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Most modern in-memory online transaction processing (OLTP) engines rely on multi-version concurrency
control (MVCC) to provide data consistency guarantees in the presence of conflicting data accesses. MVCC
improves concurrency by generating a new version of a record on every write, thus increasing the storage
requirements. Existing approaches rely on garbage collection and chain consolidation to reduce the length of
version chains and reclaim space by freeing unreachable versions. However, finding unreachable versions
requires the traversal of long version chains, which incurs random accesses right into the critical path of
transaction execution, hence limiting scalability.

This paper introduces OneShotGC, a new multi-version storage design that eliminates version traversal
during garbage collection, with minimal discovery and memory management overheads. OneShotGC leverages
the temporal correlations across versions to opportunistically cluster them into contiguous memory blocks that
can be released in one shot. We implement OneShotGC in Proteus, and use YCSB and TPC-C to experimentally
evaluate its performance with respect to the state-of-the-art, where we observe an improvement of up to 2x in
transactional throughput.
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1 INTRODUCTION

Modern in-memory online transaction processing (OLTP) engines execute several transactions in
parallel to exploit the increasing number of CPU cores and main memory in scale-up servers. As
concurrently running transactions may lead to conflicting data accesses, the OLTP engine needs to
provide guarantees on data consistency. Most engines today, like Oracle, MySQL, Microsoft SQL
Server, PostgreSQL, and SAP HANA provide snapshot isolation (SI) guarantees: SI allows increased
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concurrency while protecting from most anomalies and providing good scalability, enabling OLTP
engines to take advantage of the CPU parallelism.

In practice, most systems that provide SI guarantees employ a multi-version concurrency control
(MVCC) scheme. MVCC creates a new version on each write operation, to avoid blocking concurrent
readers: Read operations can then proceed in parallel with a write operation, as long as there exists a
version that does not violate the consistency of the database. However, there is no free lunch: storing
several versions of the database increases the memory footprint and the associated maintenance
cost [11, 16, 22].

Existing approaches amend multi-versioning overheads by frequently collecting unreachable
versions through active or passive garbage collection (GC). Versions become unreachable when there
can be no transaction that will access them at any point in time. Specifically, all versions created
before the most recent version of a record that can be accessed by the least recent transaction
currently active in the system are unreachable and, thus, can be dismissed. Active approaches 2,5, 18]
place a garbage collection phase at the end or during the execution of each transaction. During
active GC, the OLTP engine traverses the version chains to find and release the unreachable
versions. However, version chain traversal incurs random accesses over version lists and, thus, it
does not scale with the chain length. In active GC, the chain length depends on the write ratio of the
workload, since every write appends a new version to the chain. Passive approaches [1, 13] register
unreachable versions to a background process that periodically vacuums them. In passive GC, the
chain length depends both on the workload write ratio and the frequency of the vacuum process.
Unfortunately, it is hard to decide on the vacuuming frequency: if it is too high, then it will interfere
with transaction execution, whereas if it is too low, it will lead to long version chains. In either
case, performance will drop and the tradeoff heavily depends on real-time workload parameters.
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Fig. 1. Multi-versioned storage

The problem in the state-of-the-art GC approaches, with a direct impact on transactional per-
formance and scalability, is the version traversal, which stems from the extremely fine-grained
memory allocation performed for every version and results in several random memory accesses for
every record. Figure 1 exemplifies the problem by showing the version storage for an attribute A
with 10 records a; to ajo. Suppose that, when GC is triggered, the unreachable versions are the
ones separated out by the red dotted line in the figure. In order to trace them, the system will have
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to go through every record a;, traverse all chains (with all the random accesses involved), and then,
release the memory allocated for the unreachable versions. To understand the impact of GC on
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Fig. 2. Impact of GC on transactional performance

transactional performance, we experimentally analyze GC performance by executing the YCSB
workload while turning GC on and off, on a database with a single table of 10 columns sized 8 bytes
each. We execute the experiment on a server equipped with two NUMA nodes and 28 hardware
threads, with each hardware thread associated with a worker database thread. Every transaction
has 10 operations accessing data following the Zipfian distribution with theta equal to 0.5, whereas
we set the write ratio to be either 100% or 50%. Each worker thread executes the transactions in a
closed loop. We implement NoGC by generating versions but never collecting them, thus creating
an illusion of infinite memory size. For the GC case, we consider SteamGC [2], a state-of-the-art
scalable garbage collector for in-memory OLTP. Figure 2 shows the transactional throughput in
each case. We observe that garbage collection causes 36% throughput degradation because the
system has to track, identify, unlink, and finally reclaim the memory of transactionally obsolete
versions.

In this paper, we leverage the inherent temporal properties of the version storage, where we
observe that versions’ validity in MVCC is temporally correlated. Effectively, transactions with
similar profiles, which are started and executed in parallel in a multi-socket multi-core server, are
likely to finish at a similar time. Based on this observation, all versions falling behind a given
timestamp threshold can be collected altogether, thereby eliminating the costly version traversals
during GC. TPC-C is an example of such a workload, given that NewOrder and Payment take 88%
of the overall transactions in the benchmark. Accordingly, the versions that they created will also
become unreachable at about the same time, and hence, we can collect them all together in one
shot.

Our approach, OneShotGC, temporally partitions the version storage and assigns each partition
to a group of transactions that started at (about) the same time. GC takes place at partition-level
granularity, provided that all versions included in a given partition have become unreachable. This
way, we fully eliminate version traversal at GC time, whereas we also provide mechanisms for
transparent cross-partition version traversal, when it is required by a transaction (e.g., to find
the proper version to read). Furthermore, a long-running transaction can delay the GC process
by blocking the global minimum which leads to longer version chains and increased storage
requirements for version storage. Similar to version chain pruning [2, 13], we enable partition-level
consolidation to GC partitions that contain part of version chains that are unreadable by any active
transactions. In summary, we make the following contributions:
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e We devise a version storage design that physically partitions the versions according to their
temporal properties and allows transparent, cross-partition version traversal.

e We propose a garbage collection algorithm, OneShotGC, that eliminates version traversals during
GC, allows version consolidation without the requirement of per-version link updates and enables
partition-level chain consolidation.

e We implement our approach in an in-memory OLTP engine and experimentally show how
OneShotGC improves transactional throughput by up to 2x compared to the state-of-the-art. In
addition, we show that diverse transactional workloads amplify the gains achieved by OneShotGC.

2 BACKGROUND

The core idea of MVCC is that every write operation (insert or update) results in a new version of a
database record. A database snapshot consists of a single version of every record, and a consistent
snapshot guarantees that there are no two records in the snapshot which have been created by
conflicting transactions. A conflict on a record happens when at least one out of a set of two or more
concurrent transactions is attempting to write the record. To avoid conflicts, while maximizing
concurrency, MVCC allows transactions to read any version of the record as long as it was created
before they started. This way, multiple transactions can read a record, while another transaction is
updating it, by choosing the snapshot which includes the right version. Instead, there can only be
one transaction updating a single record. As read operations can be executed concurrently even
on the same version, all transactions are accessing the most recent version of the record that is
available to them. Therefore, all versions created before the most recent version of a record that
can be accessed by the least recent transaction currently active in the system can be dismissed.

