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Abstract

This paper studies how to improve the performance of main mem-

ory multicore OLTP systems for executing transactions with con-

�icts. A promising approach is to partition transaction workloads

into mutually con�ict-free clusters, and distribute the clusters to dif-

ferent cores for concurrent execution. We show that if transactions

in each cluster are properly scheduled, transactions that are tradi-

tionally considered con�icting can be executed without con�icts at

runtime. In light of this, we propose to schedule transactions and re-

duce runtime con�icts, instead of partitioning based on the conven-

tional notion of con�icts. We formulate the transaction scheduling

problem to minimize runtime con�icts, and show that the problem

is NP-complete. This said, we develop an e�cient scheduling algo-

rithm to improve parallelism. Moreover, for transactions that are

not packed in batches, we show that runtime con�ict analysis also

helps reduce con�ict penalties, by proposing a proactive deferring

method. Using standard and enhanced benchmarks, we show that

on average our scheduling and proactive deferring methods im-

prove the throughput of existing partitioners and concurrency con-

trol protocols by 131% and 109%, respectively, up to 294% and 152%.

1 Introduction

There has been increasing demand on high volume of concurrent

transactions from e.g., e-commerce, FinTech and cloud applications

[28]. This and the growing dominance of multicore machines high-

light the need for pursuing higher throughput and parallelism of

multi-thread transaction processing [4, 31, 38, 56]. Due to con-

tended operations that read and write the same data items, transac-

tion execution has to be guarded against concurrency anomalies to

uphold the desired isolation levels. There are mainly two types of

approaches to maximizing concurrency while providing isolation

guarantees: (a) partition-based approaches [14, 21, 31, 34, 38, 45]

that use transaction partitioners to decide a transaction-to-thread

assignment for a batch of transactions before their execution; and (b)

concurrency control (CC) based approaches [9, 24, 38, 49, 57] that,

instead of searching for good transaction-to-thread assignments, fo-

cus on CC protocols to resolute contended transactions on-the-�y.

Transaction partitioning methods focus on a bundle of trans-

actions that are e.g., a set of transaction collected in a �xed dura-

tion [34] or workloads [21] for which the transaction logic is known

in advance (e.g., stored procedures and hard-coded templates), as

targeted by deterministic databases [4, 36]. Such workloads allow

the system to carry out analysis over the transactions, i.e., transac-

tion partitioning, to decide the best way of assigning transactions

to threads. More speci�cally, given a workloadW over : threads,

a transaction partitioning method computes a partitioning (%1, %2,
. . . , %: ) ofW that assigns each %8 to a distinct thread 8 such that

transactions in the same partition are executed serially, while con-

current execution is governed by CC for the desired isolation levels.

Its objective is to minimize con�icts among transactions across dif-

ferent partitions to reduce CC cost, while maximizing load balance

so as to minimize total parallel execution time.
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Figure 1: Di�erent transaction executions in Examples 1-2

Instead of searching for the best thread assignment for the trans-

actions, CC aims to resolute con�icts between transactions that are

concurrently executed, and do not require the access sets of transac-

tions before execution. There are two types of CC cost: (a) CC over-

head incurred on every transaction and (b) con�ict penalty when a

con�ict between transactions happens at runtime, e.g., block (wait-

ing) time with locking-basedCC [10, 17] or abort/retry penalty with

optimistic concurrency control protocols [5, 24]. In practice, CC
protocols with higher overhead are more likely to reduce con�ict

penalties. Hence, the e�ectiveness ofCC relies on delicate trade-o�s

between the overhead and the ability to reduce con�ict penalties.

We refer to transactions targeted by the partitioning and CC ap-

proaches as bundled transactions and unbundled ones, respectively.

Runtime con�ict. Con�icts are conventionally de�ned relative to

the isolation level adopted by transaction systems. For serializabil-

ity [20], transactions) and) ′ are in con�ict if they access the same

data item and at least one of them updates it. For snapshot isola-

tion [7],) and) ′ are con�icting if they write to the same data item.

However, transactions that are conventionally considered in con-

�icts can be executed concurrently without con�icts at runtime as

long as they are scheduled properly, as illustrated below.

Example 1: Consider a setW0 of transactions {)1,)2,)3,)4,)5}:
◦ )1 = R[G2]W[G2]R[G3]W[G3]R[G4]W[G4],
◦ )2 = R[G1]W[G2]W[G1],
◦ )3 = R[G3]W[G3]R[G2]R[G3]W[G2],
◦ )4 = R[G5]W[G5]R[G6]W[G6], and

◦ )5 = R[G1]W[G1]R[G5]W[G5]R[G1]W[G1],
where R[G1] denotes a read of data item G1 and W[G1] is a write to

G1. Assume that the targeted isolation level is serializability. Then

)1,)2 and )3 are in con�ict; similarly for ()2, )5) and ()4, )5).

Assume that we have two cores. Following [34], we partition

W0 into %1 = {)1,)2,)3} and %2 = {)4}, along with )5 as a cross-

partition transaction, as shown in Fig. 1(a). One can execute %1 and

%2 concurrently withoutCC, followed by)5 after both %1 and %2 are

completed. Assuming that each of read and write operation takes

a unit time; then the makespan of such execution (the concurrent

execution of the transactions) ofW0 is 20 time units. Note that the

workloads %1 and %2 are not balanced, and the second core may

idle for long before the cross-partition transaction )5 can start.

Alternatively, by following [14, 21], one can start )5 as soon

as )4 completes, as shown in Fig. 1(b); however, this requires CC
since)5 con�icts with)2 that is being concurrently executed at the
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other core. This may cause a retry of )2 (when using OCC), and a

makespan of 17 forW0 (ignoring CC overhead for all transactions).

In contrast, if we schedule the transactions as two queues Q1
= 〈)2,)1,)3〉 and Q2 = 〈)4,)5〉, i.e., imposing an execution order

of transactions in the partitions, we can processW0 at two cores

concurrently without CC as shown in Fig. 1(c), by executing Q1 and

Q2 in their orders at the two cores independently. Although)2 ofQ1
is in con�ict with )5 of Q2, their executions actually do not overlap.

In fact, the executions are serializable even without CC. Note that

the workloads are more balanced than the case with partitioning,

and the makespan of such an execution ofW is 14 instead of 20. 2

This example suggests that we consider runtime con�icts instead

for partition-based approaches, which provide a more accurate char-

acterization of transaction executions and more opportunities to

improve concurrency. Moreover, runtime con�icts could also help

with CC-based approaches for unbundled transactions.

Example 2: Consider the execution of transactions in Example 1

following a CC-based approach: we execute )1, )2 and )3 at core 1

and)4,)5 at core 2 in order, using OCC. Then)2 retries due to con-

�ict with)5, causing a total execution time of 17 (as shown Fig. 1(b)).

If prior to the start of)2, core 1 could �nd that)5 is being executed

at core 2, which will incur con�ict with )2, then a better option is

to “defer” )2 and execute )3 �rst instead. In this way, )3, )5 and

)2 can all commit without retry with a total time of 14 instead of

17 as shown in Fig. 1(d). That is, we can reduce runtime con�icts

during execution forCC-based approaches, by proactively deferring

transactions and changing their execution order on-the-�y. 2

Transaction scheduling. For bundled transactions that are han-

dled by existing partitioners, we propose to schedule transactions

so as to minimize runtime con�icts. Given a workloadW that has

been partitioned over : cores, we generate : queues (Q1, . . . , Q: )
and a residual set R, such that Q8 ’s consist of transactions inW
without incurring runtime con�icts, and hence can even be exe-

cuted withoutCC. As opposed to partitioning, transactions in Q8 are

scheduled, by placing an ordering on the executions of their trans-

actions. Transactions in R are executed over all cores using CC.

Intuitively, transactions in Q8 and those in Q 9 (8 ≠ 9 ) have no

runtime con�ict if they are executed on schedule, although they may

be conventionally considered in con�ict; hence transactions in Q8
run serially at the 8-th core, and in parallel with those in Q 9 (8 ≠ 9 )

without con�icts. Transactions in R in�ict runtime con�icts and

hence are executed at all cores with CC. As shown in Example 1,

scheduling allows more transactions to be put in Q1, . . . , Q: and

executed concurrently without con�icts compared to partitioning.

We show that transaction scheduling is intractable. This is not

surprising since it is more intriguing than the transaction partition-

ing problem, which is already NP-hard [34]. This said, we develop

an e�cient algorithm that is able to either re�ne a transaction par-

tition into a schedule, i.e., partitions with ordering, or compute a

schedule starting from scratch when a partition is not available.

Scheduling targets bundled transactions to which the partitioning

methods are applicable. It not only reduces runtime con�icts but

also balances workloads among the threads, improving the through-

put. It is particularly e�ective for transactions with skewed costs or

I/O latency, which existing partitioners do not handle very well.
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Figure 2: A typical transaction systemwith TSkd: TSkdworks

as a plug-in for existing transaction systems that either use transaction

partitioners to assign transactions to threads or directly rely on CC
protocols. It sits between the transaction-to-thread assignment module

and transaction execution engines to reduce runtime con�icts.

Proactive transaction deferment. For unbundled transactions

handled byCC-based approaches, we develop a lightweight method

to reduce their CC cost by proactively deferring transactions on-

the-�y that are on course to in�ict runtime con�icts with other

transactions being executed. Unlike partitioners that are often used

for preprocessing batched transactions prior to their execution, CC
is part of the execution phase and hence proactive deferment has

to be at a low cost since otherwise the bene�t of reduced runtime

con�icts could be canceled out by the increased CC overhead.

