy, especially of AID systems without a high degree of automation, pose substantial
hallenges [ 61 , 93 ]. Furthermore, it remains to be seen to what extent a more technologized therapy
ould further exacerbate the already existing inequality between individuals from different socioe-
onomic strata or educational levels. In addition to accessibility (c.f. [ 69 ]), the design of systems
ay also improve unequal opportunities for empowered and autonomous diabetes therapy [ 74 ,

7 ]. These challenges can be addressed with the human-centered development of interactive and
ooperative yet traceable AID systems, which could make a decisive contribution to the empow-
rment of people with DMT1, regardless of their diverse backgrounds, e.g., in terms of affinity to
echnological interaction or educational level. 

.2 Explanation and Cooperation in AID Systems 

xplanations and higher levels of transparency may improve cooperation between humans and
ntelligent systems [ 118 ]. They may support the temporally adequate exchange of information
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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etween humans and the system, which is of central importance for both partners to fulfill their
espective functions [ 47 ]. In AID systems, for example, the human must signal the intake of car-
ohydrates in a timely manner, while the system must communicate a deviation in blood glucose
evels to the user, for example, so that the human can take action. Mutual anticipation of infor-

ation demands can be a central criterion of cooperation in the sense of collegiality (cf. [ 28 ]).
specially with higher degrees of automation, the human’s task can also be to monitor or check
esults. For this task, the information used by the machine can be a central function for cooper-
tion, as this allows the inputs for the machine calculation to be traced. The extent to which the
nformation processing of a system is accessible for the users and thus also provides the basis for
ooperative actions can be described as traceability (unlike the definition of [ 66 ], where traceabil-
ty refers to the creation process of the system and not of an individual calculation). An empirical
nvestigation of the disclosure of information in the context of a decision-making process can
herefore make an important contribution to the design of human-centered AID systems. To the
est of our knowledge, no results on how different quantities of information contributed to the
alculation of insulin needs affect user experience have been published. 

However, communication—if it does not take place at the right time—can have negative effects
n cooperation or the performance of other functions by a partner [ 32 ]. Accordingly, previous re-
earch does not show a clear impact of explanations on perceived workload [ 2 ]. In the case of AID
ystems, the existing workload, contrary to their initial purpose, is partly a major problem that
ould motivate dropouts. In addition, unreliable integration of sensor technology still contributes
o the frequent negative perceived interaction with the system based on alarms [ 80 ]. Therefore,
hen developing explanations or other approaches to increase the traceability of results of intel-

igent systems, the objective and subjective workload should be controlled. 
Additionally, information or explanations can influence trust in intelligent systems [ 9 , 107 , 126 ].

n order for trust to be relevant, risk needs to be present [ 56 ]. The incorrect dosing of insulin by
n AID system can result in significant health consequences, which is why trust can not only
e investigated in the present use case but is also addressed as a prerequisite and challenge for
ID use [ 65 ]. In this context, clinical reviews, as required from professionals in studies regarding
edical AI systems [ 48 ], are one way to provide evidence of trustworthiness and thus increase

extrinsic trust” [ 56 ]. However, clinical evidence does not affect the traceability of systems. Ex-
erienced traceability allows for “intrinsic trust” and, as discussed, the possibility of cooperation.
herefore, human factors research calls for studies on trust in AID systems in dependence on
xplanations as a suitable means to support intrinsic trust. 

Findings in the literature on the beneficial effects of explanations are still inconclusive; i.e., dif-
erent studies observe that the use of explanations did not lead to an objective change in observed
ehavior. For example, [ 7 ] could not find better predictions of AI outcomes even though additional
xplanations were offered. Similarly, [ 10 ] showed that explanations did not significantly increase
he joint performance of AI and humans in judging texts. Aggravation of this problem is shown
y [ 29 ] and [ 36 ], where explanations are positioned as “placebic explanations” or even as “dark pat-
ern explanations”: these explanations do not contain any information to increase transparency but
nduce a better experience of the interaction, e.g., in terms of perceived trustworthiness, adversely
eading to “unwarranted trust.” This could result in overconfidence and thus an unjustifiably high
eliance on, e.g., the AID system. Thus, rather than empowering users, explanations could give
hem a false sense of security. Especially in the automated delivery of drugs such as insulin, inter-
ctions must be designed to prevent the development of overconfidence. Accordingly, the study
f objective and subjective measures together in experiments is crucial in the human-centered
evelopment of AID systems. 
ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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.3 From Situation Awareness to Subjective Information Processing Awareness 

o adequately address human-centered research questions in AID systems, instruments to assess
raceability-related facets of user experiences of a system’s results are necessary. In recent years,
ifferent scales to evaluate XAI have been proposed. [ 51 ] gave an overview of user experience
etrics for XAI, introducing the Explanation Satisfaction Scale (ESS) . The ESS was developed

o measure the subjective quality of explanations provided by an intelligent system. Being based
n multiple existing methods from the field of trust in automation (such as [ 57 ]), it incorporates
oth affective and cognitive implications of explanations (see [ 76 ]). The ESS is meant for experts
onstructing and developing AI systems or experienced users, as they need to rate, e.g., the use-
ulness of results. In iterative development, also quick interaction with systems needs to provide
ufficient data to guide further development. An additional scale allowing inexperienced users,
.g., first-time customers and end-users, to participate is crucial for XAI research because usage
f AI-based systems is not limited to experts. Another scale addressing system traceability specif-
cally designed for the medical domain is the System Causability Scale (SCS) from [ 54 ]. The
CS focuses on a quick overview of the impact of explanations and thus also captures different
imensions, e.g., to what extent users see explanations as transferable to others or whether the ex-
lanations fit their own knowledge base. While this allows for a quick general assessment, it is not
et clear to what extent the SCS can also be used for specific, theory-driven questions, e.g., about
he traceability of certain decisions. As [ 127 ] elaborates in its review, the usability of measure-
ent methods for evaluating explanations depends on the user group, the experimental design,

nd the specific properties of the explanation. All in all, existing instruments of XAI research for
urveying the subjective effects of XAI often refer directly to the added interaction elements, i.e.,
xplanations given by the system [ 51 , 54 ]. 

While these instruments could be used in the selection of appropriate explanations, especially
t the beginning of the design process or in formative evaluations, a direct comparison, e.g., to
 baseline without explanations may be difficult. To address experimental designs with, e.g., a
ontrol group, an instrument that aims to measure the subjective effects of explanations and re-
ates to experienced traceability of automated systems rather than directly evaluate explanations
hemselves would be advantageous. For this purpose we derive Subjective Information Processing

wareness (SIPA) [ 102 ] from Situation Awareness (SA) theory. SIPA describes “the experience of
eing enabled by a system to perceive, understand and predict its information processing” [ 102 ].
hen users act within a dynamic system, they make situation assessments [ 38 ], which result in a

ser state that has been established as SA. SA theory postulates three levels within this assessment:
1) perception, where the state of environmental information in the current situation is perceived;
2) understanding, where comprehension of the current situation is formed; and (3) projection,
here future states of the situation are predicted. Previous work on automation demonstrates
ow SA may play an important role in XAI research: for example, low SA could be the reason
or missing anticipation when information needs to be communicated in order to ensure coopera-
ion [ 109 ]. SA loss is a known problem in existing research in human-automation interaction [ 89 ].
ence, understanding the effects of automation on SA is important and applicable to XAI. How-

ver, current methods to survey SA have often focused on the interaction’s context. On the other
and, SIPA focuses on the transparency of relevant elements, understandability, and predictability
f information processing as it is relevant for the trustworthiness and traceability of AID systems.
While Situation Awareness focuses on processes within the person, the goal of the SIPA scale

s to describe the experience of system properties that lead to SIPA. These can be built up analo-
ously to Situation Awareness. Instead of Perception, the first facet of the SIPA scale is experienced
ransparency, which describes the extent to which the system interaction allows the user to per-
eive all relevant elements for information processing. Hence, “Understanding” and “Prediction”
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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an analogously be positioned as “experienced understandability” and “experienced predictabil-
ty.” The facets adopted in the SIPA scale are thus grounded in the levels described in SA theory
nd can be clearly placed within the broad discussion of the definition of, e.g., transparency [ 26 ].
hus, transparency, as defined in the SIPA scale, does not refer to, e.g., the goals of the developer
r global information on, e.g., training of the model, but to the person’s experienced accessibility
o information to which the system has access. 