In what follows, we describe the design options of versioned storage, the garbage collection
process, and the impact of GC.

2.1 Version Storage

MVCC-based engines create versions on every write, resulting in a new database snapshot. We
consider, at a logical level, that there exist two storage layers: (i) the main storage, and (ii) the
versioned storage, which holds the version list. Then, the version list can be ordered in two ways:
either from the newest to the oldest version (N20), where the head of the version list is the newest
version, or, from the oldest to the newest version (O2N), where the versions are stored in the
order of creation. In what follows, we describe the three most common storage architectures [22]
employed by MVCC-based OLTP engines.

Append-only storage. In append-only storage, the main and the versioned storage are combined.
Upon creating a new version, a new record is inserted in the storage, and pointers from or to the
previous versions are created, depending on whether the version ordering is N20O or O2N. For
example, Hekaton [5, 12] uses append-only storage with O2N ordering. GC for append-only storage
can be seen as a storage compaction process, that is, reusing the memory locations from the obsolete
versions for new records or copying active versions from the tail to reduce storage fragmentation.

Time-travel storage. In time-travel storage, versioned storage is separated from the main
storage. However, the versioned storage follows the same principle as append-only storage, where
versions are stored in an append-only fashion, and they are connected through pointers. For
example, a system that uses such an architecture is SAP HANA [13].

Delta storage. In delta storage, the main and the versioned storage are separated. The tuple
metadata are stored in the main storage and they include a pointer to the version list if it exists. The
version list resides physically in the versioned storage space. Versions are created by requesting the
desired amount of space from the version storage, where they store every update. This approach is
space-efficient as versions are created in a fine granularity and they may only store the updated
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attributes instead of the whole tuple. Systems which use the delta storage design include Hyper [18]
and Steam [2].

In this work, we design and optimize delta-storage-based versioning with N2O ordering, keeping
the main or persistent storage as the latest tuple version and delta or transient storage as a
list of tuple snapshots created in time. N2O ordering reduces the chain traversal in accessing the
desired version. The delta-storage scheme maintains the separation of concerns and storage-specific
optimization between the persistent and the transient (delta) storage.

2.2 Garbage Collection

Storage maintenance in MVCC is performed during the garbage collection (GC) phase, where the
OLTP engine dismisses the versions of the records which will not be needed by future transactions.
One way to see GC is as a filter on all available versions in the database. Even though GC is
not required to ensure consistency, it makes sure that memory is used reasonably. Without GC,
the number of snapshots constantly increases, exhausting the system memory and resulting in
no usable space for further operations. On the other hand, GC brings significant overheads, and
therefore, its optimization is critical for the overall performance [2, 22].

Version Liveness Tracking. During GC, the system identifies the versions which are globally
unreadable by any active transaction, and then, reclaims them by (i) logically un-linking the version
from the version chain, and (ii) physically by reclaiming the allocated storage space. Version
identification and tracking [2] requires maintaining metadata about the version creation time,
locating the version in the version storage, and determining the liveness of a version: whether the
version is visible to any active transaction. Tracking and identifying obsolete versions may be done
at epoch, batch, or per-transaction level.

Hyper [18] and Steam [2] employs global and thread-local transaction lists for version identifica-
tion and liveness tracking, per transaction. BOHM [6] tracks at transaction batch and identifies
obsolete versions by grouping transactions in epochs. Deuteronomy[14] and ERMIA [10] track and
identify versions created through epoch grouping of transactions. Regardless of the approach for
version liveness tracking, GC in existing approaches has to consider all records (or tuples, tables,
etc., depending on the granularity of the version storage) and then still go through every version
and explicitly dismiss it.

Complexity. The complexity of GC depends on the selected version tracking and identification
method. In exact GC, where all obsolete versions are reclaimed timely, the complexity of GC is
O(k + n), where k is the number of tuples, which have at least one version in the versioned storage,
hence a valid version chain, and n is the total number of obsolete versions in the system. This is due
to the fact that during GC, the system traverses all the versioned tuples, and reclaims the obsolete
versions, summing to k + n operations of random access memory operations.

2.3 Space/Time effects of GC

MVCC is a snapshot-on-write approach, that is, a new version is created per update. As a re-
sult, MVCC has significant storage requirements and can generate long version chains, causing
performance penalties when accessed.

Storage consumption. While versioning scales readers by having at least one readable snapshot
by any active transaction, it comes at the cost of storage space. GC directly impacts the system
performance by reclaiming the memory of obsolete versions. In the optimal case, the maximum
number of versions in the system should be the number of concurrent updates across all active
transactions, that is, every tuple has a readable version for every active transaction. However,
depending on the GC frequency and granularity, the version reclamation may be delayed, causing
unclaimed memory which is unreadable to any transaction. Furthermore, if the system doesn’t
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support version consolidation, the GC may be delayed by a long-running transaction, holding off
by the tail of the version chain, hence, prohibiting reclamation of in-middle unreadable versions.

Traversal Length. Version chains are generally implemented as linked lists, causing random
access on traversals. A transaction, upon reading from versioned storage, incurs random access until
it finds the appropriate snapshot in time. Traversal length depends on the version ordering in the
chain; In the case of N20 ordering, the reader will have to traverse a chain with as many versions
as the expected number of concurrent updates on the same record, performed by transactions
running concurrently to the reader. This case is reversed in the case of O2N ordering, where the
number of traversals depends on the frequency of GC. If GC occurs too infrequently, the reader
has to traverse all obsolete versions before finding the appropriate readable version. In addition to
linked lists, vWeaver [9] optimizes for scans in MVCC by using frugal skip-lists per record for the
version chains. Thus, vWeaver provides probabilistically logarithmic, with respect to the actual list
size, accesses for readers.

Furthermore, in the case of mixed workloads, where a long-running transaction holds the GC
process, causing a long-tail version chain, the old-running reader pays the traversal length, even
for globally obsolete in-middle versions as concurrent updates cause the chain to grow. With chain
consolidation, implemented as EPO [2] in Steam and interval-based GC [13] in SAP HANA, GC
also cleans in-middle versions, hence, causing chain-length to be at-max the number of active
transaction in the optimal case. OneShotGC supports Steam EPO-based consolidation for reducing
chain length and vWeaver-based version chain layouts for efficient version accesses. Furthermore,
section 5 introduces a mechanism for partition-level consolidation in OneShotGC for both, reducing
chain length as well as reclaiming memory from obsolete versions.

3 SCALABILITY BOTTLENECKS OF GC

Garbage collection includes three steps: (i) Track and identify the obsolete versions, that are, the
versions which are no longer readable by any active transaction and can be safely removed; (ii)
Unlink obsolete versions from active version chains of records; (iii) Clean and reclaim the memory
allocated to obsolete versions. In the following, we explain the scalability bottlenecks in each step
of the GC process and provide an overview of how OneShotGC overcomes these bottlenecks.