To this end, we develop a lock-free structure that tracks the

progresses of transaction execution of all the threads, which allows

us to e�ciently detect whether a runtime con�ict would happen

before executing a new transaction, during execution time. The

lock-free design avoids data racing overhead when threads update

and look up execution progresses concurrently. In addition, it has

a parametric complexity to trade the detection overhead for larger

reduced con�ict penalties and hence higher throughput.

Prototype and evaluation. As a proof of concept, we develop

TSkd, a lightweight tool as shown in Fig. 2 for improving existing

partitioning-based or CC-based transaction systems via scheduling

(module TsPar) and proactive deferment (module TsDefer).

Given a workloadW for partitioners, TSkd (TsPar) �rst learns

rough runtime estimates of the transactions inW via execution

histories, partial dry-runs used by partitioners [4], or more sophisti-

cated cost estimators [11, 42, 46, 51]. It then converts the partition-

ing ofW into a schedule, i.e., : queues (Q1, . . . , Q: ) and residual

R, to reduce runtime con�icts and improve load balance. The trans-

actions in Q1, . . . , Q: can be concurrently executed as scheduled

without CC if the estimates are accurate. A subtle issue arises when

time estimates are not perfectly accurate; if so some transactions

may end up in�icting runtime con�icts. To cope with this, TSkd

uses both CC and proactive transaction deferment to execute the

scheduled queues and R. This guarantees that TSkd always ex-

ecutes transactions correctly, while still bene�ting from reduced

con�icts and balanced workload among the threads via scheduling.

For unbundled transactions that are executed directly using CC,

TSkd employs proactive transaction deferment (TsDefer) to re-

duce con�ict penalties. TsDefer detects potential con�icts between

transactions concurrently executed at runtime, and it imposes no

restrictions on the workload that CC schemes deal with.

To allow a fair and repeatable evaluation, we integrate TSkd into
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DBx1000, a popular open-source testbed for in-memory transaction

processing with built-in implementation of major CC schemes [2,

56]. Using TPC-C and YCSB, we verify that TSkd improves popu-

lar partitioners and CC protocols by 131% and 109%, respectively,

and reduces their retries by 45.3% and 45.7%, up to 294% and 152%

for throughput and 61.1% and 63.9% for retry reduction. Moreover,

TSkd remains e�ective for transactions with varying degrees of

long-tail I/O latency, making existing partitioners and CC schemes

robust against e.g., databases hosted in disks. We observe that TSkd

is less e�ective for extremely short-run transactions as con�ict

penalties play a much smaller role in their performance.

Contributions & organization. To summarize, in this work we

develop techniques that improve both transaction partitioners and

CC schemes by reducing runtime con�icts. More speci�cally:

◦ We formalize a notion of runtime con�icts and propose transac-

tion scheduling to improve transaction partitioners by making

con�icting transactions con�ict-free at runtime (Section 2.2).

◦ We propose proactive transaction deferment for CC protocols

to reduce runtime con�icts during execution time (Section 2.3).

◦ We develop TSkd, a tool that implements both methods. It can

serve as a plugin for existing transaction systems that use either

transaction partitioners or CC protocols directly, providing del-

icate controls over and �exible trade-o�s between transaction

retry penalties and CC overheads (Section 3).

◦ We settle the complexity of scheduling and develop an e�cient

scheduling algorithm for transaction scheduling (Section 4).

◦ We develop a lightweight lock-free structure that enables proac-

tive transaction deferment (Section 5).

◦ We empirically verify that TSkd improves the throughput of

both partitioners and CC schemes, and makes them robust

against large skewed I/O latency and runtime (Section 6).

We remark that TSkd is not to replace existing CC schemes or

transaction partitioners. Instead, it is positioned as a tool to expose

opportunities to improve their performance in a non-intrusive way.

We discuss related work in Section 7 and future work in Section 8.

2 Reducing Runtime Con�icts for Transactions

In this section, we �rst review the basics of transaction process-

ing (Section 2.1). We then present the notion of runtime con�icts,

based on which we propose transaction scheduling (Section 2.2)

and proactive transaction deferring (Section 2.3).

2.1 Transaction Preliminaries

A transaction is a sequence of database actions that are to be exe-

cuted as atomic work units, including reads from and writes to a

database. The tuples in the database that are read (resp. written) by

a transaction ) are referred to as the read (resp. write) set of ) .

Con�icts. Two transactions) and) ′ are in con�ict w.r.t. a CC pro-

tocol d if they contain contended operations under d . Contention

is de�ned relative to the particular isolation level [7] upheld by

d . For instance, if d enforces serializability, then ) and ) ′ are in

con�ict if they both access (read or write) the same data item G

and at least one of them writes G . If d enforces snapshot isolation,

then ) and ) ′ are in con�ict if they both write the same data item.

As an example, under serializability, )2 and )5 of Example 1 are in

con�ict; however, they do not con�ict under snapshot isolation.

Transaction ) is con�ict-free with ) ′ if they are not in con�ict.

Con�icting transactions require CC to ensure the correctness at

the particular isolation level upheld by the CC protocol d .

Workload model. As shown in Fig. 2, we consider multi-thread

transaction systems that either use transaction partitioners for bun-

dled transactions or directly use CC for unbundled ones. Indeed,

the majority of transaction systems fall into these two categories.

They consist of (a) input bu�er I that receives transactions to

be processed; and (b) thread-local bu�ers T1, . . . , T: , where each

T8 (8 ∈ [1, :]) contains the transactions to be executed by thread 8 .

For bundled workloadsW, i.e., a set of transactions revealed to I
all at once prior to execution, the practice is to �rst decide an assign-

ment for transactions inW to the : thread-local bu�ers, by parti-

tioning them based on their read/write sets [4, 14, 21, 31, 34, 38, 45].

All threads then execute assigned transactions in their local bu�ers

concurrently. By spending more preprocessing time, partitioners re-

duce transaction execution time with fewer aborts and less CC cost.

For transactions that are coming unbundled in I, they are peri-

odically �ushed to the thread-local bu�ers via much lighter method

than transaction partitioning, e.g., round-robin, random or light-

weight ML-based assignment methods [41]. All transactions are

executed concurrently with CC. Hence, the impact of CC is greater

on unbundled transactions when compared to bundled workloads.

Concurrency control (CC). When transactions in the local bu�ers

are executed concurrently, con�icting transactions may cause anom-

alies that the desired isolation level prohibits, impairing the cor-

rectness of the execution results. To this end, transaction systems

use CC protocols [9, 20, 24, 38, 49, 57] to prevent such anomalies.

The cost of CC consists of (a) the overhead of the CC protocols,

which is charged to every transaction even when it involves in no

con�ict, and (b) the cost of preventing anomalies when con�icts

happen, e.g., transaction blocking (waiting) time for locking-based

CC and abort/retry costs for optimistic CC methods.

Transaction partitioning. The partitioning methods assign bun-

dled transactions (workload) to threads for concurrent execution

by analyzing the con�icts between transactions. It is typically used

as a preprocessing method and incurs computation cost [4].

Conceptually, the process that transaction partitioners [4, 14, 33]

partition a workloadW can be modeled as a graph cut problem: by

�nding a minimum :-cut of the con�ict graph� ofW, where ver-

tices are transactions and an edge (),) ′) indicates that ) con�icts

with) ′, one breaksW into : partitions, where the edge cut denotes

con�icts between partitions. Each partition is executed serially by a

dedicated thread and partitions are executed concurrently with CC.

One can also gathers all con�icting transactions into a single

set R such that the : partitions become mutually con�ict-free. We

refer to R as a residual partition forW and the remaining : sets

of transactions as CC-free partitions. It has been shown that by

executing CC-free partitions without CC �rst, and then executing

R with CC after all CC-free partitions complete, one can achieve

higher throughput for high contention transactions [34].

In this setting, the objective of partitioning is to minimize the size

of residual set (or :-cut) while balancing the partitions. For conve-
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nience, we represent a partitioning ofW simply as (%1, . . . , %: ,R),
where %8 ’s are CC-free partitions and R is the residual.

2.2 From Transaction Partitioning to Scheduling

We next propose transaction scheduling based on runtime con�icts.

Execution time. Transactions in practice often have varying ex-

ecution time. The execution time of a transaction ) , denoted by

time() ), is the serial execution time of) by a single thread, from the

start to the completion of ) . It measures the duration (length) of ) .

A variety of methods have been explored to estimate time() ),
from a brute-force one that counts reads and writes in ) (e.g., Ex-

ample 1), to advanced statistical and ML strategies [11, 42, 46, 51].

For a set % of transactions, time(%) denotes the total execution

time of transactions in % , assuming that they are executed serially.

Transaction schedule. A schedule of a transaction workloadW
over : threads, denoted byW≺

5
, is a pair (5 , ≺), where

◦ 5 is a function that partitionsW into : + 1 disjoint sets Q1, . . . ,

Q: andRB such that (a)

⋃:
8=1 Q8∪RB =W and (b)) and) ′ are

not in runtime-con�ict for any ) ∈ Q8 , ) ′ ∈ Q 9 and 8 ≠ 9 ; and

◦ ≺ is an order relation onW such that for 8 ∈ [1, :] and each

Q8 , ≺ is a total order on Q8 .
We refer to Q8 as a con�ict-free queue.