To ground the specific items of the SIPA scale in SA theory, we examined different SA scales
ssessing subjective (c.f. [ 115 ]) as well as objective SA (cf. [ 37 ]). The items of the scale were devel-
ped on the basis of these questionnaires as well as theoretical explanations of situation awareness
e.g., [ 39 , 125 ]) and discussed by various experts from the field of engineering psychology. The
cale, initially developed with 12 items [ 102 ], was shortened by multiple, empirically supported it-
rations to 6 items. Two of the items are assigned to each of the facets of SIPA. While reverse-coded
tems were sparingly integrated with the original generation of items, these showed the negative
ffects discussed in [ 121 ]. After weighing the comprehensibility of the scale against the potential
egative effects of uniformly one-sided items, no reverse-coded item was included in the 6-item
cale—also on the basis of qualitative comments from users. 

 PRESENT RESEARCH 

ased on the research issues presented above, hypotheses were derived for the present study. For
ypotheses H1 to H3 the level of information disclosure is the independent variable, while SIPA,
he time-on-task, and the subjective workload are the dependent variables. 

� H1 : SIPA increases when there is an increase in relevant explaining information disclosed
by an intelligent system. 

� H2 : Time-on-task increases when there is an increase in relevant explaining information
provided by an intelligent system. 

� H3 : Subjective workload increases when there is an increase in relevant explaining infor-
mation provided by an intelligent system. 

Further, we assume that the dependent variable SIPA increases over time, regardless of the con-
ition, as individuals are given repeated opportunities to make assumptions about the system and
orrect their mental model. 

� H4 : SIPA increases with increasing observations. 

As mentioned above, we expect a close relationship between SIPA and trust, since, for example,
he experienced predictability of a system as depicted via SIPA is a crucial influencing variable for
rust. Furthermore, we expect a strong correlation with ESS due to the similarity of the underlying
onstructs. 

� H5a : SIPA and trust correlate moderately to strongly. 
� H5b : SIPA and explanation satisfaction correlate moderately to strongly. 

Hypotheses H6 to H10 relate to participants’ performance on the prediction task or the effects of
he prediction task. Here, the prediction of insulin needs calculated by the AID system represents a
easurement dependent on the correctness of the participant’s mental model. Based on previously

iscussed theories in the area of cooperation, we hypothesize in H6 to H9 that higher availability
f information leads to better SIPA and to better prediction. Additionally, we expected the SIPA
alue to rise in the performance block. 

� H6 : Higher SIPA ratings before the performance block correlate with better performance
in the prediction task. 
ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 



25:8 T. Schrills and T. Franke 

 

 

c  

f

 

4

W  

a  

g  

c  

a

4

E  

g  

(  

s  

f  

i  

s  

w  

I  

a  

g
 

p  

2  

t  

p  

m  

b  

a  

s  

p  

S  

s  

t  

u  

r  

c
 

1  

(  

A

� H7 : Higher levels of information disclosure lead to better performance in the prediction
task. 

� H8 : SIPA increases over the course of the performance block. 

The influence of intra-individual differences (such as attitude toward AI or duration of diabetes)
ould affect the user experience of an AID system. To assess the inclusiveness of explanations, we
ormulate the following research question for exploratory analysis: 

� EQ : How are intra-individual differences related to SIPA ratings and performance in the
prediction task? 

 METHOD 

e conducted an AID simulation experiment among people living with DMT1. Specifically, we ex-
mined how different levels of information disclosure affected the participants’ experience of an al-
orithm calculating insulin needs after repeated interaction with varying levels of information dis-
losure of the system. The study was pre-registered under https://doi.org/10.17605/OSF.IO/NUJTE
t OSF [ 42 ]. Changes in the planned and performed analyses are described under Results. 

.1 Participants 

ighty participants with DMT1 completed the experiment. Ethics approval for this study was
ranted by the Ethics Committee of the University of Lübeck before the start of the experiment
Tracking number: 21-438). Participants volunteered to participate in the study, and informed con-
ent was required. The experiment was implemented using the Labvanced online experiment plat-
orm [ 41 ]. Participants were instructed to conduct the study only with appropriate screen sizes,
.e., on desktop computers, laptops, or tablets. We recruited DMT1 patients via mailing lists and
ocial media channels (Twitter, Facebook, Instagram) applying convenience sampling. Participants
ere compensated €10 for their time in the study due to the approximated duration of 60 minutes.

n addition, the three best-performing participants could win €80 each. This additional price was
pplied in order to put an additional incentive for motivation into performance tasks on top of the
eneral compensation. 
To safeguard data quality, we defined two exclusion criteria before the experiment and ap-

lied these after study completion: (1) participants with over-long completion times ( > 2 SD , N =

 with 412 and 319 minutes in comparison to M = 63 of final sample) were excluded because par-
icipants were instructed to complete the experiment in one single continuous session, and (2)
articipants with very low knowledge of DMT1 management were excluded because the experi-
ent required the most correct understanding of the relationships between the factors influencing

lood glucose. To screen for diabetes knowledge, we developed 10 items (see Appendix C ). To be
ble to assume sufficient uniform knowledge of diabetes management, we defined six correct re-
ponses (60% to reach a reliable differentiation from chance) as a cutoff criterion for exclusion
rior to the experiment ( n = 1 excluded with knowledge score = 4, final sample with M = 7.89 and
D = 0.78). In addition to these pre-defined criteria, we observed in the first data inspection that
ome users reported the same rating for all items in the observation blocks and excluded them
o avoid invalid data being part of the analysis. Furthermore, in the prediction task, we observed
sers to only respond with “0” or positive values in the prediction class, which caused biased
esults for the prediction. Overall, seven participants were removed based on those additional
riteria. 

The final sample consisted of 70 participants ranging from 18 to 61 years ( M = 28.9, SD =

0.5). Forty-nine participants identified themselves as female (70.0% of the sample), 20 as male
28.6% of the sample), and one person as neither. To better classify the sample in relation to the
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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eneral population with regard to at least one fundamental facet of user diversity (i.e., diversity in
uman-technology interaction), the Affinity for Technology Interaction scale [ 43 ] was assessed.
ur sample had a wide range (from 1.22 to 5.67) with an average value of 4.11 being well in the
edium range (possible ATI score range = 1–6) yet somewhat higher than reported for the general

opulation (3.5 as described in [ 43 ]). Yet, it has to be noted that the average ATI score in the pop-
lation of AID users is not known (e.g., there is a chance that low-ATI patients are more reluctant
o adopt an AID therapy or treatment). The average duration of diabetes was 14 years ( SD = 10.1,
ange = 1–44), which is similar to distributions of recent clinical studies for AID systems, such
s, for example, [ 12 ]. Only n = 9 participants stated to have previous knowledge of AID systems.
hese were evenly distributed across the groups and showed no correlation with performance in

he prediction task (all p > .050). 

.2 Experimental Environment 

o create an experimental environment we developed an AID simulation system that was de-
igned to meet three criteria: (1) high ecological validity for good transferability of the results to
he practical application of systems, (2) information that structurally resembles real dynamics in
MT1 treatment with AID systems, and (3) high experimental control, which allows the systematic
anipulation of independent variables and thus enables the research questions to be addressed.

urther, the application had to be sufficiently distinct from existing systems, which could other-
ise have led to potential confounding based on existing experience and prior knowledge. The
ID simulation was created in three steps described in the following sub-sections: (1) the man-
al creation of valid training data, (2) the training of a basic machine learning model for use in
he context of a runtime-capable AID simulation, and (3) the generation of static scenarios for a
ontrolled experiment. 

4.2.1 Development of Artificial Training Data for AID Simulation. An artificial dataset of infor-
ation relevant to AID systems was developed to be independent of individual medical data and

he complications that come with it in terms of using personal health data. Each instance consisted
f 12 different attributes and the insulin requirement. The individual datasets represent different
ndividuals and therefore contain individualized factors as attributes, such as the amount of cor-
ection for excessive glucose levels. All attributes and their meaning are found in Appendix A .
egative insulin needs refer to the need to take in carbohydrates when, e.g., too much insulin is in

he body. The different attributes are based on data that is already used in various clinically tested
ID systems [ 12 , 81 ]. After creation, the dataset was reviewed by two independent diabetologists.
oth independently rated the dataset as plausible. In total, over 480 instances were created, with
00 to train and test a model. 