Tracking/Identifying obsolete versions. The DBMS implements version tracking and identi-
fication by introducing intermediate data structures to track the versions created by each write
operation. During GC the system identifies which versions are eligible for removal. Tracking is
performed at either transaction-, epoch-, or tuple-level and version metadata may be stored in
global or local transaction lists or maps, as well as in snapshot tracking data structures. Regardless
of the mechanism used to track and identify versions in the system, the DBMS needs to traverse
the list of obsolete versions, and process them for GC, thereby incurring random accesses whose
number is proportional to the number of versions in the system. As a result, the GC overheads
increase with the write throughput of the system, essentially penalizing the system for achieving
high performance, since GC will need to clear a big number of versions that are created by the
write operations.

OneShotGC builds on the observation that the lifetime of versions in MVCC follows a sliding
temporal window fashion. Accordingly, all versions falling behind a global minimum threshold can
be collected as a whole, thus eliminating the need for individual version maintenance. Temporality-
aware version storage enables OneShotGC to scale by grouping the versions based on their expected
deletion time, instead of the traditional, flat version storage used by state-of-the-art GC approaches.

Unlinking/Updating individual version chains. GC requires updating physical or logical
pointers to and from other versions. Whenever a version is GC’ed, either the previous version
or the head of the version chain needs to be updated to remove invalid pointers, and only then,
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the version memory can be safely reclaimed. Unlinking and updating individual pointers require
accessing individual versions, limiting the scalability of the GC process.

OneShotGC uses partition tags and tagged pointers to implicitly invalidate all pointers in a
partition whenever a partition is GC’ed.

Memory Reclamation. GC is essential, not only to reduce version chain length and traversals
but also to reclaim memory timely. Write operations create new versions, essentially translated to
a new database snapshot for every write, in order to allow concurrent readers to access a given
snapshot without waiting for the writer to finish. Old data versions become obsolete when no
active transaction can read them. The GC removes the obsolete versions in order to reclaim and
recycle the memory for the transient storage of the system. Individually reclaiming the memory of
each version requires random accesses, limiting the scalability of GC. Further, memory reclamation
causes internal memory management overheads due to fragmentation maintenance.

OneShotGC simplifies memory management by abstracting each partition as a linear memory
allocator. Then, during GC, the entire partition is reclaimed as a whole, through a single pointer
swap, effectively resetting the allocation cursor to zero which is essentially the starting address of
the partition.

Version chain consolidation. A long-running transaction delays the advancing of the global
minimum for the set of active transactions. Traditional GC approaches only dismiss versions based
on global minimum, that is, dismissing versions from the tail of the version list only, allowing
very long version chains in the presence of long-running transactions. Recent proposals [2, 8, 13]
for chain consolidation extends the traditional GC by dismissing globally unreadable versions
within the middle of version chains, essentially removing all versions that are not required by any
active transaction in the system. Consolidation helps reduce traversal lengths for long-running
transactions and reclaims memory timely. However, chain consolidation requires traversing the
active version chains and testing each version for readability by any active transaction, and if not
readable, then dismissing the specific versions.

OneShotGC abstracts partitions as a single big version, having min and max readability bound-
aries, and then performs consolidation at the partition level. OneShotGC enables transparent
cross-partition traversals even if the in-middle partition in the version chain was dismissed in the
context of consolidation.

4 TEMPORALITY-AWARE VERSION STORAGE

In delta-storage-based MVCC, the OLTP engine maintains two types of storage: The first type is the
persistent storage, which is the engine’s main, transactionally consistent storage backend. The second
type is the transient storage that the transaction manager uses to temporarily allocate memory, such
as the private storage for every transaction and the version storage. This section focuses on the
design of the version storage and its functionality for reading and writing operations. It assumes
that the version storage has a fixed pre-allocated memory size that it manages independently.
Even though changes in the allocation are possible through runtime interaction with the transient
storage, they are orthogonal to the main contributions.

The version storage follows the delta storage design principles to provide snapshot isolation
guarantees [22]. Every version has a timestamp reflecting its creation time, and it must be retained
until no transaction will need to access it. Garbage collection is responsible for removing all obsolete
versions and returning all memory allocations to the version storage.

OneShotGC exploits the temporal nature of version creation and reclamation in MVCC and,
therefore, partitions the versions into temporal groups that are expected to be collected together.
Temporally grouped partitions enable garbage collection to reclaim all the memory allocations
belonging to a given partition at once, eliminating the need to track, identify, unlink and reclaim
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obsolete versions individually. Note that OneShotGC differs from coarse-grained tracking/iden-
tification approaches. Specifically, in the latter, even though all obsolete versions can be tracked
and identified at the end of epoch or batch boundary, each version must be reclaimed individually,
which limits GC scalability. Instead, in OneShotGC, the main design principle is to avoid costly
random access during GC by exploiting the temporal nature of versioning in MVCC.

The remainder of this section describes the data structures and protocols which enable OneShotGC
to eliminate random-access traversals during the GC process, including invalidating all obsolete
version pointers and reclaiming the allocated transient memory.

Delta partitions. The version storage is arranged as a circular buffer of N partitions, where each
partition serves as a transient memory provider. On system startup, each partition is initialized and
granted ownership of a memory chunk. The allocated memory is used to serve memory requests
for record versions and is garbage collected when the partition’s visibility window goes out of the
scope with respect to active transactions in the system.

Figure 3 shows the layout of a delta partition. Each partition keeps the record of the latest
active writer (max_acrtive_txn) in the partition, the oldest version (min_version_ts), the number
of currently active transactions assigned to this partition (n_active_txn), the partition’s tag, and
the allocation cursor. Each record version is stored as a pair of the next pointer and the version
data itself, where the next pointer points to the older version in the list if it exists or a null pointer
to mark list termination. Essentially, on a high level, each partition can be seen as a single version,
having a visibility window from the timestamp of the oldest version in the partition to the latest
transaction, which created a version in the given partition. Therefore, whenever the partition’s
visibility window is not readable by any active transaction, the partition can be safely garbage
collected as a whole in one shot. Figure 4 depicts the partitioned version storage by specializing the
case originally presented in Figure 1. The latest versions are stored in-place in the persistent or the
main storage, while older versions are pushed into the version storage. The version chain shows the
transaction id that created each version and associated it with a given partition. When the versions
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that belong to the GC snapshot become unreachable, the version storage will reclaim the whole
partition Py. On the other hand, if there was another transaction, say txny with a record version in
Py which was not unreadable, then GC would reclaim no memory area of Py. When a transaction
creates a new version for any given record, the version storage places it inside a partition following
a given policy. The default policy in our implementation is the incremental assignment policy. In the
incremental assignment policy, a number of transactions, say M, are assigned to the first partition,
and then the next M transactions will be assigned to the next partition in the sequence. Recall that
partitions are arranged in a circular buffer fashion, hence after utilizing all partitions, transactions
would be again assigned to the first partition. The insight here is that for a transactional workload
with a mostly uniform transactional profile, the first N transactions started are likely to finish at the
same time, hence triggering the GC process exactly when the Mth transaction finishes. Whereas,
in the case of stragglers, the GC can be delayed until the last transaction finishes in the first batch
but does not block the further batches to consume the next partitions in the sequence. Ideally, the
M should be greater than the maximum concurrent transactions allowed in the system, allowing a
batch of transactions to be assigned to the same partition which is likely to be finished together.
However, the policy, the number of partitions, and the partition size are orthogonal to the storage
design, hence discussed separately in section 6.

