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Streaming graphs are drawing increasing attention in both academic and industrial communities as many

graphs in real applications evolve over time. Continuous subgraph matching (shorted as CSM) aims to report

the incremental matches of a query graph in such streaming graphs. It involves two major steps, i.e., candidate

maintenance and incremental match generation, to answer CSM. Throughout the course of continuous

subgraph matching, incremental match generation backtracking over the search space dominates the total

cost. However, most previous approaches focus on developing techniques for efficient candidate maintenance,

while incremental match generation receives less attention despite its importance in CSM. Aiming to minimize

the overall cost, we propose two techniques to reduce backtrackings in this paper. We present a cost-effective

index CaLiG that yields tighter candidate maintenance, shrinking the search space of backtracking. In addition,

we develop a novel incremental matching paradigm KSS that decomposes the query vertices into conditional

kernel vertices and shell vertices. With the matches of kernel vertices, the incremental matches can be produced

immediately by joining the candidates of shell vertices without any backtrackings. Benefiting from reduced

backtrackings, the elapsed time of CSM decreases significantly. Extensive experiments over real graphs show

that our method runs faster than the state-of-the-art algorithm orders of magnitude.
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1 INTRODUCTION
Graphs have been widely used to represent complex relations among a variety of objects, spanning

from social networks, knowledge graphs, and road networks to electrical networks. In most real-

world applications, the graph evolves over time by adding vertices/edges or deleting vertices/edges,

called a streaming graph. For example, in a social network, new user registration and closing an

account can be regarded as a vertex addition and deletion in the graph, respectively; creating and
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(a) Query Graph (b) Streaming Graph (c) Incremental Matches

Fig. 1. A running example of CSM.

cancelling the interaction (e.g., following) between users correspond to edge addition and deletion,

respectively. Such a social network is a typical streaming graph. How to efficiently manage and

query streaming graphs is drawing increasing attention [2, 12, 17, 25, 26, 31, 33, 38].

As an important task, monitoring a pattern 𝑄 of interest over a streaming graph 𝐺 is to perform

continuous subgraph matching (shorted as CSM) to report the incremental matches, i.e., the

increased or decreased subgraph matches of 𝑄 owing to the graph updates. As shown in the

running example in Figure 1, one match is deleted after deleting edge (𝑣4, 𝑣6) and another match is

added after adding edge (𝑣2, 𝑣6).
CSM is useful in a wide range of applications, such as recommendation systems [6, 14, 39], fraud

detection [34, 37], and cyber security [9, 10], etc.

For example, a cycle pattern can be served as a strong indication of a fake transaction in

e-commerce platforms [34], where the accounts of users (buyers or sellers) are represented as

vertices and online transactions, e.g., payment activities, are denoted as dynamic edges. With CSM,

suspicious transactions would be detected to generate real-time alerts and trigger prompt actions.

1.1 The Existing Methods
With well-developed subgraph matching algotithms [3, 4, 16], one naive approach for CSM is to

enumerate the matches before and after graph updating respectively. However, applying subgraph

matching directly suffers from intractable cost [19, 36], as the characteristics of dynamic graph

updates are not fully exploited. Considering the fact that the update edge is contained in the desired

matches if any, the index-free algorithms, e.g., IncIsoMat [11] and Graphflow [23], find the changed

matches by expanding the added or deleted edge without generating unnecessary matches. Such

algorithms may waste too much time in exploring the data graph even if there are not any matches

since they do not employ any information before updating.

To catch the incremental matches in real-time, more efforts have been devoted to developing

index techniques to maintain intermediate results recently [10, 24, 32]. SJ-Tree [10] defines a

left-deep decomposition tree, in which each node maintains a set of partial matches. Since the

number of matches could be exponential, SJ-tree suffers from an intractable storage overhead.

Instead of maintaining partial matches, TurboFlux [24] and SymBi [32] elaborate on the candidate

generation and maintenance by exploiting auxiliary data structures and carefully designed filter

rules. TurboFlux [24] generates a spanning tree 𝑇𝑄 of 𝑄 and introduces an auxiliary data structure

called data-centric graph (DCG), to maintain whether an edge in𝐺 matches an edge in𝑇𝑄 or not. It

uses the bottom-up method to conduct filtration with only the edges in 𝑇𝑄 taken into account. For

graph updates, TurboFlux renews the states of edges in DCG to determine whether every two edges

could be matched and whether each edge in 𝐺 could be contained in a match of 𝑄 . SymBi [32]
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Table 1. Proportion of candidate maintenance (%)

Method Deezer Email Github Lastfm Skitter Twitch

TurboFlux 0.13 0.093 0.072 0.19 0.091 0.091

SymBi 0.306 0.380 0.072 0.971 0.476 0.003

CaLiG 1.402 2.652 0.913 1.623 1.112 0.235

adopts a directed acyclic graph (DAG) built from 𝑄 and checks forward or backward neighbors,
covering the non-tree edges overlooked by TurboFlux. SymBi employs top-down and bottom-up

dynamic programming on the DAG. Only those vertices (that) pass the top-down filer need to

perform the bottom-up filter and only those (that) have passed both filters are the valid candidates.

Both TurboFlux and SymBi emphasize the succinctness and update efficiency of the index, even

if the time cost of maintaining candidates usually accounts for a very small part of the overall

cost (as discussed in Section 1.2). In the search stage, TurboFlux adopts a backtracking algorithm

with a fixed matching order that depends on the estimated size of query paths. SymBi selects a

dynamic match order, which could be adaptively changed during the backtracking, according to the

estimated size of extendable candidates of query vertices. They just focus on the matching order

rather than improving the backtracking framework.

1.2 Bottleneck of CSM
Among all the aforementioned approaches, the index-based methods often perform better than

the others. To further accelerate continuous subgraph matching, a crucial question needs to be

answered: what is the bottleneck of improving the efficiency performance? As discussed above, the

existing methods mainly focus on how to maintain candidate vertices fast by using succinct indexes.

Surprisingly, incremental match generation, a more important and crucial issue, has not received much
attention up to now, despite its dominating role in answering CSM. Specifically, finding incremental

matches involves two major steps, namely candidate maintenance (including candidate generation

and index update) and incremental match generation. Once obtaining new candidate vertices caused

by graph updates, incremental match generation is conducted to find the increased or decreased

matches of 𝑄 . Due to the NP-hardness of subgraph isomorphism, incremental matching generation

dominates the overall cost. Table 1 reports the proportion of candidate maintenance over the total

time cost of different algorithms on 6 real graphs from SNAP [28], where CaLiG is our proposed

method. The results are averaged on 50 randomly generated queries for each data graph. It is

observed that the time cost of candidate maintenance in TurboFlux and SymBi is less than 0.5% on

most graphs.

Actually, the target of an index for CSM is to locate the candidate vertices, further reducing

the cost of incremental match generation. A better index should not just focus on fast candidate

generation at the cost of delivering more false-positive candidates, degrading the incremental

match generation. Hence, there is a trade-off between update efficiency and candidate accuracy for

index designing. To measure the accuracy of an index, we use the ratio of false positives, i.e., the

ratio of vertices in the candidate set but not in any delivered matches. The fewer false positives,

the tighter the candidates generated. Following the principle of cost-effectiveness, we find the

indexes of TurboFlux and SymBi are not tight enough. It is worth spending a little more time to

obtain tighter candidates, achieving considerable speedups in the subsequent incremental match

generation.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 15. Publication date: May 2023.



15:4 Rongjian Yang, Zhijie Zhang, Weiguo Zheng, and Jeffrey Xu Yu

Fig. 2. Averaged match density of different algorithms on 50 random queries for each graph.

A common approach to incremental match generation is backtracking over search space, that is,

it extends the partial match by one vertex each time and backtracks if failing or finally succeeding.

To reduce backtrackings, it is expected that more matches can be returned by fewer backtrackings,

i.e., one backtracking is supposed to generate more matches. Thus, we define a metricmatch density
as the average number of matches generated by one backtracking. Larger match density indicates

the algorithm finds all the matches with fewer backtrackings, usually less elapsed time as well.

Figure 2 presents the averaged match density of TurboFlux, SymBi, and CaLiG. It is clear that both

TurboFlux and SymBi have lower match density and one backtracking could only find about 0.2∼10
matches on average, meaning most backtrackings are invalid and leaves much room to improve.

1.3 Our Approach and Contributions
As discussed above, most previous methods are dedicated to candidate maintenance, rather than

directly reducing the cost of match generation. Different from them, we propose two techniques,

namely a novel index structure CaLiG (to obtain tighter candidates) and a powerful incremental

matching paradigm (to avoid unnecessary backtrackings), aiming to minimize the overall cost of

CSM.

First, we propose a cost-effective structure, called candidate lighting graph (shorted as CaLiG),
a directed graph where each node represents a matching pair of vertices (𝑢, 𝑣). CaLiG provides a

tighter candidate space than previous methods, reducing the search space and total backtrackings.

Cost-effective, means (that) it is worthwhile to build up an index for tighter candidate maintenance

because of the significant speed-up in the subsequent incremental match generation, even if a little

bit more time may be required.

In addition, we develop an efficient incremental matching paradigm, kernel-and-shell search
(shorted as KSS). The underlying principle is that some vertices are not necessary to be extended

one by one following repeated backtrackings. KSS decomposes the query into conditional kernel

vertices and shell vertices. The partial matches for the kernel vertices are computed by backtracking

first, then the complete incremental matches can be produced immediately by joining the candidates

of shell vertices without any backtrackings. We prove that finding the minimum conditional kernel

set is an NP-hard problem, and thus propose an efficient greedy method. To evaluate the efficiency

of the proposed method, we conducted extensive experimental studies over real graphs. The results

confirm the significant superiority of our method.

In summary, we make the following contributions.

• We propose a cost-effective index CaLiG that yields tighter candidate maintenance than the

existing methods, which in turn reduces the total backtrackings.

