
How To Optimize My Blockchain?
A Multi-Level Recommendation Approach

Jeeta Ann Chacko
chacko@in.tum.de

Technical University of Munich

Ruben Mayer
mayerr@in.tum.de

Technical University of Munich

Hans-Arno Jacobsen
jacobsen@eecg.toronto.edu

University of Toronto

Abstract
Aside from the conception of new blockchain architectures,

existing blockchain optimizations in the literature primarily fo-
cus on system or data-oriented optimizations within prevailing
blockchains. However, since blockchains handle multiple aspects
ranging from organizational governance to smart contract design,
a holistic approach that encompasses all the different layers of a
given blockchain system is required to ensure that all optimization
opportunities are taken into consideration. In this vein, we define
a multi-level optimization recommendation approach that identi-
fies optimization opportunities within a blockchain at the system,
data, and user level. Multiple metrics and attributes are derived
from a blockchain log and nine optimization recommendations are
formalized. We implement an automated optimization recommen-
dation tool, BlockOptR, based on these concepts. The system is
extensively evaluated with a wide range of workloads covering mul-
tiple real-world scenarios. After implementing the recommended
optimizations, we observe an average of 20% improvement in the
success rate of transactions and an average of 40% improvement in
latency.

ACM Reference Format:
Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2023. How To
Optimize My Blockchain? A Multi-Level Recommendation Approach. In
Proceedings of ACM Conference (Conference’23). ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
When blockchains were first introduced, they supported only

simple cryptocurrency exchange transactions [50]. However, over
time blockchains evolved to support complex transactions using
smart contracts, thus entering the arena of decentralized trans-
actional management systems such as distributed databases [64].
Since blockchains target consensus in a trustless environment, they
cannot easily match the performance of databases [9, 16, 22, 26, 53,
59, 80]. However, with the advent of permissioned blockchains that
offer access control and transaction execution policies, blockchains
strive to improve their performance while still providing at least
partially decentralized trust [3, 5, 28, 48].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’23, June 2023, Seattle, WA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

• Activity reordering

• Process model pruning

• Transaction rate control
User level

• Delta writes

• Smart contract partitioning

• Data model alteration

Data level

• Block size adaptation

• Endorser restructuring

• Client resource boost

System level

Delta keys
Primary key duplication
Primary key alteration

Figure 1: Multi-level blockchain optimization

Apart from the proliferation of new blockchain system designs,
there is highly vibrant and diverse ongoing research in the domain
of system optimizations that focus on performance enhancements
within prevailing permissioned blockchains [13, 27, 36, 37, 41, 54,
65–68]. The vast range of the literature targets control parameter
tuning [13, 41, 68], transaction execution remodeling [27, 37, 66],
and smart contract optimization [54]. However, we notice that a
collective approach that encompasses all these optimization possi-
bilities for a particular blockchain under the same umbrella is miss-
ing. Further, the literature falls short for an end-to-end optimiza-
tion approach that includes not only system-level tuning and data
remodeling but also process model redesign. Since permissioned
blockchains are mainly employed by enterprises, a model-driven ap-
proach is often followed where the setup of the blockchain network,
its transaction regulations, the underlying smart contract, and the
data model are primarily based on a business process model created
specifically for a particular application [21, 40, 56, 63, 69]. Such pro-
cess models may be designed by business domain experts who are
unaware of performance implications. For example, in Hyperledger
Fabric (a.k.a. Fabric) [5], many transaction failures arise due to the
order in which the transactions are executed [13, 65, 67]. Such fail-
ures could be reduced if the client processes that issue the transac-
tions followed a different business logic in the first place. The promi-
nence of data management while executing business processes has
often been highlighted by the database community [11, 20, 34]. We
make a similar argument for the importance of the process view in
blockchains since the aspects covered by blockchains are manifold
and not limited to data alone.

Therefore, given the numerous optimizations possible within
a given blockchain system, their varying influence on a case-by-
case basis [6, 13, 23, 51, 68, 81], and the resulting implementation
efforts, there is a pressing need for a recommendation system that
guides the user in selecting effective optimization strategies suitable
for the blockchain under consideration depending on the specific

ar
X

iv
:2

30
1.

04
71

9v
1

 [
cs

.D
C

]
 1

1
Ja

n
20

23

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

use-case. Again, we can draw parallels from the exhaustive lit-
erature on parameter tuning and indexing recommendations for
databases [1, 2, 42, 73]. However, since blockchains juggle multiple
factors such as organizational governance [62], database defini-
tions [59], consensus algorithms [46], provenance tracking [60],
and smart contract design [47], a holistic perspective to optimiza-
tion recommendations is desirable, which is currently lacking.

To address this gap, we propose a multi-level optimization rec-
ommendation approach for blockchains that provides to the users
a comprehensive understanding of the different optimization pos-
sibilities for their blockchain system, thus enabling them to make
a well-informed decision. Inspired by the abstraction levels in
databases [45], we define three levels of abstraction for blockchain
optimizations: system, data, and user-level (cf. Figure 1). The system-
level recommendations include identifying ideal system configura-
tions such as the block size or endorsement policy. The data-level
recommendations deal with understanding the data model and op-
timizing smart contracts. The user-level recommendations focus on
business process models and workloads induced by client processes.
For example, we identified two activities in a digital rights man-
agement scenario (cf. Section 5.2) that frequently cause transaction
conflicts and recommend a process model redesign to reduce such
failures. Our approach can also verify compliance with the new
process model. We design and implement a recommendation tool
named BlockOptR that analyzes the blockchain logs from Fabric,
one of the most widely used blockchains by enterprises [61], to
demonstrate the performance improvements yielded by our ap-
proach.

Our contributions can be summarized as follows:
(1) We define a multi-level optimization recommendation approach
that extensively analyzes the blockchain log and recommends opti-
mization possibilities from different perspectives. Our method helps
users gain a comprehensive understanding of their current system
and make educated decisions regarding optimization strategies.
(2) We provide a formal definition for our recommendation strate-
gies based on common attributes, such that any blockchain log
with similar attributes can reuse our approach. We also discuss how
our approach translates to different blockchain platforms, thereby
providing the reader with a technology-independent outlook.
(3) We automate the extraction, preprocessing, and event log gen-
eration techniques for Fabric blockchain data. Thus, our tool Block-
OptR will help to ease further research in the area of log-based
analysis such as process mining in blockchains, since a preprocessed
blockchain log can be directly obtained.
(4) We demonstrate the effectiveness of the optimization recom-
mendations by implementing and evaluating them. Our experi-
ments indicate an average of 20% improvement in the percentage
of successful transactions and an average of 40% improvement in
latency after applying the recommendations by BlockOptR.
(5) We extensively evaluate BlockOptR with three different types
of workloads: A set of 24 synthetic workloads generated with a
wide range of control variables, four widespread use case-based
workloads from the literature, and a real-world event log of a loan
application process. Thus, we cover a wide range of scenarios in
our experimentation that are representative for real blockchain
applications. This aids in overcoming the lack of publicly available

data that restricts current research on process mining in permis-
sioned blockchains. The BlockOptR tool, all the smart contracts,
the workload generation scripts, and all the event logs are released
as open-source to encourage further research in this area [10].
(6) We further establish the positive effect of our holistic recom-
mendation approach on top of existing blockchain optimizations.
Thus, we highlight that BlockOptR complements existing system-
level blockchain optimization strategies such as FabricSharp [65]
and Fabric++ [67] by adding higher-level optimizations.

2 Background
2.1 Hyperledger Fabric

Fabric is an open-source permissioned blockchain system popu-
larly used by enterprises [5]. The main components of Fabric are a
smart contract (called chaincode), a distributed immutable ledger, a
distributed world state database, a set of distributed peers, and an
ordering service. The smart contract defines all the supported trans-
actions on the blockchain. The transaction flow in Fabric follows an
execute-order-validate (EOV) model [70]. The EOV model of Fabric
is comparable to optimistic concurrency control in databases [31]
and is therefore prone tomulti-version concurrency control (MVCC)
conflicts, which result in transaction failures.
(1) In the execution phase, transaction proposals are created by
clients and sent to the endorsers. Endorsers are a set of specific peers
that have the authority to execute the smart contract to endorse
a transaction. An endorsement policy is configured to define the
number of required endorsers for a transaction to be deemed valid.
Endorsers generate read-write sets after smart contract execution.
The transaction proposal and the read-write sets are signed by the
endorsers and sent back to the clients.
(2) In the ordering phase, the clients forward these transactions to
the ordering service. The ordering service orders the transactions
into blocks using Raft [55], a crash fault-tolerant consensus algo-
rithm, and sends them to all the peers in the network. Configurable
parameters limit the number of transactions included in a block
(block size) in terms of the number of transactions (block count), a
timeout (block timeout), or the size of transactions in bytes (block
bytes). Blocks are created whenever the buffered set of incoming
transactions satisfies any of the three conditions.
(3) In the validation phase, every peer validates every transaction.
Every peer in the Fabric network has a copy of the distributed ledger
and the world state. Peers validate both the endorser signatures
based on the endorsement policy and the read-write set with the
current world state. If the validation is successful, the world state
is updated. Else, a failure is detected. If the endorsement validation
fails, it is called an endorsement policy failure; if the read-write
set validation fails, it is called an MVCC read conflict. MVCC read
conflicts for range reads are called phantom read conflicts. Regard-
less of the success or failure of the validation, all transactions are
appended to the distributed ledger. Also, in the literature, MVCC
read conflicts are often classified into inter-block and intra-block
failures depending on whether the conflicting transactions reside
in the same block or different blocks in the blockchain [13, 67].

2.2 Event Logs and Process Mining
An event log is a record of process executions over time. Pro-

cess mining [75] is the technique of deriving a process model that

exhibits the most frequent behaviors in an event log. It is mainly
used for process discovery which helps to understand the underlying
process model, conformance checking where deviations between
a predicted process model and the actual behavior of the process
can be identified and model enhancement where bottlenecks are
identified and removed. The minimum data required in an event
log for process mining are:

(1) CaseID: To distinguish different executions of the same pro-
cess. Example: ProductID in a supply chain management
related event log. A complete execution of a process is called
a trace.

(2) Activity name: To identify the different steps in a process.
Example: Ship or Unload activity in a supply chain manage-
ment related event log.

(3) Timestamp: To determine the order of the different activities.
The event log can also have other attributes such as process owner,
resources, and cost. Various algorithms are used to derive the pro-
cess model such as alpha miner [76], heuristics miner [79] and fuzzy
miner [30]. The core concept of all these algorithms is to analyze
the different traces of the set of activities in the log and simplify
the traces through abstraction or aggregation to produce a com-
plete process model. Various open-source and commercial process
mining tools are available (ProM [78], Disco [29], Celonis [12]).

3 A Process Perspective to Blockchains
Our work posits blockchain optimization as a holistic method-

ology rather than a pure system-level approach by introducing a
process perspective. In this section, we emphasize the necessity and
effectiveness of understanding the dependency between business
processes and the performance of the blockchain through exam-
ples. Further, these examples motivate the need for an optimization
recommender since many process-level optimizations can only be
employed with approval from the decision-making bodies of an
organization and, in most cases, cannot be automatically applied.

Figure 2: Derived process model for SCM scenario

Process model pruning is an example of a process-level opti-
mization that positively affects the system’s performance. Figure 2
shows the process model derived from the blockchain log of a
supply chain management (SCM) scenario. The highlighted paths
and the traces embedded in the figure identify two unnecessary
branches in the process model. Unless the advanced shipping notice
is pushed (PushASN), one should never execute the Ship activity.
Similarly, the Unload activity should never be executed unless a
product has been shipped. Such illogical activity paths can arise
due to manual errors or transaction failures, and the smart contract
is designed to handle such issues, as we explain in the following
example.

If the Unload transaction executes without a corresponding Ship,
the transaction will only read the state but not modify it. However,
it is up to the smart contract designer to either fail the transac-
tion upon execution or commit the read-only transaction to the
blockchain. Both these designs have their trade-offs. Committing
the transaction adds an immutable record on the blockchain, which
helps to track, for example, individuals or organizations who devi-
ated from the expected process model. In a supply chain manage-
ment scenario specifically, this is critical since the entire pipeline
is distributed, and the primary purpose of the blockchain here is
to provide data provenance among untrusted participants. How-
ever, on the other hand, failing a transaction immediately upon
execution ensures that such unnecessary transactions do not go
through all the time-consuming phases (ordering and validation),
which can improve the system performance. We observe a 27%
improvement in throughput and 19% increase in success rate of
transactions when unnecessary activity paths are pruned in the
smart contract (Section 6.2, Figure 13). The pruning can also be
implemented at the process execution level by enforcing incentive
or penalty measures for organizations or individuals that adhere to
or deviate from the expected process model. This approach ensures
that system performance is not prioritized over data provenance
and hence, combines the advantages of both smart contract designs
we discussed above.