Partition tagging. Every partition maintains a monotonically increasing tag, which denotes the
validity of the memory allocated by the corresponding partition in the version storage. Upon
garbage collection, the partition tag increases by one, rendering all the previous tags invalid. The
partition tag is included in every version, as every memory chunk storing a version is referenced
by tagged pointers instead of physical memory pointers. Tagged pointers encapsulate the physical
memory pointer, the partition identifier, and the partition tag at version creation time. Specifically,
in our implementation, tagged pointers are 64-bit unsigned integers, having an 8-bit partition id,
20-bit partition tag, and a 36-bit memory offset which results in 64GB addressable memory per
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partition while allowing a maximum of 265 partitions. Dereferencing a tagged pointer first checks
for tag validity with the corresponding delta partition; then, the physical pointer is formed by
adding the memory offset to the partition’s base address.

Figure 5 depicts three partitions that include six different versions of the same record. The left-
hand side of every memory chunk includes the pointer to the next version in the chain, while the
right-hand side includes the record itself. In the case where partition P1 was GC’ed, the partition’s
tag would be incremented to 2 from 1, invalidating all versions within the partition. If any reader
tried to dereference the next pointer of V3g,, pointer tag validity would fail given the tag mismatch
between the tagged pointer and the corresponding partition’s tag.

Partition tagging combined with tagged pointers enables efficient linking/unlinking versions
from the respective versions chains upon a successful GC through incrementing the partition’s
tag, invalidating all versions contained within the corresponding partition implicitly. Therefore,
GC does not need to traverse individual versions to unlink versions from version chains and can
manage the validity of versions through the version and partition tags.

Transaction registration. Every transaction that creates a new version registers to the version
storage, which assigns the transaction to a partition. Figure 6 shows the algorithm for transaction
registration and de-registration. Each partition maintains the number of active transactions assigned
to it, and as garbage collection is performed at the partition level, each partition also maintains a
partition-wide maximum active transaction timestamp. Upon transaction registration (function
register_txn in Figure 6), the delta partition waits if the current partition is locked for GC and
then registers the transaction by incrementing the active transaction count. Further, it updates the
maximum transaction timestamp, if required. Similarly, when a transaction finishes, it deregisters
(function deregister_txn in Figure 6) itself from the assigned partition by decrementing the number
of active transactions. The version storage can safely reclaim the partition when there are no active
transactions and when the maximum transaction timestamp is unreachable.

Version chain traversal. Whenever a transaction cannot read a tuple from in-place persistent
storage as it is newer than the transaction’s start time, it reads a snapshot of the requested tuple
from the versioned storage. In our design, version pointers are stored in-place with the tuple
meta-data along with tuple visibility timestamps. Recall that in our design, all version pointers are
tagged pointers. In case a transaction needs to access the version storage, it dereferences the tagged
pointer, and checks if the version is readable; if not, it traverses the version chain until it finds a
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void DeltaPartition::register_txn(timestamp_t xid){
while(this->n_active_txn < @) // wait if GC is in-progress
this->n_active_txn++;
if(this->max_active_txn < xid)

this->max_active_txn = xid;

}
void DeltaPartition::deregister_txn(){
if (this->n_active_txn-- == 0)
oneShotGC();
3

void DeltaPartition::oneShotGC(){
int64_t expected= 0;
// Lock the partition for active readers by setting to negative large number to denote active
— GC
if(n_active_txn.compare_exchange_strong(expected, INT64_MIN)){
if(global_minActiveTxn() > this->max_active_txn){
tag++;
this->reset();

}

this->n_active_txn.store(0);

Fig. 6. Algorithm for OneShotGC

readable version. Although in MVCC, if a transaction cannot read the latest version, it is guaranteed
that there exists a version in the version chain that should be readable by the transaction, and thus,
checking pointer validity is redundant, for sanity reasons, our implementation asserts on pointer
validity through the associated partitions tags.

Memory allocation & record update. Every partition acts as a linear memory allocator. It
maintains a single base memory pointer and an atomic allocation cursor. Writers request memory
from the assigned partitions by providing the memory size and the version’s timestamp. The delta
partition stores the timestamp if it is older than the oldest version in the partition for facilitating GC
in determining partition-wide visibility of any active transaction in the system. Then, it allocates the
requested memory through the cursor’s fetch&add operation. Finally, it returns a tagged pointer
to the writer, which encapsulates the physical memory pointer and its validity given the partition’s
current tag. The writer then initializes the allocated memory with the version’s data and timestamp,
sets the next pointer to the current head of the version chain, and finally updates the in-place
version head in the record’s metadata.

Garbage collection. OneShotGC leverages the partitioned layout of the version storage to free
unreadable and obsolete versions in one shot, thereby avoiding the traversal of long version chains.
Figure 6 shows the algorithm for OneShotGC (function oneShotGC on line 12). Garbage collection
is initiated by every transaction when it deregisters from the version storage by triggering the GC
manager, which first locks the partition for blocking any new transactions getting assigned while
GC is in process. Effectively, OneShotGC treats every partition as a single version with a given
timestamp, corresponding to the maximum timestamp of the versions included in the partition.
Accordingly, garbage collection will be triggered when there is no active transaction in the system
that will need to access the partition. Partition-level garbage collection is implemented as a simple

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 19. Publication date: May 2023.



19:12 Aunn Raza, Periklis Chrysogelos, Angelos Christos Anadiotis, & Anastasia Ailamaki

pointer reset. Every new memory allocation is performed from the beginning of the partition. The
partition’s tag is also incremented by one to invalidate all references to versions contained within
the corresponding partition in order to prevent illegal memory accesses.

In OneShotGC, as the GC takes place at partition-level granularity, hence, the complexity of the
GC process itself is O(m) for m partitions, that is, when there the entire partition is unreadable,
GC takes place in one shot, thereby, fully eliminating version traversals during the GC process.

5 CHAIN CONSOLIDATION

Snapshot isolation requires the existence of at least one snapshot for each transaction, that is, one
version of each tuple in the database. Usually, DBMS employ GC approaches that reclaim only based
on the global minimum, that is, reclaiming versions only from the tail of the version list which is
older than the oldest active transaction. Such an approach can cause the version chains to grow
abruptly long in the presence of long-running transactions with concurrent writers, causing two
main problems: the size of transient memory allocations grows unnecessarily large even though
the maximum number of active versions should be the number of active transactions in the system,
and secondly, long-running transactions would require to traverse long versions chains in order to
access appropriate snapshot version.