• We design a novel subgraph matching paradigm, called kernel-and-shell search, which can

produce incremental matches by simply joining candidates of the shell vertices, reducing the

unpromising backtrackings.
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Table 2. Notations

Notations Descriptions

𝑄 and 𝐺 query graph and data graph

𝑢 ∈ 𝑉𝑄 and 𝑣 ∈ 𝑉𝐺 query vertex and data vertex, respectively

𝑒 (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸𝐺 edge between 𝑣𝑖 and 𝑣 𝑗
𝑁𝑄 (𝑢) neighbors of 𝑢 in graph 𝑄

𝑁𝐺 (𝑣) neighbors of 𝑣 in graph 𝐺

𝑑𝑄 and 𝑑𝐺 maximum degree of 𝑄 and 𝐺 , respectively

(𝑢, 𝑣)-MP a matching pair consists of 𝑢 and 𝑣

(𝑢, 𝑣)-MP.state the lighting state of (𝑢, 𝑣)-MP

𝐼𝑛𝐶𝑎𝐿𝑖𝐺 (𝑢, 𝑣) in-neighbors of (𝑢, 𝑣)-MP in CaLiG

𝑂𝑢𝑡𝐶𝑎𝐿𝑖𝐺 (𝑢, 𝑣) out-neighbors of (𝑢, 𝑣)-MP in CaLiG

𝐵𝐼 (𝑢, 𝑣) the bigraph for (𝑢, 𝑣)-MP

• We formalize the problem of minimum conditional kernel set and prove its NP-hardness. To

enhance continuous subgraph matching, KSS dynamically selects the best conditional kernel

and shell sets for different update edges.

• Extensive experiments over real graphs have demonstrated that our proposed method out-

performs the state-of-the-art algorithm orders of magnitude.

2 PROBLEM DEFINITION AND OVERVIEW
In this paper, we focus on undirected vertex-labeled graphs, though our algorithm can be extended

to directed and edge-labeled graphs, where each vertex/edge has one label. For the edge-labeled

graph, we can build a vertex-labeled graph by taking each edge as a vertex that connects two

endpoints, where the label of the newly added vertex is that of the original edge.

A graph is denoted as a tuple 𝐺 = {𝑉𝐺 , 𝐸𝐺 , 𝐿}, where 𝑉𝐺 and 𝐸𝐺 are the set of vertices and

edges, respectively. 𝐿 is the function mapping a label, i.e., 𝐿(𝑣), to a vertex 𝑣 ∈ 𝑉𝐺 . Table 2 lists the
frequently used notations in the paper.

2.1 Problem Definition
Definition 2.1 (Subgraph Isomorphism). Given a query graph𝑄 = {𝑉𝑄 , 𝐸𝑄 , 𝐿} and a data graph

𝐺 = {𝑉𝐺 , 𝐸𝐺 , 𝐿}, 𝑄 is subgraph isomorphic to 𝐺 if there exists an injective function 𝑓 : 𝑉𝑄 → 𝑉𝐺 , such
that
(1) ∀ 𝑢 ∈ 𝑉𝑄 , we have 𝐿(𝑢) = 𝐿(𝑓 (𝑢)) where 𝑓 (𝑢) ∈ 𝑉𝐺 , and
(2) ∀ 𝑒 (𝑢1, 𝑢2) ∈ 𝐸𝑄 , we have 𝑒 (𝑓 (𝑢1), 𝑓 (𝑢2)) ∈ 𝐸𝐺 .

Subgraph matching returns all subgraphs of 𝐺 that are isomorphic to 𝑄 . Each match can be

expressed as a set of one-to-one matching pairs {(𝑢 ↔ 𝑓 (𝑢))}. All the matches are denoted by𝑀 .

Definition 2.2 (Streaming Graph). A graph 𝐺 is called a streaming graph if it changes dy-
namically following a sequence of update operations Δ𝐺 including four kinds of updates, i.e., vertex
addition/deletion and edge addition/deletion.

Since the query graph in our task is connected, the newly added vertex, clearly an isolated vertex

in the data graph, cannot be included in any subgraph matching result. The vertex deletion only

happens to isolated vertices, and the deletion of a non-isolated vertex can be taken as deleting all

its connected edges. Hence, we just consider edge addition and deletion by convention [32].
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Fig. 3. Overview of our approach.

Problem Statement 1. (Continuous Subgraph Matching, shorted as CSM). Given a query graph𝑄 ,
a data graph𝐺 , and a graph update stream Δ𝐺 , the continuous subgraph matching task is to find the
incremental matches (i.e., newly added or decreased subgraph matches) of 𝑄 for each update operation
in Δ𝐺 .

Example 2.1. Let us consider the data graph in Figure 1(b). Assume that there are two update
operations, i.e., edge deletion 𝑒 (𝑣4, 𝑣6) followed by edge addition 𝑒 (𝑣2, 𝑣6). The decreased match is the
left in Figure 1(c), owing to deleting the edge 𝑒 (𝑣4, 𝑣6). After adding the edge 𝑒 (𝑣2, 𝑣6), a new match
(right in Figure 1(c)) emerges.

2.2 Overview of Our Approach
Figure 3 presents the framework of the proposed approach, consisting of the offline indexing phase

and online querying phase.

In the offline phase, we develop a novel index Candidate Lighting Graph, shorted as CaLiG. The

index structure CaLiG is constructed according to the input query graph 𝑄 and data graph 𝐺 .

Definition 2.3 (Matching Pair). A pair of vertices 𝑢 and 𝑣 form a matching pair, shorted as
(𝑢, 𝑣)-MP, if 𝐿(𝑢) = 𝐿(𝑣). Each (𝑢, 𝑣)-MP has a lighting state “ON” or “OFF”, indicating whether 𝑣 can
match 𝑢 or not, respectively. Let (𝑢, 𝑣)-MP.state denote the lighting state.

CaLiG organizes candidate matching pairs in a vertex-pair graph, where each node represents a

pair (𝑢, 𝑣) of query vertex 𝑢 and data vertex 𝑣 . CaLiG imports the lighting state (“ON” or “OFF”)

to indicate whether 𝑣 ∈ 𝑉𝐺 matches 𝑢 ∈ 𝑉𝑄 or not, i.e., whether 𝑣 is a candidate of 𝑢. Benefiting

from capturing all the connecting relations in both the query graph and data graph, it is easy to

maintain tighter candidates and support incremental match generation. In addition, we compute a

particular conditional kernel set and a shell set for each edge in the query graph.

In the online phase, the system responds differently according to the received update operation.

For the edge addition, the index CaLiG is updated first to obtain new candidates, and then the

subgraph matching is performed (as marked using red lines in Figure 3); For edge deletion, the

subgraph matching is conducted first, and then CaLiG is updated (as marked using deep blue lines

in Figure 3).

CaLiG update. To support incremental subgraph matching for subsequent updates, the index

CaLiG needs to be maintained in real-time. Either adding or deleting an edge may lead to candidate

updates and CaLiG changes including both the structure and the lighting states. Moreover, the

changed state of one pair could propagate to other matching pairs, starting recursive propagations

over CaLiG.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 15. Publication date: May 2023.
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Fig. 4. CaLiG for the query graph and data graph in Figure 1, where the lighting states of all MPs are “ON”
(as filled with green color).

Incremental match. In order to complete the incremental match over the streaming graph ef-

ficiently, we design a new matching paradigm, kernel-and-shell search (KSS) in the subgraph

matching phase. KSS divides the vertices of the query graph into conditional kernel vertices and

shell vertices. It first takes candidates of the update edge as initially partial matches and then

expands the matches to cover all the kernel vertices. Finally, the incremental matches can be

produced easily by joining candidates of the shell vertices without any backtrackings.

3 CALIG: CANDIDATE LIGHTING GRAPH
To reduce the intermediate results (i.e., failures and backtracking in the search), we resort to a

carefully designed index CaLiG.

3.1 CaLiG Structure
According to the definition of subgraph isomorphism, the vertex 𝑣 ∈ 𝑉𝐺 matching 𝑢 ∈ 𝑉𝑄 or

not depends on whether neighbors of 𝑣 matches neighbors of 𝑢. Therefore, CaLiG organizes the

matching pairs (𝑢, 𝑣)-MP as a graph over which the lighting states can be easily maintained.

Definition 3.1 (CaLiG Index). The CaLiG index for 𝑄 and𝐺 is a directed graph where each node
represents an MP. There is a directed edge from (𝑢𝑖 , 𝑣 𝑗 )-MP to (𝑢𝑘 , 𝑣𝑙 )-MP if it holds that
1) 𝑒 (𝑢𝑖 , 𝑢𝑘 ) ∈ 𝐸𝑄 and 𝑒 (𝑣 𝑗 , 𝑣𝑙 ) ∈ 𝐸𝐺 ; and,
2) (𝑢𝑖 , 𝑣 𝑗 )-MP is “ON” or (𝑢𝑖 , 𝑣 𝑗 )-MP is turned “OFF” after (𝑢𝑘 , 𝑣𝑙 )-MP.

In the CaLiG, we use the term “node” to distinguish vertices in 𝑄 or 𝐺 . Note that the proposed

index is designed for continuous subgraph matching and the lighting state of each matching pair

may be updated according to the graph updates. Initially, the lighting states of all nodes in CaLiG

are “ON”, as all matching pairs are not pruned at first.

Example 3.1. Figure 4 shows the CaLiG Index constructed based on the query graph and data
graph in Figure 1. The query graph has 1 A vertex, 1 B vertex, and 2 C vertices, while the data graph
has 1 A vertex, 3 B vertices, and 3 C vertices, so CaLiG contains 1 × 1 + 1 × 3 + 2 × 3 = 10 nodes.
Since 𝑒 (𝑢1, 𝑢2) ∈ 𝐸𝑄 , 𝑒 (𝑣1, 𝑣4) ∈ 𝐸𝐺 , and (𝑢1, 𝑣4)-MP is “ON”, there is an edge from (𝑢1, 𝑣4)-MP to
(𝑢2, 𝑣1)-MP.

Algorithm 1 illustrates the process of constructing CaLiG and refining the lighting states of

matching pairs (turning OFF the nodes that do meet the matching requirements). First, we generate

the matching pairs (nodes) of CaLiG (lines 2-5), where the initial lighting state of each matching

pair is ON (line 4). Next, we generate the edges in CaLiG (lines 6-9). For each node (𝑢, 𝑣)-MP in

CaLiG, we traverse all neighbors of 𝑢 in 𝑄 and all neighbors of 𝑣 in 𝐺 . If the pair of neighbors

(𝑢 ′, 𝑣 ′) forms a matching pair in CaLiG, an edge from (𝑢 ′, 𝑣 ′)-MP to (𝑢, 𝑣)-MP is added as all the

matching pairs are “ON” initially. Last, we need to initialize the structure of CaLiG by updating the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 15. Publication date: May 2023.
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lighting states (line 10), which will be introduced in detail in Section 3.3. Note that after CaLiG is

initialized, the incremental matches if any must be embedded in all ON-state nodes.

