2210.06267v1 [cs.DB] 12 Oct 2022

arxXiv

Optimizing Tensor Programs on Flexible Storage

Maximilian Schleich
Relational AI

Amir Shaikhha
University of Edinburgh

Dan Suciu
University of Washington

USA United Kingdom USA

ABSTRACT

Tensor programs often need to process large tensors (vectors, ma-
trices, or higher order tensors) that require a specialized storage
format for their memory layout. Several such layouts have been
proposed in the literature, such as the Coordinate Format, the Com-
pressed Sparse Row format, and many others, that were especially
designed to optimally store tensors with specific sparsity properties.
However, existing tensor processing systems require specialized
extensions in order to take advantage of every new storage format.
In this paper we describe a system that allows users to define flexi-
ble storage formats in a declarative tensor query language, similar
to the language used by the tensor program. The programmer only
needs to write storage mappings, which describe, in a declarative
way, how the tensors are laid out in main memory. Then, we de-
scribe a cost-based optimizer that optimizes the tensor program
for the specific memory layout. We demonstrate empirically sig-
nificant performance improvements compared to state-of-the-art
tensor processing systems.

1 INTRODUCTION

Linear algebra and, more generally, tensor algebra is used in a wide
variety of domains, such as science, engineering, machine learning,
data analysis. Tensors are natural generalizations of vectors and
matrices from 1 and 2 dimensions to arbitrary dimensions, and
highly optimized implementations of tensor algebra operations are
available today in several popular libraries, such as SciPy, PyTorch,
Julia, TensorFlow, or Matlab. While these libraries are highly op-
timized for individual operations, compound operations require
users to create temporary tensors, which often destroys the locality
and may even lead to out of memory errors, when the intermediate
results are too large. Such operations are frequently encountered
in complex tensor programs, or tensor kernels, terms that we will
use interchangeably in this paper.

Several domain specific languages have been proposed for ex-
pressing and optimizing entire tensor programs. Examples include
SystemML [10], TVM [12], Halide [39], Taco [27], TASO [24]. The
compiler community has addressed one challenge of the optimiza-
tion problem, namely the separation of the algorithm from the
schedule. This idea was introduced by the Halide language, which
was designed for high-performance code generation for image pro-
cessing pipelines [38, 39]. The programmer writes the algorithm in
an imperative, high-level language, and writes separately a schedule,
which specifies low level optimizations, such as tiling, vectorization,
or loop unrolling. TVM [12] extends this principle from image pro-
cessing to tensor processing for general-purpose ML applications.

In this work we are not concerned with schedules, but with a
different challenge in tensor processing: optimizing the query plan
based on how the tensors are stored in memory. Storage refers in
this paper to memory layout, and not to persistent representation.
When a tensor is sparse, the programmer has many choices for

representing it in main memory, and the best plan for a tensor
program varies dramatically depending on what storage was chosen,
the statistics of the data (e.g. how sparse or dense), and the particular
tensor program. For example, a vector a(i) can be stored as a dense
array, or as a hash table indexed by i, or as two parallel arrays storing
the indices i and the values a(i). When the tensors are dense, then
the best plan may be to use a linear algebra library [31, 48], while for
sparse tensors a better plan may be to use relational query operators,
e.g. hash joins. Tensors can be easily represented as relations, and
tensor programs can be expressed as SQL queries [9], but relational
engines are not designed to support storage formats specifically
optimized for sparse tensors (e.g. the CSR format discussed later).

To address the storage problem, Taco [27] separates the tensor
storage format from the tensor program. In the storage format the
user can specify separately for each dimension whether it is dense
or sparse, and can also order the dimensions, leading to d! - 24
possible formats for a d-dimensional tensor.! Given a tensor pro-
gram, the Taco compiler generates code that optimizes the access
to the storage formats. Taco does not perform cost-based optimiza-
tions, which means that the programmer still needs to be aware
of the storage specification. For example, if the vector a is sparse
while b, ¢ are dense, then a(i) = (b(i) + c(i)) is best rewritten as
a(i) * b(i) + a(i) * c(i), because computing b(i) + c(i) results in a
large, dense vector, while a(i) * b(i) is a small, sparse vector, no
larger than a, and similarly for a(i) * c(i). However, the task of
rewriting the expression is left to the programmer.