Similar to conventional transaction partitioners, function 5 clus-

ters transactions inW by assigning them to threads. In contrast

to partitioning, relation ≺ orders transactions assigned to each of

the : queues. Moreover, the partition is guided by runtime con�icts

(see below). As a consequence, the : con�ict-free queues may in-

clude residual transactions for partitioning, and RB only contains

transactions that incur runtime con�icts with those in the queues.

Given a schedule (5 , ≺) over : threads, each core serially exe-

cutes transactions assigned to it by 5 , in the order speci�ed by ≺.

Runtime con�ict. For a transaction ) ∈ W that is assigned to

queue Q8 , denote by ts() ) the scheduled start time of) by schedule

(5 , ≺). It is de�ned as

∑
) ′∈pred() ) time() ′), where pred() ) is the

set of transactions inW that are assigned to the same Q8 as ) by

5 and are ordered prior to ) by ≺ (recall that time() ) is the serial

execution time of) ). Similarly, tc() ) denotes the scheduled complete

time of ) by (5 , ≺) and is de�ned as ts() ) + time() ). The range

[ts() ), tc() )] is called the scheduled runtime of of ) .

Two transactions ) and ) ′ are in con�ict at runtime by schedule

(5 , ≺) if they are in con�ict and their scheduled runtime overlap.

If they are not in con�ict at runtime, ) and ) ′ are called RC-free.

Consider a conventional transaction partitioner that splits work-

loadW into a partition plan 52 = (%1, . . . , %: ,R). Let (5 , ≺) be a

schedule ofW over : threads. Then we say (5 , ≺) re�nes partition-

ing 52 if %8 is a subset of Q8 partitioned by 5 for all 8 ∈ [1, :].
Intuitively, the schedule is more tolerant than the partition by

including conventionally con�icting transactions in the RC-free

queues. As a consequence, RB is a subset of residual R, and hence

more transactions can be executed concurrently.

Example 3: Continuing with Example 1, the queues Q1 and Q2
given there form a schedule for the workloadW0. Moreover, the

schedule re�nes the partitioning ofW0 that consists of %1 and %2

and)5. As shown there, the scheduling reduces the makespan of the

execution ofW0 from 20 to 14, and improves the throughput. 2

2.3 Proactively Deferring Con�icting Transactions

For residual transactions or unbundled transactions that are directly

executed using CC, we propose another method, called proactive

transaction deferment, to further reduce con�ict penalties for CC.

Recall that each thread 8 executes transactions in its local bu�er

T8 using CC so that anomalies can be prevented when con�icting

transactions are being executed concurrently. Proactive deferment

works by detecting whether runtime con�icts would happen when

a thread 8 is about to execute the next transaction ) in T8 after

committing the current one; if so, it defers ) and skips to the next

transaction for execution. As will be seen in Section 5, the complex-

ity of con�ict detection is parameterized with knobs, to provide

�exible trade-o�s between the overhead of con�ict detection and

con�ict penalties if runtime con�icts are not prevented in time.

For instance, as shown in Example 2, when core 1 detects that

executing )2 would in�ict a con�ict with )5 being executed at core

2, it defers )2 and skips to )3, reducing retry cost of )2.

We remark that proactive deferring is not a replacement for

CC since it does not aim to detect and prevent all the runtime

con�icts. Instead, it serves as a lightweight �lter of transactions

in the thread-local bu�ers before passing them to the transaction

execution engine. It makes CC more robust against transactions

with varying complexities by virtue of its parametric cost.

3 A Prototype Transaction Scheduler

In this section, we present an overview of TSkd, a lightweight tool

for transactions to reduce runtime con�icts and CC penalties.

As shown in Fig. 2,TSkdworks with existing transaction systems

by serving as an intermediate layer between the transaction-to-

thread assignment component and the execution engine. It consists

of two components: (a) a transaction scheduling (TsPar) module that

schedules and optimizes the partitioning generated by an existing

transaction partitioner, and (b) a proactive transaction deferment

(TsDefer) module that optimizes the thread-local bu�ers on-the-�y.

Scheduling (TsPar module). Given a transaction workloadW
and a partitioning ofW, TsPar computes a schedule (5 , ≺) that

turns the partitioning into : RC-free queues (Q1, . . . , Q: ) and a

residualRB . TsPar then assigns transactions in Q8 to the local bu�er

T8 of thread 8 in the order; all : threads can execute the assigned

transactions in parallel without CC if time estimates are accurate.

After all threads �nish their local transactions, transactions inRB
are then executed with CC by all threads (with TsDefer enabled;

more below). By default, TsPar assigns transactions to the thread

by round-robin for its simplicity and load balance. One can also

use other lightweight transaction-to-thread assignment methods

supported by the underling systems, e.g., random or ML-based [41].

To decide runtime con�icts for schedules, TSkd estimates the

execution cost of the transactions inW by following e.g., [11, 42,

46, 51]. TsPar does not rely on the actual transaction execution time;

instead, it is only sensitive to the relative length of transactions.

Hence, any estimates that roughly preserve the relative costs of

transactions su�ce. By default, TsPar uses execution histories to

coarsely estimate costs; if ) is instantiated with the same param-
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eters as ) ′ in the history, and if ) and ) ′ are based on the same

template (e.g., stored procedure), then TsPar uses the cost of ) ′ as

an estimate for) . When no) ′ has the same parameters as) , TsPar

picks a) ′with parameters close to that of) as a coarse estimate. For

cases when execution histories are not available, TsPar adopts the

partial dry-run approach used by e.g., deterministic databases [4]

to generate the estimates. The idea is to execute (samples) of trans-

actions partially such that no writes are physically executed during

the dry-run; this has also been shown e�ective to deduce access

sets of transactions for partitioning [4]. In the extreme case, TSkd

uses the sizes of the access sets of the transactions as a fallback.

To cope with inaccurate or even missing estimates, by default

TSkd uses CC and TsDefer (more below) to guard the execution of

RC-free transactions against potentially overlooked con�icts. This

ensures that TSkd always upholds the desired isolation level no

matter how bad the estimates can be. As will be shown in Section 6,

TSkd still bene�ts from reduced con�icts and more balanced work-

load among the cores via scheduling, and yields higher throughput,

especially for transactions with runtime skewness.

We will study the core problem underlying TsPar in Section 4.

Proactive deferment (TsDefer module). For unbundled trans-

actions that are directly assigned to the thread-local bu�ers upon

arrival or transactions of which runtime estimates are unavailable,

TSkd uses TsDefer to reduce con�ict penalties by further reduc-

ing runtime con�icts. TsDefer works by altering the ordering of

transactions in the thread-local bu�ers during execution time, via

carefully designed lightweight operations. It works as a dynamic

�lter of the transactions in the thread-local bu�ers and passes trans-

actions that are not likely to cause runtime con�icts to the execution

engine by deferring problematic transactions.

In a nutshell, TsDefer checks, prior to passing a transaction )

for execution (with CC) at thread 8 , whether ) is in con�ict with

transactions that are (very likely) being or will be immediately

executed by some other thread. If so, it defers the execution of) by

moving) to the end of the transaction queue in the local bu�er for

thread 8; otherwise it passes ) to the transaction execution engine.

We will discuss the implementation of TsDefer in Section 5.

Remarks. (1) TSkd aims to improve existing transaction systems,

no matter whether partition-based [4, 14, 16, 31, 33, 34, 37, 38, 45,

54, 59], CC-based [2, 5, 8, 10, 15, 17, 18, 24, 26, 30, 40, 44, 52, 53,

57, 58] or hybrid [43, 45]. It neither imposes any new restrictions

on nor makes assumptions about how these systems work. This

enables existing systems to deploy TSkd without changes to bene�t

from the reduced runtime con�icts by transaction scheduling and

deferment, via reduced CC overhead and con�ict penalties.

(2) TSkd also uses TsDefer to reduce the execution cost of the un-

scheduled residual RB returned by TsPar for bundled transactions.

(3) Neither TsPar nor TsDefer of TSkd is �xed to a speci�c isola-

tion level such as serializability; instead, they work with arbitrary

isolation levels that the underlying systems uphold, by observing

con�icts according to the preferred isolation level.

Limitations. Because of its non-intrusive design, TSkd (TsPar and

TsDefer) inherits some limitations of the systems it optimizes.

(1) Access sets. Transaction partitioners require that the access set of

transactions is known upfront so that they could deduce con�icts

between transactions. TsPar inherits this prerequisite to schedule

the partitioning of bundled transactions. As a result, no random

client-driven transactions are expected for both partitioners and

TsPar; instead, they target transactions in the form of stored proce-

dures or hard-coded templates, which are prevalent in e.g., banking,

e-commerce, business applications. Due to the importance of trans-

action partitioning, techniques have been developed to identify

access sets in various scenarios [4, 36]. Moreover, for unbundled

transactions where access sets are not known beforehand, we can

fall back to CC-based approaches and use TsDefer instead.

Another limitation inherited is that TSkd executes range queries

with CC, since partitioners do not optimize range queries for which

read/write-sets are not available. On the positive side, TsPar inher-

its and reuses con�ict graphs constructed by partitioners [14, 34]

without reconstruction, as will be seen in Section 4.

(2) Application-speci�ed dependencies. Similar to CC-based ap-

proaches for unbundled transactions, TsDefer operates on trans-

actions visible during execution time only; hence, they do not have

control on the global order of transaction execution to enforce trans-

action (e.g., causal) dependencies implied by application logic. A

possible way of mitigating this is to integrate consistency protocols

with CC so that we have both isolation and causal consistency guar-

antees; TsDefer could be extended for such cases by only deferring

a transaction when a limited number of transactions depend on it.