Without activity reordering

Activity order Activity Read data, Value Write data, Value Validity

1 PushASN { ProductID, 1 } { ProductID, 2 } Success

2 UpdateAuditInfo
{ ProductID, 1 }
{ AuditID, 001 }

{ AuditID, 002 } Abort

With activity reordering

Activity order Activity Read data, Value Write data, Value Validity

1 UpdateAuditInfo
{ ProductID, 1 }
{ AuditID, 001 }

{ AuditID, 002 } Success

2 PushASN { ProductID, 1 } { ProductID, 2 } Success

Figure 3: Transaction dependency conflict example

Another cause of failures are transactional dependencies, and
research in serialization algorithms has effectively reduced such fail-
ures through transaction reordering [65, 67]. However, reordering
algorithms are expensive, as they basically need to solve the NP-
hard problem of generating conflict-free dependency graphs [67].
An increase in endorsement policy failures due to inconsistent
world states and the inability to handle large range queries are
known problems of transaction reordering [13]. A different ap-
proach to the problem of dependency conflicts is to identify re-
orderable and unreorderable [65] activities instead of transactions.
While the literature analyzes the keys accessed by transactions
to understand serializability, the data model needs to be analyzed
for process-level serialization. If two concurrent activities read the
same data element but write to different elements in the data model
then such activities are reorderable.

Figure 4: Derived process model after activity reordering

For example, in the same supply chain management scenario, the
UpdateAuditInfo activity reads a productID and writes an auditID,
whereas the PushASN, Ship, and Unload activities read and write
to the productID. Therefore, the pairs {UpdateAuditInfo, PushASN},
{UpdateAuditInfo, Ship} and {UpdateAuditInfo, Unload} are reorder-
able activities while {PushASN, Ship, Unload} are unreorderable.
Figure 3 shows an example of a reorderable pair of activities where
UpdateAuditInfo can succeed if it is executed either after the com-
mit or before the execution of PushASN. Based on the business
logic, it may be possible to impose procedures to restrict or resched-
ule certain activities to execute only at specific periods. For example,
the corresponding process model in Figure 2 shows that UpdateAu-
ditInfo occurs frequently between PushASN and Ship activities and
therefore,UpdateAuditInfomay be executed before the transactions
of the other two activities commit. However, UpdateAuditInfo is
not a time-critical activity and can be rescheduled to take place only
at specific times when traffic is low on the supply chain. We observe
a 24% increase in throughput and 15% increase in success rate of
transactions after a corresponding redesign whereUpdateAuditInfo
and QueryProducts activities are executed after PushASN, Ship,
Unload. The new process model derived from the blockchain log
confirms the adherence to the new design (Figure 4). Thus, by iden-
tifying conflicting activities, the process model can be redesigned
to reduce transaction conflicts before they take place.

4 Blockchain Optimization Recommender
We introduce an approach to recommend optimizations from

three different abstraction levels: system, data, and user-level. The
primary requirement to design and implement such a multi-level
recommendation system is reliable data on all three levels. Knowl-
edge about the system configurations (e.g., block size) and perfor-
mance (e.g., throughput, transaction failures) is vital for generating
system-level recommendations. Information about the current data
model and access patterns, such as key distribution and dependen-
cies, is essential for data-level recommendations. Lastly, knowledge
concerning the use-case, business processes, and transaction work-
load is necessary for user-level recommendations. It is important to
note that such information is not restricted to a specific level but is
helpful across all levels. For example, the system-level performance
can indicate the need for optimizations at all three levels.

The very definition of a blockchain implies the availability of
a distributed ledger with immutable data regarding every trans-
action executed overtime. If we consider smart contracts, then
every execution of the smart contract results in a transaction that
is logged in the ledger. We consider this data (hereafter referred
to as the blockchain log) as the primary source to derive opti-
mization recommendations since, to our knowledge, such a dis-
tributed ledger consisting of all transactions is available for most
blockchains. Therefore, our transaction-centric approach to de-
riving blockchain optimization recommendations is applicable to
different blockchains.

We preprocess the raw data from the blockchain to create a
blockchain log. Then, we obtain the values for key metrics which
are used to detect multi-level optimization recommendations. Pro-
cess mining strategies are then applied to the blockchain log to
derive the process model. We identify the applicable optimizations
using the recommendations and the derived process model. Figure 5

Fabric Network
Blockchain Data
Preprocessing

Metrics Derivation
Event Log

Generation
Process Model

Generation

Optimization
Recommendation

BlockOptR

Optimization
Implementation

Figure 5: BlockOptR workflow

illustrates the workflow of our approach. We automated the main
elements of this workflow as a tool, BlockOptR [10], implemented
in Python and Node.js.

4.1 Blockchain Data Preprocessing
BlockOptR registers as a client on the Fabric network, reads the

entire blockchain and saves it as JSON files. Next, the log is cleaned
by removing the configuration and setup-related transactions that
are not relevant and converted to CSV format. All information re-
garding each transaction executed in the Fabric network is logged
on the blockchain. We extract seven attributes and derive two at-
tributes from this extensive logged data. These attributes enable
the derivation of multiple metrics required to recommend optimiza-
tions. The output of the data preprocessing step is a blockchain log
with the following nine attributes.

(1) Client timestamp: The time at which the client generated
the transaction.

(2) Activity name: The name of the smart contract function
whose execution created the transaction. A(x) defines the
activity name of a transaction x.

(3) Function arguments: The value of the parameters of the
smart contract function.

(4) Endorsers: The set of all endorsers of the transaction.
(5) Invokers: The set of all clients and their respective organi-

zation who invoked the transactions.
(6) Read-write set: The set of keys accessed (read or written)

by the transaction. The separate read set and write set of a
transaction are also kept. RWS(x), RS(x) and WS(x) corre-
spondingly define the read-write set, read set and write set
of a transaction x.

(7) Transaction status: The status of the transaction that can
have the values success, MVCC read conflict (MRC),
phantom read conflict and endorsement policy failure.
ST(x) defines the status of a transaction x.

(8) Transaction type: The type of transaction which is de-
rived from the read-write set. This can have the values read,
write, update, range read and delete. Transaction type
is derived from the read-write set. TT(x) defines the type of
a transaction x.

(9) Commit order: The order of the transactions in the blockchain
log is the order in which transactions were committed to the
blockchain.

4.2 Event Log Generation
The blockchain log extracted from the Fabric network can be

used as an event log to apply process mining techniques that assist
in recommending user-level optimizations. However, unlike the

event logs created by process-aware information systems [74], a
CaseID is not directly available in the event log extracted from a
blockchain. Also, in most of the use-cases we observed, no single
attribute is common to all activities that can be directly used as the
CaseID. Therefore, we need to derive a common element for each
use-case based on domain knowledge [4, 8, 17, 19, 44]. Since we are
interested in a transactional perspective of the process model, we
find a common element for all activities by analyzing the function
arguments and read-write sets available in the log. For example,
in the SCM scenario the productKey is a common element for all
activities and is a suitable choice since the use-case is specifically
related to tracking multiple products. This process of extracting the
common element is automated for all the use-cases in this paper
and can be easily extended for other use-cases. Once a common
element is identified, we define a trace as a unique set of activities
with the same value for the common element. We then assign a
new CaseID to every trace.

Further, only the time at which the clients sent the transaction
(client timestamp) is available in our log. However, there is no guar-
antee that the same order in which clients send their transactions
will be maintained when the transactions are committed to the
blockchain. Therefore, to derive the process model accurately, we
use the commit order in place of the timestamp. Thus, with the
generated CaseID and extracted/derived attributes, we have a com-
plete event log. Now, any process mining technique can be applied
to the event log to derive a process model. For example, we used
the Alpha algorithm to derive the process models shown in Figure 2
and 4 [76].

4.3 Metrics
We define a set of metrics by scrutinizing multiple blockchain

logs and analyzing metrics from the literature.
(1) Rate metrics: BlockOptR calculates the average transaction
rate as well as the transaction rate distribution over time intervals
from the event log. Transaction rate (Tr) is the average rate at
which transactions are sent from the clients and is derived from the
total transactions in the log and the client timestamps.Transaction
rate distribution (Trdi) is the transaction rate at a specific interval
i derived from the log. A user-configurable interval size (ins) in
seconds is used to calculate this metric. Usage: Transaction rate is a
useful metric to understand the performance. The rate distribution
provides insights regarding periods of high or low traffic.
(2) Failure metrics: Similar to Tr , the total failure rate (TFr) as
well as the rates of each type of failure (MVCC read conflicts, phan-
tom read conflicts, endorsement policy failures) are derived from
the log. The failure rate distribution (Frdi) is calculated similar to
Trd. Usage: Failure metrics help to detect times of high transac-
tion failures. Optimizations such as transaction rate control can be
applied based on the failure metrics.
(3) Block size: The user-configured block count (Bcount) and block
timeout (Btimeout) are extracted from the log. The average num-
ber of transactions in a block (Bsizeavg) is also derived from the
log. Bsizeavg is equivalent to the average block size and can also
be defined as min{Bcount , Tr ∗ Btimeout }. Usage: Bsizeavg along with
the rate metrics helps a user understand the effectiveness of their
block size configurations. For example, if Tr is 500, Bcount is 100,
Btimeout is 1 and Bsizeavg is 100, then 100 transactions are packed

into a block when 500 transactions are actually available every
second. This means more blocks than necessary are being created
which is inefficient, as block creation is expensive. Similarly, if Tr
is 100, Bcount is 500, Btimeout is 2, and Bsizeavg is 200, then blocks
are created only every 2 seconds and transactions are queued up
for a waiting period before being put into blocks. Both scenarios
lead to performance degradation. So, based on the value of Bsizeavg ,
the user can update Bcount and Btimeout to efficiently handle the
transaction rate.
(4) Endorser significance (EDsig) defines the number of transac-
tions endorsed by each endorsing peer. Usage: This metric helps
in identifying endorser bottlenecks. Suppose a limited number of
endorsers always carry out the endorsements. In that case, the user
can consider distributing the transactions more evenly among the
endorsers or expanding the set of endorsers.
(5) Invoker significance (IVsig) defines the number of transac-
tions invoked by each client. Usage: This metric helps to identify
clients and the corresponding organizations that invoke a majority
of the transactions. Client resource allocation decisions of such
organizations can be made based on this metric.
(6) Key frequency (Kfreq) is defined as the number of failed trans-
actions that access a specific key.Key significance (Ksig) is defined
as the number of activities that access a specific key. HK defines
the set of hotkeys that have high key frequency based on user-
configurable thresholds. Usage: Identifying the hotkeys assists the
users to identify optimization possibilities in their smart contracts,
and key significance helps to detect the exact activities (that cor-
respond to smart contract functions) that access the hotkeys. For
example, if several functions access the same key, then the different
functions could be separated into multiple smart contracts. Every
smart contract executes on a different world state, thereby reducing
failures (see example in Section 5).
(7) Data-value correlation (corDV) defines that two transactions
are correlated if both access a same set of keys and one of them
fails. Usage: Data-value correlation helps to identify transaction
dependencies. Such dependent transactions are the root cause of
MVCC read conflicts [13]. Various optimization strategies, such as
process model redesign and transaction rate control, can be applied
to these correlated transactions to mitigate failures.
(8) Proximity correlation (corP) defines the distance between
two transactions that have a high data value correlation. For ex-
ample, if corP (x, y) == 1 then transaction y happened immediately
after x with no transactions in between. Further, we also derive
the activity-based proximity correlation (corPA) which defines
the distance between transactions of the same activity. Usage: Ana-
lyzing if the proximity correlation is “less than the block size” or
“greater than the block size” can reveal useful insights regarding
inter- and intra-block failures. If intra-block failures are very high,
smaller block sizes can potentially reduce failures [13]. This metric
also helps to choose between inter- or intra-block transaction re-
ordering strategies offered by different Fabric optimizations [65, 67].