3.2 Lighting State Computation
Based on the definition of subgraph isomorphism (Definition 2.1), we know that 𝑣 matches 𝑢 only

if 𝑣 ’s neighbors match 𝑢’s neighbors as well. The existing filter rules examine the existence of

candidates for the neighbors of each query vertex, but ignore the injective requirement necessary

for subgraph isomorphism. Although each neighbor of 𝑢 can find a candidate in 𝑣 ’s neighbors, 𝑣 ’s

neighbors may still fail to match 𝑢’s neighbors when one neighbor of 𝑣 is taken as candidates of

multiple neighbors of 𝑢, violating the injective requirement. Thus, to compute the lighting state of

nodes in CaLiG, we introduce a bipartite graph for each matching pair.

Definition 3.2 (Bigraph for (𝑢, 𝑣)-MP). A bigraph for (𝑢, 𝑣)-MP, denoted by BI(𝑢, 𝑣), is a bipartite
graph with two disjoint sets of vertices 𝑁𝑄 (𝑢) and 𝑁𝐺 (𝑣), where there is an edge between 𝑢𝑖 ∈ 𝑁𝑄 (𝑢)
and 𝑣 𝑗 ∈ 𝑁𝐺 (𝑣) if (𝑢𝑖 , 𝑣 𝑗 )-MP is an in-neighbor of (𝑢, 𝑣)-MP in the CaLiG.

For a matching pair (𝑢, 𝑣), to determine whether 𝑣 matches 𝑢, we can just consider the in-

neighbors of (𝑢, 𝑣)-MP in CaLiG, rather than examine all the vertex pairs {(𝑢𝑖 , 𝑣 𝑗 ) |𝑢𝑖 ∈ 𝑁𝑄 (𝑢) ∧𝑣 𝑗 ∈
𝑁𝐺 (𝑣) ∧ 𝐿(𝑢𝑖 ) = 𝐿(𝑣 𝑗 )}.

Example 3.2. Let us consider (𝑢1, 𝑣6)-MP and (𝑢1, 𝑣4)-MP in Figure 1. Their bigraphs are presented
in Figure 5. The neighbor 𝑢2 of 𝑢1 does not have any candidates, which means when we take (𝑣6 ↔ 𝑢1)
as a partial match, no candidates will be available for 𝑢2, and this partial matching will fail. That
is, 𝑣6 should not be a candidate of 𝑢1. Thus, the lighting state of the (𝑢1, 𝑣6)-MP should be “OFF”.
Clearly, precise lighting states of MPs benefit tight candidates, improving the time efficiency of finding
incremental matches.

Based on subgraph isomorphism, 𝑣 ’s neighbors can match 𝑢’s neighbors only if there is an

injective matching for 𝐵𝐼 (𝑢, 𝑣).
Definition 3.3 (Injective Matching). Given a bigraph with two disjoint sets of vertices 𝑋 and 𝑌 ,

there is an injective matching if each vertex 𝑢 in 𝑋 is matched against a vertex in 𝑌 via an edge and all
the edges in the matching are independent of each other, i.e., all edges do not share vertices.

Algorithm 1: ConstructCaLiG(𝐺 , 𝑄)
Input: A data graph 𝐺 , a query graph 𝑄

Output: A candidate lighting graph 𝐶𝑎𝐿𝑖𝐺

1 𝐶𝑎𝐿𝑖𝐺 ← GenerateEmptyCaLiG();

2 for each (𝑢, 𝑣) ∈ (𝑉𝑄 ,𝑉𝐺 ) do
3 if 𝐿(𝑣) = 𝐿(𝑢) then
4 (𝑢, 𝑣)-MP.state← 𝑂𝑁 ;

5 add a node (𝑢, 𝑣)-MP into CaLiG;

6 for each (𝑢, 𝑣)-MP ∈ 𝐶𝑎𝐿𝑖𝐺 do
7 for each (𝑢 ′, 𝑣 ′) ∈ (𝑁𝑄 (𝑢), 𝑁𝐺 (𝑣)) do
8 if (𝑢 ′, 𝑣 ′)-MP ∈ 𝐶𝑎𝐿𝑖𝐺 then
9 add an edge from (𝑢 ′, 𝑣 ′)-MP to (𝑢, 𝑣)-MP;

10 IndexInitialization(𝐶𝑎𝐿𝑖𝐺);

11 return 𝐶𝑎𝐿𝑖𝐺 ;
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(a) No injective matching in the bi-

graph 𝐵𝐼 (𝑢1, 𝑣6) of (𝑢1, 𝑣6)-MP.

(b) Having an injectivematching in the

bigragh 𝐵𝐼 (𝑢1, 𝑣4) of (𝑢1, 𝑣4)-MP.

Fig. 5. Bigraphs for (𝑢1, 𝑣6)-MP and (𝑢1, 𝑣4)-MP respectively, where blue edges indicate an injective matching.

For a (𝑢, 𝑣)-MP, if its bigraph does not have an injective matching for 𝑁𝑄 (𝑢), at least one vertex
𝑢𝑖 ∈ 𝑁𝑄 (𝑢) cannot be matched. We can set the lighting state “OFF” safely.

Lemma 3.1. The bigraph as defined in Definition 3.2 is sufficient to determine the lighting state of
the matching pair (𝑢, 𝑣)-MP. Given a (𝑢, 𝑣)-MP, its lighting state is “OFF” only if there is no injective
matching for 𝑁𝑄 (𝑢) in the bigraph 𝐵𝐼 (𝑢, 𝑣); Otherwise, the state is “ON”.

Proof. The edges of the bigraph represent in-neighbors of (𝑢, 𝑣)-MP in CaLiG. According to

Definition 3.1, no matter what the state of (𝑢, 𝑣)-MP is, the non-in-neighbors of (𝑢, 𝑣)-MP are

definitely OFF. An OFF-state node means it does not belong to any match, so we do not need to

take the OFF-state node into account when we determine the state of (𝑢, 𝑣)-MP. At least one vertex

𝑢𝑖 ∈ 𝑁𝑄 (𝑢) cannot be matched if 𝐵𝐼 (𝑢, 𝑣) does not have any injective matching for 𝑁𝑄 (𝑢), leading
to the OFF state of (𝑢, 𝑣)-MP. □

Example 3.3. As shown in Figure 5(a), 𝐵𝐼 (𝑢1, 𝑣6) does not have any injective matching, so we
change the state of (𝑢1, 𝑣6)-MP to OFF. In Figure 5(b), there is an injective matching as marked in blue
lines, so the state of (𝑢1, 𝑣4)-MP remains ON.

Computing the injective matching for a bigraph (also called bipartite graph) could employ

Hopcroft–Karp algorithm [21] with the time complexity of 𝑂 (
√︁
|𝑉 | |𝐸 |), where |𝑉 | is the number

of vertices and |𝐸 | is the number of edges in the bigraph. In practice, it just matters whether such

an injective matching exists or not rather than what the injective matching is. There are two

straightforward cases in which no injective matching exists.

-Case 1: One vertex 𝑢𝑖 in 𝑁𝑄 (𝑢) has no incident edge in the bipartite graph, meaning has no

candidate.

-Case 2: The vertices in 𝑁𝐺 (𝑣) having at least one incident edge in the bipartite graph is less

than |𝑁𝑄 (𝑢) |.
In the second case, we constrain the vertices having at least one incident edge since each edge

represents a relation of candidate and the bipartite graph may change with the stream of edge

updates.

Computing the injective matching is closely related to Hall’s marriage theorem [15].

Theorem 3.2. (Hall’s Marriage Theorem [15] ) Given a bigraph with two disjoint sets of vertices 𝑋
and 𝑌 , for a subset𝑊 of 𝑋 , let 𝑁 (𝑊 ) denote the neighbors of𝑊 , i.e., a subset of 𝑌 in which vertices
are connected to some vertices of𝑊 . There is an injective matching if and only if for every subset𝑊 of
𝑋 we have |𝑊 | < |𝑁 (𝑊 ) |. In other words, every subset𝑊 of 𝑋 has sufficiently many neighbors in 𝑌 .

The two cases above are indeed special cases of Hall’s marriage theorem, where𝑊 = {𝑢𝑖 } in
Case 1 and𝑊 = 𝑋 in Case 2.
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Lemma 3.3. The vertex pairs connected by the edges in 𝐵𝐼 (𝑢, 𝑣) form a subset of {(𝑢𝑖 , 𝑣 𝑗 ) |𝑢𝑖 ∈
𝑁𝑄 (𝑢) ∧ 𝑣 𝑗 ∈ 𝑁𝐺 (𝑣) ∧ 𝐿(𝑢𝑖 ) = 𝐿(𝑣 𝑗 )}.

Proof. The proof is straightforward according to definitions of CaLiG (Definition 3.1) and

bigraph (Definition 3.2). □

Generally, the time cost of computing an injective matching can be reduced if the bigraph

of (𝑢, 𝑣)-MP contains fewer edges. It is ideal to just keep the necessary edges corresponding to

in-neighbors of (𝑢, 𝑣)-MP in CaLiG. The in-neighbors of (𝑢, 𝑣)-MP could be further reduced through

a propagation mechanism next.

3.3 CaLiG Initialization
In CaLiG, the lighting state of a node is determined by the states of its neighbors. When the lighting

state of a node (𝑢, 𝑣)-MP is turned “OFF”, i.e., 𝑣 is pruned from the candidate set of 𝑢, the neighbors

of (𝑢, 𝑣)-MP would be affected. If one of the neighbors is turned “OFF”, its neighbors would be

affected recursively. Such a process is called OFF-state propagation which refines the candidates in

CaLiG initialization.

OFF-State Propagation. By using Lemma 3.1, the lighting state of each Matching Pair can be

determined initially (i.e., the first round checking). The OFF-state matching pairs cannot be included

in any subgraph matches. Therefore, the edges corresponding to these OFF-state matching pairs

in the bigraphs of other matching pairs can be deleted safely, which may further turn off a set of

matching pairs. The procedure proceeds iteratively until no matching pairs can be newly turned off.