Di�erent from CC and TsDefer, transaction partitioners and

TsPar can readily incorporate transaction dependencies by enforc-

ing dependencies in partitions and during scheduling.

(3) Generalization. In principal TsPar is not limited to the in-

memory setting; it can be applied to shared-nothing distributed

systems. In contrast, TsDefer cannot be trivially generalized as it

relies on lightweight probing operations to detect runtime con�ict

at execution time; such operations will incur too much overhead in

the shared-nothing architecture due to network latency involved.

4 Transaction Scheduling

In this section, we formulate the transaction scheduling problem,

settle its complexity bound, and develop an e�cient algorithm for

it. The results serve as the foundation of the TsPar module.

Problem & complexity. The key to TsPar is to compute trans-

action schedules for transaction partitioners. Referred to as the

transaction scheduling problem, this is abstracted as follows:

◦ Input: A transaction workloadW, number : of threads, and a

partitioning ofW, i.e., (%1, . . . , %: ,R).
◦ Output: A transaction schedule ( = (5 , ≺).
◦ Objective: For the : RC-free queues (Q1, . . . , Q: ) and residual

set RB generated by ( , to

(a) minimize the makespan of the : RC-free queues; and

(b) minimize the number of unscheduled transactions in RB .

Here (a) the makespan of the: RC-free queues is their concurrent

execution time, calculated as the maximum of the serial execution

time among all : queues. We (b) minimize the amount of work in

the residual, and hence maximize work that is handled via RC-free

queues. With both (a) and (b), we aim to �nd a schedule that mini-
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mizes the total execution time of all the transactions in workload

W and hence, improve the throughput for executingW.

As opposed to transaction partitioning problems [14, 34, 38],

this bi-criteria optimization problem is more challenging in that it

considers runtime con�icts and execution time.

Theorem 1: The transaction scheduling problem is NP-complete. It

is alreadyNP-hard to decide whether there exists a schedule such that
(a) it has : non-empty RC-free queues; or

(b) the makespan of the schedule is no larger than a given number,

even when : = 3.

The lower bounds hold even when all transactions take a unit time. 2

Proof sketch: We give an NP algorithm that guesses a schedule

for W over : cores, and checks in PTIME whether the schedule

satis�es the conditions. We prove the NP-hardness of (a) by reduc-

tion from the maximum independent set problem [32], and (b) by

reduction from the bounded independent sets problem [27]. 2

Nonetheless, below we develop an e�cient algorithm, denoted

by TSgen, to compute transaction schedules for TsPar. Algorithm

TSgen works in two settings. Given a workloadW of transactions,

(1) it can take as input a transaction partition plan and turns it into

a schedule forW, as shown in Algorithm 1. (2) It can also compute

a schedule forW starting from scratch. Below we �rst present

TSgen for case (1), and then show how it handles case (2).

From partitions to schedules. Given a workloadW and a parti-

tion plan 52 = (%1, . . . , %: ,R) ofW,TSgen re�nes 52 into a schedule

(5 , ≺) forW. It preserves transactions of cluster %8 in queue Q8 ,
makes as many residual transactions in R to be RC-free as possible,

and balances the workloads of RC-free queues (Q1, . . . , Q: ).
TSgen (Algorithm 1) starts with empty RC-free queues Q8 and

empty set RB . It examines residual transactions in R and decides

whether to merge them into the RC-free queues of 5 and if so, how to

do it. In the process, it schedules transactions in % 9 ’s and preserves

their assignment by 52 , i.e., a transaction in % 9 is added to queue

Q 9 at thread 9 . Along the way, TSgen generates RC-free queue % 9 .

The unscheduled residual transactions in R of 52 remain in RB .
More speci�cally, algorithm TSgen works as follows. Initially,

the setRB and RC-free queues Q8 are empty for all 8 ∈ [1, :] (lines 1-

2). TSgen iteratively expands Q8 by examining transactions in R
one by one, following an ordering ®' of R (lines 4-14; by default,

TSgen picks a random ordering of R as ®' for simplicity). For each

transaction)∗ in R (line 5), it checks whether it can be merged into

the input CC-free partition %; with the smallest total execution

time (line 6), in order to balance the workload of RC-free queues.

To do this, it �rst �nds all transactions in % 9 ( 9 ∈ [1, :], 9 ≠ ;)
that are in con�ict with )∗, appends them to the corresponding

RC-free queue Q 9 , and removes them from % 9 (lines 7-9). It then

checks whether appending )∗ to RC-free queue Q; would cause

runtime con�ict with transactions that are already in queue Q 9
( 9 ≠ ;) via procedure ckRCF (omitted). If not, it appends )∗ to Q; ,
and adjusts the load (len; ) of thread ; by including time()∗) (lines 10-

11). Otherwise, TSgen decides that )∗ is a residual transaction that

cannot be scheduled, and moves it into RB (line 12).

After all transactions in R are examined and assigned to either

one of the RC-free queues or RB , TSgen appends the remaining

ALGORITHM 1: Algorithm TSgen

Input: Transaction workload W, a partition 52 = (%1, . . . , %: , R) of

W over : threads.

Output: A transaction schedule (5 , ≺) that re�nes 52 for W into two

: queues (Q1, . . . , Q: ) and a set RB .

1 RB ← ∅;
2 foreach 8 in [1, : ] do len8 ←

∑
) ∈%8 time() ) ; Q8 ← ∅ ;

/* denote by�2 the con�ict graph of transactions inW */

3 while ®' ≠ ∅ do
4 )∗ ← ®'.pop() ;
5 ; ← argmin8∈[1,: ] len8 ; // pick the RC-free queue with the least load

6 foreach 8 in [1, : ] do
7 (8 ← {) ∈ %8 | (),)∗) is an edge in�2 } ; // (8 : transactions in %8

that are con�ict with)∗ in %8

8 append transactions in (8 to Q8 ; %8 ← %8 \ (8 ;
9 if ckRCF(Q1, . . . , Q;−1, Q; ∪ {)∗ }, . . . , Q: ) = true then

10 append)∗ to Q; ; len; ← len; + time()∗) ;
11 else RB ← RB ∪ {)∗ } ;

12 foreach 8 ∈ [1, : ] do
13 if %8 ≠ ∅ then append transactions in %8 to Q8 ;

14 return Q1, . . . , Q: and RB ;

transactions in each partition %8 to the corresponding RC-free

queue Q8 (lines 13-14). It returns the : RC-free queues (Q1, . . . , Q: ),
and the set RB of unscheduled residual transactions (line 15)

Example 4: Given the partition of W0 in Example 1, i.e., %1 =

{)1,)2,)3}, %2 = {)4} and residual R = {)5}, algorithm TSgen
assigns )5 of R to %2, which turns to RC-free queue Q2 = 〈)4,)5〉,
with Q1 = 〈)2,)1,)3〉, exactly the same schedule as in Example 3. 2

To complete TSgen, we next present how it identi�es transactions

that con�ict with)∗ from each input CC-free partition %8 (lines 7-9).

More speci�cally, to identify transactions in each input partition

%8 that are in con�ict with)∗, TSgen makes use of the con�ict graph

�2 ofW. Here�2 is an undirected graph in which (i) the nodes are

the transactions ofW, and (ii) two transactions are connected by

an edge if they are in con�ict with each other. Note that variants of

con�ict graph have already been used in transaction partitioners

(e.g., [14, 59]), and are found e�cient to construct and e�ective in

practice; TSgen re-uses their con�ict graphs when looking up con-

�icts. TSgen identi�es transactions that are in con�ict with )∗ by

searching the neighbor nodes of )∗ in �2 , and checking whether

they are in the input CC-free partitions %8 (line 8). It appends such

con�icting transactions in %8 to RC-free queue Q8 (line 9), and

checks whether )∗ incurs runtime con�icts with the expanded Q8
(ckRCF; line 10). It appends )∗ to Q; if there is no runtime con�ict.

As will be seen in Section 6, TSgen improves the throughput by

131% on average, up to 294%; the overhead it adds to transaction

partitioners is less than 5% of that of the partitioners it optimizes.

Scheduling without input partition. Algorithm TSgen is also

able to compute a schedule for workloadW in the absence of a

partition plan 52 . More speci�cally, given a transaction workload

W, we simply treatW as the residual ' and runs TSgen with empty

CC-free partitions, i.e., %1 = · · · = %: = ∅. TSgen works in the same

way as how it re�nes a non-empty partitioning ofW.
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Complexity. Algorithm TSgen can be implemented in$ ( |W| + (: −
1) |R|)-time, where |W| (resp. |R |) is the number of transactions in

W (residual R) and : is the number of threads, by reusing the con-

�ict graph�2 from partitioners. That is,TSgen is linear in |W|when

the number: of threads is a constant. Indeed, (a) each transaction in

the CC-free partitions %8 is examined only once to decide its assign-

ment. (b) Each transaction in R is examined by ckRCF in$ (:)-time.

Remark. TSgen looks up con�icts between transactions from the

con�ict graph �2 ofW. However, it does not necessarily need to

construct �2 during scheduling. Typically transaction partitioners

already build �2 [14] or its variants [34] for partitioning in order

to minimize cross-partition con�icts, and TSgen re-uses them from

the partitioners. TSgen aims to strike a balance between the sched-

uling cost added to the partitioners and the quality of the schedules

computed. It reduces the execution cost of residual queues by pre-

serving con�ict-free transactions of partitions %8 ’s in the RC-free

queues and moving residual transactions of R to RC-free queues.