4.4 Optimization Recommendations
Weuse amulti-level approach to utilize the defined attributes and

metrics for recommending blockchain-specific optimization strate-
gies. The optimization recommendation techniques explained in
this section include configurable thresholds. We define appropriate

Table 1: Formalization of optimization recommendations

Recommendations Necessary conditions

Activity
reordering

if corDV (x, y) == 1 ∧ WS (x) ∩WS (y) == ∅

Process model
pruning

if A(x) = A(y) ∧ TT (x) ≠ TT (y)

Transaction rate
control

if (Trdi ≥ Rt1) ∧ (Frdi ≥ Trdi ∗ Rt2)

Delta writes if corPA(x, y) == 1 ∧ ST (x) == MRC ∧
|WS (x) | == |WS (y) | == 1 ∧WS (x) ± 1 == WS (y)

Smart contract
partitioning

if Ksig (HKi) > 1

Data model
alteration

if (Ksig (HKi) == 1) ∨ (|HK | == 1)

Block size
adaptation

if (Tr ≥ Bsizeavg ∗ Bt) ∨ (Tr < Bsizeavg ∗ Bt)

Endorser
restructuring

if EDsig (e) > |TX | ∗ Et

Client resource
boost

if IVsig (c) > |TX | ∗ It

where x, y ∈ TX , e ∈ E, c ∈ I ,HKi ∈ HK
TX , E, I ,HK are set of all transactions, endorsers, invokers and hotkeys

Rt1, Rt2, Bt, Et, It are user configurable thresholds

default values for these thresholds based on our analysis of multiple
logs, but the user can adapt these default values to fine-tune the
detection strategies. The necessary condition to recommend each
optimization strategy is formalized in Table 1.
4.4.1 User Level Recommendations
At the user level, it is essential to focus on the actual workload of the
running application. The rate and order in which the transactions
are generated and committed to the blockchain has a vital impact
on performance. We analyze the rate, dependencies, and type of
the transactions to recommend optimizations at the user level.
(1) Activity reordering: Reorderable pairs of transactions can be
identified by using the data value correlation and the read-write set.
BlockOptR identifies the activities corresponding to such transac-
tion pairs and recommends a process model redesign. The redesign
should ensure that the identified activities are restructured to re-
duce conflicts (cf. Section 3).
(2) Process model pruning: If activities deviate from an expected
behavior, then process model pruning is recommended. The trans-
action type of all transactions related to an activity is analyzed to
identify anomalies. Comparing the traces in the event log and the
derived process model with the identified anomalies helps to detect
model pruning opportunities (cf. Section 3).
(3) Transaction rate control: BlockOptR evaluates the transac-
tion rate distribution over time and identifies times when the rate is
very high. It then checks the failure rates in the same time interval.
If the failure rate is also very high, rate control is recommended.
Two configurable thresholds are used to tune the tolerance level of
transaction rate and failures.
4.4.2 Data Level Recommendations
For data-level recommendations, we focus on identifying the spe-
cific areas in the data model that can be optimized by analyzing
transaction failures, proximity correlation, read-write sets, and key
significance. This aids the user in altering the smart contract and
thereby the underlying data model to improve performance.
(4) Delta writes: Update transactions that only perform increment
or decrement operations can be converted to delta-writes. Delta

writes enable writing to multiple unique delta keys, which can be
aggregated whenever the current value is required. Reading the
key before each write is also not required. Thus, update transac-
tions are converted to write-only transactions that write to unique
keys. This helps to reduce transaction dependency-related failures.
Delta writes are recommended when a single key is incremented
or decremented by a failed transaction.
(5) Smart contract partitioning: A possibility to reduce transac-
tion dependencies is to split a smart contract into multiple ones.
Each smart contract will access separate world states, thereby avoid-
ing conflicts. The functionality of the original smart contract will
not change because it is possible to invoke functions between the
two smart contracts if interaction is required.

For example, in a music rights management scenario, if a key
MusicID is found to be hot and multiple functions such as Play()
and viewMetaData() access this same key, then one can separate
the functions into two different smart contracts. In other words, the
underlying database is split into two by duplicating the primary
key (MusicID) across both and having different secondary keys in
each. The play count of MusicID is recorded in one and metadata is
read from the other (cf. Section 6.2). This is analogous to designing
the table layout in relational databases. The smart contract needs
to be analyzed and updated to implement this optimization. Smart
contract partitioning is recommended if multiple activities access a
hotkey.
(6) Data model alteration: If activities have a dependency on
themselves, then a data model alteration can be beneficial to reduce
transaction conflicts. For example, in a digital voting scenario, if
a key ElectionID is found to be hot and is only accessed by the
function Vote(), then a possible optimization is to use another
primary key such as VoterID. Then, instead of updating all the
votes together, the votes can be updated per voter (cf. Section 6.2).
Further, if only a single hotkey is detected then it is beneficial to
analyze the data model to understand the reason for the skewed
access to this specific data element (cf. Section 6.3). Data model
alteration is recommended if a hotkey is accessed only by a single
activity or if a single hotkey is detected.
4.4.3 System Level Recommendations
At the system level, we focus on two crucial system configuration
settings that can significantly affect the performance of Fabric: the
endorsement policy and the block size [13, 68]. Further, we also
identify client bottlenecks to aid in resource allocation decisions.We
use the endorser significance, invoker significance, transaction rate,
and actual block size metrics to derive system-level optimization
recommendations. Since these recommendations are based on the
blockchain log generated by the running application, it helps the
user to identify ideal configuration settings based on their current
use-case and workload, leading to performance improvements.
(7) Block size adaptation: The average transaction rate (Tr), the
average block size (Bsizeavg) and a configurable threshold (Bt) are
used to recommend block size adaptation. The literature recom-
mends smaller block sizes when transaction rates are lower and
larger block sizes when the rates are higher [13, 68]. If the block
size is too small, too many blocks are created, and block creation be-
comes a bottleneck. If the block size is too large, the block creation
is delayed by waiting for sufficient transactions. Therefore, if block
size adaptation is recommended, then set Btimeout and Bcount such

Fabric NetworkAutomated
Workflow Engines

ü Activity reordering ü Activity reordering
ü Transaction rate control
ü Client resource boost

Clients

Smart contract updates
ü Delta writes
ü Smart contract partitioning
ü Data model alteration
ü Process model pruning

Configuration updates
ü Block size adaptation
ü Endorser restructuring

Optimization
Recommendations

BlockOptR

Figure 6: Optimization implementation on a live Fabric network

that min{Bcount , Tr ∗ Btimeout } is equal to Tr . We do not provide
recommendations for block bytes adaptation since it is difficult to
accurately derive the size of a transaction (that can include the
transaction payload, endorser identities and other metadata) from
the log.
(8) Endorser restructuring: For every Fabric transaction gener-
ated by the clients, the corresponding smart contract function is
executed by the endorsers defined in the endorsement policy. Smart
contract execution is a time and resource-consuming action. If the
same endorsers receive a higher load of transactions while others
remain idle, this indicates a bottleneck or load imbalance. Such load
imbalances can occur when the endorsement policy explicitly de-
fines an endorsement as mandatory from a specific set of endorsers.
For example, the endorsement policy And(Org1,OR(Org2,Org3))
implies that an endorsement from Org1 is mandatory. As a conse-
quence, Org1 could become an endorsement bottleneck. We detect
endorser bottlenecks by identifying endorsers that endorse more
transactions than a user-specified threshold. The default thresh-
old values detect whether all the endorsers participate equally in
the endorsement process. The threshold values can be adapted to
increase or decrease the sensitivity to imbalances.
(9) Client resource boost: Multiple time-consuming tasks are
performed by the clients in a Fabric network, including but not
limited to transaction proposal invocation, endorser response veri-
fication, packing of endorser responses as a transaction, transaction
submission to the ordering service, and collection of peer commit
responses. The invoker significance metrics identify the clients
and the corresponding organizations that invoke a majority of the
transactions. This identification can assist in resource allocation
decisions, such as increasing the number and size of clients regis-
tered to the identified organization. It could also point to problems
in the underlying business process.

4.5 Implementation of Optimizations
The recommended optimizations can be implemented in several

ways. Figure 6 visualizes where the different recommendations
can be implemented on a live Fabric network. Here, we show an
automated workflow engine that triggers transactions based on a
process model. These transactions are sent via the clients to the
Fabric network. The logs of the Fabric network are analyzed by
BlockOptR to generate optimization recommendations. Each of the
recommended optimizations can be implemented at different levels
as shown in the figure.

Activity reordering can be implemented by modifying the un-
derlying process model in the workflow engine such that activities
follow a conflict-free order. Alternatively, one can monitor the
transactions on the clients and reorder either per client or across

all clients using a client manager. Process model pruning can be
implemented via organizational measures such as incentives or
penalties to ensure that activities adhere to their expected behavior
(not shown in the figure). However, pruning can also be imple-
mented directly in the smart contract by early aborting anomalous
transactions during the endorsement phase. Transaction rate con-
trol can be implemented in multiple ways. Each client can monitor
their own transaction rate and perform load shedding or queuing.
The same can be done across clients using a central monitor. A
third approach is to monitor the transaction rate in the ordering
service and apply load shedding there. Smart contract revisions are
required to implement all the data-level optimizations. In Fabric,
smart contract upgrades are possible on the fly without restarting
the system [72]. Block size can be adapted either by changing the
configuration file or by using a configuration update transaction in
Fabric [71]. Endorser restructuring can be implemented by altering
the endorsement policy. The policy can be changed in the Fabric
configuration file or using a configuration update transaction [71].
Based on the transaction load per client identified by BlockOptR,
client resources can be scaled if the current allocation appears in-
sufficient to handle the load and the new clients can be dynamically
registered to the Fabric network.

Our implementations. Although all optimizations can be ap-
plied in a live system on the fly, since our evaluation runs in an
experimental environment, we restart the Fabric network after
every experiment. We use the Caliper benchmarking system [35]
which has a client manager that can be configured to order the
transactions across clients and control the rate of transactions gen-
erated, thus emulating activity reordering and transaction rate
control. The number of clients can also be scaled to demonstrate
a client resource boost. Process model pruning and all data-level
optimizations are implemented by analyzing and modifying the
smart contract. Block size and endorsement policies are updated in
the Fabric configuration file.

5 Experimental Methodology
We used version 2.0 of HyperledgerLab [13], which is an au-

tomated testbed for Hyperledger Fabric 2.2 integrated with the
Caliper benchmarking system. We set up a Kubernetes cluster of
1 master and 5 worker nodes over which all the Fabric network
components as well as Caliper components are distributed as Ku-
bernetes pods. Each node runs on a Ubuntu Focal (20.04) virtual
machine with 4 vCPUs and 9.8 GB RAM. We use 10 Caliper work-
ers for our experiments. For every experiment, we measure the
success rate which is the percentage of successful transactions out

Table 2: Control variables
Control Variable Values (Default in bold)
Workload type Uniform, Read-heavy,

Insert-heavy, Update-heavy,
RangeRead-heavy

Endorsement policy P1, P2, P3, P4
Endorser distribution skew 0, 6
Key distribution skew 1, 2
Number of organizations 2, 4
Block count 50, 300, 1000
Send rate 50, 300, 1000
Transaction dist skew 0, 70%

of the total number of transactions, the average latency and the
throughput of all successful transactions.

5.1 Workload Generation
The content of the distributed ledger, which is used as the in-

put to our tool, is a direct result of the workload executed on the
blockchain. Therefore, we extensively evaluate BlockOptR by using
three different types of workload. Also, after implementing the rec-
ommendations generated by BlockOptR, we rerun the experiments
with the same workloads to analyze the effect of the optimization.
5.1.1 Synthetic workloads

We use an extended version of a synthetic workload generator
that can generate synthetic workloads based on a set of control
variables for a generic smart contract genChain [13]. We use a range
of values for these control variables described in Table 2 to generate
multiple workloads of 10,000 transactions each. The endorsement
policies used in our experiments are:
P1: And(Org1, Or(Org2,Org3,Org4))
P2: And(Or(Org1,Org2), Or(Org3,Org4))
P3: Majority(Org1,...,OrgN)
P4: OutOf(2,Org1,Org2,Org3,Org4)

By generating synthetic workloads, we ensure that multiple
realistic scenarios are covered in our experiments. We then evaluate
BlockOptR with each of these workloads to generate optimization
recommendations. Further, we implement each of the recommended
optimizations to evaluate the performance improvement.
5.1.2 Use-case based workloads

Secondly, we use extended versions of four popular use-case
based smart contracts from the literature [13] and generate work-
loads. BlockOptR is then used to generate optimization recommen-
dations with these workloads. The four smart contracts we use are
as follows.