Finally, the ON-state matching pairs straightforwardly produce the candidates. The index CaLiG

finishes initialization, ready for handling graph updates.

Algorithm 2 outlines the initialization process, where the procedure in line 6 (Algorithm 3) can

be viewed as propagation on CaLiG. Let𝑂𝑢𝑡𝐶𝑎𝐿𝑖𝐺 (𝑢, 𝑣) denote out-neighbors of (𝑢, 𝑣)-MP in CaLiG.

For each node (𝑢 ′, 𝑣 ′)-MP whose lighting state is ON (line 2), we remove the edge from (𝑢, 𝑣)-MP

to (𝑢 ′, 𝑣 ′)-MP (line 3) as (𝑢, 𝑣)-MP will not contribute to the state of (𝑢 ′, 𝑣 ′)-MP. Then we check

the updated bigraph 𝐵𝐼 (𝑢 ′, 𝑣 ′). If (𝑢 ′, 𝑣 ′)-MP is turned off, the procedure OFF-Propagation will be

invoked recursively (lines 5-7).

Example 3.4. Let us consider the CaLiG in Figure 4. Since the bigraphs of (𝑢2, 𝑣0)-MP, (𝑢1, 𝑣5)-MP,
and (𝑢1, 𝑣6)-MP do not have any injective matching, they will be turned off in the first round. At the
same time, we remove the out-going edges (red dotted edges) as shown in Figure 6(a). In the second round,
as shown in Figure 6(b), (𝑢2, 𝑣2)-MP, (𝑢3, 𝑣5)-MP and (𝑢3, 𝑣4)-MP are turned off. In this round, only
the edge from (𝑢2, 𝑣2)-MP to (𝑢0, 𝑣3)-MP is deleted as (𝑢0, 𝑣3)-MP is the only ON-state out-neighbor.
Finally, no node can be further turned off and only nodes (𝑢0, 𝑣3)-MP, (𝑢2, 𝑣1)-MP, (𝑢3, 𝑣6)-MP, and

Algorithm 2: IndexInitialization(𝐶𝑎𝐿𝑖𝐺)
Input: A candidate lighting graph 𝐶𝑎𝐿𝑖𝐺

1 for each (𝑢, 𝑣)-MP ∈ 𝐶𝑎𝐿𝑖𝐺 do
2 build a bigraph 𝐵𝐼 (𝑢, 𝑣) for (𝑢, 𝑣)-MP;

3 for each (𝑢, 𝑣)-MP ∈ 𝐶𝑎𝐿𝑖𝐺 do
4 if (𝑢, 𝑣)-MP.state = 𝑂𝑁 and 𝐵𝐼 (𝑢, 𝑣) has no injective matching then
5 (𝑢, 𝑣)-MP.state← 𝑂𝐹𝐹 ;

6 OFF-Propagation(𝐶𝑎𝐿𝑖𝐺 , (𝑢, 𝑣)-MP);
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(a) Step 1. Turn off all nodes that do not have any injective

matchings.

(b) Step 2. OFF-Propagation.

Fig. 6. CaLiG Initialization.

(a) Step 1. Delete all update edges in CaLiG. (b) Step 2. Two nodes are turned off.

(c) Step 3. OFF-Propagation.

Fig. 7. CaLiG update for deleting the edge (𝑣4, 𝑣6).

(𝑢1, 𝑣4)-MP are ON. In fact, these four matching pairs can just form a subgraph match of the query
graph.

The lighting process, i.e., CaLiG initialization, only needs to propagate to the “ON”-state nodes.

For each ON node (𝑢, 𝑣)-MP, its OFF in-neighbors have been deleted when the in-neighbors are

turned off in the previous round, so the remaining matching pairs are all ON nodes. Then the state

of (𝑢, 𝑣)-MP will be re-checked by finding the injective matching. In short, the process of OFF

propagation will only propagate among ON-state nodes, and the nodes that have been previously

turned off will not be checked repeatedly.

Algorithm 3: OFF-Propagation(𝐶𝑎𝐿𝑖𝐺 , (𝑢, 𝑣)-MP)

Input: 𝐶𝑎𝐿𝑖𝐺 and a matching pair (𝑢, 𝑣)-MP that was turned off in the previous round

1 for each (𝑢 ′, 𝑣 ′)-MP ∈ 𝑂𝑢𝑡𝐶𝑎𝐿𝑖𝐺 (𝑢, 𝑣) do
2 if (𝑢 ′, 𝑣 ′)-MP.state = 𝑂𝑁 then
3 delete the edge from (𝑢, 𝑣)-MP to (𝑢 ′, 𝑣 ′)-MP;

4 update 𝐵𝐼 (𝑢 ′, 𝑣 ′);
5 if 𝐵𝐼 (𝑢 ′, 𝑣 ′) has no injective matching then
6 (𝑢 ′, 𝑣 ′)-MP.state← 𝑂𝐹𝐹 ;

7 OFF-Propagation(𝐶𝑎𝐿𝑖𝐺 , (𝑢 ′, 𝑣 ′)-MP);
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Compared with SymBi. SymBi builds a query DAG and refines the candidates based on weak

embeddings. It focuses on the existence (i.e., mapping from 𝑁𝑄 (𝑢) to 𝑁𝑄 (𝑣)) such that the reused

candidates could not be excluded. In contrast, CaLiG computes the injective matching from 𝑁𝑄 (𝑢)
to 𝑁𝑄 (𝑣)) and propagates along the edges in CaLiG.

Hence, the candidates computed by CaLiG are equal to or tighter than SymBi.

Lemma 3.4. The candidates computed by CaLiG are equal to or tighter than SymBi.
Proof. SymBi proposes an index 𝐷𝑖 [𝑢, 𝑣] to maintain the dynamic candidate space. The recur-

rence process is described as:

• 𝐷1 [𝑢, 𝑣] = 1 iff ∃𝑣𝑝 adjacent to 𝑣 such that 𝐷1 [𝑢𝑝 , 𝑣𝑝 ] = 1 for every parent 𝑢𝑝 of 𝑢 in DAG 𝑞;

• 𝐷2 [𝑢, 𝑣] = 1 iff 𝐷1 [𝑢, 𝑣] = 1 and ∃𝑣𝑐 adjacent to 𝑣 such that 𝐷1 [𝑢𝑐 , 𝑣𝑐 ] = 1 for every parent

𝑢𝑝 of 𝑢 in DAG 𝑞.

SymBi considers {𝑣𝑖 |𝐷2 [𝑢, 𝑣] = 1} as the candidates of query vertex 𝑢. A tighter filter rule could be

obtained by extending the number of filtering iterations from only 2 to until the candidate space

converges and extending the vertex needed to check from parent/children to all the neighbors, i.e.

• The vertex 𝑣 in 𝐶𝑎𝑛𝑑 (𝑢) iff 𝑣𝑛 adjacent to 𝑣 such that 𝑣𝑛 in 𝐶𝑎𝑛𝑑 (𝑢) for every neighbor 𝑢𝑝 of

𝑢 in 𝑞.

which is the third constraint of CaLiG candidate space. Then The candidates computed by CaLiG

are at least equal to SymBi. □

Complexity Analysis. The number of nodes in CaLiG is𝑂 ( |𝑉𝐺 | × |𝑉𝑄 |) and the number of edges

is 𝑂 ( |𝐸𝐺 | × |𝐸𝑄 |). Correspondingly, the bigraph of node (𝑢, 𝑣)-MP in CaLiG is a complete bipartite

graph in the worst case, and the storage cost is 𝑂 ( |𝑁𝑄 (𝑢) | × |𝑁𝐺 (𝑣) |), where |𝑁𝑄 (𝑢) | and |𝑁𝐺 (𝑣) |
are degrees of 𝑢 ∈ 𝑄 and 𝑣 ∈ 𝐺 , respectively. Thus, the overall space cost is 𝑂 ( |𝐸𝐺 | × |𝐸𝑄 | +∑
(𝑢,𝑣) ∈𝐶𝑎𝐿𝑖𝐺 |𝑁𝑄 (𝑢) | × |𝑁𝐺 (𝑣) |) = 𝑂 ( |𝐸𝑄 | × |𝐸𝐺 |). In the CaLiG initialization, each edge in CaLiG

is visited at most once and the injective matching is computed for the incident nodes with the time

cost 𝑂 (𝑑2.5
𝑄
), where 𝑑𝑄 is the maximum vertex degree of 𝑄 . Thus, the overall time complexity is

𝑂 ( |𝐸𝑄 | × |𝐸𝐺 | + |𝐸𝑄 | × |𝐸𝐺 | × 𝑑2.5𝑄 ) = 𝑂 ( |𝐸𝑄 | × |𝐸𝐺 | × 𝑑
2.5
𝑄
).

4 DYNAMIC UPDATE OF CALIG
Generally, it is expected to produce tight candidates, taking as little time as possible. Benefiting

from CaLiG, it is easy to update candidates by simply exploring CaLiG from the incident nodes of

newly added or deleted edges. The core idea is that edge addition or deletion may cause the state

alteration of some nodes, which would further propagate over CaLiG. To resolve the updates, we

present how to address edge deletion (in Section 4.1) and edge addition (in Section 4.2), respectively.

4.1 Edge Deletion
Deleting an edge from the data graph𝐺 may make some candidates fail to match the query vertices

(turning off some matching pairs in CaLiG), decreasing the subgraph matches. When one edge is

deleted from 𝐺 , we first delete all the related edges from CaLiG and adopt the OFF-Propagation to

refine the candidates by updating the lighting states.