The attributes have been divided into three different groups, following the approach discussed
n Related Work: (1) information provided to the system by the user depending on the situation or
utomatically determined by the system and representing physiological variables influencing
he amount of insulin, (2) information representing general or dynamic therapy goals or prefer-
nces of the user , and (3) information learned by the algorithm, which provides informa-
ion about the calculated insulin sensitivity and thus factors influencing the outcome of the
ID system. The information of the first group is oriented to give one (1) common ground about

nformation that both humans and machines absolutely need for cooperative action. The infor-
ation of the second group shows which possibilities the system has for (2) implementing user

references and can thus give users information about the extent of directability. While all infor-
ation increases the predictability of the system, the information from the third group represents

nfluencing factors for the concrete (3) computation of the system. 
ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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Table 1. Hyperparameters of Applied Random 

Forest Model 

Mean Absolute Error (MAE) 3.02 
Mean Squared Error (MSE) 13.69 
Root Mean Squared Error (RMSE) 3.70 
Mean Absolute Percentage Error (MAPE) 1.52 
Explained Variance Score 0.39 
Max Error 7.97 
Median Absolute Error 2.20 
R 
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4.2.2 Training of Random Forest Model for AID Simulation. Subsequently, a model was trained
ased on the data. To predict insulin needs based on the dedicated attributes as input parameters,
 random forest regressor was implemented [ 104 ]; see also [ 85 ]. A train-test-split where 25% of the
ata was reserved for testing was used, resulting in four datasets: X_train, X_test, y_train, y_test.
he X datasets include the input parameters for the regressor, while the y datasets only contain

he corresponding target values (results). 
Through a grid-search cross-validation algorithm, an (on average) best set of hyperparameters

or the random forest were found to be 80 estimators and 10 max depth. These parameters are used
or the construction of the random forest and control the number of trees in the forest and the max
epth of those trees. A lower number of trees would have resulted in an underfitted model, while
 higher number of trees ( > 100) would not have increased performance further. The maximal tree
epth of 10 shows a good performance for the dataset at hand, while deeper trees are more prone
o noise in the data. 

The random forest was then fitted to the training datasets (X,y) with the hyperparameters.
he regression model exhibits metrics when comparing predicted values with real result values

y_pred, y_test) as shown in Table 1 . 

4.2.3 Generation of Scenarios for a Simulation-based Experiment. The AID simulation was used
o generate scenarios for an experiment. The interactive input of individual data was excluded for
his experiment in order to (1) have uniform scenarios for each participant and thus avoid biases
ue to different inputs, (2) focus on scenarios close to the application, and (3) reduce the risk of
echnical problems in the ongoing experiment in the context of the experiment conducted online.

To create scenarios, calculated insulin needs were removed from the 80 remaining instances of
he previously described dataset and used as inputs for the AID simulation. The outputs were saved
s screenshots, with all 80 scenarios saved in three different formats and used in the experiment
s conditions: (1) low information disclosure (LowID) , (2) medium information disclosure
MedID) , or (3) high information disclosure (HighID) . The allocation of information is based
n the groups described above and is presented in Table 2 . 
The resulting interfaces can be seen in Figure 1 . Participants consistently saw only one of these

onditions throughout the experiment, in both the observation and performance blocks. Because
f feedback in pre-tests, the concept of correction strength was explained to all participants from
edID and HighID before each block of stimuli. 

.3 Measures 

4.3.1 SIPA Scale. The SIPA scale as a measure to assess users’ experience while interacting with
ntelligent systems was used to examine the effects of different levels of information disclosure. The
oal for the development of the SIPA scale was to construct a highly economical scale closely linked
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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Table 2. Overview of Attributes Used in the Simulation 

Condition Attributes 
Low Information Disclosure (LowID) Current Tissue Glucose 

Current Insulin in Body 

Current Carbohydrates in Body 

Current Activity 

Medium Information Disclosure (MedID) Tissue Glucose Target 
Avoid Hypoglycemia 
Duration of Insulin Effect 
Correction Intensity 

High Information Disclosure (HighID) Risk of Hypoglycemia in Next Hour 
Blood Glucose Lowering per 1 Unit Insulin 

Insulin Units per 10 Grams Carbohydrates 
Predicted Exercise 

Fig. 1. Stimuli from the study as they were shown to participants for the three conditions: LowID, MedID, 

and HighID. 

ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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Table 3. All Items of the Subjective Information Processing Awareness (SIPA) Scale and the 

Corresponding Instruction 

The following questionnaire deals with your experience in the interaction with the system. 
Information refers to all data that the system can work with. Result refers to the output of the system, 
which is presented at the end of the system’s information processing. 

Please indicate the degree to which you 

agree/disagree with the following statements. co
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01 It was transparent to me which information was 
collected by the system. 

02 The information that the system could acquire 
was observable for me. 

03 It was understandable to me how the collected 
information led to the result. 

04 The system’s information processing was 
comprehensible to me. 

05 With the information accessible for me, the 
results were foreseeable for me. 

06 The system’s information processing was 
predictable for me. 
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o SA but focused on an application in intelligent automation, respectively XAI. Additionally, the
cale is specifically designed to assess the three facets of SIPA as described above (see Related Work)
ith two items for each facet (one and two for transparency, three and four for understandability,

nd five and six for predictability). All items are shown in Table 3 . 
The 6-item SIPA scale uses a 6-point Likert response scale from completely disagree = 1, largely

isagree = 2, slightly disagree = 3, slightly agree = 4, largely agree = 5, to completely agree = 6. The
IPA scale introduced in the present article was additionally tested over all points of measurement
f SIPA with a three-factor structure to examine if a separate evaluation of the three individual
acets of SIPA was supported. Here, the approach to analyze three facets received support based on
 confirmatory factor analysis demonstrating a good fit with χ 2 (6) = 7.49, p = .278, CFI = .997, TLI =

992, RMSE = .06 (90% CI: .00, .17). The correlation between transparency and understandability
as significant ( r S = .64, p < .001), which was also true for the correlation between transparency

nd predictability ( r S = .53, p < .001) as well as for the correlation between understandability and
redictability ( r S = .79, p < .001). 

4.3.2 User Diversity Variables. User diversity can have a significant impact on the individual
ser experience and, for example, influence initial trust in a system [ 8 ]. To examine the role of
ser diversity on the experience of interaction with an AID system, two additional variables were
ollected: (1) affinity for technology interaction (ATI) [ 43 ], which is based on the personality
rait need for cognition [ 24 ] and describes the individual tendency to actively engage in intensive
echnology interaction. ATI was measured with a scale validated in various large samples [ 43 ], and
he present sample was assessed as rather affine to interact with technology (see Section Partici-
ants above). Furthermore, the (2) individual attitude toward artificial intelligence was surveyed.
o this end, a brief definition of artificial intelligence was first given. Based on this, six state-
ents from the Internet Attitude Scale [ 60 ] were adapted, with “Internet” as the subject being

eplaced by “Artificial Intelligence” in all used questions (see Appendix). A mean value was cal-
ulated to evaluate the Artificial Intelligence Attitude (AIA) . In addition, questions on prior
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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iabetes knowledge were used (see Appendix). This included 10 different statements about the
reatment of diabetes to ensure that the results of the study were not affected by significant differ-
nces in prior knowledge about the treatment of diabetes. Everyday examples of the treatment of
ype 1 diabetes or questions about how insulin works were used. Finally, the duration of diabetes
n years was requested. 

4.3.3 Subjective Measures for Trust, Satisfaction, and Workload. In addition to the SIPA scale,
ubjective variables were collected with economical scales. The Facets of System Trustworthi-
ess (FOST) Scale [ 117 ] was used to measure trust. With 5 items, this can be used much more
conomically in a repeated-measures experiment compared to, for example, the more widely used
cale of [ 57 ]. As for trust, the mean value of the FOST items was calculated for each point of
easurement. 
The perceived workload was collected through the NASA Task-Load-Index (NASA-TLX)

 49 ]. However, due to the experimental conditions, not all dimensions of the NASA-TLX were
sed, but the question about perceived physical workload was excluded. Furthermore, the results
or effort, mental demand, and time demand were summed to a mean value. Experienced frustra-
ion was evaluated independently of other values. The estimation of own performance was only
sed as a confidence measure after the subjects themselves made a prediction of the algorithm’s
esults. Additionally to SIPA and trust, the Explanation Satisfaction Scale (ESS) was measured
o allow a comparison to another scale examining the quality of explanations [ 51 ]. The ESS was
eveloped to measure the subjective quality of explanations provided by an intelligent system. 

4.3.4 Objectives Measures for Performance and Time-on-task. In the present experiment, time-
n-task (TOT) and a performance indicator were assessed as objective variables. For TOT, the
ime that the users spent in the different task blocks was measured in seconds. For the analy-
is, the sum of the time in seconds was calculated. For the assessment of the performance, 20 of
he 80 stimuli created with the AID simulation environment were changed in such a way that no
rediction of the algorithm was displayed, but the different levels of information disclosure were
depending on the condition). Participants were prompted to estimate the output of the algorithm
this could be negative or positive with one decimal place, or the “0”). The deviation of each esti-
ate was determined per person and a mean value was calculated, which was used as an indicator

f performance. 