Supply Chain Management (SCM): This smart contract defines
the operations of a logistics network that includes sending an ad-
vanced shipping notice, shipping a product, reading the shipping
notice and unloading the product (in this order). There is also a
query operation to query the information of the different products
(queryProducts) and a updateAuditInfo function that updates
an audit entry with the product details. These can happen at any
point in time. We generated a workload of 10,000 transactions based
on these assumptions by sending in order the transactions pushASN,
ship, queryASN and unloadwhile the transactions queryProducts
and updateAuditInfo are sent randomly.

Digital Rights Management (DRM): This smart contract manages
the rights of artists in the music industry. The smart contract in-
cludes a Play function that is executed whenever a piece of music
is played by any user. The other smart contract functions include

Table 3: Experiments with the synthetic workload
Experiment
Number Control variable Value Optimizations recommended

1 Endorsement P1 Endorser restructuring
Policy Activity reordering

2 Endorsement Policy / P2 / 6 Endorser restructuring
Endorser dist skew Activity reordering

3 No: of orgs 4 Transaction rate control
4 Workload Read-heavy Activity reordering
5 Workload Update-heavy Transaction rate control
6 Workload Insert-heavy Activity reordering
7 Workload RangeRead-heavy Activity reordering

Transaction rate control
8 Key Activity reordering

distribution skew 2 Smart contract partitioning
Block size adaptation

9 Block count 50 Activity reordering
Transaction rate control

10 Block count 300 Activity reordering
Transaction rate control

11 Block count 1000 Activity reordering
12 Send rate 50 Activity reordering
13 Send rate 300 Activity reordering

Block size adaptation
Transaction rate control

14 Send rate 1000 Activity reordering
Transaction rate control

15 Transaction 70% Activity reordering
distribution skew Client resource boost

adding a new piece of music, querying the rights, viewing the meta-
data and calculating the revenue of the right holders. In a realistic
scenario, the Play transaction would be executed far more fre-
quently than all the other transactions. Therefore, we create a Play
heavy workload for this use-case. We generate 10,000 transactions
randomly where 70% of the transactions are Play. The remaining
30% comprise all the other transactions generated uniformly at
random.

Electronic Health Records (EHR): In this smart contract, patients
can provide or revoke access rights to medical institutes as well as
research institutes to query their medical records. We assume that
the number of patients would be more than the other participants
and generate a 70% update-heavy workload of 10,000 transactions.

Digital Voting (DV): This smart contract includes a function to
vote in an election, query the parties, query the results as well as end
the election. We can assume that during an actual election there will
be periods of high traffic while the voting is taking place. Therefore,
we generate a workload which initially sends 1,000 queryParties
transactions at a rate of 100 TPS, then 5,000 Vote transactions
at a rate of 300 TPS and finally 1 seeResults and endElection
transaction each.
5.1.3 Loan Application Process (LAP)

Thirdly, we created a smart contract and workload using a real-
life event log of the loan application process of a Dutch financial
institute which is available publicly [77] together with the corre-
sponding process flow [57]. We extracted all the events of the first
2,000 loan applications and created 20,000 corresponding transac-
tions. We then created a smart contract where every activity in the
loan application process flow has a corresponding smart contract
function. The event log contains an employeeID for every employee
in the bank handling loan applications and an applicationID for
every loan application processed by the bank. The smart contract
we implemented uses the employeeID as the key and the value of
the key is an array of structures where every structure includes

Table 4: Settings to implement optimization
Optimizations Settings
Recommended

Activity reordering Reorder workload generation
Transaction rate control Set send rate to 100 TPS
Process model pruning

Delta writes Update smart contract
Smart contract partitioning

Data model alteration
Block size adaptation Set block count to derived transaction rate
Endorser restructuring Set endorsement policy to P4
Client resource boost Double clients for recommended organization

the applicationID, loan type, loan amount and loan status.
Therefore, querying a specific employeeID will easily provide all
the applications processed by that employee. We then executed the
20,000 transactions on the smart contract at a low rate of 10 TPS to
simulate a real world scenario where manually processing the loan
applications takes a long time. We also ran the same experiment at
a higher rate of 300 TPS to emulate an automated loan application
and validation process. We use BlockOptR to generate optimiza-
tion recommendations which help to improve the smart contract
implementation and thereby the performance.

Though the LAP event logs are from a database setting, this
is a realistic use-case for blockchains as an automated loan ap-
plication system requires security and decentralized trust (e.g.,
micro-loans, decentralized loan applications, and more generally
DeFi [33, 58, 82, 83]). Consequently, this experiment demonstrates
the utility of BlockOptR in a realistic scenario. In the use-case based
experiments, all the transactions followed the expected order based
on the assumptions we defined. In contrast, with this real event log,
we evaluate the real order in which the transactions are executed
which can deviate from the process model.

6 Experimental Results
We exhaustively evaluate our recommendation approach with

a wide range of workloads and smart contracts. Please note that,
whenever transaction rate control is implemented there is an ex-
pected decrease in the throughput. However, clients benefit heav-
ily from higher success rates, and the apparent decrease in the
throughput is just closer to the sustainable throughput of the sys-
tem. In all our experiments the default value for the thresholds are
Et = 0.5, Rt1 = 300, Rt2 = 0.3, Bt = 0.6 and It = 0.5. All the settings
including the control variable values changed to implement each
recommended optimization is shown in Table 4.

6.1 Synthetic Workloads
Due to space restrictions, we present 15 workloads in Table 3.

The full list of experiments and results can be seen in our reposi-
tory [10]. The control variable that is tuned for each experiment
is shown along with its value. All the other control variables have
the default value shown in Table 2. Experiments 1 to 15 are con-
ducted with no optimizations applied and then BlockOptR is used
to derive optimization recommendations. The recommendations
generated by BlockOptR are also shown in Table 3. Since the syn-
thetic smart contract has a simple logic with no branches, incre-
ment/decrement operations or complex data model, process model
pruning, delta writes and data model alterations are not recom-
mended here. Next, we implement the recommended optimizations

and re-execute all the experiments. The results of the experiments
are grouped based on the optimization recommendations and can
be seen in Figures 7, 8, 9, 10, 11 and 12. We also explain how the
thresholds are set for our experiments and how they can be tuned
by users.
6.1.1 Endorser restructuring: The effect of endorser restruc-
turing can be seen in Figure 7. When the endorsement policy
is P1, all the clients must send their transactions to Org1 due
to the specific endorsement policy and hence, an endorsement
bottleneck is detected for Org1. Since the endorsement policy re-
quires signatures from two organizations, we change the policy
to OutOf(2,Org1,Org2,Org3,Org4) so that the clients can distrib-
ute the transactions evenly among all endorsers. This optimization
leads to a 29% increase in throughput (Figure 7). In Experiment 2,
since the endorser distribution is skewed, the clients send transac-
tions unevenly and therefore two of the organizations endorse far
more often than the other two. We re-executed the experiment with
an even distribution of transactions to the endorsers and observe
a 26% increase in throughput (Figure 7). The main impact of this
optimization is on throughput and latency as it reduces transaction
queuing on few specific peers and instead distributes them evenly.

We set the thresholds for this recommendation such that we ex-
pect an even distribution of transactions to all endorsers, i.e., even
minor bottlenecks are detected. This can be tuned to detect only
severe bottlenecks. Further, since these are synthetic experiments,
changing the endorsement policy is not critical. In real scenarios,
consultation with the governing bodies of an enterprise is required
before changing the policy. Still, the recommendations by Block-
OptR help to highlight bottlenecks which in turn can convince the
management to change the policy.
6.1.2 Client resource boost: Figure 8 shows the effect of client
resource scaling. After increasing the number of clients, we observe
a 75% decrease in latency, a 15% increase in throughput, and a
7% increase in success rate. The thresholds are set such that this
optimization is recommended when more than 50% of transactions
are invoked by the same organization. This can be fine-tuned to
detect less severe bottlenecks.
6.1.3 Block size adaptation: The effect of block size adaptation
can be seen in Figure 9. In our experiments, we use the default
block time out of 1s. Therefore, we make the block count equal
to the transaction rate whenever the block size adaptation is rec-
ommended. After changing the block size, we observe up to 93%
improvement in throughput and 85% improvement in success rate
(Figure 9; Block count: 50). The thresholds are set such that this op-
timization is recommended whenever the average block size is 60%
larger or smaller than the transaction send rate derived from the
log. The thresholds can be decreased to make the recommendation
more sensitive to transaction rate changes.
6.1.4 Transaction rate control: The effect of transaction rate
control is shown in Figure 10. In these experiments, periods of
high traffic (around 300 TPS) were also identified as periods of
high failure rates. We then lowered the transaction send rate to 100
TPS on the clients and re-executed the experiments. We observe
significant improvement of up to 87% in latency and 36% in success
rate (Figure 10; Send rate: 1000). We set the thresholds for this
recommendation at 300 TPS which is the default send rate of our
experiments. This means that we consider the current traffic of

NewEnd Pol

107.1 151.4 103.4 141.1

16.8 10.4 19.2 12.3
87.5 89.4 77.4 87.9

1.0

10.0

100.0

1000.0

W/O W W/O W

Endorsement policy: P1 Endorsement policy: P2
Endorser dist skew: 6

Control Variables

Success throughput (tps) Average latency (s) Percentage of success (%)

Figure 7: Endorser restructuring

Transaction dist skew: 70%

160.8 190.6

3.3
0.8

59.9 64.4

0.1

1.0

10.0

100.0

1000.0

W/O W

Transaction dist skew: 70%

Control Variable
Success throughput (tps) Average latency (s) Percentage of success (%)

Figure 8: Client resource boost

New
New Block size

1
4

.8

2
1

7
.9

4
3

.6 2
1

7
.9

1
8

9
.1

1
9

9
.1

1
8

2
.8

2
2

7
.3

3
.3 4
.9 6
.8

4
.4

1
1

.4

1
1

.2

1
2

.5

1
0

.0

1
3

.8

9
2

.8

3
7

.6 9
2

.6

6
3

.3

6
5

.7

7
9

.0

8
4

.5

1.0

10.0

100.0

1000.0

W/O W W/O W W/O W W/O W

Block count: 50 Block count: 100 Send rate: 1000 Send rate: 500, 1000

Control Variables

Success throughput (tps) Average latency (s) Percentage of success (%)

Figure 9: Block size adaptation

New
New Rate control

1
2

1
.9

8
8

.6

1
1

7
.7

9
0

.1

1
7

9
.4

9
5

.3

9
9

.3

4
0

.6 1
7

3
.3

9
7

.0

2
0

4
.1

9
5

.7

2
1

1
.6

9
5

.7

1
5

5
.7

9
4

.9

1
8

9
.1

9
6

.7

1
8

2
.8

9
5

.6

1
6

0
.8

7
3

.4

1
6

.1

4
.8

1
6

.7

4
.3 6
.1

2
.2 2
.9

1
.2

8
.1

1
.4

6
.7

1
.6

6
.3

2
.0

1
3

.3

1
.9

1
1

.4

1
.4

1
2

.5

1
.9 3

.3

1
.1

8
4

.7

9
7

.3

8
4

.9

9
7

.4

8
3

.5

9
7

.0

3
7

.7

4
1

.3 8
1

.6

9
9

.1

9
1

.8

9
9

.1

9
1

.9

9
8

.7

8
5

.4

9
8

.9

6
3

.3

9
9

.2

7
9

.0

9
8

.8

5
9

.9

7
4

.0

1.0

10.0

100.0

1000.0

W/O W W/O W W/O W W/O W W/O W W/O W W/O W W/O W W/O W W/O W W/O W

Endorsement
policy: P3

No: of orgs: 4 Workload:
Update-heavy

Key
distribution

skew: 2

Block count:
300

Block count:
500

Block count:
1000

Send rate: 500 Send rate:
1000

Send rate:
500, 1000

Transaction
dist skew: 70%

Control Variables

Success throughput (tps) Average latency (s) Percentage of success (%)