To be specific, let 𝑒 (𝑣1, 𝑣2) denote the data edge (the edge in data graph 𝐺) to be deleted. Since

𝑒 (𝑣1, 𝑣2) may be a candidate of any query edge (the edge in query graph 𝑄) 𝑒 (𝑢1, 𝑢2) with the same

label, it will result in edge deletions in CaLiG. The process is similar to CaLiG initialization and

resorts to the OFF-Propagation (Algorithm 3). The details of handling edge deletions are outlined

in Algorithm 4. First, it deletes the edges between (𝑢1, 𝑣1)-MP and (𝑢2, 𝑣2)-MP from CaLiG (lines

2-3). Then we check the two affected nodes (𝑢1, 𝑣1)-MP and (𝑢2, 𝑣2)-MP. If they are turned off due

to the deleted edge 𝑒 (𝑣1, 𝑣2), the OFF propagation will be invoked to further refine other nodes.
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Example 4.1. Take Figure 1 as an example, where the edge (𝑣4, 𝑣6) is deleted. As shown in Figure 7(a),
we delete (1) the edges between (𝑢1, 𝑣4)-MP and (𝑢3, 𝑣6)-MP; and (2) the edge from (𝑢3, 𝑣4)-MP to
(𝑢1, 𝑣6)-MP. The nodes (𝑢1, 𝑣4)-MP and (𝑢3, 𝑣6)-MP are originally ON, so we perform bigraph checking
separately. As shown in Figure 7(b), neither of the nodes has an injective matching in the bigraph due
to edge deletion, so they will be turned off and trigger the OFF-Propagation. Finally, all nodes will
eventually be turned off, as shown in Figure 7(c), indicating that there is no match for the query.

Complexity Analysis. Let 𝐷 represent the set of nodes turned off because of updating. For each

node in 𝐷 , we compute the injective matching for the bigraph 𝐵𝐼 (𝑢, 𝑣) and propagate the updating
processing to its neighbors. Therefore, the time complexity of updating CaLiG for deleting an edge

is 𝑂 (∑(𝑢,𝑣) ∈𝐷 ( |𝑁𝐶𝑎𝐿𝑖𝐺 (𝑢, 𝑣) | + |𝑁𝑄 (𝑢) |2.5)), where 𝑁𝐶𝑎𝐿𝑖𝐺 (𝑢, 𝑣) is the set of neighbors of (𝑢, 𝑣)-MP

in CaLiG. It seems that the time cost is a little bit high, but it is sensible considering the benefit of

reducing cumbersome backtrackings, that is, updating CaLiG is cost-effective.

4.2 Edge Addition
Adding an edge to the data graph brings opportunities for turning on the OFF-state matching pairs.

Based on CaLiG, it is not difficult to deliver the new candidates. Intuitively, the updating process

for edge addition is similar to that for edge deletion. We first add all the related edges to GaLiG,

and detect new candidates by ON-Propagation. Before presenting the details of addressing edge

addition, two proprieties regarding CaLiG are introduced as follows.

Lemma 4.1. For any node (𝑢, 𝑣)-MP in CaLiG, all of its in-neighbors are either ON or turned OFF
after (𝑢, 𝑣)-MP.

Proof. Assume (𝑢 ′, 𝑣 ′)-MP is an in-neighbor of (𝑢, 𝑣)-MP and it is turned off before (𝑢, 𝑣)-MP

(i.e., (𝑢, 𝑣)-MP is ON when (𝑢 ′, 𝑣 ′)-MP has been turned off). By the OFF-Propagation, the edge from

(𝑢 ′, 𝑣 ′)-MP to (𝑢, 𝑣)-MP will be deleted once (𝑢 ′, 𝑣 ′)-MP is turned off. Thus (𝑢 ′, 𝑣 ′)-MP cannot be

the in-neighbor of (𝑢, 𝑣)-MP. □

As we mentioned in Section 3.1, the lighting states of all nodes are initialized to ON, and then gets

updated by OFF-Propagation in the offline phase. However, this propagation process is irreversible,

that is to say, if the turning off of (𝑢1, 𝑣1)-MP leads to the turning off of (𝑢2, 𝑣2)-MP, the turning

on of (𝑢2, 𝑣2)-MP because of edge addition will not turn (𝑢1, 𝑣1)-MP on since (𝑢1, 𝑣1)-MP has been

turned off when (𝑢2, 𝑣2)-MP is still ON.

Algorithm 4: UpdateCaLiGForDel(𝐶𝑎𝐿𝑖𝐺 , 𝑒 (𝑣1, 𝑣2))
Input: 𝐶𝑎𝐿𝑖𝐺 and an updated edge 𝑒 (𝑣1, 𝑣2) to delete

1 for each 𝑒 (𝑢1, 𝑢2) ∈ 𝐸𝑄 do
2 if 𝐿(𝑢1) = 𝐿(𝑣1) and 𝐿(𝑢2) = 𝐿(𝑣2) then
3 delete edges between (𝑢1, 𝑣1)-MP and (𝑢2, 𝑣2)-MP from CaLiG;

4 if (𝑢1, 𝑣1)-MP.state = 𝑂𝑁 and 𝐵𝐼 (𝑢1, 𝑣1) has no injective matching then
5 (𝑢1, 𝑣1)-MP.state← 𝑂𝐹𝐹 ;

6 OFF-Propagation(𝐶𝑎𝐿𝑖𝐺 , (𝑢1, 𝑣1)-MP);

7 if (𝑢2, 𝑣2)-MP.state = 𝑂𝑁 and 𝐵𝐼 (𝑢2, 𝑣2) has no injective matching then
8 (𝑢2, 𝑣2)-MP.state← 𝑂𝐹𝐹 ;

9 OFF-Propagation(𝐶𝑎𝐿𝑖𝐺 , (𝑢2, 𝑣2)-MP);
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(a) Step 1. Add an edge from (𝑢1, 𝑣6)-MP to (𝑢2, 𝑣2)-MP

and compute the state of (𝑢2, 𝑣2)-MP.

(b) Step 2. Perform ON-Propagation.

(c) Step 3. Proceed ON-Propagation. (d) Step 4. ON-Propagation stops at (𝑢2, 𝑣1)-MP.

(e) Step 5. Perform OFF-Propagation. (f) Step 6. Updated CaLiG after OFF-Propagation.

Fig. 8. CaLiG updates for adding the edge (𝑣2, 𝑣6).

Lemma 4.2. If there is an edge from the OFF-state (𝑢, 𝑣)-MP to the OFF-state (𝑢 ′, 𝑣 ′)-MP, the turning
on of (𝑢, 𝑣)-MP will not cause the turning on of (𝑢 ′, 𝑣 ′)-MP.

Proof. Assuming turning on (𝑢, 𝑣)-MP causes turning on (𝑢 ′, 𝑣 ′)-MP, (𝑢 ′, 𝑣 ′)-MP would not

be turned off before (𝑢, 𝑣)-MP because (𝑢, 𝑣)-MP was ON when computing its lighting state of

(𝑢 ′, 𝑣 ′)-MP, contradicting that (𝑢 ′, 𝑣 ′)-MP was turned off before (𝑢, 𝑣)-MP. □

Let 𝑒 (𝑣, 𝑣 ′) denote the edge to add. According to Lemma 4.1 and Lemma 4.2, to determine whether

turning on matching pairs (𝑢, 𝑣)-MP or (𝑢 ′, 𝑣 ′)-MP, where 𝐿(𝑢) = 𝐿(𝑣) and 𝐿(𝑢 ′) = 𝐿(𝑣 ′), we only
need to check its in-neighbors in CaLiG rather than considering all the vertex pairs {(𝑢𝑖 , 𝑣 𝑗 ) |𝑢𝑖 ∈

Algorithm 5: UpdateCaLiGForAdd(𝐶𝑎𝐿𝑖𝐺 , 𝑒 (𝑣1, 𝑣2))
Input: 𝐶𝑎𝐿𝑖𝐺 and an updated edge 𝑒 (𝑣1, 𝑣2) to add

1 for each 𝑒 (𝑢1, 𝑢2) ∈ 𝐸𝑄 do
2 if 𝐿(𝑣1) = 𝐿(𝑢1) and 𝐿(𝑣2) = 𝐿(𝑢2) then
3 add an edge from (𝑢2, 𝑣2)-MP to (𝑢1, 𝑣1)-MP;

4 if (𝑢1, 𝑣1)-MP.state = 𝑂𝐹𝐹 and 𝐵𝐼 (𝑢1, 𝑣1) has an injective matching then
5 (𝑢1, 𝑣1)-MP.𝑠𝑡𝑎𝑡𝑒 ← 𝑂𝑁 ;

6 if (𝑢1, 𝑣1)-MP.state = 𝑂𝑁 then
7 𝑆𝑡𝑜𝑝𝑆𝑒𝑡←ON-Propagation(𝐶𝑎𝐿𝑖𝐺, (𝑢1, 𝑣1)-MP);

8 while 𝑆𝑡𝑜𝑝𝑆𝑒𝑡 is not empty do
9 (𝑢, 𝑣)-MP← 𝑆𝑡𝑜𝑝𝑆𝑒𝑡 .pop();

10 OFF-Propagation(𝐶𝑎𝐿𝑖𝐺 , (𝑢, 𝑣)-MP);
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𝑁𝑄 (𝑢) ∧ 𝑣 𝑗 ∈ 𝑁𝐺 (𝑣) ∧ 𝐿(𝑢𝑖 ) = 𝐿(𝑣 𝑗 )} or {(𝑢𝑖 , 𝑣 𝑗 ) |𝑢𝑖 ∈ 𝑁𝑄 (𝑢 ′) ∧ 𝑣 𝑗 ∈ 𝑁𝐺 (𝑣 ′) ∧ 𝐿(𝑢𝑖 ) = 𝐿(𝑣 𝑗 )}.
The nodes that are not in-neighbors of (𝑢, 𝑣)-MP or (𝑢 ′, 𝑣 ′)-MP in CaLiG were turned off before

(𝑢, 𝑣)-MP or (𝑢 ′, 𝑣 ′)-MP. Likewise, they will not be turned on even if (𝑢, 𝑣)-MP or (𝑢 ′, 𝑣 ′)-MP is

turned on.