.4 Procedure 

he study was conducted in German. In the beginning, the participants were instructed to watch
 video where an instructor of the study explained the purpose of the study as well as the tasks.
he spoken text was displayed later in written form and could be read again if needed. Afterward,

nformed consent was obtained from all participants. The experiment was conducted in multi-
le segments as depicted in Figure 2 : first, demographic data was collected (1); then, knowledge
uestions about diabetes were asked to minimize the effects of divergent prior knowledge (2). Sub-
equently, all participants were randomly assigned to one of three conditions: low, medium, or high
evel of information disclosure. Depending on this, 15 stimuli were shown in random order in an
3) Observation Block, after which SIPA, FOST, and the NASA-TLX were queried. Three additional
bservation blocks with other stimuli followed by SIPA, FOST, and NASA-TLX followed (blocks
–6). Subsequently, the ESS was surveyed (7). Finally, in a performance block (8), 20 stimuli were
resented in which participants had to estimate for themselves the insulin needs calculated by the
lgorithm. The stimuli again differed in the level of information disclosure and were stimuli the
articipants did not see before. However, the same instances were shown to all participants in a
andomized order (i.e., each participant saw the same tasks, but with different information being
ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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Fig. 2. Overview of course of the experiment. 
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resented and in different sequences depending on the condition they were assigned to). Then,
IPA, FOST, and NASA-TLX were collected again. Furthermore, the time for each observation
lock as well as for the performance block was collected. Depending on the individual deviation
rom the correct calculated insulin needs, a code was created and displayed to the participants in
he last frame of the study. To ensure the anonymity of all subjects, the code only corresponded
ith the deviation and didn’t give any indication of personal information. 

 RESULTS 

s a direct test of our hypotheses, we applied contrast analysis, which allows for more precise
esting of hypotheses [ 22 , 123 ]. Note that this approach was different from our pre-registration,
here we only described an ANOVA. Yet, as an omnibus F-test, ANOVAs are not optimal in order

o test the directed hypotheses within the present research. Hence, in order to fit the statistical
ethod used with the specificity of our hypotheses, contrast analysis was chosen. Note that con-

rast analysis results in t- rather than F-values, also for comparisons of more than two groups [ 123 ].
he core hypotheses H1 to H5 related to the development of user experience in repeated obser-
ations were part of the pre-registration. Additional hypotheses H6 to H10 relate to performance
r self-assessment of performance and were not pre-registered. One-tailed t-tests were conducted
o assess the hypotheses. All p -values were corrected for family-wise error [ 13 ] for each hypoth-
sis and variable using the Bonferroni-Holm correction [ 53 ]. Despite random assignment, not all
roups are exactly equally distributed ( n = 24 for LowID, n = 22 for MedID, and n = 24 for HighID).
ince multiple variables studied were not normally distributed (or no linearity could be assumed),
pearman’s Rho was calculated for all correlations and interpreted accordingly depicted as r S . Ef-
ect sizes for r and r S were interpreted based on [ 44 , 98 ]; effect sizes for d were analyzed according
o [ 30 ] with respect to [ 44 ]. Cohen’s d was reported for contrast analysis of dependent measures
nstead of Hedge’s g because both are almost equal in sample sizes greater than 20 [ 63 ]. 
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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Table 4. H1: Contrast Analysis for Each SIPA Facet Comparing Ratings between Conditions 

(LowID, MedID, and HighID) for All Blocks 

Block SIPA Transparency SIPA Understandability SIPA Predictability
t p r (effect size) t p r (effect size) t p r (effect size) 

Observation Block 1 0.32 .375 .04 −1.03 .612 −.13 1.14 .258 .14 
Observation Block 2 1.89 .063 .23 −0.39 .349 −.05 1.35 .363 .16 
Observation Block 3 2.37 .031 ∗ .29 0.64 .786 .08 0.36 .360 .04 
Observation Block 4 2.47 .032 ∗ .30 0.56 .578 .07 1.16 .375 .15 
Performance Block 2.46 .040 ∗ .29 1.56 .309 .19 2.08 .104 .25 

Note: df = 67 for all analyses. 
∗p < .050. ** p < .010. *** p < .001. 

Fig. 3. H1 and H4: Ratings of the SIPA scale for all points of measurement. Bars depict M and SE for all SIPA 

facets at each time measured. * indicate p < .050 for contrast analysis, as shown in Table 4 . 
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.1 H1: SIPA Increases When There Is an Increase in Relevant Explaining Information 

Disclosed by an Intelligent System 

1 was examined using multiple contrast analyses [ 22 , 123 ], one for each SIPA facet (transparency,
nderstandability, and predictability) and for each point of measurement. The different amounts of

nformation disclosed to each group and the corresponding relationship between attributes were
sed to determine the weights (i.e., lambda values). It is assumed that each attribute (i.e., a total of
owID: 4, MedID: 8, or HighID: 12) can be related to each other attribute seen in one condition.
he number of relations between attributes is given by the binomial coefficient (i.e., the number
f attributes over two). Thus, the number of relations between attributes is for LowID = 6, for
edID = 28, and for HighID = 66. Following [ 22 ], to calculate the weights, the following lambda

alues for the contrast analysis were defined: λLowID 

= −2.5, λMedID 

= −0.5, λHighID 

= 3. Table 4
hows the t -statistics, the corrected p -value, and r (effect size) . M and SE are depicted in Figure 3 . All
escriptive data can be found in Appendix B . Results regarding the SIPA facet of transparency
upported H1 for observation blocks 3 to 4 and the performance block, while the first observation
locks 1 to 2 did not show significant effects supporting H1 (see Table 4 ). The other two SIPA
acets, understandability and predictability, showed weak effects in the expected direction, which
ere all non-significant (except ratings for SIPA understandability after Observation Block 1 and
bservation Block 2, which were small but contrary to the hypothesis). Hence, H1 was supported

or experienced transparency after considerable experience with the system, yet not directly after
he first interaction and not for the properties of the more complex system measured by SIPA (i.e.,
nderstandability and predictability). 
ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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Table 5. H2: Contrast Analysis Comparing Time-on-task 

between Conditions (LowID, MedID, and HighID) for All Blocks 

Block Time on Task 

t p r (effect size) 

Observation Block 1 1.83 .107 .22 
Observation Block 2 1.03 .153 .13 
Observation Block 3 1.51 .136 .19 
Observation Block 4 1.82 .146 .22 
Performance Block 4.20 < .001 ∗∗∗ .47 

Note: * p < .050. ** p < .010. ∗∗∗p < .001. 

Table 6. H3: Contrast Analysis Comparing Subjective 

Workload between Conditions (LowID, MedID, and HighID) 

for All Blocks 

Block NASA-TLX 

t p r (effect size) 

Observation Block 1 −0.92 .540 .03 
Observation Block 2 −1.45 .304 .10 
Observation Block 3 −0.69 .492 .04 
Observation Block 4 −0.18 .429 .03 
Performance Block −1.64 .264 .12 
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.2 H2: Time-on-task Increases When There Is an Increase in Relevant Explaining 

Information Provided by an Intelligent System 

o test H2, multiple contrast analyses were used. The corresponding results can be found in Table 5 .
ontrary to the hypothesis, there was no significant difference between the groups for all blocks,
part from one exception (performance block). Interestingly, a medium effect aligned with the
ypothesis was present in the performance block. Thus, the performance block stands out and
upports the hypothesis, while the data of the observation blocks do not. 

.3 H3: Subjective Workload Increases When There Is an Increase in Relevant 

Explaining Information Provided by an Intelligent System 

o test H3, multiple contrast analyses were used. The corresponding results can be found in Table 6 .
ontrary to the hypothesis, in all blocks, workload ratings were not significantly higher in con-
itions with more information. Indeed, negative signs in t-statistics at all points of measurement
ndicate that the effect was actually in the other direction (i.e., more information disclosure de-
reases workload). In fact, an exploratory re-calculation of the contrast with inverted weights (i.e.,

LowID 

= 3, λMedID 

= −0.5, λHighID 

= −2.5) of the effect would support an oppositely formulated
ypothesis, e.g., with p < .001 and r (effect size) = .36 for Observation Block 1. 