Figure 10: Transaction rate control

New
New Reordering

1
0

7
.1

1
9

8
.2

1
0

3
.4

1
5

2
.3

2
3

1
.8

2
4

3
.9

2
0

8
.1

2
3

9
.0

1
2

.4 3
6

.2 9
9

.3

1
7

2
.1

1
4

.8

1
9

.2

1
7

3
.3

2
2

1
.7

2
1

1
.6

2
3

9
.6

4
9

.2

4
9

.6 1
7

4
.4

1
8

8
.2

1
8

9
.1

2
0

0
.6

1
6

0
.8

2
1

7
.8

1
6

.8

7
.1 1

9
.2

9
.5

4
.3

3
.9 6
.4

4
.1

2
7

.3

2
2

.7

2
.9

2
.0 3
.3

2
.3

8
.1

5
.0 6
.3

3
.7

1
.5

1
.1

7
.3

6
.8 1

1
.4

1
0

.4

3
.3

2
.1

8
7

.5

9
2

.1

7
7

.4

9
1

.5

9
5

.2

9
6

.2

9
7

.2

9
7

.9

1
1

.5 2
7

.8

3
7

.7 6
7

.8

1
3

.8

1
8

.4 8
1

.6

9
2

.7

9
1

.9

9
4

.4

9
9

.4

9
9

.7

9
0

.9

9
2

.1

6
3

.3

6
4

.6

5
9

.9

7
7

.8

1.0

10.0

100.0

1000.0

W/O W W/O W W/O W W/O W W/O W W/O W W/O W W/O W W/O W W/O W W/O W W/O W W/O W

Endorsement
policy: P1

Endorsement
policy: P2

Endorser dist
skew: 6

Workload:
Read-heavy

Workload:
Insert-heavy

Workload:
RangeRead-

heavy

Key dist
 skew: 2

Block count: 50 Block count:
300

Block count:
1000

Send rate: 50 Send rate: 300 Send rate:
1000

Transaction dist
skew: 70%

Control Variables

Success throughput (tps) Average latency (s) Percentage of success (%)

Figure 11: Activity reordering

New
New All optimizations

1
0

7
.1

1
5

9
.3

1
0

3
.4

1
5

2
.1

9
9

.3

6
7

.2

1
4

.8

2
3

0
.6

1
7

3
.3

9
7

.1 2
1

1
.6

9
7

.5 1
8

9
.1

9
5

.7 1
6

0
.8

8
5

.8

1
6

.8

1
1

.8 1
9

.2

1
2

.2

2
.9

1
.2

3
.3 3
.6 8

.1

1
.3

6
.3

1
.6

1
1

.4

1
.7 3

.3

0
.8

8
7

.5

8
9

.8

7
7

.4

8
5

.0

3
7

.7 6
8

.5

1
3

.8

9
3

.6

8
1

.6

9
9

.3

9
1

.9

9
9

.1

6
3

.3

9
8

.9

5
9

.9

8
6

.6

0.1

1.0

10.0

100.0

1000.0

W/O W W/O W W/O W W/O W W/O W W/O W W/O W W/O W

Endorsement policy:
P1

EndorsementPolicy:P2
Endorser dist skew: 6

Key dist skew: 2 Block count: 50 Block count: 300 Block count: 1000 Send rate: 1000 Transaction dist skew:
70%

Control Variables

Success throughput (tps) Average latency (s) Percentage of success (%)

Figure 12: All recommended optimizations combined

the system as high and want to detect periods of failure. Users can
adjust this threshold based on what is considered high (more than
the sustainable traffic rate) for their Fabric network installation.
6.1.5 Activity reordering: The effect of activity reordering can
be seen in Figure 11. We observe that BlockOptR recommends ac-
tivity reordering for all experiments except Experiments 3 and 5
(Table 3). Reordering was suggested for two activities (Read and
Update) which conflict with each other. We updated the configura-
tion of the client manager to generate read transactions before all
other transactions. This implementation emulates a scenario where
organizational measures were applied to enforce activity reordering.
We then re-executed the experiments and observe a performance
improvement in all the experiments. There is up to 65% increase in
throughput and 58% increase in success rate (Figure 11; Workload:
RangeReadheavy). We have set the thresholds such that if 40% of
the MVCC failures are caused by activities that can be reordered,
this strategy is recommended. This can be made more lenient by

increasing the threshold such that reordering is suggested only in
very significant cases. For Experiments 3 and 5, less than 40% of
MVCC conflicts are caused by the two activities where reordering
is possible. For example, the activity Update has a dependency on
itself which cannot be removed by reordering.
6.1.6 Combined optimizations: We also executed the experi-
ments after applying all the recommended optimizations together.
We observe up to a 93% improvement in throughput and 85% im-
provement in the success rate (Figure 12: Block count: 50). In all the
experiments, the performance obtained by applying all the optimiza-
tions is comparable to the performance yielded by the optimization
with the highest improvement.

Further remarks. Though smart contract partitioning is recom-
mended for Experiment 8, this optimization requires understanding
the functionality of the smart contract. Unfortunately, for the syn-
thetically generated smart contract that includes only generic read,
update and insert functions, we cannot redesign the smart contract.

207.48
98.18

275.31 286.62
96.76

7.28

1.1
2.59 1.87

3.79

79.83 99.47 94.22 99.04 97.73

1.00

10.00

100.00

1000.00

Without
optimization

Transaction rate
control

Activity
reordering

Process model
pruning

All optimizations

Success throughput (tps) Average latency (s) Success rate (%)

SimpleSCM

Figure 13: SCM use-case

3
5

.1

6
0

.7

8
1

.4

5
3

.4

1
1

0
.7

1
4

.0

1
8

.1

1
1

.7

1
0

.5

6
.02

0
.1 4
9

.7

4
7

.6

2
7

.3 8
2

.6

1.0

10.0

100.0

1000.0

Without
optimization

Delta-write Activity
reordering

Smart
contract
partition

All
optimizations

Success throughput (tps) Average latency (s) Success rate (%)

DRM

Figure 14: DRM use-case

NewEHR

5
5

.5
7

6
4

.3
4

1
3

5
.9

6

9
9

.5
6

7
5

.9
7

6
.4

1
.7

8

3
.5

7

2
.3

1

1
.7

7

1
9

.7
0

6
5

.3
9

5
7

.9
4

3
5

.0
1

7
8

.8
5

1.00

10.00

100.00

1000.00

Without
optimization

Transaction
rate control

Activity
reordering

Process
model

pruning

All
optimizations

Success throughput (tps) Average latency (s) Success rate (%)

Figure 15: EHR use-case

DV

4.2 4.7

54.3 46.3

4.6 3.7 4.1
2.3

10.2 11.3

100.0 100.0

1.0

10.0

100.0

Without
optimization

Transaction rate
control

Data model
alteration

All optimizations

Success throughput (tps) Average latency (s) Success rate (%)

Figure 16: Digital voting use-case

3.2
6.6

18.7

63.3

14.2
24.4

1.5 1.2
2.0 1.4 1.1 1.6

31.8
66.0

7.0

22.0
14.4

24.9

1.0

10.0

100.0

Without
optimization

Data model
alteration

Without
optimization

Data model
alteration

Transaction rate
control

All optimizations

Send rate: 10tps Send rate: 300tps

Success throughput (tps) Average latency (s) Success rate (%)

LAP

Figure 17: Loan application process use-case

6.2 Use-case based Workloads
Supply Chain Management (SCM): With the SCM use-case, three

optimizations are recommended by BlockOptR: activity reorder-
ing, process model pruning and transaction rate control (Figure 13).
After implementing reordering for the reorderable activities (query-
Products and UpdateAuditInfo), we observe a 24% increase in
throughput and 15% increase in success rate. Pruning was recom-
mended for the Ship activities that occur without or before the
PushASN activity. It was also recommended to prune Unload activi-
ties that occur without or before the Ship activity. We adapted the
smart contract to implement the pruning recommendation. This
resulted in a 27% improvement in throughput and 19% increase in
success rate. Transaction rate control and applying all recommen-
dations together also improves the performance.

Digital Rights Management (DRM): With the DRM use-case, three
optimizations are recommended by BlockOptR: activity reordering,
delta-writes and smart contract partitioning. Figure 14 shows the
results of applying these optimizations. To implement the delta
write recommendation, we observed that the Play function in the
smart contract has an increment operation to count the number of
times a piece of music was played. We converted this into a delta
write and the delta-keys are aggregated whenever the calcRevenue
function is invoked (since it requires the play count). With this
optimization, we can observe a significant improvement of 42% in
throughput and 50% in success rate. However, the average latency
increases in this case because the calcRevenue function now takes
upmore time for aggregation. Since calcRevenue is not executed as
frequently as Play, the overall performance is not affected though.

Activity reordering was recommended for calcRevenue and
queryRightHolders functions and we reconfigured the clients to
send these activities after all other activities. This emulates a sce-
nario where an organization restricts specific transactions to spe-
cific time periods. We observe more than 50% increase in both
throughput and success rate with this optimization.

Hot keys were detected and frequently used by four activities.
We analysed the smart contract and discovered that, though all four
functions have a dependency on the same key, the functionalities
are different. Play and calcRevenue need only the play count,
while viewMetaData and queryRightHolders need metadata and
not the play count of a piece of music. Therefore, we split the
smart contract into two, where one smart contract has the Play
and calcRevenue functions and the second smart contract has the

FabricSharp

1
0

0
.9

2

1
0

3
.5

6

9
6

.5
6

9
9

.1
6

9
3

.3
6

6
2

.3
2

2
.0

9

2
.0

7

2
.0

4

1
.9

0

3
.5

4

1
.4

2

9
4

.1
4

9
6

.5
6

9
0

.0
8

9
2

.5
0

8
7

.1
7

9
9

.4
7

1.00

10.00

100.00

1000.00

Without
optimization

Endorser
restructuring

Without
optimization

Endorser
restructuring

Without
optimization

Transaction rate
control

Endorsement policy: P1 Endorsement policy: P2
Endorser dist skew: 6

Workload: Insert-heavy

Control Variables

Success throughput (tps) Average latency (s) Success rate (%)

Generator

Figure 18: Synthetic workloads with FabricSharp

other two functions. The create function is included in both smart
contracts, and invocation of the first smart contract invokes the
same function in the second smart contract. We observe a 35%
increase in throughput and a 26% increase in success rate with this
optimization. Applying all the optimizations together improves the
performance by more than 50%.

Electronic Health Records (EHR): In this use-case, three optimiza-
tions were recommended: activity reordering, process model prun-
ing and transaction rate control (Figure 15). Activity reordering for
the read activities resulted in a 60-65% improvement in throughput
and success rate. When the smart contract was updated to prune
illogical paths (revoke access to records without granting access),
we observe around 43% increase in throughput and success rate.
After applying transaction rate control, a 69% increase in success
rate was observed. All optimizations applied together also improve
the performance.

Digital Voting (DV): In this use-case, two optimizations were
recommended: transaction rate control and data model alteration.
The results are shown in Figure 16. High failure rates were detected
for periods when the Vote transactions were frequent. After ap-
plying transaction rate control, a slight improvement of 11% in
throughput was observed. The hotkeys were detected and most
frequently used by the Vote function resulting in a recommenda-
tion to alter the data model. We analysed the smart contract and
observed that partyID was used as the key for the vote function
which is invoked by multiple voters during the voting phase. We
redesigned the smart contract such that voterID is assigned as the
primary key. Since voters are restricted to a single vote, we observe
100% success rate with this new smart contract because there are no
more transaction dependencies. We also observe an improvement
in the performance when both optimizations are applied together.