Algorithm 6: ON-Propagation(𝐶𝑎𝐿𝑖𝐺 , (𝑢, 𝑣)-MP)

Input: 𝐶𝑎𝐿𝑖𝐺 and a matching pair (𝑢, 𝑣)-MP that was turned on in the previous round

Output: A set of stopping nodes 𝑆

1 𝑆 ← ∅;
2 for each (𝑢 ′, 𝑣 ′)-MP ∈ 𝐼𝑛𝐶𝑎𝐿𝑖𝐺 (𝑢, 𝑣) do
3 add an edge from (𝑢, 𝑣)-MP to (𝑢 ′, 𝑣 ′)-MP;

4 if (𝑢 ′, 𝑣 ′)-MP.state = 𝑂𝐹𝐹 then
5 if 𝐵𝐼 (𝑢 ′, 𝑣 ′) has an injective matching then
6 (𝑢 ′, 𝑣 ′)-MP.state← 𝑂𝑁 ;

7 𝑆 ← 𝑆 ∪ ON-Propagation(𝐶𝑎𝐿𝑖𝐺 , (𝑢 ′, 𝑣 ′)-MP);

8 else
9 𝑆 ← 𝑆 ∪ (𝑢 ′, 𝑣 ′)-MP;

10 return 𝑆 ;

Algorithm 5 depicts the process of handling edge additions based on CaLiG. It involves two

procedures ON-Propagation (Algorithm 6) and OFF-Propagation. Different from handling edge

deletions, it just needs to add an edge from (𝑢2, 𝑣2)-MP to (𝑢1, 𝑣1)-MP and computes the lighting

state of (𝑢1, 𝑣1)-MP (lines 2-5), since its turning on will propagate to (𝑢2, 𝑣2)-MP through the ON-

Propagation. If the state of (𝑢1, 𝑣1)-MP is OFF, the state of (𝑢2, 𝑣2)-MP will not change no matter

whether it is ON or OFF. For each ON-state (𝑢1, 𝑣1)-MP, the procedure ON-Propagation is invoked

to try to turn on more nodes. Note that before ON-Propagation we add an edge from (𝑢2, 𝑣2)-MP

to (𝑢1, 𝑣1)-MP (line 3 in Algorithm 5), which indicates that we progressively take (𝑢2, 𝑣2)-MP as

an ON-state node. Hence, some nodes may be falsely turned on due to the propagation. When a

node is not turned on by ON-Propagation, it is recorded as a stopping node. All the stopping nodes

constitute the set, called 𝑆𝑡𝑜𝑝𝑆𝑒𝑡 . The OFF-Propagation is performed for each node in 𝑆𝑡𝑜𝑝𝑆𝑒𝑡 to

ensure that all the nodes that are newly turned on conforming to subgraph isomorphism.

Algorithm 6 presents the details of ON propagation. Based on Lemma 4.2, it only needs to

propagate to its in-neighbor (𝑢 ′, 𝑣 ′)-MP. If (𝑢 ′, 𝑣 ′)-MP is OFF and its corresponding bigraph has

an injective matching, we can turn (𝑢 ′, 𝑣 ′)-MP off and invoke the ON-Propagation recursively.

Otherwise, the node will be added into 𝑆 , the set of stopping nodes.

Example 4.2. Take Figure 8 as an example, where the edge (𝑣2, 𝑣6) is added to the data graph, as
shown by the red line in Figure 1(c). Firstly, as shown in Figure 8(a), an edge is added from (𝑢1, 𝑣6)-MP to
(𝑢2, 𝑣2)-MP in CaLiG. Then (𝑢2, 𝑣2)-MP is turned on. Secondly, we will performON-Propagation towards
(𝑢2, 𝑣2)-MP’s in-neighbors as shown in Figure 8(b), where the nodes (𝑢1, 𝑣6)-MP and (𝑢0, 𝑣3)-MP are
originally OFF. Only (𝑢2, 𝑣2)-MP is turned on as it has an injective matching. Then the propagation
continues to try to turn on its OFF-state in-neighbors. Correspondingly, (𝑢0, 𝑣3)-MP and (𝑢3, 𝑣5)-MP
are turned on as shown in Figure 8(c). When propagating to (𝑢2, 𝑣1)-MP, it is not turned on and marked
as a stopping node as shown in Figure 8(d). Finally, the OFF-Propagation is invoked starting from the
stopping node (𝑢2, 𝑣1)-MP, but (𝑢0, 𝑣3)-MP remains ON-state after the OFF-Propagation (Figure 8(e)).
The final updated CaLiG index is depicted in Figure 8(f).
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Complexity Analysis. Let𝐷 and𝐴 represent the sets of nodes turned off and turned on because of

edge addition, respectively. The time complexity for edge addition is almost the same as that for edge

deletion. The difference is we need to take the procedure of turning nodes in 𝐴 into consideration.

The overall time complexity of updating CaLiG by adding an edge is𝑂 (∑(𝑢,𝑣) ∈(𝐷∪𝐴) |𝑁𝐶𝑎𝐿𝑖𝐺 (𝑢, 𝑣) |+
|𝑁𝑄 (𝑢) |2.5), where 𝑁𝐶𝑎𝐿𝑖𝐺 (𝑢, 𝑣) is the set of neighbors of (𝑢, 𝑣)-MP.

5 KSS-BASED SUBGRAPH MATCHING
For continuous subgraph matching, we need to find all the new matches due to edge addition or

the decreased matches due to edge deletion. It is clear that the changed matches must contain the

updated edges. In detail, for each update edge 𝑒 (𝑣𝑖 , 𝑣 𝑗 ), we need to find two connected ON-state

nodes (𝑢𝑘 , 𝑣𝑖 )-MP and (𝑢𝑙 , 𝑣 𝑗 )-MP in CaLiG that contain 𝑣𝑖 and 𝑣 𝑗 , respectively. These two nodes

will be taken as a partial match which can be extended to a complete match. Thus, the widely used

backtracking search could be utilized. Such a backtracking search enumerates candidates of each

query vertex one by one and examines constraints for the subgraph isomorphism at each step. It

performs intensive backtracks over the candidates to construct matches by trying to integrate the

candidates, which incurs expensive time costs.

Most existing algorithms accelerate the backtracking by adjusting the matching order. In contrast,

we seek a more powerful backtracking framework in this section. It is noticeable that the matches

for the degree-one query vertices are independent, where the “independent” means that computing

matches for one query vertex would not affect the matches of another. Therefore, the matches of

such vertices could be acquired together instead of exploring them one by one.

Thus, we develop a novel backtracking search framework, called Kernel-and-Shell Search (KSS),

for continuous subgraphmatching. KSS decomposes the query vertices into kernel and shell vertices,

making it straightforward to deliver the incremental matches by joining the partial matches for

kernel vertices and the candidate of shell vertices.

5.1 Kernel and Shell Vertex
To identify the independent vertices as discussed above, KSS defines the kernel set as the connected

vertex cover, and the shell set is the complementary set.

Definition 5.1 (Kernel Set and Shell Set). Given a query graph 𝑄 , its kernel set, also known
as connected vertex cover, is a set of connected vertices s.t. each edge in 𝑄 has at least one vertex in the
set. Each vertex in the kernel set is called a kernel vertex. The shell set is the complementary set of the
kernel set, where vertices are independent of each other and each of them is called a shell vertex.

The shell vertices are naturally independent by definition. Since the query graph is fixed in CSM,

the corresponding kernel and shell vertices could be computed and stored in advance.

Example 5.1. Figure 9(b) lists three different kernel sets and shell sets for the query graph in 9(b),
where vertices in dark blue form the kernel set and the other vertices form the shell sets.

Given a query graph𝑄 and its kernel set and shell set, once the match of kernel set is determined,

the candidates for each shell vertex are obtained by checking its adjacent matched vertex. As there is

no edge dependency among shell vertices, the matches can be produced straightforwardly by joining

the candidates of shell vertices, without any failing backtracks. Therefore, a good decomposition

should have as many shell vertices as possible, indicating as few kernel vertices as possible. As

discussed above, the desired incremental matches must contain the update edge 𝑒 (𝑣𝑖 , 𝑣 𝑗 ) and the

search starts from 𝑒 (𝑣𝑖 , 𝑣 𝑗 ). Hence, the subgraph induced by the kernel set should contain the edge

𝑒 (𝑢𝑘 , 𝑢𝑙 ) such that the matching pairs (𝑢𝑘 , 𝑣𝑖 )-MP and (𝑢𝑙 , 𝑣 𝑗 )-MP are ON in CaLiG.
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(a) Query graph. (b) Three kernel sets and shell sets.

Fig. 9. An example of kernel vertices and shell vertices.

Definition 5.2 (Conditional Kernel Set ). Given a query graph 𝑄 and an edge 𝑒 (𝑢𝑘 , 𝑢𝑙 ) ∈ 𝐸𝑄 ,
the conditional kernel set, denoted by CKS, is the kernel set that contains vertices 𝑢𝑘 and 𝑢𝑙 .

Lemma 5.1. Given a query graph 𝑄 , we get a new query graph 𝑄 ′ by adding a virtual vertex 𝑢0
and connecting 𝑢0 with all vertices in 𝑄 . If 𝑆 ∪ {𝑢0} is a minimum kernel set of 𝑄 ′, 𝑆 is a minimum
kernel set of 𝑄 , where 𝑆 ⊆ 𝑉𝑄 .

Proof. Suppose 𝑆 is not a minimum kernel set of 𝑉𝑄 and there is another kernel set 𝑆 ′ of 𝑄 that

is smaller than 𝑆 . 𝑆 ′ ∪ {𝑢0} will be a smaller kernel set of 𝑄 ′, which leads to a contradiction. □

Theorem 5.2. Computing the minimum conditional kernel set (MCKS) for a query graph 𝑄 and an
edge 𝑒 (𝑢𝑘 , 𝑢𝑙 ) ∈ 𝐸𝑄 is NP-hard.

Proof. The proof is achieved by reducing the NP-hard minimum connected vertex cover (MCVC)

problem [13, 29].

Let𝑄 ′ denote the graph obtained by adding a virtual vertex𝑢0 and connecting𝑢0 with all vertices

in 𝑄 . For each edge in 𝑄 ′, we compute its MCKS. Let 𝑆 ′ represent the minimum MCKS among the

|𝐸𝑄′ |MCKSs. 𝑆 ′ is an MCVC (i.e., a minimum kernel set) of𝑄 ′, which can be proved by contradiction
as follows.