5 Proactive Transaction Deferment

In this section, we present how TsDefer reduces runtime con�icts

during execution time for unscheduled residual RB from TsPar and

for unbundled transactions that are directly assigned to threads.

TsDefer acts directly on thread-local bu�ers and reduces run-

time con�icts for CC by proactively deferring transactions that

are likely to cause runtime con�icts with other transactions that

are being executed. It is to reduce con�ict panelties. Nonetheless,

unlike transaction partitioners and TsPar, TsDefer in�icts extra

overhead to the CC protocols for execution. Hence, it needs to

be extremely lightweight while being e�ective since otherwise its

overhead would cancel out any bene�t from reduced con�icts.

This imposes challenges to the design of TsDefer. In particular,

tracking and sharing execution progress among threads are essen-

tially contended operations, while locking is not an option due to

its large overhead on execution. Moreover, a thread cannot a�ord

to simply look at all concurrent transactions to decide runtime

con�icts due to the overhead of reading their read/write sets.

To tackle the challenges, TsDefer proposes two techniques.

(a) It uses a lock-free structure for all threads to keep track of their

execution progress and look up the progress of other threads for

con�ict detection. This avoids the locking overhead and data races

among threads on tracking and sharing progress.

(b) To suppress the overhead of checking con�icts among trans-

actions on-the-�y, TsDefer randomly probes data items of the

read/write sets of active transaction at other threads within a lim-

ited times, and defers the transaction with a certain probability if

con�icting items are found. The crux is that each data item probe

takes only a constant time in a lock-free manner, independent of

both the size of transactions and the number of threads.

Runtime progress tracking. As shown in Fig. 3, TsDefer repre-

sents the transaction queue in each thread-local bu�er as an array

of transaction IDs; the bu�er is shared globally across all threads.

Each thread uses two pointers, headp and tailp, that point to the

next transaction to be executed and the end of the transaction list,

respectively. Both the array and the pointers are writable by its

own thread and are read-only for other threads.

t1 t3 t5

headp tailp

t2 t4 t6

headp tailp

(Thread 1) (Thread 2)
…

head-tail pointer:

committed to execute reserved for deferring

Figure 3: Structure for transaction progress tracking: grey

grids are committed transactions; blue grids represent transactions

about to execute; yellow grids reserve slots for deferred transactions.

TsDefer implements three operations for each thread 8:

◦ regPos to update the progress of thread 8 by moving headp
to the next transaction ID once the current one commits; and

◦ lookup that, upon each invocation, returns in a constant time a

data item in the write set of some active transaction of another

thread, where a transaction is active for thread 8 if it (a) is at

thread 9 ( 9 ≠ 8) and (b) is pointed by headp of thread 9 .

◦ defer that moves a transaction to the end of the queue that

maintains the deferred transactions of the current thread.

Proactive deferment. With these, TsDefer works as follows.

(1) When thread 8 is about to execute a new transaction ) in its

local bu�er T8 , it checks whether ) would cause a runtime con�ict

with active transactions at other threads by invoking a bounded

#lookups number of lookup operations.

(2) Let 3 be the number of distinct data items retrieved from lookup.

If #lookups−3 is above a threshold (typically 1), TsDefer decides

that ) is likely to cause a runtime con�ict. In such cases, thread 8

defers ) via the defer operation with a probability of deferp%.

(3) If ) is deferred, thread 8 then moves to the next transaction and

updates its progress via regPos. In addition, it records the deferred

) at tailp, and then moves tailp to the next slot.

(4) If ) is not deferred, thread 8 then goes on to execute ) . If ) sub-

sequently commits successfully, then thread 8 updates its progress

via regPos. If ) aborts, thread 8 will retry ) immediately until it

commits. During the period, it does not update its progress.

Lock-free Implementation. We next describe the implementa-

tion of the progress tracking structure. The key idea is to keep

the overhead low and controllable; the rationale is that TsDefer

does not replace CC, i.e., it does not detect all runtime con�icts

during execution time. In light of this, it implements both opera-

tions regPos and lookup with C++ atomic builtins [1] in a lock-free

manner. Note that lookup may read slightly stale progress due to

the lock-free design. However, we �nd that such staleness has neg-

ligible implication as TsDefer is supposed to be lightweight and

does not aim to identify all potential runtime con�icts. For long-run

transactions of which con�icts are costly, one can compensate this

by instructing lookup to check transactions that are further in the

future w.r.t. the one it sees from headp, within bounded steps.

To ensure each lookup has a constant complexity, each thread

maintains the predicted access sets of all other transactions. This

does not have to be exact since some of the read/write items are

not possibly known without execution; for such cases, TsDefer

only records the estimated access sets based on the constants and

template of the transaction. For instance, the warehouse id (w_id),

district id (d_id) and customer id (c_id) of an instantiated Payment

transaction in TPC-C could largely determine its access sets; sim-
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ilarly, the access sets of YCSB transactions can also be accurately

inferred by the instantiated parameters (keys) in most cases.

Each invocation of lookup then randomly takes a thread ID 9

and index ? , via reservoir sampling; it then returns the ?-th item in

the write set of the transaction that is currently pointed by headp
of thread 9 . Note that each invocation requires only one read to the

global structure, to retrieve the transaction ID determined by 9 , say

)∗. Then lookup simply reads the data item of )∗ indexed by ? in

its local copy of the read/write set of )∗.

Example 5: Recall thread-local bu�ers T1 = 〈)1,)2,)3〉 and T2 =

〈)4,)5〉 from Example 2. Assume deferp% = 100%. With TsDefer,

thread 1 can defer )2 with a probability of 50% with 1 lookup (i.e.,

#lookups = 1), and defer )2 for certain with only 2 lookup (i.e.,

#lookups = 2). Indeed, for thread 1 and)2, the only active transac-

tion is )5, which has two data items, G1 and G5. Hence one lookup
has 50% of chance of returning G1, which witnesses a con�ict with

)2, while two lookup calls return G1 for certain, triggering TsDefer

to defer)2. Note that reading)5 alone would already cost 6 reads of

data items, already a higher overhead than the deferment of )2. 2

Parameters and trade-o�. Observe that the accuracy and overhead

of TsDefer is parameterized by the following two parameters:

◦ #lookups: the number of lookup operations invoked; and

◦ deferp%: the probability to deferring a candidate.

The overhead of TsDefer is determined by the number of lookup
operations, i.e., #lookups. With larger #lookups, however, more

potentially contended operations in remote threads can be dis-

covered; hence, the chance of not deferring a transaction that is

in runtime con�ict with other active transactions becomes lower.

This helps us reduce the CC cost (abort/retry penalty) via reduced

con�icts among transactions being executed. Probability deferp%
allows TsDefer to adapt to varying contention levels: for ex-

tremely high contention workloads, TsDefer uses a relatively lower

deferp% to avoid excessive number of transactions being deferred.

With these tunable parameters, TsDefer can adapt to transac-

tion workloads with varying characteristics, by trading deferring

overhead for the accuracy of con�ict reduction for CC. When con-

�ict penalties (abort/retry cost) make a larger factor, e.g., for long-

run transactions or transactions with heavy application-level abort

penalties, one may prefer larger #lookups for a higher chance of

identifying a runtime con�ict, to avoid a costly abort/retry with a

bit higher overhead. On the contrary, for light and simple transac-

tions, e.g., key-access over a key-value table as YCSB transactions

do, one may prefer smaller #lookups since abort/retry is cheap and

overhead is more sensitive. In the extreme case, one can disable

TsDefer with #lookups = 0, avoiding any overhead to CC at all.

Such �exible trade-o� between overhead and con�ict penalty

reduction is in particular viable for transactions that have complex

application logic and hence have varying costs of aborts/retries.

6 Experimental Study

Using benchmarks, we evaluated the e�ectiveness of TSkd in im-

proving both partitioning-based systems for bundled transaction

workloads (Section 6.2) and CC-based systems for unbundled trans-

actions (Section 6.3), in particular for transactions with varying

runtime skewness. We specify the experimental settings in Sec-

tion 6.1 and summarize the evaluation results in Section 6.4.

6.1 Implementation and Experimental Setup

Systems. We have implemented a prototype of TSkd as described

in Sections 3-5, and integrated it with DBx1000 [2, 56] as the trans-

action execution engine, which implements multiple CC proto-

cols. Since DBx1000 directly initializes thread-local bu�ers with

instantiated unbundled transactions, to evaluate the e�ectiveness

of TSkd for partitioning-based systems, we extend it by also port-

ing external transaction partitioners into DBx1000, making it a

full testbed for both partitioning-based transaction processing and

non-partitioning CC-based transaction processing methods.

This is done by initializing the transaction bu�er for each thread

in DBx1000 with a partition generated by the partitioner, so that

transactions are executed according to the partitioning. When TSkd

is enabled for transaction partitioners, each thread local bu�er re-

ceives the transaction queue generated by the partitioner and TSkd.

TSkd instances. We deployed �ve instances of TSkd, depending on

whether it partitions transactions and what partitioner it employs:

◦ TSkd[S]: an instance of TSkd that targets systems with par-

titioning; it employs Strife [34], a recent partitioner that has

been shown e�ective for highly contended transaction work-

loads [34]. We used its open source implementation from [3].

◦ TSkd[C]: an instance of TSkd that uses Schism [14] partitioner.

◦ TSkd[H]: TSkd with Horticulture [33] as the partitioner.

◦ TSkd[0]: TSkd without input partitions, i.e., taking all transac-

tions as the residual.