In this paper we propose a rule-base approach to optimizing
tensor programs over flexible tensor storage, using a cost-based
optimizer. The main novelty in our approach is that the storage
descriptors themselves are also defined in the same declarative
language as the tensor program. To specify how a tensor is stored,
the user writes a storage mapping from the physical data structures
(arrays and/or hash tables) to the logical tensor. Our system eval-
uates the tensor program by first composing it with the storage
mappings, then optimizing it using rewrite rules. This improves
in two ways over previous systems. First, the storage formats are
no longer hard coded, but the user is free to define their own. For
example, users may describe one of the popular storage formats
COO, CSR, etc, or define a format optimized for upper-triangular
matrices, or for band-matrices, or a space-filling curve, etc. There is
no bound on the number of storage representations, the only limit
is the expressivity of the query language and the power of the opti-
mizer. Second, the optimizer is now able to perform a rich collection
of high-level optimizations, such as factorization, loop fusion, or
join reordering, and optimize the tensor program specifically for
the given storage. For example, the optimizer may consider both
expressions a(i) = (b(i)+c(i)) and a(i) *b(i)+a(i) *c(i), and choose
the optimal one based on their physical storage and data statistics.
To the best of our knowledge, our system, called STOREL, is the

Taco was later extended to support 6 formats per dimension [14].

first cost-based optimizer for a declarative tensor language. We
show in Sec. 6 that, due to the rewrite rules, STOREL significantly
outperforms both Taco [27] (a tensor algebra) and DuckDB [37] (an
optimized relational engine) for several tensor programs, although
their physical execution engines are as good as, or even better than
ours.

Fig. 1 illustrates how STOREL processes the matricized tensor
times Khatri-Rao product, MTTKRP [27], A(i, j) = X¢; B(i, k1) -
C(k, j) - D(1, j). Fig. 1 (a) shows the tensor program written in our
declarative tensor language SDQLite (described in Sec. 3), while (b)
shows the Compressed Sparse Row (CSR) memory layout of matrix
C, which is one of several formats described in [14, 27] (reviewed
in Sec. 2). For each matrix or tensor, the user describes its memory
layout by writing a storage mapping, also in SDQLite; the storage
mapping for the matrix C is shown in Fig. 1 (c), and similar storage
mappings need to be defined for B and b. To execute the program, the
system composes the tensor program with the storage mappings,
then chooses an optimal plan using a cost-based optimizer; the
optimal plan is shown in Fig. 1 (d). While the plan could be further
optimized for some sophisticated schedule (as done by Halide, TVM,
and Taco), we currently do not support schedules and simply run
the optimal plan directly in Julia.

The main challenge in developing the cost-based optimizer is the
right choice of tensor processing language. All query optimizers use
the relational algebra as intermediate language. However, we found
that a calculus, rather than an algebra, is better suited for optimiz-
ing tensors; here calculus refers to a language with explicit use of
variables, while algebra refers to a variable-free language. There are
two reasons for that. First, the physical plan of a tensor program
consists of for-loops with explicit variables. They look like this:
for i=1:m do for j=1:n do ... instead of this: A < (B » ---),
and optimizing directly expressions with variables simplifies the
generation of the physical plan. Second, the intermediate language
for tensor programs needs to support nested collections, which oc-
cur in sparse formats like CSR, CSC, CSF, while standard relational
algebra, as well as some recent extensions to linear algebra [23]
support only flat collections. Algebras for nested collections exists,
but they tend to be much harder to read than calculus, making it
harder to design and debug optimization rules, e.g. compare the
rules in Table 2 [55] to those in Fig. 3 in our paper. For these rea-
sons, we opted for a calculus-based intermediate language. We
are not the first to use a calculus-based intermediate language for
query optimization: Worst Case Optimal Join algorithms are also
described as nested loops, in effect using a calculus as intermediate
language [18, 35, 51].

We describe in this paper a language, called SDQLite, used both
for writing tensor programs, and for performing optimizations.
SDQLite has a syntax that is reminiscent of Unions of Conjunc-
tive Queries, but where A, V, 3 are replaced by *, +, sum, to which
we add let-bindings, and nested dictionaries as data model; our
dictionaries are similar to those in SDQL (Semiring-Dictionary
Query Language) [42], hence we call our language SDQLite. Our
language can express tensor programs in a notation close to mathe-
matics, and can express complex storage mappings corresponding
to sophisticated tensor memory layouts, including those described
in [14, 27]. Any SDQLite query can easily be converted directly to
a physical, nested for-loop plan, because each quantified variable

i, j, ... becomes directly a for loop over that variable. However, it
is more difficult to design an optimizer. For example, Selinger’s
dynamic programming algorithm for join re-ordering [5, 32] no
longer applies, because in a calculus there is no explicit binary join.
Instead, our system is entirely rule-based, and the rules must be
designed for a calculus rather than an algebra. We designed a suite
of 44 SDQLite-rewrite rules, and use the equality saturation system
Egg [54] as rewrite engine. Egg uses a compact data structure called
an e-graph to represent a large number of equivalent expressions
as a graph. However, like most term rewriting systems, Egg does
not understand variables in rules. For our optimizer, we developed
a variant of the De Bruijn index that removes the need for explicit
variable representation.

One major motivation for our work is that most of existing tensor
and linear algebra systems in the compilers and HPC communities
focus on dense data; in contrast, our focus in this work is on sparse
data. The reason for the traditional focus on dense data is that Linear
Algebra packages were originally developed for use in Physics and
Engineering, where tensors are dense, and they support highly
optimized kernels for specific operations on dense data. Support
in these packages for sparse data is rare.? TACO [27] was the first
recognized the need to optimize tensor programs over sparse data;
our work falls into the latter category.