.4 H4: SIPA Increases with Increasing Observations 

o test H4, multiple contrast analyses were conducted for each SIPA facet (transparency, under-
tandability, and predictability) but followed the contrast analysis for dependent measures [ 103 ].
he following weights were used for each analysis: λObservation 1 = −1.5, λObservation 2 = −0.5,

Observation 3 = 0.5, and λObservation 4 = 1.5. Table 7 shows the t -statistics, the corrected p -value, and
 . Counter to our hypotheses, SIPA ratings did not increase but decreased and the actual effect of
epeated observations was opposite to what we hypothesized. In fact, a follow-up calculation with
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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Table 7. H4: Contrast Analysis Comparing Repeated SIPA 

Ratings for Observation Blocks 1–4 

Facet Contrast Analysis for Obs 1–4 
t p d 

SIPA transparency −1.73 .956 0.21 
SIPA understandability −0.95 .827 0.12 
SIPA predictability −0.40 .827 0.05 

Note: * p < .050. ** p < .010. *** p < .001. 

Table 8. H5a: Correlations between Trust and SIPA Facets for Each Point of Measurement 

SIPA 

Block Transparency Understandability Predictability 

r S p r S p r S p 

Observation Block 1 .58 < .001 ∗∗∗ .76 < .001 ∗∗∗ .64 < .001 ∗∗∗

Observation Block 2 .60 < .001 ∗∗∗ .85 < .001 ∗∗∗ .80 < .001 ∗∗∗

Trust Observation Block 3 .64 < .001 ∗∗∗ .84 < .001 ∗∗∗ .82 < .001 ∗∗∗

Observation Block 4 .65 < .001 ∗∗∗ .84 < .001 ∗∗∗ .79 < .001 ∗∗∗

Performance Block .72 < .001 ∗∗∗ .81 < .001 ∗∗∗ .76 < .001 ∗∗∗

Note: * p < .050. ** p < .010. d∗∗∗p < .001. 
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nverted contrasts significantly supported the assumption of decreasing ratings for transparency
ith p = .44, while p > .050 for understandability and predictability. 

.5 H5a: SIPA and Trust Correlate Moderately to Strongly 

o test H5a, the correlation between the FOST scale scores and each SIPA facet was calculated
or each point of measurement. The results are shown in Table 8 . The range of effect sizes of the
orrelation across all facets is between r S = .58 and r S = .85, which indicates a strong relationship.
verall, the hypothesis can therefore be supported by the data. 

.6 H5b: SIPA and Explanation Satisfaction Correlate Moderately to Strongly 

o test H5b, the correlation calculated between each SIPA facet for Observation Block 4 with ESS
as calculated. All facets of SIPA showed a significant correlation (all p < .001), with transparency

 S = .57, understandability r S = .67, and predictability r S = .65 indicating a strong correlation, which
upports the hypothesis. 

.7 H6: Higher SIPA Ratings before the Performance Block Correlate with Better 

Performance in the Prediction Task 

o test H6, the correlation between each SIPA facet for Observation Block 4 with the overall per-
ormance was calculated. No significant correlation was found for transparency ( r S = −.11, p =

850), understandability ( r S = −.17, p = .355), or predictability ( r S = −.08, p = .731). Thus, a cor-
elation between the SIPA ratings before the performance block and the performance cannot be
ssumed and the hypothesis is not supported. 

.8 H7: Higher Levels of Information Disclosure Lead to Better Performance in the 

Prediction Task 

o test H7, a contrast analysis was performed. The weights correspond to the weights used in H1
ith λLowID 

= −2.5, λMedID 

= −0.5, and λHighID 

= 3. A one-tailed significance test with ( t (67) = 1.21,
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Table 9. H8: Contrast Analysis Comparing SIPA Facets before 

and after Performance Block 

Facet Contrast Analysis for Obs 1–4 
t p d 

SIPA transparency −2.26 .986 −0.28 
SIPA understandability −2.40 .991 −0.29 
SIPA predictability −2.19 .984 −0.27 

Note : * p < .050. ** p < .010. *** p < .001. 

Table 10. Results of Explorative Analysis 

Facet Block ATI AIA Duration of Diabetes 
r S p r S p r S p 

Transparency Observation Block 1 .29 .080 .38 .024 ∗ −.29 .098 

Performance Block .42 .007 ∗∗ .29 .144 −.10 > .999 

SIPA Understandability Observation Block 1 .24 .150 .36 .115 −.25 .240 

Performance Block .24 .192 .14 .256 −.01 .961 

Predictability Observation Block 1 .23 .104 .27 .014 ∗ −.21 .410 

Performance Block .35 .018 ∗ .18 .099 .03 > .999 

Performance −.04 .731 .05 .666 −.07 > .999 

Note : ∗p < .050. ∗∗p < .010. *** p < .001. 
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 = .116, r (effect size) = .15) did not detect a significant difference between the groups, and thus there
as no support for the hypothesis. 

.9 H8: SIPA Increases over the Course of the Performance Block 

o test H8, multiple contrast analyses were conducted for each SIPA facet following the contrast
nalysis for dependent measures. The following weights were used for each analysis: λObservation 4 =

1.5 and λPerformance = 1.5. A one-sample t-test against zero was performed for all contrasts. Table 9
hows the t -statistics, the corrected p -value, and d . 

The hypothesis is not supported by the results for any of the SIPA facets. However, all facets
how a high negative t -statistic, which suggests that the contrast was chosen in opposition to the
eal data. This corresponds to the descriptive observation that there was not a successive increase
ut a decrease in the SIPA ratings for all facets. The calculated effect sizes also indicate a relevant
ffect at the boundary between small and medium effects. Under the assumption of opposite con-
rasts, significant effects are shown for transparency ( p = .014), understandability ( p = .010), and
redictability ( p = .016). 

.10 EQ: Explorative Analysis of Individual Differences 

o examine the relationship between individual differences in human-AI cooperation and user
xperience, correlations between person characteristics (ATI, AIA, duration of diabetes) and SIPA
atings as well as performance were calculated. The measurements for Observation Block 1 and
he performance block were analyzed in order to keep the number of tests (and the resulting loss of
ower due to correction) low. All values are shown in Table 10 . There was no correlation between
he duration of the disease and the SIPA ratings or the performance. With regard to the ATI values,
o correlation can be found at the beginning of the experiment. At the last time point, there is a
mall to moderate effect (for SIPA transparency and SIPA predictability). For AIA, no significant
ffects are found at the end of the study, but at the beginning of the experiment, there are moderate,
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ignificant correlations with SIPA transparency and SIPA understandability. Neither ATI nor AIA
hows a significant relationship with performance. 

 DISCUSSION 

.1 Summary of Results 

he objective of the present research was to examine the effects of explanations that differ in the
mount of disclosed information as well as the effect of repeated interaction on users’ subjective
erception of trust and traceability in AID systems. Contrast analyses were performed to test
irectional hypotheses related to the dependent variables SIPA, TOT, and subjective workload. 
While results showed a weak tendency for users in the HighID condition to report higher SIPA

atings than users in the LowID condition, the assumed contrast (increasing SIPA ratings with
n increasing quantity of disclosed information) was only significant for SIPA transparency after
ultiple interactions (i.e., after 45 observations) and aligned with hypothesis H1 . The time users

pent on the prediction task was more than twice as high for users in the HighID condition than
or users in the LowID condition. Thus, a significant raise of TOT based on higher information
isclosure as stated in (H2) could be found when participants were asked to predict the insulin
eeds calculated by the system. In contrast, only non-significant and slight differences were found
hen people were instructed to observe stimuli displaying the insulin needs calculation. Although

he subjective workload did not increase significantly with the level of information disclosure as
ssumed (H3) , an unexpected effect emerged: the perceived workload was higher for the LowID
ondition than for the HighID, in some cases more than one standard deviation higher. The devel-
pment of the SIPA rating over time also shows, contrary to our expectation (H4) , a decrease. This
ffect was small for SIPA transparency, while only negligible effects can be observed in the other
acets. A strong correlation between all SIPA facets and trust (H5a) as well as between all SIPA
acets and explanation satisfaction (H5b) indicates high convergent validity for the SIPA scale.
IPA ratings prior to the performance block did not correlate with performance itself and also
howed very small effects (H6) , although SIPA transparency ratings differed significantly before
bservation for different levels of information disclosure. Although more information was avail-
ble in the MedId and HighID than in the LowID condition, participants in the MedID or HighID
ondition did not perform significantly better than participants in the LowID condition (H7) . The
rediction task in the performance block did not lead to an increase in SIPA but resulted in lower
IPA scores in all facets with a medium to strong effect size (H8) . Analysis of intra-individual cor-
elations with SIPA revealed that SIPA was significantly related to attitudes toward AI after the
bservation Block1, while ATI showed a significant influence after the Performance Block (EQ) . 