◦ TSkd[CC]: an instance of TSkd targeting unbundled transac-

tions that are directly handled by DBx1000’s default transa-

ction-to-thread assignment with CC; it only uses TsDefer.

Among the three partitioners, Strife generates partitioning of

transactions with an explicit residual set, while Schism and Horti-

culture do not. For the partitioning of Schism and Horticulture,

TSkd �rst extracts a residual set that contains all those transactions

that are in con�ict with some other transactions from another par-

tition, and then carries out the scheduling as it does with Strife.

Baselines. We compared the performance of the scheduling-based

TSkd[S], TSkd[C] and TSkd[H] with their partitioning counterparts

Strife [34], Schism [14] and Horticulture [33], respectively, for

bundled transactions that are known to the partitioners prior to

execution. Both Schism [14] and Strife [34] are general partition-

ers that work with any given transaction workloads with known

read/write sets. Horticulture is hard-coded for TPC-C [48] and

YCSB [12] workloads, and is not a full-�edged partitioner.

To study the e�ectiveness of TSkd (TsDefer) for unbundled

transactions that are not known beforehand, we also compared

TSkd[CC] with DBx1000’s default con�guration that executes trans-

actions using CC without partitioning (denoted by DbCC).

Con�guration. For all TSkd instances, all the transactions are exe-

cuted with CC to guarantee correctness. This is a suboptimal im-

plementation of TSkd and is in favor of the baselines since one can

retain the lower cost of CC-free execution of the RC-free queues

by enforcing the scheduled order via, e.g., dependency tracking in
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Parameter De�nition Range Default

2% TPC-C cross-warehouse transaction(%) [15%, 35%] 25%

#whn # of warehouses in TPC-C [20, 60] 40

\ Zip�an skewness parameter in YCSB [0.7, 0.9] 0.8

#core # of threads for execution [8, 32] 20

CC CC protocols for execution OCC, SILO,

TICTOC

OCC

minT minT · C) = minimum transaction runtime

lower bound, where C) is the average transac-

tion runtime

[1/8, 1] 1/2

? ? · minT = maximum runtime lower bound [32, 64] 48

\) the skewness parameter of the Zip�an distri-

bution for runtime lower bounds

[0.7, 0.9] 0.8

;IO ;IO = max latency/min latency, where min la-

tency is 5000 CPU cycles, about 1/6 (1/8) of the

average TPC-C (YCSB) transaction runtime.

[0, 100] 50
1

\IO Zip�an parameter of I/O latency distribution;

larger \IO means longer tail latency

[0.8, 1.6] 1.2

#lookups # of lookup operations for TsPar [1, 5] 2

deferp% the probability to defer a candidate [0.4, 0.8] 0.6

1
by default we disabled I/O latency; we set ;IO = 50 for tests about I/O latency when varying \IO .

Table 1:Workload and systemparameters: blue/yellow forTPC-
C/YCSB parameters; green for system parameters; red for runtime

skeet’s and I/O latency; and gray for TsDefer parameters. When

varying a parameter, we use the default for all the other parameters.

[35, 36]. TsPar uses the warm-up dry-run trails of DBx1000 as the

source of histories to derive coarse cost estimates for transactions.

The isolation level of all tests is set to serializability.

Benchmarks. We used two transaction benchmarks.

TPC-C [48]. We tested with full TPC-C transactions. Since the built-

in TPC-C implementation in DBx1000 contains only the NewOrder

and Payment transactions without insertion (update only), we ex-

tended it to cover full TPC-C. In particular, we enabled insertions

in NewOrder and Payment and added OrderStatus, StockLevel and

Delivery transactions to DBx1000 by following [6].

To evaluate the impact of contention levels, we also enabled TPC-

C to vary the originally hard-coded percentage (2%) of transactions

that cross multiple warehouses. We set 2% to 25% and #whn/#core to

2 when varying the number of cores (#core), to simulate workloads

with high contention, where #whn is the number of warehouses.

YCSB [12]. We also tested with the YCSB benchmark. We used the

built-in YCSB driver in DBx1000, which implements the YCSB core

A workload [55]. We used a single table of 20M records, where each

record is 128 bytes in size and is accessed by a unique key; each

transaction accesses 16 records. Contention in YCSB is con�gured

by a Zip�an distribution that controls data skewness; we varied the

\ parameter of Zip�an from 0.7 to 0.9 (\ = 0.8 by default).

Extension with runtime skewness. Both TPC-C and YCSB transac-

tions are short, e.g., a YCSB transaction consists of key accesses

in a key-value table. In practice transactions may have varying

lengths (i.e., runtime) and skewness in their distribution. To test

more complicated transactions, we extend both TPC-C and YCSB
by “lower bounding” the runtime of transactions: assuming that a

transaction) is lower bounded by Cmin, if the actual execution time

of ) exceeds Cmin, then nothing changes and ) commits as usual;

otherwise, it delays its committing until the total runtime is Cmin.

More speci�cally, we extend TPC-C and YCSB with three param-

eters minT,? and\) to emulate runtime skewness. Transactions are

assigned with a minimum runtime randomly drawn from a range

[minT·C) , ? · minT·C) ], following a Zip�an distribution with the

skewness parameter \) . Here C) is the average transaction runtime

and minT (≤ 1) is a small coe�cient such that minT · C) serves as

the “unit” time of transaction execution, and integer ? constrains

the maximum “lower bound” runtime. These lower bounds follow a

Zip�an distribution with skewness degree varied by \) . By varying

minT, ? and \) , we emulate di�erent runtime patterns of the trans-

actions. We set minT small, e.g., as low as 1/8 so that the original

short-run TPC-C and YCSB transactions are included as a subclass

of the workloads for all the tests. These parameters improve the

expressiveness of TPC-C and YCSB, not to restrict the benchmarks.

Extension with I/O latency. To evaluate the impact of I/O latency,

we further extended DBx1000 with a new knob similar to [47], to

add an arti�cial delay to simulate I/O latency at transaction commit

time. The delays draw values from [0, ;IO · minIO] for a Zip�an

distribution with skewness parameter \IO, where (a) minIO is set to

5000 CPU cycles, about 1/6 (resp. 1/8) of the average TPC-C (resp.

YCSB) transaction runtime, and (b) ;IO varies from [0, 100]. By vary-

ing ;IO and \IO, we get various patterns of I/O latency to DBx1000.

In particular, larger ;IO means longer worst-case I/O latency and

higher \IO indicates a “longer-tail” latency distribution.

Metrics. We measure the performance of systems by the following:

◦ throughput: the number of transactions committed per second;

◦ #retry: the total number of retries per 100,000 transactions.

Experimental setup. The experiments were run on an AWS EC2

m5.8xlarge instance, with 32 vCPU and 128 GB of memory. Each

experiment was run 3 times. The average is reported here.

All the parameters, including their con�guration ranges and

default settings, are summarized in Table 1. When varying a param-

eter, we use the default con�guration of all other parameters. By

default, each bundle consists of 10,000 transactions.

6.2 TSkd on Partitioning-based Systems

We �rst evaluated the e�ectiveness of transaction scheduling in

improving the throughput and #retry of partition-based systems.

We compared the performance of TSkd[S], TSkd[C] and TSkd[H]
with Strife, Schism and Horticulture, respectively, to �nd out

improvement over transaction partitioners introduced by TSkd via

scheduling. Varying each parameter, we tested the throughput and

#retry of all methods on TPC-C, YCSB and their skewed extensions.

Throughput: scheduling vs. partitioning. We �rst compared

the transaction throughput of schedules computed by TSkd[S],
TSkd[C] and TSkd[H] with that of partitioning generated by Strife,

Schism and Horticulture, respectively, with varying parameters.

The results over YCSB and TPC-C are shown in Figures 4a-4h.

(1) Overall, TSkd consistently improves the throughput of

Strife, Schism and Horticulture. For instance, on average

TSkd[S], TSkd[C] and TSkd[H] improve the throughput of Strife,

Schism and Horticulture by 211%, 78.9% and 184% over YCSB,

respectively, up to 294%, 119% and 225%. Over TPC-C on average

the throughput of TSkd[S], TSkd[C] and TSkd[H] is 133%, 75.2%
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Figure 4: E�ectiveness of TSkd (TsPar) on Partitioning-based Systems (Section 6.2)

and 101% higher than that of Strife, Schism and Horticulture,

respectively, up to 183%, 104% and 141%. The reason is two-fold.

(a) Higher concurrency. By scheduling (TsPar), TSkd achieves better

balanced load among the cores, yielding a higher level of concur-

rency. In contrast, existing partitioners can be sub-optimal in bal-

ancing the load, e.g., the average ratio of the largest partition over

the smallest partition of Strife is 3.2 over YCSB, while this reduces

to 1.2 after deploying TsPar atop Strife. Moreover, by executing

RB with CC and proactive transaction deferment (TsDefer), TSkd

further balances the workloads across threads.

(b) Reduced #retry. Furthermore, by combining TsPar and TsDefer

together, such higher level of concurrency does not incur larger

CC costs due to the ability of TSkd to reduce runtime con�icts.

Indeed, in contrast to the normal pattern that higher concurrency

means larger #retry, the #retry of all systems even decreases with

TSkd. For instance, the #retry of TSkd[S], TSkd[C] and TSkd[H] is

consistently lower than that of Strife, Schism and Horticulture,

in all cases (e.g., Fig. 4i). On average, TSkd reduces 49.7%, 43.6% and

33.6% of the #retry of that of Strife, Schism and Horticulture

on YCSB, respectively, and 54.4%, 36.7% and 53.9% over TPC-C.