6.3 Loan Application Process (LAP)
The optimization recommended for the LAP use-case was data

model alteration (Figure 17). The employeeID 1 had a high key

Fabric++

Generator UH, RH and RRH
1

0
6

.2
7

5
7

.5
6

1
5

9
.4

7

6
9

.4
1

1
4

4
.6

1

6
9

.0
2

1
9

4
.2

2

8
3

.7
0

9
5

.7
8

5
6

.2
8 2
1

3
.4

7

8
3

.9
2

3
.6

2

1
.3

3 3
.1

3

1
.5

7

2
.5

8

1
.5

6

2
.8

7

1
.1

0

1
0

.3
6

1
.0

1

1
.8

5

1
.0

2

4
1

.0
4

5
9

.2
2

6
1

.8
7

7
1

.3
7

5
3

.7
0

7
0

.3
6

7
7

.4
9

8
5

.0
2

4
5

.5
7

5
7

.1
4

7
8

.2
4

8
5

.3
3

1.00

10.00

100.00

1000.00

Without
optimization

Transaction
rate control

Activity
reordering

All
optimizations

Without
optimization

Transaction
rate control

Activity
reordering

All
optimizations

Without
optimization

Transaction
rate control

Activity
reordering

All
optimizations

Workload: Update-heavy Workload: Read-heavy Workload: RangeRead-heavy

Control Variables

Success throughput (tps) Average latency (s) Success rate (%)

Figure 19: Synthetic workloads with Fabric++

frequency since this employee processed the highest number of
loan applications. We then re-implemented our smart contract and
assigned applicationID as the key and modeled the value as a
structure that includes employeeID, loan amount, loan type and
loan status. This new implementation helped to remove the hot
key and yielded more than 50% improvement in throughput and
success rate for both the lower and higher send rates.

6.4 Fabric Extensions
As a holistic recommendation approach, our work lies orthogo-

nal to existing Fabric optimizations in the literature. In this section,
we demonstrate how our approach works on top of two optimized
extensions of Fabric: FabricSharp [65] and Fabric++ [67]. Both im-
plement different transaction reordering strategies that mitigate
MVCC read conflicts. The Fabric++ scheduler is integrated in the
FabricSharp implementation [25] and we use this for our exper-
iments. We executed the synthetic workloads on both and then
used BlockOptR to generate recommendations. The literature says
FabricSharp increases endorsement policy failures and is less per-
formant for insert-heavy workloads while Fabric++ is least per-
formant with an update-heavy, read-heavy and range-read-heavy
workloads [13]. Therefore, we execute these specific experiments
shown in Figures 18 and 19 with the synthetic workloads. Activ-
ity reordering, transaction rate control and endorser restructuring
were recommended and by implementing these recommendations,
we observe up to a 55% increase in throughput and 46% increase in
success rate (Figure 19: RangeRead-heavy workload). Our experi-
ments with these Fabric extensions show that even with effective
system-level optimizations, Fabric can still benefit from optimiza-
tions at all levels of abstraction.

7 Lessons Learned and Limitations
We demonstrated that BlockOptR is capable of effectively recom-

mending suitable optimization strategies. Further, we also explained
how to implement these optimizations and quantified the perfor-
mance improvements after implementation. This section discusses
the insights we gained from our experiments.

User level optimizations. Activity reordering was one of the
most frequently recommended optimizations in our experiments.
We highlight use-cases such as SCM where such reordering can be
applicable. Our model pruning recommendation emphasizes that
identifying incompetencies in the process model can lead not only
to efficient process execution but also improve the performance of
the underlying system. Load shedding or queuing is often employed
when systems cannot handle the workload. Using our recommen-
dations, specific activities and time periods can be identified where
such rate control techniques are most effective. For example, rate
control is recommended for the Vote activity in the digital vot-
ing use-case. Therefore, instead of system-wide rate control, only

the specific clients that deal with the identified activities need to
employ rate control techniques.

Data level optimizations. These optimizations show how the
design of the smart contract and the data model significantly in-
fluence the performance. The smart contract is initially designed
with a specific process model in mind. However, we understand
how the smart contract is being used in practice by analyzing the
blockchain logs. BlockOptR pinpoints functions and keys that cause
bottlenecks which in turn helps the smart contract developer to
make appropriate modifications.

System level optimizations. Setting the endorsement policy
is a management decision that often excludes discussions with the
technical team designing the blockchain. Our recommendations
highlight the need to bring together management and technical
discussions to decide optimal configuration settings. Further, we
also demonstrate the need to verify whether the policy is being used
effectively. For example, even if the policy defines the equal dis-
tribution of endorsements, the clients may send their transactions
in a skewed manner. In such instances, we recommend enforcing
a management measure, such as dividing the endorsers equally
among the clients such that clients of one organization only send
transactions to specific endorsers. The compliance with such mea-
sures can also be checked by BlockOptR. Block size optimization
is frequently discussed in the literature and associated with the
transaction rate of a system [13, 36, 68]. Instead of system-level
changes such as using transaction rate monitors, we derive the
transaction rate and the actual block size from the log. This helps
to understand traffic patterns over time and find reasonable block
size settings. While the literature mainly focuses on optimizing
the peers and ordering service components of Fabric [27, 65, 67],
our client-related recommendations highlight the need to focus on
client-side optimizations as well.

Technology Independence. Our multi-level recommendation
approach is demonstrated using the Fabric blockchain. Technology
independence is difficult to attain due to the vast implementation
variations between the numerous blockchain systems and the cor-
responding differences in the contents of the distributed ledger.
However, we draw attention to specific examples which can guide
future researchers to translate our approach to other blockchain
systems. In Quorum, the block time or mining frequency has a lin-
early proportional influence on the transaction latencies [7] which
is analogous to our block size adaptation recommendation strat-
egy. Also, Corda has the concept of notaries to attest transactions
where distributing the transactions over multiple notaries is ex-
pected to improve the throughput [18]. This is again comparable to
our endorsement restructuring recommendation. Further, there are
numerous gas-fee reduction and vulnerability detection strategies
for Ethereum smart contracts in the literature [54] which translate

to our recommendations at the data level. Tools like Lorikeet and
Caterpiller automate the conversion and execution of process mod-
els as Ethereum smart contracts, which would make it easier to
implement the user-level optimizations that we recommend [43, 69].

Limitations. The optimizations recommended by BlockOptR
need to be manually implemented by the user. A self-adaptive
system with a feedback loop that automatically implements the
recommendations is possible. However, in an enterprise scenario,
for many of the optimizations such as endorser restructuring, ac-
tivity reordering, and process model pruning, management level
approvals might be required before implementation. Additionally,
for applications that do not follow a specific process model, the
event logs can be misleading. In such scenarios, user-level optimiza-
tions such as activity reordering and process model pruning are
not relevant. Therefore, domain knowledge about the use-case is
required for implementing the recommended optimizations appro-
priately. Further, our implementation of some of the optimizations
such as transaction rate control are trivial in such benchmarking
scenarios and do not account for real-world overheads. However,
the implementations are mainly for demonstrative purposes. Our
work focuses on the multi-level recommendation approach used
by BlockOptR rather than the implementation of the optimizations.
Finally, our experiments without and with the recommended opti-
mizations are done on similar workloads generated with the same
input parameters, i.e., we assume a continued trend in the pattern
of the workload after the optimizations are applied. However, in
scenarios where the workload fluctuates or the optimization imple-
mentation is delayed, BlockOptR may need to be re-executed to
generate new recommendations.

8 Related Work
The literature proposes various Fabric optimization strategies

such as transaction reordering [13, 65, 67], block size optimiza-
tions [13, 36], CRDTs [52], and parallelizing various components [27].
Our work lies orthogonal to such optimization strategies and fo-
cuses on an optimization recommendation approach. We demon-
strate how our recommendations can be used along with two of the
literature’s optimization strategies to improve performance further.

There is also extensive research in the database community on
index and query optimizations that include self-tuning systems
as well as recommendation systems [2, 14, 15, 38, 73]. Though
we can draw parallels from these research, our work focuses on
blockchain-specific optimization recommendations. Different con-
figuration settings (such as block size and endorsement policy) and
the concept of smart contracts introduce new dimensions to the
recommendation approach, which are not required for databases.

There is ongoing research on applying process mining tech-
niques on blockchains to derive process-level insights [24, 32, 39,
49]. Klinkmüller et al. [39] and Mühlberger et al. [49] describe
different approaches to extract process data from the Ethereum
blockchain. Hobeck et al. [32] use process mining on an Ethereum-
based betting application to identify shortcomings in the appli-
cation. Process mining on blockchains currently only focuses on
permissionless blockchains as they are publicly accessible. How-
ever, deriving and studying the process model is equally critical for
private blockchains, and therefore, our work contributes to this less
explored area of research. Further, unlike the related work, we focus

on using process mining for recommending blockchain optimiza-
tion strategies. We only found a single paper that uses permissioned
blockchains, where Duchmann et al. [24] extract process data from
Fabric and detect semantic errors in a smart contract. Though our
work is comparable, we extract not only the process data but also
blockchain-specific attributes from Fabric, derive multiple metrics,
and recommend optimization strategies.

There is extensive research in the database community in the
domain of data-aware business processes that encourage a business
process perspective to database management systems [11, 20, 34].
Calvanese et al. [11] comprehensively survey the contributions in
this realm and catalog contributions from various fields, including
database theory and process management. These works were an
important motivation for us to view blockchains from a business
process perspective. However, our work brings new contributions
since blockchains deal with several other elements apart from data,
such as smart contracts and endorsement policies.

9 Conclusions
This paper showcases the necessity and effectiveness of having

a holistic perspective on blockchain optimizations. We define a
multi-level recommendation approach based on several metrics and
attributes derived from the blockchain log. We define a total of nine
optimizations at the system, data, and user-level of a blockchain.
We implement an automated optimization recommendation tool,
BlockOptR, based on these concepts. Further, we demonstrate how
such optimizations can be implemented to improve the system per-
formance. After implementing the recommended optimizations, we
observe an average of 20% improvement in the success rate and
an average of 40% improvement in latency. We extensively evalu-
ate the system with a wide range of workloads covering multiple
real-world scenarios. We hope to inspire enterprises to use our
contributions to detect blockchain optimization strategies and to
contribute their live blockchain (anonymized) logs for further re-
search in this domain. The BlockOptR tool, all the smart contracts,
the workload generation scripts, and all the event logs are available
as open-source [10]. We also plan to extend our tool to include
more optimization recommendations.

In terms of future work, we are currently developing a ProM plu-
gin which would provide a user-friendly interface for BlockOptR.
Presently, the threshold settings of BlockOptR depend on the busi-
ness network setup. For example, the rate threshold for our setup
was 300 TPS as higher rates led to instabilities, but this can vary for
other deployments. Therefore, tuning these thresholds automati-
cally in BlockOptR could be a future extension. Another interesting
extension is to define additional attributes that applications can log,
thereby providing more data for optimization recommendations.
Further, investigating the effect of workload fluctuations and delay
in applying the recommendations is another challenging future
direction.

Acknowledgments
This work is funded in part by the Deutsche Forschungsgemein-

schaft (DFG, German Research Foundation) - 392214008, and by
the Bavarian Cooperative Research Program of the Free State of
Bavaria - DIK-2002-0013//DIK0114/02.

References
[1] Parinaz Ameri. 2016. Challenges of index recommendation for databases: With

specific evaluation on a NoSQL database. In dalam 28th GI-Workshop on Founda-
tions of Databases (Grundlagen von Datenbaken), Nörten-Hardenberg, Germany.

[2] Parinaz Ameri. 2016. On a self-tuning index recommendation approach for
databases. In 2016 IEEE 32nd International Conference on Data Engineering Work-
shops (ICDEW). 201–205. https://doi.org/10.1109/ICDEW.2016.7495648

[3] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021. Permis-
sioned Blockchains: Properties, Techniques and Applications. Association for Com-
puting Machinery, New York, NY, USA. https://doi.org/10.1145/3448016.3457539

[4] Analyzing the complaints process at Granada city council 2020.
https://www.tf-pm.org/resources/casestudy/analyzing-the-complains-
prociess-at-granada-city-council.pdf. (2020). [Online; accessed 07-July-
2022].