.2 Effects of Information Disclosure on User Experience and Cooperation in AID 

Systems 

ne focus of the present work was to investigate the effect of different levels of information dis-
losure on the user experience of AID systems. However, higher information disclosure did not
ffect SIPA immediately but led to a significant difference in perceived transparency only after
5 observations. The delayed decrease in SIPA transparency ratings suggests that a valid mea-
urement of subjective variables may need an experimental design with sufficient repetitions (cf.
or trust [ 46 , 52 ]). [ 124 ] discusses the complexity of trust developed over time and distinguishes
etween three different phases: learning, adjustment, and fine-tuning. These phases follow each
ther and could explain the trust development we found after several repetitions as well as explain
he effect triggered by the performance block. Our results may indicate that the development of
rust at different stages is based on content as well as temporal reasons, i.e., that, for example, new
ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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asks such as the estimation task trigger a readjustment of trust. While individuals in the LowID
ondition started with a comparably high level of SIPA transparency, the observed decrease could
e related, for example, to the fact that only repeated observations allowed them to recognize
hat not all necessary information was available. [ 99 ] describes that a person’s mental model is
sed to form expectations about the outcome, e.g., of cooperation with automation. As for trust

cf. [ 50 ]), individual differences could affect the initial SIPA rating, and only measurement after
 system-dependent number of interactions can reveal differences between systems. This is also
xemplified by the co-relationship between AIA and SIPA transparency at initial observation and
fter the performance, which indicates that explanations may be able to offset the effects of initial
istrust of individuals. The relationship between attitudes toward AI systems (such as AIA) and

ther user diversity factors (such as education level or access to technology) represents another
esearch challenge to explore the effects of explanations more in-depth. 

Another reason participants in the HighID or MedID condition did not show better prediction
erformance could be information overload. Information overload occurs when an increase in the
vailable amount of information leads to negative results, e.g., a decrease in performance or sub-
ective consequences (e.g., as experienced cognitive demand or stress) for the user [ 71 ]. Although
here were three times as much information available in the HighID condition as in the LowID
ondition, the TOT for the observation blocks did not differ significantly between the groups. [ 5 ]
ssumes that a high information workload can lead to the use of heuristics (e.g., the representative-
ess heuristic) or increase the probability of users making biased decisions. This effect is opposed
o one goal of XAI design, which is to mitigate errors based on heuristic decision-making [ 119 ]. In
ur AID simulation experiment, the use of heuristics while observing might have been higher for
he HighID condition than for the LowID condition. This could explain why TOT did not increase
for the observation blocks) though more attributes were presented. The results of the NASA-TLX
n subjective workload allow a parallel conclusion: experienced time demand, cognitive demand,
nd effort showed no difference between the conditions. It is very unlikely that the participants of
he HighID condition did not notice or ignored the additional information, as they partly referred
o it in the qualitative comments. While being already discussed [ 94 , 119 ], the extent to which
xplanations or the additional information available through explanations creates an information
verload and thus influences, for example, the use of heuristics in the evaluation (see also [ 35 ]) of
n AID system still needs to be investigated more clearly and for users of different levels of exper-
ise. [ 114 ] found that, for example, the expertise of users can decrease the probability that they will
se heuristics. However, AID systems, in particular, have great potential for individuals with prob-

ematic long-term metrics, which in turn may often be due to low engagement with and care for
he disease. For an inclusive design of AID systems, the effects of explanations for less experienced
sers must be understood and avoided, in case they cause, e.g., limited transparency. Representa-
ions that lead to a heuristic assessment due to information overload could thus encounter users
or whom a heuristic assessment could be particularly problematic. All in all, when designing XAI
nd in order to act responsibly, developers should consider that more access to information may
e harmful to transparency and elaborated context analyses are needed to understand how users
ill interpret and utilize information or explanations. 
Finally, the qualitative results point to another problem, as participants from the LowID condi-

ions explicitly ask for information that was presented to the other groups, e.g., LowID-1: “Please
dd the probability of hypoglycemia or intensity of correction” or LowID-2: “Please show correc-
ion quotas for glucose and carbohydrates.” However, the results of the experiment suggest that
his does not necessarily allow for higher SIPA or better prediction. In order to achieve higher
IPA, the individual pieces of information presumably need to be put into better proportion, as
ighID-1 expresses: “I need refined information, how much insulin is given to correct glucose
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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evels and how much is given for food.” The requirement for a more mathematical description
ould be due to the fact that users apply their mental models of how they would solve the prob-
em without an AID system to the system’s information processing. In the field of AID systems,
sers potentially perform a complex calculation, through which they have certain expectations, as
ighID-2 states: “I would like to see the highlighting of factors that are particularly decisive for

he calculation at that moment.” In future explanations of AID systems, the representation of the
alculation should be as close as possible to the calculation performed by the users (as depicted
y [ 119 ]) in order to empower users to assess the system’s information processing. This would also
eet a central criterion for cooperation, where adequate communication of information requires

artners to anticipate the relevance of the information for the task of the cooperating partner. 

.3 Fit of Performance Measures and Subjective Measures in XAI 

n our experiment, the participants’ own assessment of the system’s traceability does not correlate
ith their ability to predict the system’s calculation. This is a worrisome correlation since in the
est case false expectations arise and people lose confidence in the system. A more serious conse-
uence could be, for example, a misjudgment of the system’s performance in extreme situations
nd the development of overconfidence. Several studies [ 78 , 79 ] on trust in automation show that
 lack of calibration between subjective ratings and objective scores is a well-known phenomenon.
his miscalibration can lead to significant problems; e.g., complacency arises and thus the users
ttribute more competencies to the system than it possesses [ 89 ], which is described as an abuse
f the system [ 88 ]. On the other hand, mistrust can lead to a misuse of the system [ 88 ]—in the case
f the AID system, suggestions of the system could be corrected frequently and thus lead to an
ncrease of the workload instead of a reduction. Both forms of lack of calibration are significant
roblems in the AID domain and could help to explain dropout rates [ 80 ]. The calibration of SIPA
nd the correct prediction of an outcome is theoretically more direct than the calibration between
rediction and trust (e.g., I can trust the technical competence of a system without understanding
ow it works; see [ 76 ]) and can be used in future studies to show the miscalibration between user
xperience and the correctness of one’s mental model. [ 99 ] describes a user’s mental model as a
mechanism whereby humans generate descriptions of system purpose and form, explanations of
ystem functioning and observed system states, and predictions of future system states.” This is
lso in line with central concepts of SA theory or the idea of so-called situation models [ 11 ]: here,
ental changes are carried out in order to assess the effects of one’s own actions. However, figur-

ng out how changing input variables affects the outcome of an AI’s information processing may
e complicated in the case of static explanations (c.f. [ 1 ]). Also, [ 27 ] shows that static explanations
ave a smaller influence on the ability to understand a system than interactive explanations. The

atter allows users to build hypotheses on their own and test them, which is the central approach
or knowledge acquisition (c.f. [ 91 ]). Interactive explanations should therefore be made possible
or AID systems (and other intelligent systems). At the same time, future experiments should focus
n observing the formation of hypotheses and their evaluation in the interaction between humans
nd AI, e.g., to identify when explanations favor confirmation bias or disadvantage individuals
ith less prior knowledge and how those effects can be mitigated. 
This is also supported by the fact that the prediction task had a clear influence on SIPA ratings—

ll facets of SIPA were reduced, while this was not the case for SIPA understandability and SIPA
redictability even after 60 previous repeated (passive) observations. The information provided
i.e., the attributes) was not changed for the performance block. In further studies or development
f AID systems, active prediction of AID results should therefore be part of the experimental condi-
ion and based thereon considered in training. The role of feedback for SIPA as well as trust should
gain be considered separately. For example, the diagnosticity [ 16 ] or the diagnostic value [ 122 ] of
ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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ertain attributes (i.e., what informativeness they had in determining insulin needs calculated by
he system) might have been misjudged by individuals. This could be corrected by feedback or an
nteractive simulation. Since participants were not able to provide feedback to the system, this lack
f interactivity could also be one factor that led users to rate the systems’ trustworthiness as they
id (c.f. [ 55 ]). The participants’ passive role as observers for a large part of the experiment might
ave influenced trustworthiness ratings. A rather active opportunity to intervene, e.g., a system
ith adjustable attributes or weights of components such as the current target, could have had an

mpact on the development of perceived trustworthiness. 
Another obstacle, however, is the information overload discussed above, which could also arise

n an interactive simulation. While, e.g., explanations on the basis of “counterfactuals” [ 82 ] may
e well suited for testing hypotheses, more research needs to examine how larger numbers of, e.g.,
etting possibilities affect the interaction. In the exemplary case of generative visual models, the
ognitive load of the user increases with the number of adjustable settings, without a significant
ffect on performance [ 31 ]. Furthermore, it must be considered whether and which additional in-
ormation is displayed e.g., in a training context or in a daily use context, since these may differ
onsiderably with respect to the available time and cognitive resources. Here, explanations need
o be designed for diverse users (i.e., the trainer, which is often a medical professional, as well as
he patients). The fact that more attributes lead to a higher time requirement for the derivation
f a prediction was also shown in the present experiment (see H4, Performance Block). Overall,
ontext-specific prioritization of information must be made, which could be done based on the
ollowing questions: (1) Does the representation of attributes/relationships fit the existing mental
odel of the users? (2) Does the presentation of attributes/contexts allow for hypothesis genera-

ion and testing? 