Chain consolidation is an optimization for transactional garbage collection algorithms. In addition
to reclaiming the obsolete versions from the tail, it also reclaims globally unreadable versions
in the middle of version chains, essentially removing all versions that are not required by any
active transaction in the system. Consolidation helps reduce traversal lengths for long-running
transactions and reclaims transient memory timely, keeping the transient storage cost minimum.
However, chain consolidation requires traversing the active version chains to identify the versions
that can be reclaimed or merged and then update the chain links.

SAP HANA’s interval-based GC [13] and Steam GC’s eager pruning of obsolete versions (EPO) [2]
performs chain consolidation at the version level, collecting in-middle unreadable versions. In Steam
GC with EPO, GC and consolidation are interspersed with transactions. Essentially, Steam GC with
EPO checks and prunes obsolete versions during every update of the tuple, that is, whenever the
version chain is extended by a new version, ensuring that the version chain will never grow to more
versions than the number of active transactions, as well as having no obsolete versions. Instead, SAP
HANA’s interval-based GC is performed by a background thread, triggered periodically.Version-
level consolidation minimizes the chain length, reducing chain traversals for readers, as well as,
reducing unnecessary transient storage allocations. However, consolidation incurs the cost of
additional version traversals, pruning and re-linking version chains, and reclaiming the memory of
pruned versions. OneShotGC builds upon temporally-partitioned versioned storage, as described
in Section 4. OneShotGC allows any optimization for reducing chain traversals, including eager
pruning of obsolete versions like Steam or SAP HANA or having a skip-list instead of a linked
list [9]. However, OneShotGC defers the actual memory reclamation until the partition containing
the version is collected as a whole.

OneShotGC enables consolidation at the partition-level, instead of version-level. Partition-level
consolidation is required when the GC manager reclaims a partition containing versions that are
not the oldest ones in the chain. Accordingly, the gap created in some version chains needs to be
bridged to allow transactions to traverse the version chain, transparently. Figure 7 exemplifies
the partition-level consolidation case. Suppose that the GC manager frees the whole partition P,
increasing its tag from 1 to 2. Then, version 5 of P; will lose the link to version 4 in P, and version
2 will be unreachable from version 5 and so will version 1, despite being readable by some active
transaction.
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Fig. 7. Delta storage with partition-level consolidation (V,;4;p1. are the only readable versions by active
transactions)

OneShotGC bridges the chains by introducing an additional data structure that includes the
most recent version of every record included in each partition. We implement this data structure in
our system as a hash table, denoted as P;_gr in Figure 7. Every entry in the hash table includes
the record identifier, the partition tag when the entry was created, and a reference to the version
entry in the partition. When the GC manager frees a partition P;, it increases the partition tag,
thus rendering all tagged pointers to the freed versions invalid, while also clearing the P;_gr table.
We recall that a tagged pointer encapsulates the partition, the tag, and the memory address of a
version.

In the following, we explain the consolidation steps in different phases of the transactional
workload execution.

Version chain traversal. The simplest case in version chain traversal is for all versions to be
stored in the same partition. However, this is typically the exception rather than the norm, and
cross-partition traversal is often required. If the next version is stored in a different partition, say
P;, then the transaction traversing the chain will check whether the tag of P; is the same as the
one included in the tagged pointer. If this is not the case, the transaction will probe every P;_gr in
reverse order to find the next version in the list. Probing hash table P;_g7 until finding the next
readable version is required since it is not known which intermediate versions have been removed.

Figure 7 shows an example where consolidation is required. Suppose that a transaction needs
to access V1g; based on its timestamp. Traversal will start from the most recent version, that is
V6Rr1. After moving to V5, the transaction will then check the validity of the tagged pointer to V4.
Since the tag of P, has become 2, the transaction will check Py, where it will find the next available
version, that is V2, which in turn will lead to V1.

Figure 8 illustrates a more detailed example where a transaction txn3 requires a cross-partition
traversal to access the corresponding readable version V2. As shown in the figure, there are six
delta partitions, where four partitions (P1, P2, P3, P6) have not been garbage collected yet while
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Fig. 8. Version traversal with cross-partition traversal: P4 and P5 are consolidated, hence txn3 traverses chain,
starting from P6, then P3 and P2.

P4 and P5 have been reclaimed, and hence the version chain for record R1 had been implicitly
consolidated. We show three wraparounds in the version list to demonstrate that the versions list
spans across all the delta partitions multiple times. For simplicity, we show that each partition
contains only one version of R1. Suppose that txn3 requires access to a version of the record R1,
thereby requiring cross-partition traversal. The version traversal starts at the most recent version,
V100 in P6. Then, for the next version, txn3 observes that the next pointer of V100 is invalid. It
probes the hash tables Ps_gr and Ps_pg7 for intermediate version list heads for record R1. Following
on, the transaction will probe Ps_gr to get a list of intermediate version list heads, from which the
transaction will select the minimum invisible version, skipping over the invisible part of the list,
and from thereon, will access V5, and finally the readable version V2.

As in the default transaction assignment policy, a number of transactions are assigned incremen-
tally to each partition in a round-robin fashion. The probing of the hash tables occurs in reverse
order to find the next valid and visible version in the list (P5, then P4, and P3 in the example shown
in Figure 8). Probing each partition causes additional accesses in the traversal path. However, each
partition is expected to contain a chunk of the version chain (one or more versions), skipping many
obsolete versions in the chain and amortizing the cost of additional probes.

Record update. When a new version V, of a record is created, then it is inserted in the persistent
storage, shifting the already existing one, say Vj, to the version storage. The GC manager provides
the partition where the shifted version should be stored, say P;, and V, installs a tagged pointer to
V}, that is now placed in the version storage. GC manager also updates P; if the version V}, is older
then the oldest version in P;. Knowing the oldest version timestamp for each partition is essential
for consolidation eligibility during GC. Then, the transaction checks whether the next version in
the chain, pointed by V}, is stored in another partition than P;, say P;. If this is the case, then it
updates the hash table of P; to include the most recent version of the chain in that partition, which
is the version pointed to by V.

Garbage collection. Enabling partition level consolidation adds another step to OneShotGC’s algo-
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void DeltaPartition::oneShotGC_with_consolidation(){
int64_t expected= 0;
// Lock the partition for active readers by setting to negative large number to denote active
— GC
if(n_active_txn.compare_exchange_strong(expected, INT64_MIN)){
bool doGc = false;
if(global_minActiveTxn() > this->max_active_txn){ // try full GC
doGc = false;
} else{
// consolidate if partition is unreadable by any active transaction
bool consolidate = true;
for(auto txn: activeTransactions){
if(txn <= max_active_txn && txn >= min_version_ts){
consolidate = false;
break;

3
if(consolidate)
doGc = true;

3
if (doGe){
tag++;
this->reset();
this->hashTable.clear();
min_version_ts = INT64_MAX;
b

// unlock partition for active writers.
this->n_active_txn = 0;

Fig. 9. Algorithm for OneShotGC GC with consolidation

rithm: check for interval exclusion. Figure 9 shows the algorithm for OneShotGC with consolidation.
The main difference is that, when a partition becomes inactive, that is, no active transaction is
assigned to a partition, it first tries to do a full GC (line 6) given all versions created in that partition
are obsolete, or if the full GC condition fails, algorithms check that if the versions contained in
the partition are readable by any active transaction in the system (line 11-16), if not, then they
are safe to be reclaimed in one shot. Once the partition is deemed as GC-able, the GC manager
proceeds (lines 20-25) by incrementing the partition’s tag, clearing the corresponding hash table,
resetting the oldest version timestamp, and finally, resetting the memory allocation pointer. As
described before, all version pointers are tagged, hence, any partition crossing chain would be
rerouted through the partition’s hashtable, which contains the pointer to the most recent version
for the corresponding partition.