(2) The e�ectiveness of TSkd is robust w.r.t. CC protocols; it is

even more evident with added cores as shown in Figures 4b-4c.

For instance, over YCSB, TSkd[S] consistently achieves over 203%

higher throughput than Strife with either OCC, SILO or TICTOC.

The gap even increases with lager #core, e.g., TSkd[H] improves

Strife by 133% with 8 cores, and 294% with 32 cores.

(3) Overall, TSkd is more e�ective for workloads with higher con-

tention, e.g., the throughput improvement of TSkd[H] over Horti-

culture increases from 143% to 225% when \ varies from 0.7 to 0.9

over YCSB, as shown in Fig. 4a; similarly, when 2% increases from

15% to 35% for TPC-C, the throughput improvement of TSkd[C]
over Schism increases from 80.5% to 98.2% as depicted in Fig. 4g.

(4)Without an input partitioning,TSkd[0] still achieves throughput

on average 85.8%, 65.1% and 69.7% higher than Strife, Schism and

Horticulture over TPC-C, respectively, and 184%, 29.1% and 101%

higher over YCSB, as shown in Fig. 4. Compared to partitioners,

TSkd[0] achieves better load balancing via scheduling, by treating

all transactions as residual; in addition, it has low retries due to

reduced con�icts. This suggests that TSkd[0] is an option for non-

partitioned workloads or partitioners that do not produce a residual.

(5) To analyze the individual contribution of TsPar and TsDefer

to the e�ectiveness of TSkd, we tested TSkd[S] against TsPar[S]
and TsDefer[S] where TsPar[S] is TSkd on Strife with TsDefer

disabled, and TsDefer[S] is TSkd with only TsDefer enabled to ex-

ecute partitions of Strife; similarly for Schism and Horticulture.

As shown in Fig. 4j, over YCSB, on average TSkd[S], TsPar[S]
and TsDefer[S] improve the throughput of Strife by 203%, 108%,

73.2%, respectively; similarly for Schism and Horticulture and

over YCSB. This shows that for bundled workloads, TsPar plays

a bigger role in improving the performance. Moreover, TsPar and

TsDefer perform the best when working together, e.g., even better

than the sum of the improvement by the two separately on Strife.

Runtime skewness. TSkd improves the robustness of all systems

10



system scheduled pct. B%
#retry/10k transactions

w/o TsDefer w/ TsDefer

YCSB
TSkd[S] 64.5 1353 448

TSkd[C] 52.7 2786 1029

TSkd[H] 69.7 1614 611

TPC-C
TSkd[S] 34.6 542 255

TSkd[C] 36.7 803 474

TSkd[H] 20.8 416 253

Table 2: Accuracy of scheduling and e�ectiveness of TsDefer

for transactions with varying skewness, as shown in Figures 4d-

4f over YCSB (results over TPC-C omitted due to space limit). In

particular, the improvement in throughput by TSkd[S], TSkd[C]
and TSkd[H] over Strife, Schism and Horticulture, respectively,

even increases when transactions become longer (i.e., larger minT)

or more variable (i.e., larger ? and smaller \) ). For example, on

YCSB, TSkd[S] improves Strife in throughput by 136% with minT
= 1/8 while this increases to 240% with minT = 1; similarly TSkd[H]
improves Horticulture on YCSB by 171% with ? set to 32, while

this increases to 186% with ? = 64. This is because the quality of

partitions degrades with transactions of varying lengths, while with

TSkd they can adapt to the variance and skewness in transaction

runtime. Moreover, longer transactions in�ict larger con�ict penal-

ties, and TsPar is more e�ective in reducing their runtime con�icts.

I/O latency. We next evaluated the impact of I/O latency. Varying

;IO and \IO, we tested the throughput of all methods; partial results

over YCSB and TPC-C are shown in Figures 4k-4l. We �nd that

TSkd still improves all three partitioners in all cases. Although the

raw throughput degrades for all methods with larger ;IO or smaller

\IO (i.e., not so long-tail), the improvement brought by TSkd is rel-

atively stable, e.g., consistently around 205% for Strife over YCSB;

similarly for other partitioners and over TPC-C. This is because

while latency reduces the accuracy of scheduling by TsPar, it in-

creases the cost of retries; and TSkd consistently reduces the retries

of all partitioners (e.g., Fig. 4l) and balances the partitions in the

presence of long-tail latency. Hence, the e�ectiveness of TSkd re-

mains robust against I/O latency. This suggests that TSkd can also

work with transactions involving I/O or network latency.

Overhead. We also tested the overhead that TsPar adds to the

transaction partitioners, measured as the ratio of the runtime of

TSgen to the partitioning time of the partitioners, denoted by

overheadR. For workloads consisting of 100,000 transactions, we

�nd that the average overheadR of TsPar over Strife and Schism

over YCSB is 4.1% and 3.7%, respectively, and 4.6% and 4.4% over

TPC-C. This veri�es that TsPar has moderate overhead.

Cost estimation. By default, TsPar uses the warm-up process of

DBx1000 to assess the cost of transactions when scheduling (recall

Section 3). To assess the accuracy of scheduling with such coarse

estimates, we measured (a) the average scheduled percentage (B%)

of residual transactions that were merged to RC-free queues; and

(b) the #retry when executing the RC-free queues, with and without

employing TsDefer. The results are shown in Table 2.

We �nd that TSkd schedules a decent percentage of residual

transactions, e.g., 30.7% and 62.3% over TPC-C and YCSB, respec-

tively. Due to the coarse estimates used by TSkd, it is understand-

able that RC-free queues incur con�icts and retries. Nonetheless,

after employing TsDefer, TSkd signi�cantly reduces #retry for the

RC-free transactions. For instance, TSkd[S], TSkd[C] and TSkd[H]
reduce 66.9%, 63.1% and 62.2% of #retry for the RC-free transactions

over YCSB, and by 53.0%, 41.0% and 39.2% over TPC-C, respectively.

As shown earlier, this even makes the #retry of all systems much

lower than without scheduling, although they have much higher

level of concurrency and better load balancing with TSkd deployed.

Although the percentage of the scheduled transactions over TPC-

C is lower than YCSB, the throughput improvement of TSkd over

TPC-C is comparable to that of YCSB. This is because with even

a moderate number of scheduled residual transactions, TSkd is

already able to make TPC-C partitions balanced.

6.3 TSkd on Non-partitioning CC-based Systems

We also evaluated the e�ectiveness of TSkd (TsDefer) for trans-

action systems that use CC without partitioning. To do this, we

compared the performance of TSkd[CC] with that of DbCC, with

varying parameters and CC protocols. The results over YCSB are

shown in Figure 5 (TPC-C is similar and omitted due to space limit).

Contention. Varying \ from 0.7 to 0.9 for YCSB and 2% from 15%

to 35%, we tested the impact of transaction contention level on the

e�ectiveness of TsDefer. We �nd that TsDefer consistently im-

proves DbCC in both throughput and #retry. As shown in Fig. 5a,

on YCSB, on average the throughput of TSkd[CC] is 111% higher

than that of DbCC, while the #retry of TSkd[CC] is 49.8% lower. By

digging into the pro�ling statistics, we �nd that the reduction of re-

tries by TsDefer is largely consistent with that of mutex contention

of the execution. In fact, TsDefer reduces #contended_mutex [29],

the total number of times that a mutex was contended (already

locked when a lock request was made) in DbCC by 53.8% on average.

Moreover, the improvement is even more signi�cant with larger

\ . For instance, TsDefer improves the throughput of DbCC by

44.8% and reduces the #retry by 43.9% when \ is 0.7, while these

increase to 171% and 53.4%, respectively, with \ = 0.9. The results

over TPC-C are similar. This is because for workloads with higher

contention, there exist more runtime con�icts, which could bene�t

from TsDefer with a higher chance. This is also con�rmed by

the runtime statistics, e.g., TSkd[CC] reduces #contended_mutex of

DbCC by 44.5% with \ = 0.7 and this increases to 56.4% with \ = 0.9.

Runtime skewness. Varying parameters minT, ? and \) , we eval-

uated the e�ectiveness of TSkd in response to di�erent runtime

skewness. As shown in Figures 5d-5f, TsDefer is particularly e�ec-

tive with longer (larger minT) and more skewed and variable (larger

? and lower \) ) transactions. For instance, over YCSB when minT
increases from 1/8 to 1, the throughput improvement of TSkd[CC]
over DbCC increases from 34.5% to 119%. In contrast, when \) is

0.9, TSkd[CC] reduces #retry of DbCC by 49.5%, and this increases

to 53.3% when \) = 0.7; similarly over TPC-C.

I/O latency. Varying ;IO and \IO, we evaluated the impact of

I/O latency on TsDefer for unbundled transactions. We �nd that

with larger ;IO or smaller \IO, the throughput of both DbCC and

TSkd[CC] decreases as transactions are prolonged by the I/O stalls;

however, TSkd[CC] remains robust in improving DbCC in both

throughput and retries, as shown in Fig. 6. This is because TsDefer

is insensitive to transaction lengths via runtime progress tracking;

hence its e�ectiveness is stable w.r.t. varying patterns of I/O latency.
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Figure 5: E�ectiveness of TSkd (TsDefer) on CC-based Systems over YCSB (Section 6.3): - -axis for throughput and . -axis for #retry.
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(b) TPC-C: vary \IO

Figure 6: Impact of I/O latency on TsDefer (Section 6.3)

Trade-o�s. We next examined the trade-o�s between the e�ective-

ness and overhead of TsDefer, by varying #lookups and deferp%.