[5] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula
Stathakopoulou, Marko Vukolić, SharonWeed Cocco, and Jason Yellick. 2018. Hy-
perledger Fabric: A Distributed Operating System for Permissioned Blockchains.
In Proceedings of the Thirteenth EuroSys Conference (EuroSys ’18). ACM, New York,
NY, USA, Article 30, 15 pages. https://doi.org/10.1145/3190508.3190538

[6] Arati Baliga, Nitesh Solanki, Shubham Verekar, Amol Pednekar, Pandurang Ka-
mat, and Siddhartha Chatterjee. 2018. Performance Characterization of Hyper-
ledger Fabric. In 2018 Crypto Valley Conference on Blockchain Technology (CVCBT).
65–74. https://doi.org/10.1109/CVCBT.2018.00013

[7] Arati Baliga, I Subhod, Pandurang Kamat, and Siddhartha Chatterjee. 2018.
Performance Evaluation of the Quorum Blockchain Platform. (2018). https:
//doi.org/10.48550/ARXIV.1809.03421

[8] Dina Bayomie, Iman Helal, Ahmed Awad, Ehab Ezat, and Ali Elbastawissi. 2015.
Deducing Case IDs for Unlabeled Event Logs, Vol. 256. https://doi.org/10.1007/
978-3-319-42887-1_20

[9] Sara Bergman, Mikael Asplund, and Simin Nadjm-Tehrani. 2020. Permissioned
blockchains and distributed databases: A performance study. Concurrency and
Computation: Practice and Experience 32, 12 (2020), e5227. https://doi.org/10.1002/
cpe.5227 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5227 e5227
cpe.5227.

[10] BlockOptR 2022. https://github.com/anonysubm/BlockOptR. (2022). [Online;
accessed 13 -April-2022].

[11] Diego Calvanese, Giuseppe De Giacomo, and Marco Montali. 2013. Foundations
of Data-Aware Process Analysis: A Database Theory Perspective. In Proceedings
of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS ’13). Association for Computing Machinery, New York, NY, USA,
1–12. https://doi.org/10.1145/2463664.2467796

[12] Celonis ProcessMining 2022. https://www.celonis.com/. (2022). [Online; accessed
07-April-2022].

[13] Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2021. Why Do My
Blockchain Transactions Fail? A Study of Hyperledger Fabric. In Proceedings of
the 2021 International Conference on Management of Data (SIGMOD/PODS ’21).
Association for Computing Machinery, New York, NY, USA, 221–234. https:
//doi.org/10.1145/3448016.3452823

[14] Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis Polyzotis. 2009. Query
Recommendations for Interactive Database Exploration. In Scientific and Statisti-
cal Database Management, Marianne Winslett (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 3–18.

[15] Surajit Chaudhuri and Vivek Narasayya. 2007. Self-Tuning Database Systems: A
Decade of Progress. In Proceedings of the 33rd International Conference on Very
Large Data Bases (VLDB ’07). VLDB Endowment, 3–14.

[16] Mohammad Jabed Morshed Chowdhury, Alan Colman, Muhammad Ashad Kabir,
Jun Han, and Paul Sarda. 2018. Blockchain Versus Database: A Critical Analysis.
In 2018 17th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/ 12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE). 1348–1353. https://doi.org/10.
1109/TrustCom/BigDataSE.2018.00186

[17] Combining Multiple Columns as Case ID 2020. https://fluxicon.com/book/read/
perspectives/#combining-multiple-columns-as-case-id. (2020). [Online; accessed
07-July-2022].

[18] Corda 2022. https://docs.r3.com/en/platform/corda/4.7/open-source/key-
concepts-notaries.html. (2022). [Online; accessed 02-April-2022].

[19] Data Requirements: Case ID 2020. https://fluxicon.com/book/read/dataext/#case-
id. (2020). [Online; accessed 07-July-2022].

[20] Daniel Deutch and Tova Milo. 2011. A Quest for Beauty and Wealth (or,
Business Processes for Database Researchers). In Proceedings of the Thirtieth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS ’11). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/1989284.1989286

[21] Claudio Di Ciccio, Alessio Cecconi, Marlon Dumas, Luciano García-Bañuelos,
Orlenys López-Pintado, Qinghua Lu, Jan Mendling, Alexander Ponomarev, An
Binh Tran, and Ingo Weber. 2019. Blockchain support for collaborative business
processes. Informatik Spektrum 42, 3 (2019), 182–190.

[22] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and
Ji Wang. 2018. Untangling Blockchain: A Data Processing View of Blockchain
Systems. IEEE Transactions on Knowledge and Data Engineering 30, 7 (2018),
1366–1385. https://doi.org/10.1109/TKDE.2017.2781227

[23] Julian Dreyer, Marten Fischer, and Ralf Tönjes. 2020. Performance Analysis
of Hyperledger Fabric 2.0 Blockchain Platform. In Proceedings of the Workshop
on Cloud Continuum Services for Smart IoT Systems (CCIoT ’20). Association for
Computing Machinery, New York, NY, USA, 32–38. https://doi.org/10.1145/
3417310.3431398

[24] Frank Duchmann and Agnes Koschmider. 2019. Validation of smart contracts
using process mining. In ZEUS. CEUR workshop proceedings, Vol. 2339. 13–16.

[25] FabricSharp Git Repository 2022. https://github.com/ooibc88/FabricSharp. (2022).
[Online; accessed 13-April-2022].

[26] Ghareeb Falazi, Vikas Khinchi, Uwe Breitenbücher, and Frank Leymann. 2019.
Transactional properties of permissioned blockchains. SICS Software-Intensive
Cyber-Physical Systems (2019). https://doi.org/10.1007/s00450-019-00411-y

[27] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. 2019.
FastFabric: Scaling Hyperledger Fabric to 20,000 Transactions per Second. In 2019
IEEE International Conference on Blockchain and Cryptocurrency (ICBC). 455–463.
https://doi.org/10.1109/BLOC.2019.8751452

[28] Gideon Greenspan et al. 2015. Multichain private blockchain-white paper. URl:
http://www. multichain. com/download/MultiChain-White-Paper. pdf (2015), 57–
60.

[29] Christian W Günther and Anne Rozinat. 2012. Disco: Discover Your Processes.
BPM (Demos) 940 (2012), 40–44.

[30] Christian W Günther and Wil MP Van Der Aalst. 2007. Fuzzy mining–adaptive
process simplification based on multi-perspective metrics. In International con-
ference on business process management. Springer, 328–343.

[31] Theo Härder. 1984. Observations on optimistic concurrency control schemes.
Information Systems 9, 2 (1984), 111 – 120. https://doi.org/10.1016/0306-4379(84)
90020-6

[32] Richard Hobeck, Christopher Klinkmüller, Hmn Dilum Bandara, Ingo Weber,
and Wil Van der Aalst. 2021. Process Mining on Blockchain Data: a Case Study of
Augur. Technical Report. EasyChair.

[33] Christian Hugo Hoffmann. 2021. Blockchain Use Cases Revisited: Micro-Lending
Solutions for Retail Banking and Financial Inclusion. Journal of Systems Science
and Information 9, 1 (2021), 1–15. https://doi.org/doi:10.21078/JSSI-2021-001-15

[34] Richard Hull. 2008. Artifact-Centric Business Process Models: Brief Survey of
Research Results and Challenges. In On the Move to Meaningful Internet Systems:
OTM 2008, Robert Meersman and Zahir Tari (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 1152–1163.

[35] Hyperledger Caliper 2020. https://hyperledger.github.io/caliper/. (2020). [Online;
accessed 07-April-2022].

[36] Zsolt István, Alessandro Sorniotti, and Marko Vukolić. 2018. Streamchain: Do
blockchains need blocks?. In Proceedings of the 2nd Workshop on Scalable and
Resilient Infrastructures for Distributed Ledgers. 1–6.

[37] Haris Javaid, Chengchen Hu, and Gordon Brebner. 2019. Optimizing Validation
Phase of Hyperledger Fabric. In 2019 IEEE 27th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). 269–275. https://doi.org/10.1109/MASCOTS.2019.00038

[38] Sadhana J. Kamatkar, Ajit Kamble, Amelec Viloria, Lissette Hernández-Fernandez,
and Ernesto García Cali. 2018. Database Performance Tuning and Query Opti-
mization. In Data Mining and Big Data, Ying Tan, Yuhui Shi, and Qirong Tang
(Eds.). Springer International Publishing, Cham, 3–11.

[39] Christopher Klinkmüller, Alexander Ponomarev, An Binh Tran, Ingo Weber, and
Wil van der Aalst. 2019. Mining blockchain processes: Extracting process mining
data from blockchain applications. In International Conference on Business Process
Management. Springer, 71–86.

[40] Olga Labazova, Erol Kazan, Tobias Dehling, Tuure Tuunanen, and Ali Sunyaev.
2021. Managing Blockchain Systems and Applications: A Process Model for
Blockchain Configurations. arXiv preprint arXiv:2105.02118 (2021).

[41] Mengting Liu, F. Richard Yu, Yinglei Teng, Victor C. M. Leung, andMei Song. 2019.
Performance Optimization for Blockchain-Enabled Industrial Internet of Things
(IIoT) Systems: A Deep Reinforcement Learning Approach. IEEE Transactions on
Industrial Informatics 15, 6 (2019), 3559–3570. https://doi.org/10.1109/TII.2019.
2897805

[42] Jiaheng Lu, Yuxing Chen, Herodotos Herodotou, and Shivnath Babu. 2019.
Speedup Your Analytics: Automatic Parameter Tuning for Databases and Big
Data Systems. Proc. VLDB Endow. 12, 12 (aug 2019). https://doi.org/10.14778/
3352063.3352112

[43] Orlenys López-Pintado, Luciano García-Bañuelos, Marlon Dumas, Ingo Weber,
and Alex Ponomarev. 2018. CATERPILLAR: A Business Process Execution Engine
on the Ethereum Blockchain. (2018). https://doi.org/10.48550/ARXIV.1808.03517

https://doi.org/10.1109/ICDEW.2016.7495648
https://doi.org/10.1145/3448016.3457539
https://www.tf-pm.org/resources/casestudy/analyzing-the-complains-prociess-at-granada-city-council.pdf
https://www.tf-pm.org/resources/casestudy/analyzing-the-complains-prociess-at-granada-city-council.pdf
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1109/CVCBT.2018.00013
https://doi.org/10.48550/ARXIV.1809.03421
https://doi.org/10.48550/ARXIV.1809.03421
https://doi.org/10.1007/978-3-319-42887-1_20
https://doi.org/10.1007/978-3-319-42887-1_20
https://doi.org/10.1002/cpe.5227
https://doi.org/10.1002/cpe.5227
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5227
https://github.com/anonysubm/BlockOptR
https://doi.org/10.1145/2463664.2467796
https://www.celonis.com/
https://doi.org/10.1145/3448016.3452823
https://doi.org/10.1145/3448016.3452823
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00186
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00186
https://fluxicon.com/book/read/perspectives/#combining-multiple-columns-as-case-id
https://fluxicon.com/book/read/perspectives/#combining-multiple-columns-as-case-id
https://docs.r3.com/en/platform/corda/4.7/open-source/key-concepts-notaries.html
https://docs.r3.com/en/platform/corda/4.7/open-source/key-concepts-notaries.html
https://fluxicon.com/book/read/dataext/#case-id
https://fluxicon.com/book/read/dataext/#case-id
https://doi.org/10.1145/1989284.1989286
https://doi.org/10.1109/TKDE.2017.2781227
https://doi.org/10.1145/3417310.3431398
https://doi.org/10.1145/3417310.3431398
https://github.com/ooibc88/FabricSharp
https://doi.org/10.1007/s00450-019-00411-y
https://doi.org/10.1109/BLOC.2019.8751452
https://doi.org/10.1016/0306-4379(84)90020-6
https://doi.org/10.1016/0306-4379(84)90020-6
https://doi.org/doi:10.21078/JSSI-2021-001-15
https://hyperledger.github.io/caliper/
https://doi.org/10.1109/MASCOTS.2019.00038
https://doi.org/10.1109/TII.2019.2897805
https://doi.org/10.1109/TII.2019.2897805
https://doi.org/10.14778/3352063.3352112
https://doi.org/10.14778/3352063.3352112
https://doi.org/10.48550/ARXIV.1808.03517

[44] Heidy M. Marin-Castro and Edgar Tello-Leal. 2021. Event Log Preprocessing for
Process Mining: A Review. Applied Sciences 11, 22 (2021). https://doi.org/10.3390/
app112210556

[45] Dennis McLeod and John Miles Smith. 1980. Abstraction in Databases. In
Proceedings of the 1980 Workshop on Data Abstraction, Databases and Concep-
tual Modeling. Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/800227.806871

[46] Du Mingxiao, Ma Xiaofeng, Zhang Zhe, Wang Xiangwei, and Chen Qijun.
2017. A review on consensus algorithm of blockchain. In 2017 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC). 2567–2572. https:
//doi.org/10.1109/SMC.2017.8123011

[47] Bhabendu Kumar Mohanta, Soumyashree S Panda, and Debasish Jena. 2018.
An Overview of Smart Contract and Use Cases in Blockchain Technology. In
2018 9th International Conference on Computing, Communication and Networking
Technologies (ICCCNT). 1–4. https://doi.org/10.1109/ICCCNT.2018.8494045

[48] JP Morgan. 2016. Quorum whitepaper. New York: JP Morgan Chase (2016).
[49] Roman Mühlberger, Stefan Bachhofner, Claudio Di Ciccio, Luciano García-

Bañuelos, and Orlenys López-Pintado. 2019. Extracting event logs for process
mining from data stored on the blockchain. In International Conference on Business
Process Management. Springer, 690–703.