Suppose 𝑆 ′ is not the MCVC of 𝑄 ′. There must be another MCVC of 𝑄 ′, denoted by 𝑆 , such

that |𝑆 ′ | > |𝑆 |. (1) When 𝑆 does not contain 𝑢0, all the nodes 𝑉𝑄 constitute the MCVC 𝑆 of 𝑄 ′, i.e.,
𝑆 = 𝑉𝑄 . If 𝑢0 is not contained in 𝑆 ′, |𝑆 ′ | ≤ |𝑉𝑄 |, which contradicts |𝑆 ′ | > |𝑆 |. If 𝑢0 is contained in

𝑆 ′, 𝑆 ′ = 𝑆∗ ∪ {𝑢0} such that 𝑆∗ ≥ 𝑆 . Thus, we have 𝑆 ′=𝑉𝑄 ∪ {𝑢0}. As 𝑆 = 𝑉𝑄 , 𝑆 is the MCKS for

𝑄 ′ and an edge 𝑒 (𝑢𝑥 , 𝑢𝑦), where 𝑒 (𝑢𝑥 , 𝑢𝑦) ∈ 𝐸𝑄′ . It contradicts that 𝑆 ′ is the smaller MCKS for 𝑄 ′.
(2) When 𝑆 contains 𝑢0, at least one neighbor 𝑢𝑖 of 𝑢0 will be contained in 𝑆 as the kernel set is

connected. 𝑆 is the MCKS for 𝑄 ′ and the edge 𝑒 (𝑢0, 𝑢𝑖 ), which contradicts that 𝑆 ′ is the minimum

one among all the possible edges.

If 𝑢0 ∈ 𝑆 ′, 𝑆 ′ \ 𝑢0 is a minimum kernel set of 𝑄 according to Lemma 5.1; Otherwise, 𝑆 ′ is a
minimum kernel set of 𝑄 . It is clear that the procedure of constructing the solution to MCVC is

in polynomial time. Thus, if MCKS can be solved in polynomial time, the MCVC problem can be

solved in polynomial time, which contradicts the NP-hardness of the MCVC problem. □

Given the MCKS is NP-hard to compute, a greedy algorithm is proposed in practice. It adds 𝑢𝑘
and 𝑢𝑙 into CKS and removes 𝑢𝑘 , 𝑢𝑙 , and their neighbors from 𝑄 . Then it enumerates a maximal

collection of disjoint odd cycles in the remaining𝑄 ′. Let 𝑡 denote the number of odd cycles,𝐶𝑖 denote

the vertices of 𝑖-th cycle, and 𝐶 =
⋃𝑡
𝑖 𝐶𝑖 . It computes the optimal vertex cover of the remaining

bipartite graph𝑄 ′ \𝐶 , denoted as𝑊 . If𝐶 ∪𝑊 ∪ {𝑒 (𝑢𝑘 , 𝑢𝑙 )} is connected, return𝐶 ∪𝑊 ∪ {𝑒 (𝑢𝑘 , 𝑢𝑙 )};
otherwise, we apply approximation algorithms for Steiner tree to obtain one connected result.
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Algorithm 7: FindMatches(𝐶𝑎𝐿𝑖𝐺 , 𝑒 (𝑣1, 𝑣2), 𝐾𝑒𝑟𝑛𝑒𝑙 , 𝑆ℎ𝑒𝑙𝑙 )
Input: 𝐶𝑎𝐿𝑖𝐺 , an updated edge 𝑒 (𝑣1, 𝑣2), the conditional kernel set 𝐾 , and shell set 𝑆 for

𝑒 (𝑣1, 𝑣2)
Output: Incremental matches due to 𝑒 (𝑣1, 𝑣2)

1 for each 𝑢1 ∈ 𝑄 do
2 if 𝐿(𝑣1) = 𝐿(𝑢1) and (𝑢1, 𝑣1)-MP.state = 𝑂𝑁 then
3 𝑚[𝑢1] ← 𝑣1;

4 for each 𝑢2 ∈ 𝑁𝑄 (𝑢1) do
5 if (𝑢2, 𝑣2)-MP ∈ 𝐼𝑛𝐶𝑎𝐿𝑖𝐺 (𝑢1, 𝑣1) then
6 𝑚[𝑢2] ← 𝑣2;

7 return KSS(𝑚, 𝐾 , 𝑆).

Algorithm 8: KSS(𝑚, 𝐾 , 𝑆)

Input: The partial match𝑚, conditional kernel set 𝐾 , and shell set 𝑆

Output: Incremental matches due to 𝑒 (𝑣1, 𝑣2)
1 if 𝑚.𝑠𝑖𝑧𝑒 < |𝐾 | then
2 𝑡ℎ ←𝑚.𝑠𝑖𝑧𝑒;

3 𝑢 ← 𝐾 [𝑡ℎ];
4 𝐶𝑎𝑛𝑑 (𝑢) ← generate 𝑢’s candidates;

5 for each 𝑣 ∈ 𝐶𝑎𝑛𝑑 (𝑢) do
6 𝑚′←𝑚;

7 𝑚′[𝑢] ← 𝑣 ;

8 KSS(𝑚′, 𝐾, 𝑆);

9 else
10 for each 𝑢 ∈ 𝑆 do
11 𝐶𝑎𝑛𝑑 (𝑢) ← generate 𝑢’s candidates;

12 return𝑚 ⊲⊳𝑢∈𝑆 𝐶𝑎𝑛𝑑 (𝑢).

5.2 Kernel-and-Shell Search
Powered by kernel and shell vertices, we develop a novel backtracking search framework. When

an edge is added or deleted, our method would first initialize partial matches based on the updated

edge (Algorithm 7), and then invoke the kernel and shell search (Algorithm 8). For kernel vertices,

KSS computes the partial matches through the existing backtracking. The incremental matches

can be reported immediately by joining the partial matches and the candidates of shell vertices,

without any unnecessary backtrackings.

Algorithm 7 presents the process of finding incremental matches based on kernel-and-shell

search (KSS). Given the update edge (𝑣1, 𝑣2), as a matching pair (𝑢1, 𝑣1)-MP must be ON (lines

2-3). The matching pair (𝑢2, 𝑣2)-MP is then determined from the in-neighbors of (𝑢1, 𝑣1)-MP (lines

4-6). Thus, we have found partial match {(𝑢1 ↔ 𝑣1, 𝑢2 ↔ 𝑣2)}, denoted as𝑚. Next, we match the

remaining query vertices in the order of kernel vertex first and then shell vertex by invoking the

procedure KSS.
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Algorithm 8 describes how to search matches for conditional kernel and shell vertices. First, it

determines the query vertex to match according to the kernel set (lines 2-3), and then generates

candidates for the vertex. Finally, it selects a candidate as the partial match to drive the matching

process (lines 5-8). After all the kernel vertices have been matched, we generate candidates for all

shell vertices and join the candidates with the partial match to report the incremental matches

(lines 10-12). The process is very efficient as we produce the incremental matches by a simple join

operation without checking any constraints or backtracks.

Candidate generation. Let 𝐶𝑎𝑛𝑑 (𝑢) denote the candidates of query vertex 𝑢. The vertex 𝑣 in

𝐶𝑎𝑛𝑑 (𝑢) meets the constraints:

1) 𝑣 has not been used in the partial match.

2) The node (𝑢, 𝑣)-MP in CaLiG is ON.

3) 𝑣 is a neighbor of 𝑣 ′ if 𝑣 ′ ∈ 𝐶𝑎𝑛𝑑 (𝑢 ′) and 𝑢 ′ ∈ 𝑁𝑄 (𝑢).
To generate 𝐶𝑎𝑛𝑑 (𝑢) for vertex 𝑢, two steps are conducted.

Step 1. For each 𝑢𝑖 ∈ 𝑁𝑄 (𝑢) that been matched to 𝑣𝑖 , we build a set 𝐶𝑖 = {𝑣 ′ | (𝑢 ′, 𝑣 ′)-MP

∈ 𝐼𝑛𝐶𝑎𝐿𝑖𝐺 (𝑢𝑖 , 𝑣𝑖 ) and (𝑢 ′, 𝑣 ′)-MP is ON}. Then we intersect all of these sets 𝐶𝑖 to get a candidate

set for 𝑢.

Step 2.We remove the data vertices that have already been used in the partial matching from

the candidate set. After this step, we obtain the final candidate set of 𝑢.

Pruning in advance. KSS computes the partial matches for kernel vertices first, which facilitates

match generation while incurring new problems. For example, when we determine a partial match

of all kernel vertices, the candidate set of a shell vertex may be empty, but we can only find this

failed partial match when generating candidates for that shell vertex. Hence, we employ a pruning

strategy that detects such failures as early as possible. For each shell vertex 𝑢, once all its neighbors

have been matched, we try to find a candidate for 𝑢 in advance. If no candidate vertex is found

for 𝑢, it is safe to rule out the current partial match. Otherwise, it proceeds to find matches of the

remaining kernel vertices.

Complexity Analysis. For KSS, only the kernel part is matched by backtracking search, the worst-

case complexity is induced to 𝑂 ( |𝑉𝐺 | |𝐾 |), where |𝐾 | is the size of kernel vertices, much smaller

than traditional backtracking with the time complexity 𝑂 ( |𝑉𝐺 | |𝑉𝑄 |).

6 EXPERIMENTAL EVALUATION
In this section, we evaluate our proposed method, denoted by CaLiG, and compare it with two

state-of-the-art algorithms TurboFlux [24] and SymBi [32].

6.1 Experimental Settings
Data graphs. Table 3 lists the graphs used in experiments that are downloaded from SNAP [28],

except Netflow (downloaded from CAIDA [1]). We randomly sample 5% data edges as the streaming

edges, with the ratio of deleted edges over added edges being 2:1.

Query graphs. For each data graph, we sample 7 groups of subgraphs, denoted by 𝑄3, 𝑄4, 𝑄6, 𝑄8,

𝑄10, 𝑄12, 𝑄14, and 𝑄16, as query graphs by varying the number of vertices from 3 to 16. Each

group 𝑄𝑖 contains 50 query graphs.

Metrics.The elapsed time is reported inmilliseconds. Due to the NP-hardness of subgraphmatching,

some queries may take an extremely long time. By convention, we set a timeout of 20 minutes for

each query. If one query cannot finish within the time limit, it is called uncompleted. To evaluate an
algorithm generally, we report the average elapsed time, as well as the completion rate, the average

peak memory usage, and the match density.

All the algorithms are implemented in C++ and evaluated on a Linux Server equipped with

Intel(R) Xeon(R) CPU E5-2640 @ 2.60GHz and 128G RAM.
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Table 3. Data graphs.