.4 Research and Design Implications for AID Systems 

or the research of experienced traceability of intelligent systems, the SIPA scale with its facets
llows for two central observations: (1) a sufficient number of repeated interactions and (2) a dif-
erentiation of active interaction from passive observation of explanatory information disclosure
re necessary to discuss human-centered AI. The SIPA scale is an appropriate instrument for this
ontext for the following reasons: the SIPA scale shows good scale metrics (i.e., range, standard
eviation) on all facets. Additionally, due to the high correlation between all three SIPA facets, a
nidimensional application is also possible. Furthermore, the SIPA scale shows a very high con-
ergent validity with measures of perceived trustworthiness and satisfaction with explanations.
owever, there is a small to medium correlation between ATI and SIPA, and the ATI mean of the
resent sample is higher than the estimated population mean. Hence, the use of the SIPA scale in
roups with lower ATI scores might be different, e.g., shows other correlations with satisfaction.
verall, the SIPA scale with its facets represents a new tool for researching experienced traceabil-

ty, which can help to underscore and evaluate the effects of explanations on users in detail. 
The boundary between Situation Awareness and Performance (i.e., Prediction) has already been

aised repeatedly in the discussion of Situation Awareness [ 90 ]. While a theoretical discussion of
hese concepts is beyond the scope of this article (c.f. [ 77 ]), a very high crenelation between SIPA
nderstandability and SIPA predictability suggests that the difference between Understanding and
redicting might be too small to provide an impactful analysis. Studies using other explanatory
pproaches would need to investigate whether this difference can be amplified. In addition, quali-
ative comments from users suggest that another facet of Traceability may be relevant—the assess-
ent of the relevance of attributes to the information processing, explicated, e.g., from MedID-2:

Display to what extent which information contributed to the result,” which possibly refers to
he individual attribute’s influence or relevance for the prediction (i.e., diagnosticity; c.f. [ 16 ]).
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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he extent to which the presented information has a high, subjective diagnosticity could be
istinguished from predictability as a facet. For example, an AID system’s user might know that
roviding information about exercise intensity is more important than providing information
bout the duration of the physical activity. The user would feel able to instruct the AID system
o achieve a more precise prediction, regardless of the user’s ability to specify the concrete
utcome. Especially for the communicative processes in the field of human-AI cooperation, such
n additional facet could enable, e.g., what [ 28 ] describes as collegiality. 

When designing AID systems, the effects on the experienced traceability as well as on work-
oad and performance must be taken into account. The sole disclosure of additional information
annot be seen as a suitable method to improve the user experience or the basis for human-AI
ooperation in AID systems. In the given scenarios, the information used from the AID simula-
ion was relevant for the calculation of the system and mimics information that users themselves
eed for a calculation. The fact that this approach did not offer a significant advantage for the
articipants of the HighID condition shows how much human-centered research is still necessary
or the XAI area. In XAI research explanatory approaches partly refer to the confidence of the
odel [ 10 , 17 , 86 ] for a certain result or even to meta-information about the model [ 75 ]. Depend-

ng on their task, such information might have only low significance for the users. This could lead
o erroneous conclusions in the future, especially if the methods to evaluate the performance of
uman-AI cooperation are based on different processes than the processes supported by the expla-
ation. Regardless of how helpful certain methodologies are to AI method developers, users as well
s the constructs and requirements relevant to them may be entirely different and need different
xplanations. Even among the users of a system (in the broadest sense), there might be differences.
hat is, the information presented in our experiment might help individuals with medical training
ho, for example, match the model’s approach to guidelines on therapies and for whom a more ab-

tract interaction might provide more information. Individuals, on the other hand, are more likely
o want to interact with the system on an individual level, as shown by LowID-3: “I would like to
nter an individual target value for physical activity.” [ 73 ] distinguishes between local and global
xplanations of an AI system. However, to assume that end-users require only local explanations
ould be an incorrect simplification: in fact, users express a desire to have more influence at the

ocal level (e.g., adjusting goals for physical activity) as well as match their own calculation with
he model at the global level. In any case, explanations need to be aligned and evaluated with the
oals of the user. 

Furthermore, our experiment shows that subjective effects may only occur after repeated inter-
ctions. Both studies and training programs for AID-Systems should take this effect into account.
owever, our results imply that, e.g., other interaction possibilities could decrease this span if nec-

ssary (c.f. [ 27 ]). AID systems should therefore ask users for their predictions in the first period
f AID therapy so that they can compare their own expectations with the system results with
ittle effort. The testing of hypotheses is also a central task in order to be able to form a correct

ental model of information processing. While future studies need to investigate whether inter-
ctions with a direct goal of promoting active hypothesis testing can also increase SIPA ratings or
xperience traceability, it is difficult to integrate this into current AID systems. Actively inducing
igh or low glucose levels to compare expectations with an AID system’s behavior is not recom-
ended for medical reasons. Therefore, for XAI systems to be applicable in medical contexts such

s DMT1, simulations of the algorithm need to be developed, for example, that allow this testing of
ypotheses before use or as counterfactual during use. Existing approaches for the simulation of
lucose level (see [ 101 ]) could be supplemented with an interface that offers explanatory variants
or situations selected by the users themselves. 
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.5 Limitations and Further Research 

everal limitations for further research have to be considered. First, the applied method to analyze
erformance or prediction was not as aligned with potential tasks in real-world applications as
ossible. That is, in AID systems users do not need to make predictions about the insulin needs
alculated by the system. More importantly, they need to be able to estimate the effect of com-
unicated information on, e.g., physical activity to cooperate effectively with the system. A more

omprehensive indicator to assess the effect of traceability on the human-machine system perfor-
ance could be to show a scenario and ask how changes in one or multiple attributes would affect

he outcome. This would also open up different possibilities for interpretation (e.g., deviation from
he correct value as in this study but also to what extent the direction of the estimate is correct as
 non-metric variable). Comparable tasks exist in the area of complex problem solving [ 108 ] and
ould also be used in the area of human-AI interaction. 

Second, in an ideal case, it would have been possible to measure the development of user experi-
nce on the course over several weeks. The time between observations, interactions, and measure-
ents in our experiment was short compared to everyday applications. In addition, when used in

ne’s own therapy, one’s own previous experience can be included to a greater extent. A possibil-
ty for further research could be to strive to enable longitudinal designs to allow for results based
n longer reflection periods as well as personalization. In addition, participants in this experiment
ere shown only one condition at a time, whereas patients, for example, may compare different

nterfaces when deciding on an AID system. As long as the influence of learning experience is
aken into account, within-subject analyses of different explanatory and interaction effects could
e used in further experimental settings. 
Third, the present research only examined one approach to explain to the users the way an

ID system calculates insulin needs. To enable users to cope, e.g., with information overload, an
nteractive simulation may provide counterfactual explanations for scenarios they are interested in
r want to understand. Furthermore, depending on the algorithm used to construct the AID system,
he concrete depiction of rules applied to calculate insulin needs could lead to important insights
nto the evolution of mental models in human-AI cooperation. Ideally, further studies provide
ifferent explanations to the users in order to render it possible to compare their effectiveness
or different goals (i.e., understanding the effects of personalization vs. understanding one own’s
nfluence on the system through communicated information). 