[50] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review (2008), 21260.

[51] Q. Nasir, Ilham A. Qasse, M. Talib, and A. B. Nassif. 2018. Performance Analysis of
Hyperledger Fabric Platforms. Secur. Commun. Networks 2018 (2018), 3976093:1–
3976093:14.

[52] Pezhman Nasirifard, Ruben Mayer, and Hans-Arno Jacobsen. 2019. FabricCRDT:
A Conflict-Free Replicated Datatypes Approach to Permissioned Blockchains.
In Proceedings of the 20th International Middleware Conference (Middleware '19).
Association for Computing Machinery, New York, NY, USA, 110—122. https:
//doi.org/10.1145/3361525.3361540

[53] Senthil Nathan, Chander Govindarajan, Adarsh Saraf, Manish Sethi, and Praveen
Jayachandran. 2019. Blockchain Meets Database: Design and Implementation
of a Blockchain Relational Database. Proc. VLDB Endow. 12, 11 (jul 2019). https:
//doi.org/10.14778/3342263.3342632

[54] Keerthi Nelaturu, Sidi Mohamed Beillahi, Fan Long, and Andreas Veneris. 2021.
Smart Contracts Refinement for Gas Optimization. In 2021 3rd Conference on
Blockchain Research Applications for Innovative Networks and Services (BRAINS).
229–236. https://doi.org/10.1109/BRAINS52497.2021.9569819

[55] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference (USENIX ATC’14). USENIX Association, Berkeley,
CA, USA, 305–320. http://dl.acm.org/citation.cfm?id=2643634.2643666

[56] Orlenys Pintado, Luciano García-Bañuelos, Marlon Dumas, Ingo Weber, and
Alexander Ponomarev. 2019. Caterpillar: A business process execution engine
on the Ethereum blockchain. Software: Practice and Experience (05 2019). https:
//doi.org/10.1002/spe.2702

[57] Process mining on the loan application process of a Dutch Financial Insti-
tute 2017. https://www.win.tue.nl/bpi/lib/exe/fetch.php?media=2017:bpi2017_
winner_professional.pdf. (2017). [Online; accessed 04-April-2022].

[58] Yuncheng Qiao, Chaoqun Ma, Qiujun Lan, and Zhongding Zhou. 2019/12. In-
ventory Financing Model Based on Blockchain Technology. In Proceedings of the
Fourth International Conference on Economic and Business Management (FEBM
2019). Atlantis Press, 337–342. https://doi.org/10.2991/febm-19.2019.7

[59] Mayank Raikwar, Danilo Gligoroski, and Goran Velinov. 2020. Trends in Devel-
opment of Databases and Blockchain. In 2020 Seventh International Conference on
Software Defined Systems (SDS). 177–182. https://doi.org/10.1109/SDS49854.2020.
9143893

[60] Aravind Ramachandran and Dr. Murat Kantarcioglu. 2017. Using Blockchain and
smart contracts for secure data provenance management. arXiv (2017).

[61] Michel Rauchs, Apolline Blandin, Keith Bear, and Stephen B McKeon. 2019. 2nd
global enterprise blockchain benchmarking study. Available at SSRN 3461765
(2019).

[62] Olivier Rikken, Marijn Janssen, and Zenlin Kwee. 2019. Governance challenges
of blockchain and decentralized autonomous organizations. Information Polity
24 (11 2019), 1–21. https://doi.org/10.3233/IP-190154

[63] Henrique Rocha and Stéphane Ducasse. 2018. Preliminary Steps Towards Model-
ing Blockchain Oriented Software. In 2018 IEEE/ACM 1st International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB). 52–57.

[64] Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang
Chen, Qian Lin, and Beng Chin Ooi. 2021. Blockchains vs. Distributed Databases:
Dichotomy and Fusion. Association for Computing Machinery, New York, NY,
USA. https://doi.org/10.1145/3448016.3452789

[65] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,
and Beng Chin Ooi. 2020. A Transactional Perspective on Execute-Order-Validate
Blockchains. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’20). Association for Computing Machinery, New
York, NY, USA, 543–557. https://doi.org/10.1145/3318464.3389693

[66] Gary Shapiro, Christopher Natoli, and Vincent Gramoli. 2020. The Performance of
Byzantine Fault Tolerant Blockchains. In 2020 IEEE 19th International Symposium
on Network Computing and Applications (NCA). 1–8. https://doi.org/10.1109/
NCA51143.2020.9306742

[67] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
2019. Blurring the Lines Between Blockchains and Database Systems: The Case
of Hyperledger Fabric. In Proceedings of the 2019 International Conference on
Management of Data (SIGMOD ’19). ACM, New York, NY, USA, 105–122. https:
//doi.org/10.1145/3299869.3319883

[68] Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. 2018. Performance
Benchmarking and Optimizing Hyperledger Fabric Blockchain Platform. In 2018
IEEE 26th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS). 264–276. https://doi.org/
10.1109/MASCOTS.2018.00034

[69] An Binh Tran, Qinghua Lu, and Ingo Weber. 2018. Lorikeet: A Model-Driven
Engineering Tool for Blockchain-Based Business Process Execution and Asset
Management. In BPM (Dissertation/Demos/Industry) (CEURWorkshop Proceedings),
Vol. 2196. CEUR-WS.org.

[70] Transaction Flow 2022. https://hyperledger-fabric.readthedocs.io/en/release-
2.2/txflow.html. (2022). [Online; accessed 07-April-2022].

[71] Updating a channel configuration 2022. https://hyperledger-fabric.readthedocs.
io/en/release-2.2/config_update.html. (2022). [Online; accessed 07-April-2022].

[72] Upgrading a smart contract 2022. https://hyperledger-fabric.readthedocs.io/en/
release-2.2/deploy_chaincode.html#upgrading-a-smart-contract. (2022). [Online;
accessed 18-July-2022].

[73] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy Lohman, and Alan Skelley.
2000. DB2 advisor: an optimizer smart enough to recommend its own indexes.
In Proceedings of 16th International Conference on Data Engineering. https://doi.
org/10.1109/ICDE.2000.839397

[74] Wil van der Aalst. 2009. Process-Aware Information Systems: Lessons to Be
Learned from Process Mining. T. Petri Nets and Other Models of Concurrency 2
(01 2009), 1–26. https://doi.org/10.1007/978-3-642-00899-3_1

[75] Wil Van Der Aalst. 2012. Process mining. Commun. ACM 55, 8 (2012), 76–83.
[76] Wil van der Aalst, T. Weijters, and L. Maruster. 2004. Workflow mining: discov-

ering process models from event logs. IEEE Transactions on Knowledge and Data
Engineering 16, 9 (2004), 1128–1142. https://doi.org/10.1109/TKDE.2004.47

[77] Boudewijn F van Dongen. 2017. (2017). https://doi.org/10.4121/12705737.v2
[78] Boudewijn F Van Dongen, Ana Karla A de Medeiros, HMW Verbeek, AJMM

Weijters, and Wil MP van Der Aalst. 2005. The ProM framework: A new era in
process mining tool support. In International conference on application and theory
of petri nets. Springer, 444–454.

[79] A.J.M.M. Weijters, Wil M.P. Aalst, van der, and A.K. Alves De Medeiros. 2006.
Process mining with the HeuristicsMiner algorithm. Technische Universiteit Eind-
hoven.

[80] Karl Wüst and Arthur Gervais. 2018. Do you Need a Blockchain?. In 2018 Crypto
Valley Conference on Blockchain Technology (CVCBT). 45–54. https://doi.org/10.
1109/CVCBT.2018.00011

[81] Xiaoqiong Xu, Gang Sun, Long Luo, Huilong Cao, Hongfang Yu, and Athanasios V.
Vasilakos. 2021. Latency performance modeling and analysis for hyperledger
fabric blockchain network. Information Processing & Management 58, 1 (2021),
102436. https://doi.org/10.1016/j.ipm.2020.102436

[82] Qi Yang, Xiao Zeng, Yu Zhang, and Wei Hu. 2019. New Loan System Based on
Smart Contract (BSCI ’19). Association for Computing Machinery, New York, NY,
USA, 121–126. https://doi.org/10.1145/3327960.3332395

[83] Dirk A Zetzsche, Douglas W Arner, and Ross P Buckley. 2020. Decen-
tralized Finance. Journal of Financial Regulation 6, 2 (09 2020), 172–203.
https://doi.org/10.1093/jfr/fjaa010 arXiv:https://academic.oup.com/jfr/article-
pdf/6/2/172/37064506/fjaa010.pdf

https://doi.org/10.3390/app112210556
https://doi.org/10.3390/app112210556
https://doi.org/10.1145/800227.806871
https://doi.org/10.1109/SMC.2017.8123011
https://doi.org/10.1109/SMC.2017.8123011
https://doi.org/10.1109/ICCCNT.2018.8494045
https://doi.org/10.1145/3361525.3361540
https://doi.org/10.1145/3361525.3361540
https://doi.org/10.14778/3342263.3342632
https://doi.org/10.14778/3342263.3342632
https://doi.org/10.1109/BRAINS52497.2021.9569819
http://dl.acm.org/citation.cfm?id=2643634.2643666
https://doi.org/10.1002/spe.2702
https://doi.org/10.1002/spe.2702
https://www.win.tue.nl/bpi/lib/exe/fetch.php?media=2017:bpi2017_winner_professional.pdf
https://www.win.tue.nl/bpi/lib/exe/fetch.php?media=2017:bpi2017_winner_professional.pdf
https://doi.org/10.2991/febm-19.2019.7
https://doi.org/10.1109/SDS49854.2020.9143893
https://doi.org/10.1109/SDS49854.2020.9143893
https://doi.org/10.3233/IP-190154
https://doi.org/10.1145/3448016.3452789
https://doi.org/10.1145/3318464.3389693
https://doi.org/10.1109/NCA51143.2020.9306742
https://doi.org/10.1109/NCA51143.2020.9306742
https://doi.org/10.1145/3299869.3319883
https://doi.org/10.1145/3299869.3319883
https://doi.org/10.1109/MASCOTS.2018.00034
https://doi.org/10.1109/MASCOTS.2018.00034
https://hyperledger-fabric.readthedocs.io/en/release-2.2/txflow.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/txflow.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/config_update.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/config_update.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/deploy_chaincode.html#upgrading-a-smart-contract
https://hyperledger-fabric.readthedocs.io/en/release-2.2/deploy_chaincode.html#upgrading-a-smart-contract
https://doi.org/10.1109/ICDE.2000.839397
https://doi.org/10.1109/ICDE.2000.839397
https://doi.org/10.1007/978-3-642-00899-3_1
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.4121/12705737.v2
https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1016/j.ipm.2020.102436
https://doi.org/10.1145/3327960.3332395
https://doi.org/10.1093/jfr/fjaa010
https://arxiv.org/abs/https://academic.oup.com/jfr/article-pdf/6/2/172/37064506/fjaa010.pdf
https://arxiv.org/abs/https://academic.oup.com/jfr/article-pdf/6/2/172/37064506/fjaa010.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Hyperledger Fabric
	2.2 Event Logs and Process Mining

	3 A Process Perspective to Blockchains
	4 Blockchain Optimization Recommender
	4.1 Blockchain Data Preprocessing
	4.2 Event Log Generation
	4.3 Metrics
	4.4 Optimization Recommendations
	4.5 Implementation of Optimizations

	5 Experimental Methodology
	5.1 Workload Generation

	6 Experimental Results
	6.1 Synthetic Workloads
	6.2 Use-case based Workloads
	6.3 Loan Application Process (LAP)
	6.4 Fabric Extensions

	7 Lessons Learned and Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