Trade-offs. The consolidation of the version chain reduces the chain length, and hence the number
of random accesses required to traverse the whole chain. However, this comes at the cost of
additional indirection for cross-partition accesses of readers. Further, writers have to insert the
reference to the most recent version of the partition in the corresponding table. Nevertheless,
if there was no consolidation, then a single long-running transaction can lead to long version
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chains, causing long version traversals for readers and unnecessary growth of version storage.
Furthermore, OneShotGC gives up GC precision causing deferred GC of unreadable versions within
a partition until the whole partition is unreadable by any active transaction. However, OneShotGC
eliminates random access version traversal during the GC process, including version identification,
list rearrangement, and memory deallocations.

6 TUNING ONE-SHOT GC

OneShotGC improves garbage collection performance by exploiting the temporal properties of
the workload. Temporality-aware version storage enables OneShotGC to scale by grouping the
versions with the same temporal properties, instead of the traditional version maintenance used in
existing GC approaches. Effectively, it groups versions that are expected to become unreachable at
the same time by storing them in the same partition. OneShotGC physically partitions the version
storage into temporally grouped partitions and then tracks version liveness at the partition level.
During GC, logical un-linking happens automatically as a by-product of employing tagged pointers,
while physical memory reclamation occurs in a single pointer-swap for each partition, that is, in
one shot. OneShotGC decouples the versioned storage design and governing policies and thereby
enables the system to modify transaction assignment policy, the number of partitions, and the size
of each partition at runtime without blocking the concurrent transaction processing.

The main challenge in tuning OneShotGC is grouping the versions that are expected to be
garbage collected together, as the version lifetimes are not dependent on the transaction that
created it, but on the transaction which may or may not access it. However, grouping versions
based on their readability by concurrent transactions requires the writer to account for all the
active concurrent transactions in the system, which in turn becomes the scalability bottleneck for
in-memory OLTP. On the contrary, in disk-based MVCC [9], the OLTP engine gets the second
opportunity to rearrange versions based on expected lifetimes.

Workloads that have transactions with similar profiles do not require many partitions. Specifically,
our experiments show that in traditional transactional workloads, having even as few as two
partitions can be adequate to leverage OneShotGC. The reason is that short-lived transactions start
and finish at about the same time. Therefore, their execution converges to a batch model, which
is clearly the best fit for OneShotGC. In our implementation, we use a default naive policy that
sets the initial number of partitions to two, with the partition size of 10GB each, and then assign a
number of transactions to a partition incrementally in a round-robin fashion. However, real-world
workloads typically include transactions with different profiles, where some transactions may take
longer than expected, resulting in a larger temporal window.

As a default adaptive policy, accounting for most workloads, the system may set a default number
of partitions (minimum two) and a default partition size. Default partition sizing can be based
on transactional profiles, accounting for the size of versions created by each transaction type
multiplied by the provisioned concurrency of the system so that a partition can serve transactions
without expansion. For transaction-to-partition assignment policy, the system abstracts the delta-
partitions as a queue of infinite size. Then, it assigns a number of transactions to each delta-
partition incrementally and expands the queue as needed. GC’ed partitions are inserted back into
the queue for reuse, automatically adjusting the number of partitions and their size based on the
workload. Suppose that we set the number of transactions per partition to one. In this case, the
configuration will converge to transaction-level GC, similar to SteamGC, where each partition will
act as transaction-private storage and be reclaimed when the entire transaction falls behind the
global minimum.
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7 EXPERIMENTAL EVALUATION

This section includes the results of our experimental evaluation. First, we describe the hardware
that we used to execute our experiments, then some essential details of our software, and finally
the benchmark that we used to derive our workload. Finally, we present the results of our analysis,
categorizing them with a focus on each aspect of the proposed approach, including scalability,
tuning parameters, and consolidation under mixed workloads.

7.1 Hardware & Software setup

Hardware. All the experiments were conducted on a server equipped with 2x14-core Intel Xeon
Gold 6132 processor (32-KB L1I + 32-KB L1D cache, 1024-KB L2 cache, and 19.25-MB LLC) clocked
at 2.60 GHz, with Hyper Threads, summing to a total of 56 logical threads (28 physical-threads + 28
hyper-threads), and 1.5-TB of DRAM, running Ubuntu 20.04 operating system.

Software. To have a fair comparison, we implemented all approaches into the prototype HTAP
system Proteus [19, 20]. OLTP engine employs MV2PL concurrency control protocol with snapshot
isolation. For OLTP multi-versioning, the system uses delta storage with newest-to-oldest ordering,
and copies the entire record as the version which can be extended to use attribute-level before-
images as versions, however, is orthogonal to the contributions of OneShotGC. OLTP engine also
maintains an index, implemented using cuckoo hashing [17]. The index contains the transactional
timestamps, tagged delta pointer, and logical record pointer in the form of RowIDs (RID). The storage
layout for OLTP is columnar. Workers are started and pinned on each available physical thread
and all transactional workers generate and execute transactions in a closed loop, simulating a full
transactional queue. Unless stated otherwise, we do not use hyper-threads to remove performance
artifacts of micro-architecture interference in hyper-threads. Before every experiment, we execute
a warm-up phase, and then we report the system’s steady-state latency and throughput.

Baseline. We compare OneShotGC with Steam GC [2] as the baseline. For a fair comparison, we
implemented Steam GC in Proteus, and to remove any physical memory management overheads
and analyze only the effects of version creation, access, and removal, we create a thread-local
memory allocator. Each memory allocator, on start, reserves and faults 4GB of memory, expands if
required, and serves memory requests from the transaction-level memory allocator in the case of
Steam GC configuration.

Benchmark. We performed experimental evaluation using two benchmarks, TPC-C and YCSB
and extended them to simulate mixed-workload, having an OLAP-style long-running transaction.

TPC-C is an industry-standard benchmark for evaluating transactional systems, replicating
a workload of retail order processing. TPC-C has five transaction types: NewOrder, Payment,
Delivery, OrderStatus, and StocklLevel. In a full mix, each transaction’s type is selected at
random from the aforementioned types, with a probability of 45%, 43%, 4%, 4%, and 4%, respectively.
We execute two mixes of TPC-C: the first one contains NewOrder and Payment only, with the
ratio of 51% and 49%, respectively, simulating a write-intensive workload, whereas the second mix
contains all five transaction types.We assign one warehouse to each transaction worker, which
generates and executes the transaction in a closed-loop for the specified duration.