 CONCLUSION 

heoretically motivated and impactful research of human-centered AI is still in an early stage of
evelopment. Empirical data of potential end-users as a target group in contrast to, e.g., developers
r professionals is needed. On top of that, the relationship between subjective experiences and the
mpact on users’ capabilities to cooperate with intelligent systems is crucial for XAI applications
n the future: it determines whether explanations truly empower users or, in the worst case, over-
urden or even deceive them. In this sense, the present work contributes to the development of
uman-centered XAI on three levels:(1) by refining and applying the SIPA scale, which is derived
rom theoretical concepts of automation, differentiated statements about the effects of explana-
ions can be made; (2) by developing an experimental environment to examine the interaction of
otential end-users with AID XAI, the usefulness of explanations for everyday life can be validly
ssessed; and (3) by measuring performance at the same time as user experience, the problematic
iscalibration between the perceived and actual ability to predict AI behavior can be empirically

upported. Based on the empirical study, it is possible to derive design decisions that enable users
f medical AI systems to collaborate and understand a system rather than overloading them with
nformation. Future research in AID systems should therefore examine how users actively develop
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 4, Article 25. Publication date: December 2023. 
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nd test hypotheses on AID information processing to better understand under which conditions
eported SIPA ratings may exhibit a better calibration with the actual task performance. 

 OVERVIEW OF ATTRIBUTES FOR AID SIMULATION 

Table 11. Variables Used within the AID Simulation 

ttribute Description Relevance 

urrent Tissue Glucose The glucose level of interstitial fluid 
currently measured by the sensor. 

It is the proxy for current blood glucose level. 
Needs to be in a defined range to avoid high and 
low blood sugar in the short term, as well as 
long-term problems associated with chronically 
high blood sugar. 

urrent Insulin in 

ody 
The amount of active insulin in the 
body. 

Lowers glucose level short term, therefore reduces 
the amount of insulin needed. 

urrent Carbohydrates 
n Body 

The amount carbohydrates yet to be 
used by the body, e.g., carbohydrates 
in the digestive tract. 

Raises glucose level (quickly or slowly depending 
largely on absorption rate), therefore raises the 
amount of insulin needed. 

urrent Activity The level of physical activity of the 
user. 

A higher activity level raises sensitivity to insulin, 
leads to carbohydrates being used up more quickly 
and thus generally lowers blood glucose, meaning 
it lowers the amount of insulin needed. 

issue Glucose Target Target amount of glucose to be 
measured by the sensor as proxy for 
blood glucose target. 

Trying to reach the blood glucose target is the 
primary outcome of insulin therapy for T1DM. 
Target value may depend on current circumstances.

void Hypoglycemia Lowers risk of low blood sugar 
(hypoglycemia) when activated. 

Automatically reduces aggressiveness and raises 
glucose target, therefore reduces amount of insulin 
given. 

uration of Insulin 

ction 

The time in which insulin will still 
be active in the body. 

When insulin stays active longer or has an effect, 
calculations need to integrate remaining effect or 
effect of physical activity for remaining insulin 
levels . 

orrection Intensity How fast the glucose target ought to 
be reached. Higher aggressiveness 
means the glucose target ought to be 
reached fast. 

If target glucose is below current glucose reading, 
high aggressiveness leads to an increased amount 
of insulin needed. Raises risk of hypoglycemia. 

isk of Hypoglycemia 
n next hour 

Probability of the user experiencing 
hypoglycemia (low blood sugar, < 

3.9 mmol/l) during the next hour. 

Hypoglycemia is most likely to interfere with the 
user’s ability to function in everyday life. A high 
risk of hypoglycemia therefore lets the system 

reduce the amount of insulin that should be given 
to mitigate the risk. 

lood Glucose lowering 
er 1 Unit Insulin 

How much 1 insulin unit lowers 
blood glucose level. High value 
indicates high insulin sensitivity. 

The more 1 insulin unit lowers blood glucose, the 
less insulin is needed. 

nsulin Units per 10 
rams Carbohydrates 

How many insulin units need to be 
injected to metabolize 10 grams of 
carbohydrates. High value indicates 
low insulin sensitivity. 

The more insulin units are needed to metabolize 10 
grams of carbohydrates, the more insulin is needed.

redicted Exercise System estimate on whether users 
expected to exercise in the next 
hours. 

Exercise in most cases lowers blood glucose via 
energy consumption and increasing insulin 
sensitivity. Raises glucose target automatically and 
thus reduces the amount of insulin given in 
preparation for exercise. 
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 DESCRIPTIVE DATA FOR ALL REPEATED MEASURES VARIABLES 

Table 12. Descriptive Data for All Variables Measured Repeatedly at All Points of Measurement 

Block Condition SIPA Transparency SIPA Understandability SIPA Predictability FOST NASA-TLX 

M SD Range M SD Range M SD Range M SD Range M SD Range 

Observation LowID 5.08 1.31 4.50 4.35 1.46 5.00 3.48 1.21 4.00 4.23 1.31 4.40 4.85 1.11 4.00 
Block 1 MedID 4.59 1.34 4.50 3.95 1.40 5.00 3.80 1.31 4.00 4.02 1.01 4.20 3.87 1.25 3.60 

HighID 5.10 0.82 3.00 3.90 1.13 4.00 3.90 0.96 4.00 4.33 0.86 3.40 3.57 1.25 4.60 
Observation LowID 4.40 1.40 4.50 4.04 1.47 5.00 3.35 1.25 4.50 3.90 1.32 4.40 4.82 1.36 5.00 
Block 2 MedID 4.36 1.43 4.50 3.59 1.26 4.50 3.25 1.21 4.50 3.72 1.18 3.80 3.72 1.09 4.00 

HighID 5.04 0.79 2.50 3.83 0.97 4.00 3.77 1.07 4.50 4.02 1.04 4.20 3.67 1.42 5.20 
Observation LowID 4.23 1.28 5.00 3.69 1.24 5.00 3.52 1.16 5.00 3.88 1.29 4.40 4.53 1.48 6.00 
Block 3 MedID 4.50 1.23 4.50 3.86 1.16 4.50 3.66 1.14 4.00 4.05 1.15 3.80 3.84 1.28 5.00 

HighID 5.02 0.87 3.00 3.94 1.35 4.50 3.67 1.50 5.00 4.13 1.30 5.00 3.84 1.43 5.20 
Observation LowID 4.23 1.36 5.00 3.77 1.32 5.00 3.35 1.13 4.50 3.75 1.41 4.60 4.67 1.43 5.80 
Block 4 MedID 4.66 1.24 4.50 3.86 1.34 4.50 3.64 1.38 4.50 4.11 1.39 4.60 4.15 1.39 5.60 

HighID 5.08 0.75 3.00 4.00 1.53 5.00 3.83 1.52 5.00 4.29 1.26 4.60 4.00 1.48 5.20 
Performance LowID 4.08 1.69 5.00 3.42 1.59 5.00 3.06 1.36 4.00 3.86 1.57 4.60 3.97 1.14 4.20 

MedID 4.02 1.59 5.00 3.11 1.30 4.00 2.89 1.13 4.00 3.76 1.12 4.00 2.85 1.26 4.60 
HighID 5.02 0.83 2.50 3.98 1.36 5.00 3.77 1.31 5.00 4.42 0.90 3.60 3.41 1.30 5.40 

 ARTIFICIAL INTELLIGENCE ATTITUDE SCALE 

Table 13. All Items of the Artificial Intelligence Attitude (AIA) Scale and the Corresponding Instruction 

Please indicate the degree to which you 

agree/disagree with the following statements. co
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01 I feel intimidated by artificial intelligence (AI). 

02 I feel comfortable interacting with an artificial 
intelligence. 

03 The less contact I have with artificial 
intelligence, the better. 

04 I would like to work with artificial intelligence 
as often as possible. 

05 Artificial intelligence makes life more efficient. 

06 Artificial intelligence reduces the relevance of 
different professions. 
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 KNOWLEDGE QUESTIONS ON DIABETES MANAGEMENT 

Table 14. Knowledge Questions on Diabetes Management (Translated from German) 

Please indicate whether the following statements are 
correct or not. True False I don’t know 

1 Even without eating, type 1 diabetics need insulin. 
2 When treating hypoglycemia, the most important goal is 

to get back to a level above 70 mg/dl as quickly as possible. 
3 When treating hyperglycemia, the most important goal is 

to get back to a level below 180 mg/dl as quickly as 
possible. 

4 If I am unsure of my insulin needs, I should inject too 

much rather than too little. 
5 Since alcohol consumption causes sugar levels to rise 

sharply, insulin should be administered particularly 

generously during a night of partying. 
6 How long insulin has an effect in the body depends, 

among other things, on the amount administered. 
7 ”Rapid” insulin refers to insulin that takes effect 

immediately after injection without any delay. 
8 I can recognize increased insulin sensitivity by the fact 

that sugar levels drop more slowly after insulin is 
administered. 

9 FGM and CGM sensors measure blood glucose. 
10 The Dawn phenomenon describes how some diabetics are 

at high risk for hypoglycemia early in the morning 

(around 5 a.m.). 
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