We �nd that larger #lookups naturally improves the e�ectiveness

of TsDefer in reducing runtime con�icts and retries, e.g., overYCSB
the #retry of DbCC is reduced by 49.7% with TSkd enabled when

#lookups = 1, and this increases to 54.1% with #lookups = 5 (as

shown in Fig. 5g). However, larger #lookups comes with higher

overhead, which would work with longer transactions whose run-

time and retry cost could cover the overhead of TsDefer. For short-

run TPC-C and YCSB transactions, we �nd that #lookups = 2 gives

the best throughput, e.g., TSkd[CC] improves TSkd by 116% over

YCSB and 105% over TPC-C. Similarly, we �nd that higher deferp%
gives better reduction on #retry for TSkd over DbCC.

CC and scalability. Varying CC protocols and the number of

cores, we tested the impact of CC and the scalability of both

TSkd[CC] and DbCC. The results over YCSB are depicted in Figures

5b-5c. We �nd that TSkd[CC] consistently improves the throughput

and #retry of DbCC via TsDefer, by 117% and 51.8%, respectively,

on average. Moreover, the gap even widens with larger #core. TSkd

works the best with TICTOC, yielding a throughput improvement

of 152% and a reduction of #retry by 63.9% over YCSB. It has the

least advantage with OCC (the default CC used in all tests), but still

improves DbCC by 116% for throughput and 52.0% for #retry.

Impact of inaccurate access sets. Finally, we evaluated the

impact of inaccurately determined transaction read/write sets on

the e�ectiveness of TSkd[CC]. To do this, we restricted TSkd[CC]
such that it could only use an U-fraction of the actual access sets,

i.e., the determined transaction read/write sets have an accuracy of

U . Varying U from [0.5, 1], we tested the performance of TSkd[CC]
with DbCC. The results over YCSB are shown in Fig. 5h (the results

over TPC-C are similar and thus omitted). We �nd that TSkd[CC]
still improves the throughput of DbCC even when TSkd[CC]
overlooked 50% of the actual access set, i.e., when U is as low as

50% over YCSB. This is because TsDefer only randomly probes

access sets of concurrent transactions to detect potential con�icts

and it needs only part of the access sets; hence, it still observes

con�icts and improves DbCC even when it overlooked reads/writes

moderately. Naturally, the e�ectiveness of TSkd[CC] improves

when the access sets are more accurately determined with higher U .

6.4 Summary

From the experiments we �nd the following.

(1) Transaction scheduling (TsPar) is e�ective in improving the

performance of partitioning-based transaction systems, e.g., it im-

proves the throughput of state-of-the-art transaction partitioners

by 131% on average, up to 294% over TPC-C and YCSB benchmarks.

(2) The bene�t of TSkd (TsPar) is even more evident when a larger

number of cores are available. For instance, over YCSB, on average

TSkd improves the throughput of partitioners by 75.3% when 8

cores are used; the improvement increases to 214% with 32 cores.

(3) Proactive transaction deferment is e�ective for CC-based sys-

tems. On average it improves the throughput of DbCC by 109% and

reduces its #retry by 45.7%, up to 152% and 63.9%, respectively.

(4) With TsDefer, TsPar can handle inaccurate cost estimates of

transactions while still improving the throughput of partitioners.

(5) TSkd is particularly e�ective for transactions with skewed or

long runtime or I/O latency. It makes both partition-based and CC-

based systems robust against runtime and I/O skewness.

(6) TSkd works well with all CC protocols. Its improvement over

partitioning and DbCC (CC-based) is evident over each CC tested.
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7 Related Work

We categorize the related work as follows.

Transaction partitioning. There has been a host of work on trans-

action partitioning for parallel OLTP systems [14, 33, 37, 54, 59].

The methods are designed for distributed systems under a shared-

nothing architecture, where the database is partitioned across mul-

tiple computing nodes to minimize transactions that access data

from multiple partitions since it requires costly distributed CC.

Closer to this work is the study of multi-core transaction pro-

cessing [16, 31, 34, 38, 45]. Instead of assigning transactions to

cores, [31] decomposes transactions into smaller read and write

actions, and assigns such actions to threads to minimize contention.

Adaptive concurrency control is proposed by [45] for changing

workloads, by dynamically clustering data and adopting the opti-

mistic CC (OCC) protocols for each cluster. [16] uses transaction

batching and reordering during the validation phase to reduce the

retries of OCC-based protocols. [38] develops Orthrus, a multicore

transaction system that separates transaction logic and concurrency

control, and employs a set of dedicated cores for the latter; the deter-

ministic approach of [39] pre-processes transaction workloads via

partitioning. In particular, [34] proposes Strife, a transaction par-

titioner to dynamically cluster �ner-grained batches of contended

workloads that do not have a good static partition.

Di�erent from the partitioning strategies, we propose to schedule

transactions of possibly varying execution times; transaction sched-

uling not only partitions transactions but also sorts them in each

partition. This is based on runtime con�icts, which characterize

contention among transactions at a �ner-grained granularity than

traditional transaction con�icts, and allow conventionally con�ict-

ing transactions to be executed without con�icts. We also develop

an algorithm that can re�ne existing transaction partitioning and

make it a transaction schedule while minimizing runtime con�icts.

In addition, we develop a strategy that proactively detects and defers

transactions that are highly likely to cause runtime con�icts on-the-

�y, to reduce aborts and retries. Our method is not restricted to OCC.

Transaction assignment for OLTP. Most OLTP systems use random

or round-robin like strategies to assign unbundled transactions

that are coming and processed on-the-�y [60]. Unlike partition-

ers, they do not have prior knowledge of the entire workload, and

hence assign transactions one by one upon arrival. [41] proposes

to use a lightweight ML model that predicts, for an incoming trans-

action, which thread it should be assigned to in order to have lower

abort chance. Our work complements these methods by altering

the assignment during execution, by tracking thread progress and

proactively deferring transactions that are likely to cause con�icts.

Concurrency control. Concurrency control (CC) provides isolation

guarantees for concurrent transaction processing. A variety of CC
protocols have been proposed, which mostly fall in two classes:

locking-based and timestamp based. Locking-based ones, such as

two-phase locking [10, 17] and its variants, are pessimistic in that

a transaction accesses a tuple only after it acquires a lock with the

required permission. For high-contention transactions, timestamp-

based protocols such as OCC [5, 24], multi-version concurrency con-

trol (MVCC) [9] and their variants [8, 15, 18, 26, 30, 40, 44, 52, 53, 57,

58] have been veri�ed e�ective in reducing con�icts and blocking

time. Hybrid approaches that combine the two strategies have also

been explored [43, 45]. There has also been work on learned CC to

further mix CC parameters and specialize to a given workload [50].

While these CC protocols provide controlled concurrent execu-

tion of con�icting transactions and ensure isolation guarantees,

they do not specify how the transactions should be allocated to the

threads and in what order they should be executed; both of these

have signi�cant impact on the performance of concurrent trans-

action execution. Our work aims to bridge the gap by minimizing

runtime con�icts via transaction scheduling and proactive transac-

tion deferment, as an alternative to conventional approaches that

only cluster transactions or directly invoke CC protocols.

Multi-core in-memory OLTP systems. A number of multi-core in-

memory OLTP systems have been developed recently, e.g., Tic-

Tok [57], Cicada [26], Foedus [23], ERMIA [22], Silo [49] and Or-

thrus [38]. These systems focus on the design of new CC protocols

and architectural optimizations for OLTP workloads.

Di�erent from these systems, we do not aim to build yet another

full-�edged OLTP database system. Instead, we present TSkd as a

lightweight tool that can be incorporated into these OLTP database

systems to improve their throughput by reducing runtime con�ict.

Deterministic approaches. Related is also the work on deterministic

databases (see [4] for a survey), which execute bundled transactions

via a predetermined order that is typically decided via transaction

dependency analysis [13, 19, 25, 35, 36, 38, 47]. They scale well in

distributed systems, where the determined ordering ensures trans-

actions to always read consistent data across multiple cache copies.

Di�erent from these, our work studies how to reduce runtime

con�icts by proposing transaction scheduling and proactive defer-

ring. It neither imposes restrictions on how CC should work, e.g.,

deterministically or nondeterministically, nor breaks down transac-

tions. This said, this work and the previous work on deterministic

databases complement each other. For instance, their techniques

for determining read/write sets and analyzing workloads can be

used by transaction partitioners for clustering and assigning trans-

actions. Their dependency-based execution method can be adopted

by transaction scheduling when runtime estimates are not reliable.

8 Conclusion

We have shown that by considering runtime con�icts, more transac-

tions can be executed concurrently with low con�ict penalties than

adopting the conventional notion of con�icts. We have proposed

transaction scheduling by placing an ordering on the execution of

transactions, instead of transaction partitioning. We have shown

that the scheduling problem is NP-complete. This said, we have

developed an e�cient algorithm to re�ne a partitioning into a sched-

ule for bundled transaction. Moreover, for unbundled transactions

targeted by CC protocols, we have proposed a proactive deferring

strategy to reduce con�ict penalties. Our experimental study has

veri�ed that transaction scheduling and deferment are promising

in improving throughput and reducing con�ict penalties.

One topic for future work is to develop ML models that decide

TSkd parameters specialized for given workloads. Another topic is

to combine transaction scheduling with other strategies, e.g., trans-

action decomposition [31] and dynamic adjustment [45].
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