Dataset Abb. |V| |E| Average degree

Lastfm lfm 7,624 27,806 7.3

Facebook fbm 22,470 170,823 15.2

Email em 36,692 183,831 10.0

Github gh 37,700 289,003 15.3

Deezer dz 41,773 125,826 6.0

Twitch tw 168,114 6,797,557 80.9

Skitter sk 1,696,415 11,095,298 13.1

Netflow nf 3,114,895 16,668,683 10.7

Table 4. Average elapsed time.

Elapsed Time (ms)
Dataset TurboFlux SymBi CaLiG |Δ𝑚 |
Lastfm 49,341.9 13,848.3 641.6 7,626,438

Facebook 2,510,220.9 1,745,489.0 94,174.2 443,817,336

Email 2,836,668.9 1,873,555.0 82,417.3 338,293,270

Github 4,177,493.4 3,411,865.8 189,060.7 1,679,993,941

Deezer 368,280.5 99,535.6 4,669.0 14,327,860

Twitch 1,957,440.8 1,107,821.3 51,247.5 464,933,035

Skitter 1,460,160.6 321,649.7 9,447.0 130,260,509

Netflow 727,494.2 119,694.9 122.3 48,801

6.2 Experimental Results
Overall Performance. Table 4 reports the average elapsed time of 400 query graphs on 8 data

graphs respectively. Table 4. As is observed, It shows that CaLiG runs much faster than TurboFlux

and SymBi in all graphs, achieving significant speedups over TurboFlux (from 22.10x to 5963.07x)

and SymBi (from 18.05x to 978.69x) respectively. The last column |Δ𝑚 | represents the number of

incremental matches. We can find that |Δ𝑚 | ranges from millions to more than 1 billion. The larger

the number of results, the more time it takes.

Varying the size of query graph. The effect of query size (i.e., the number of vertices) is evaluated

by varying |𝑉𝑄 | from 3 to 16. Figure 10 shows the detailed results, where each dataset has two

sub-figures representing the average elapsed time and the completion rate for each group of queries

in the same size. We can see that CaLiG exhibits significant advantages over the competitors.

For all data graphs, CaLiG always approximately outperforms SymBi one to three orders of

magnitude faster in terms of time efficiency, while achieving a higher completion rate. The average

speedup on the group of queries 𝑄12 reaches 5472x (on Netflow). Moreover, CaliG achieves better

speedups over TurboFlux. As the query size grows, the time cost increases as well. For those larger

queries, the completion rate of CaLiG is significantly higher.

Varying the size of data graph. To evaluate the scalability, we randomly generate 7 data graphs

of different sizes through LSBench [27]: 0.1, 0.2, 0.5, 1, 2, 5, and 10 million vertices, while the other

characters of the data graphs are the same. Two groups of query graphs with 8 and 12 vertices

are used in this experiment. The results are shown in Figure 11(a). The dotted lines represent the
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Fig. 10. Varying query graph in different data graphs.

results of the 8-vertex query graphs, and the solid lines represent the results of the 12-vertex query

graphs. Compared with TurboFlux and SymBi, CaLiG is consistently faster regardless of the size of

the data graph. In addition, the elapsed time of all algorithms tends to increase with the growth of

the dataset size.

Varying the number of vertex labels for data graph.We evaluate the effect number of labels

by randomly assigning labels to vertices. Totally 7 varied graphs, with the number of labels 1, 2, 3,

4, 5, 7, and 9, are generated for each original data graph. Figure 11(b) presents the results on the

data graph Deezer. We can see that the CaLiG algorithm is 2.2 to 19.7 times faster than SymBi, and

2.4 to 50.5 times faster than TurboFlux. The speedup increases with the growth of the number of

labels. In addition, we can find that the number of labels affects the elapsed time. Basically, the time

cost is inversely proportional to the number of labels, that is, the more labels, the less elapsed time

for continuous subgraph matching.

Varying the scale of streaming data.We explore how the stream size affects our algorithm next.

Two sets of experiments are set up respectively, one set to test the mixed update flow, that is, there

are deleted edges and added edges in the update flow, and the ratio of them is 2:1. In the other

set, only deleted edges are allowed in the stream. The two sets of update streams are randomly

sampled from the original data edges, and their scales are set to 2%, 4%, 6%, 8%, and 10% of the
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Fig. 11. Varying number of vertex labels and the scale of the data graph.

Table 5. Match Density under different query sizes

Method Dataset 4 6 8 10 12 14

TurboFlux

dz 0.530 0.240 0.040 0.048 0.021 0.0001

lfm 1.858 1.190 0.152 0.005 0.002 0.002

sk 4.562 1.514 0.214 0.123 0.119 0.009

SymBi

dz 0.557 0.392 0.252 0.110 0.024 0.0009

lfm 2.012 1.265 0.509 0.371 0.104 0.270

sk 35.83 12.59 1.243 0.567 0.183 0.070

CaLiG

dz 2.139 22.88 102.8 52.83 10.79 77.05
lfm 9.834 199.7 65.36 422.4 156.8 1028
sk 30.05 2617 156588 504142 113778 357529

number of data edges, respectively. Figure 12(a) reports the results on the data graph Email. It
shows that the performance is linear to the scale of update streams, whether it is a mixed stream or

an edge-deletion stream, indicating good scalability of CaLiG. In addition, we can also find that

CaLiG exhibits a similar performance in processing edge additions and edge deletions.

Match Density. To discuss the effectiveness of the backtracking search, match density (MD) is

defined as

MD =
# of Incremental Matches

# of Backtrackings

With higher MD, the same number of matches could be found in fewer backtrackings, and in

less time. Table 5 lists the results on dz, lfm, and sk. The match density of CaLiG is larger than that

of TurboFlux and SymBi up to 7 orders of magnitude: one backtracking in TurboFlux or SymBi fails

to generate one match for most queries, while CaLiG could generate thousands of matches in one

backtracking. Moreover, with the growth of query size, MDs of TurboFlux and SymBi decrease, but

the MD of CaLiG increases at the same time, demonstrating CaLiG would have a more significant

advance in solving large queries.

Memory usage. We evaluate the memory usage by reporting the peak memory that is defined as

the maximum of the virtual set size (VSZ) in the “ps” utility output. Figure 12(b) gives the results on

graphs Facebook, Email, and Github for query graphs with 8 vertices. CaLiG has a smaller memory

usage than TurboFlux and SymBi on all the graphs.
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Fig. 12. Varying the scale of streaming data and Memory usage.

Ablation test. We evaluate the effect of each individual technique proposed in this paper. The

methods we used for comparison include

(1) CaLiG, the complete version of the proposed algorithm;

(2) +CaIM, caching the computed injective matching to avoid some unnecessary recomputation.

If the update edge is not involved in the cached injective matching, it is not required to

recompute the injective matching;

(3) -InjM, disabling the injective matching checking, but only considering whether each vertex

in the 𝑁𝑄 (𝑢) has a connecting edge in the bigraph;

(4) -NState, disabling the lighting state update and checking;

(5) -KSS, replacing the KSS technique with the way of matching one expanded vertex at a time.

Figure 13 presents the results on Facebook and Github, where 𝑄8 and 𝑄10 represent the query

graph that has 8 and 10 vertices, respectively. We can observe that the improvement is marginal by

caching the injective matching as the cost of computing the injective matching is much smaller

than the overall cost. In contrast, the elapsed time will significantly increase when other techniques

are disabled. Among them, KSS exhibits the most superiority, achieving 4.0X∼14.7X speedups on

average, since incremental match generation dominates the total cost.

7 RELATEDWORK
Streaming graph engines. The recent research on streaming graph engines has provided vertex or

edge-centric programming models for iterative incremental graph computation. Kineograph [8] and

GraphInc [7] are two systems that enable incremental computation for monotonic algorithms like

Shortest Path. Chronos [18] assumes streaming graph data is stored persistently and simultaneously

computes general graph algorithms on several snapshots. Auxo [17] is complementary to Chronos

and could be used as its data source. GraphBolt [30] proposes a generalized incremental model

to handle non-monotonic algorithms like Belief Propagation, but involves more overheads than

KickStarter for monotonic algorithms. GraphS [34] designs a real-time streaming system called

GraphS for cycle detection. RisGraph [12] targets per-update analysis to provide low latency and

detailed information in comparison. However, the systems above do not pay attention to the

problem of continuous subgraph matching.

Subgraph matching. Subgraph matching is a fundamental requirement for graph databases

and has been studied extensively in recent decades. QuickSI [35] follows the direct enumeration

framework, which directly explores the data graph to enumerate all results. Most state-space based

representation models (that is, each state represents an intermediate result) use this framework, e.g.,

Ri [5], VF2++ [22], Graphql [20], CFL[4], CECI[3], and DP-ISO[16]. Due to the effective filtering and

sorting methods, they have achieved great improvements in overall performance. However, these
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Fig. 13. Effect of different components of CaLiG.

algorithms focus on the problem in a static data graph. For streaming graphs, it is unacceptable

for the real-time requirement to perform subgraph matching over the graphs prior to and after

updating respectively.

Continuous subgraph matching. IncIsoMat [11] and Graphflow [23] expand matches from the

updated edges without any additional index structures, showing limited real-time performance.

SJ-Tree [10] materializes all the partial matches of subgraphs, leading to a huge storage and index

update cost. TurboFlux [24] employs a concise structure DCG, a complete multigraph, to represent

intermediate results, reducing the storage cost. Similarly, CEPDG [40] employs TreeMat to store

the partial matches of trees. It supports changes in both pattern graphs and data graphs. However,

TurboFlux and CEPDG exploit a spanning tree of the query graph to filter the candidates, leaving

the non-tree edges to be maintained by DCG. SymBi [32] introduces an auxiliary data structure

DCS to store weak embeddings of directed acyclic graphs as intermediate results. Compared to

DCG used in TurboFlux, DCS considers both tree and non-tree edges in a DAG of the query graph.

Nevertheless, the index constructed by SymBi is not cost-effective enough, that is, the candidates

could be tightened to archive less total cost.

8 CONCLUSION
In this paper, we propose a cost-effective index CaLiG for continuous subgraph matching. CaLiG

yields tighter candidates than previous methods with low cost, contributing to considerable speed up

for match generation. To further accelerate incremental generation, we develop a novel subgraph

matching paradigm, called KSS. With the partial matches of kernel vertices, KSS can produce

incremental matches by just joining the candidates of shell vertices without any backtrackings.

The empirical experiments demonstrate the efficiency of our proposed method.
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