YCSB is a key-value style benchmark designed for testing and analyzing the scalability of
transactional workload in a system. We implement a YCSB-style workload in our system, using
a single table with 10 columns of 8-bytes each. We set the total number of records as 1000
num_workers to have similar record access and write distribution across workers. Each transaction
composes of 10 operations, and then, we show both, 50% and 100% write ratio, using read/write
for stressing version subsystem while write-only for stressing version creation and GC subsystem,
respectively.
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To simulate mixed workload, we extend the aforementioned benchmarks to include an OLAP-style
query, which scans and aggregates integer columns. Using a column scan-and-aggregate query, we
simulate a long-running reader, which reads values according to the assigned transaction timestamp
and may block GC, given the long-running nature compared to transactions executed in parallel.
Specifically, for YCSB, we scan-and-aggregate first N column, while for TPC-C, we aggregate, 1 to 4
columns of TPC-C Stock relation, that are, s_quantity, s_ytd, s_order_cnt and s_remote_cnt,
reason being that these columns are also update intensive under NewOrder transaction, therefore,
causing the long-running query to conflict with concurrent transactions, and thereby, reading
appropriate snapshot from versioned storage.

7.2 Scalability

In this section, we analyze the scalability of OneShotGC and compare it with Steam. In experiments
with OneShotGC, we use two delta partitions, 10GB each, allocated as 5GB per NUMA socket, and
assign 1024 transactions to each delta in sequence.
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Fig. 10. Scalability of OneShotGC with YCSB workloads

YCSB. Figure 10 evaluates YCSB scalability having 50% and 100% write ratio and reports through-
put corresponding to the workload and number of OLTP workers. Steam scales with a change
after 14 threads as the transactional engine spans two NUMA sockets and pays off cross-NUMA
loads for acquiring minimum active transactions from each thread-local transaction table after each
transaction end. OneShotGC also pays a performance penalty after crossing the socket boundary
but stabilizes and scales again at 24 and 28 threads; the performance penalty in crossing the NUMA
boundary is due to the fact that given the YCSB access distribution and the unbalanced number of
threads across sockets, workers from the second socket execute the majority of transactions on data
from the first socket. Unlike Steam, OneShotGC does not perform GC at the end of each transaction,
thereby the cost of acquiring minimum active transaction is spread across transactions, and only a
single worker performs GC, that is, when the number of active transactions on any given delta
partition becomes zero, and the partition is unreadable by any other active transaction in the system.
This simulates transactions with a similar profile; when the transactions are assigned to the second
delta partition, the first delta partition becomes obsolete and can be garbage collected altogether.
Overall, with 28 threads, we see 30% and 25% gains for read-write and write-only workloads over
Steam.

TPC-C. Figure 11(a) evaluates performance scalability with TPC-C workload, having NewOrder
and Payment transaction mix. We observe a similar behavior as with YCSB, and both approaches
pay a cross-socket load penalty after crossing socket boundaries. However, OneShotGC scales better
across socket boundary as only a single thread, the last worker to deregister from the corresponding
delta partition, performs GC after the partition becomes unreadable under SI guarantees. Compared
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Fig. 11. Scalability of OneShotGC with TPC-C workloads

to Steam, which has a traversal cost upon GC, OneShotGC does not traverse version chains during
GC; however, it does pay in atomically registering and de-registering transactions from delta
partitions, once per transaction, and thereby, the performance gain increases with the number of
threads.

Figure 11(b) shows OneShotGC’s scalability when we include all five transaction types of the
TPC-C workload. Specifically, we repeat the experiment described in the previous paragraph, but
this time we include all the transaction types of the workload. For both OneShotGC and Steam, the
scalability is similar to the one of figure 11(a). Traversal-based GC approaches, e.g., Steam, incur
overhead for traversing the versions during GC, which increases as more transactions are active in
the system. In contrast, OneShotGC does not require version traversal during the GC process and
performs garbage collection of an entire delta-storage partition in one shot — incurring minimal
overhead. As a result, even though the TPC-C workload contains different write-intensive and
read-only transactions, OneShotGC scales better.

Summary. OneShotGC registers and de-registers each transaction to a delta partition, introduc-
ing two additional atomic operations per transaction. However, this cost is amortized by eliminating
costly version traversal during the GC process. Note that, during GC, the version chain has to
be latched, which causes tail latencies in the GC process for traversal-based GC mechanisms.
Essentially, with an update-intensive workload, such as in figure 11(a), creating a large number
of versions, OneShotGC amortizes the bookkeeping cost while having zero traversals during the
actual GC process.

Furthermore, acquiring the global minimum transaction timestamp for the GC pre-condition,
OneShotGC pays once when the partition has zero active transactions, while for SteamGC without
EPO enabled, on every transaction end, each worker has to acquire the global minimum and
then perform GC for obsolete versions of committed transactions, costing housekeeping on every
transaction end. The main advantage of OneShotGC over traversal-based GC approaches is that
OneShotGC does not require access to version chains during GC. Even in interval-based GC
approaches, if the version is not pruned during the consolidation, it must access the versions to
unlink and then reclaim the memory either at the transaction level or version level.

7.3 Transaction Size

Transaction size, that is, the number of operations per transaction, plays a vital role in understanding
the benefits of OneShotGC. Compared to traversal-based GC approaches, OneShotGC eliminates
individual version traversal and reclamation, and garbage collects them as a whole partition, in
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Fig. 12. Effect of transaction size & GC approach in transaction processing

one shot. For large transaction sizes, the majority of time is spent in concurrency control and
transaction processing itself; however, for smaller transactions, for example, single attribute update,
the GC mechanism may impose housekeeping overheads.

In active GC approaches, which interleave transaction processing with GC, smaller transactions
may cost more than the transaction processing itself. On the other hand, for passive GC approaches,
bigger transaction costs more, as it accumulates more versions, and that need to be traversed and
collected. In contrast to traversal-based GC approaches, OneShotGC strikes the balance between the
work done in the GC cycle, and additional cost per transaction. In OneShotGC, every transaction,
on begin has to register itself with the assigned delta partition, and de-registers itself at the end of
the transaction. This bookkeeping process of OneShotGC causes atomic addition and subtraction
on delta partitions, shared by the transactions in the same partition. However, in contrast to the
batch transaction model, OneShotGC does not enforce batch boundaries, and thus, transactions of
different latencies can execute concurrently without blocking each other.

Figure 12 analyzes the effect of transaction size on GC approach. We use YCSB workload, having
a single integer (8-byte) column, with a varying number of operations with 28 transactional threads,
and compare OneShotGC with Steam GC, which is an active GC, traversal-based approach. We
observe that Steam has a constant overhead of acquiring the global minimum active transaction
after each transaction, which overshadows the cost of the transaction if the number of operations
is small. In the case of OneShotGC, the design does not impose any overhead per transaction
except for registration and de-registration from delta partitions. This allows OneShotGC to make
performance predictable with respect to work requested within each transaction.

Summary. OneShotGC amortizes the cost of per-transaction bookkeeping and unlike active GC
approaches, does pose additional overhead for smaller transactions, and for larger transactions,
avoids unnecessary traversals.

7.4 Chain Consolidation in Mixed Workloads

In this section, we experimentally analyze the benefit and overheads of using partition consolidation.
specifically, the impact of consolidation on transaction processing, and the benefit under simulated
mixed workloads which delays the regular GC process.
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Fig. 13. Performance under mixed workload with consolidation

To simulate a mixed workload, we employ CH-BenCHmark [4] style workload, where we run
TPC-C as the transactional workload on 13 worker threads while reserving 1 worker which simulates
analytical query, scanning, and aggregating a full column. Having a long-running reader in the
system has two impacts: 1) Blocks regular GC process and causes long-tail version chains as being
the oldest transaction in the system. 2) Performance penalty for both, R/W transaction, and long-
running reader, as the reader latches the version chain for the duration it reads the appropriate
record version, which in this case without consolidation, will be after traversing several versions
given the concurrent transactions also updating the same tuples.

Figure 13 shows the evaluation results with and without consolidation for both, OneShotGC
and Steam. In OneShotGC, we employ partition consolidation, described in section 5, while Steam
employs EPO (eager pruning of obsolete versions) [2].

OneShotGC transactional throughput does not drop in the given workload, as after the first
partition crossing pointer, a record is unlatched and is available for any concurrent transaction
to update, while in Steam, the chain is latched until the reader finds the appropriate readable
version. OneShotGC is slower than Steam in the case where there is no consolidation as the version
traversal requires checking tag validity, which causes another operation in the traversal process.
The analytical throughput of both approaches is comparable, given the chain traversal is reduced
with the help of consolidation.

Summary. Partition consolidation for OneShotGC relies on transaction spread over delta parti-
tions, and uses the same principle as vanilla OneShotGC, that is, GC in one shot, but also allows
in-middle partition GC, which consolidates version chains across delta partitions. Partition consoli-
dation has a benefit over traversal-based consolidation, such as Steam’s EPO or HANA’s interval
GC, that it does not require traversal of version chains that were not pruned during consolidation,
while also saving additional consolidation work per pruned version chain. Furthermore, for the case
where version chains grow abruptly large within the partition, OneShotGC does support Steam’s
EPO, that is, on version creation, unlink and prune obsolete versions from the version chains.

7.5 Tuning OneShotGC

In this section, we analyze the effect of different configurations of OneShotGC by tuning the
number of delta partitions, the size of each partition, and transaction assignment. We execute the
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TPC-C workload with 14 worker threads, that is, a single NUMA-socket to isolate any effects from
cross-socket accesses.

Figure 14 shows the experiment where we scale the number of partitions while keeping the
total size of delta storage constant, that is, 10GB, and scale the number of partitions from 2 to 8,
dividing the total size accordingly. For the transaction-assignment policy, we assign 16 transactions
to a partition, in sequence, and then, we compare partition-level consolidation with version-level
consolidation, that is, EPO. Through this experiment, we observe that EPO suffers from performance
penalty given the traversal and consolidation process on each version creation request. EPO benefits
in keeping the length of version chain size as the number of active transactions in the system but
at the cost of the extra traversal and amount of work, interspersed across transactions.

In the case of scaling the number of partitions in version storage, we see almost no effect when
there is no consolidation, while minimal variation in the case of consolidating is enabled. This
variation is caused by the extra consolidation step in the OneShotGC algorithm, which is triggered
whenever the number of transactions registered to a partition becomes zero.

Summary. Transactional workload consists of operations of short-lived similar operations, and
hence, allow OneShotGC to exploit the temporality in the garbage collection phase. Moreover,
we see that, with only two partitions, the storage size to store versions of a batch of transactions
is enough to maintain the maximum throughput of the system. However, in the case of mixed
workload, where a single reader can block the GC process, more partitions are desired to increase
the spread and allow in-middle partition consolidation.

8 RELATED WORK

Disk-based MVCC. Disk-based MVCC employs hierarchical storage, similar to main data storage
with a buffer pool, having recent or hot versions in memory while older versions are flushed to disk.
In disk-based MVCC, whenever a version is flushed to a layer below, from in-row to intermediate
buffers, then to persistent storage, it provides the system yet another opportunity to prune and
reorganize version storage on the basis of currently active transactions. vDriver [8] builds on the
principle of Single In-row Remaining Off-row (SIRO) versioning, keeping the first version in-row
within the data page while flushing older versions through the hierarchy of caches and clusters
based on version’s age and access pattern. In-row versions are an attractive optimization for disk-
based DBMS for providing one-version locality for the reader as I/O becomes the bottleneck. In-row
versions provide locality for the next version in disk-based DBMS as I/O is the main bottleneck,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 19. Publication date: May 2023.



One-shot Garbage Collection for In-memory OLTP through Temporality-aware Version Storage 19:23

however, with in-memory DBMS, in-row versioning would cost constant storage overhead which
overshadows the gains of having in-row versions compared to disk-based versioning. OneShotGC
focuses on the design of delta storage for off-row versions, eliminating random-access traversal
and scans of versions during the GC process itself. Any optimizations for in-row versions, as well
as, flushing off-row versions to disk can be clubbed with OneShotGC to get the best of both worlds.

Generic Systems GC. Programming language and system runtimes (e.g. Java, .NET Framework)
provide managed memory management [3, 7]. Under the hood, the memory manager tracks the
liveness of the objects by tracking the reachability of all dynamically allocated objects, and once
the object becomes unreachable, the system cleans and reclaims all the memory of such dead
objects [15, 23, 24]. Generational GC [21] is the most common approach to classify memory regions
based on the age of allocated objects, and then optimizes the GC algorithm [24] accordingly which
includes periodicity, concurrent or stop-the-world, etc. Examples of generational GC include Java’s
G1GC and CMS garbage collectors.

Generic GC approaches cannot assume the lifecycle of allocated objects, hence, requires continu-
ously tracking reachability of each object. Further, may also trigger copying and moving objects to
optimize based on the object’s age and reduce memory fragmentation. On the contrary, in MVCC-
based DBMS, the lifecycle of objects in the transient storage follows the transactional semantics,
that is, the oldest active transaction defines the temporary object’s reachability. Moreover, in delta
storage-based MVCC, DBMS pre-segregates persistent and transient storage, essentially explicitly
classifying the expected object generations, and hence does not require object copying and moving
across regions.

9 CONCLUSION

We design a version storage design that partitions the versions based on their temporal property,
that is, timestamps, and allow transparent cross-partition version traversal through tagged pointers.
Based on temporality-aware storage design, we devise a novel OneShot garbage collection algorithm
that exploits the temporality of versioned storage in MVCC-based DBMS and completely eliminates
version traversal during garbage collection by reclaiming obsolete versions in single pointer-swap,
thatis, in one shot. Further, we enable version consolidation at the partition level, eliminating version
traversal and validity checks per version, and consolidate entire partitions as a whole, reducing
version chain length, for efficient traversals under mixed workloads. Finally, we experimentally
analyze our OneShotGC, showing the scalability and feasibility of the design under different
workload conditions, and provide insights on the cost and benefits of using OneShotGC over
traversal-based versioned storage and maintenance design and algorithms.
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