In summary, we make the following contributions in this paper:

e We describe the architecture of STOREL, where tensor pro-
grams and tensor storage mappings are defined in a common
language, and optimized jointly (Sec. 3).

We describe a declarative tensor calculus, SDQLite, for both
tensor programs and storage mappings, and show that it
can express a rich variety of previously proposed storage
formats, and beyond (Sec 4).

e We describe a cost-based optimizer for the tensor calculus,
which supports a rich suite of optimizations, such as factor-
ization, loop fusion, and join reordering (Sec. 5).

Finally, we conduct an experimental evaluation showing that
STOREL can significantly outperform other tensor process-
ing systems, by using a cost-based optimizer to choose the
best plan for the given storage representation (Sec. 6).

2 BACKGROUND

Tensors Given a number n, we denote by [n) def {0,1,2,...,n—1}.
Letd > 1 and let ny, ny, ..., ng be natural numbers. A tensor with d
dimensions, is element A € RIn)xX[na) A scalar, a vector, and a
matrix are tensors with 0, 1, and 2 dimensions respectively. Given
d indices, i1 € [n1),...,ig € [ng), we denote by A(iy,...,ig) the
value of the tensor at those positions; we call each i; a dimension.

Tensor formats We briefly review some popular tensor formats
following [14, 27]. A dense representation of a tensor consists of
a memory array with nyny - - - ng elements. The coordinate format,
COO, stores only the non-zero elements in an array, and their
coordinates in d separate arrays. For example, the dense and COO
representations of the vector v = (9,0, 7,5) are:

2Cf. GitHub issues #43497 for TensorFlow, #72065 for PyTorch, #4332 for TVM.

CREATE TENSOR A AS
sum(<(i,k,1), B_v> in B, <(k,j), C_v> in C, <(j,1), D_v> in D)
{ (i, j) > B_v x C_v x D_v }

sum(<i_pos, i> in B_idx1)
{i->
sum(<k_pos, k> in

(a) MTTKRP kernel A(i, j) = Xx; B(i,k, 1) - C(k, j) - D(I, j) in SDQLite.

C: C_lenl: | 3
61098 C_pos2: [0 [3]3 |5
0100 C_idx2: [0 [2[3]0|3
0017 C_val: 6191857
(b) Matrix C and its CSR format from [27, Fig.5(f)].

B_idx2(B_pos2(i_pos):B_pos2(i_pos+1)))
sum(<j_pos, j> in
C_idx(C_pos(k):C_pos(k+1)))
{
j >
C_val(j_pos) * (
merge(<1_posB,1_posD,1> in
<B_idx3(B_pos3(k_pos):B_pos3(k_pos+1)),

CREATE TENSOR C AS sum(<row,_> in 0:C_len1)
{ row ->
sum(<off,col> in C_idx2(C_pos2(row):C_pos2(row+1)))
{ col -> C_val(off) }

D_idx(D_pos(j):D_pos(j+1))>)
B_val(l_posB) * D_val(l_posD)

(c) The SDQLite storage mapping for CSR.

(d) Optimized MTTKRP in SDQLite.

Figure 1: Illustration of STOREL. (a) MTTKRP kernel, (b) CSR memory layout, (c) CSR storage mapping, (d) optimized plan.

DENSE: COO:
v_len: [4] V_POS: 03
vval: [9]0]7]5] v-idx: 1 0 2
- vval: [9]7]5

To access v(i) using the COO representation one has to first find i
in v_idx, in other words one has to find p such that v_idx(p) =i,
then return v_val(p); the role of v_pos will become clear shortly.
The COO representation of a matrix has two index arrays, v_idx1,
v_idx2, storing the rows and columns of the non-zero element
respectively. The COO representation is compact, but no longer
enables constant-time lookup. A hash-map representation of the
matrix is a hash-map where the keys are pairs (i, j). It is compact
and allows access in time O(1), but no longer supports a scan in
either row-major or column-major order.

The Taco system [27] describes a general scheme for storage
formats where the user can choose an order of the d dimensions,
and specify, independently for each dimension, whether it is dense
or sparse. This allows for d! -2¢ formats. The storage uses segmented
arrays, which consist of the concatenation of several sub-arrays
stored in a single array, with their starting positions stored in a
separate array. For example, the sparse-sparse representation of the
matrix C in Fig. 1 (b) is the following (taken from [27, Fig.5(g)]):

C_posl: |0 | 2

C_idx1: |0 | 2

C_pos2: |0 [3]5
C_idx2: [0]2 |3 3
C_val: 61981517

The arrays C_idx2 and C_val contain two segments each: the first
segment represents row 0 of the matrix C, (6,0, 9, 8); the second
segment represents row 2, (5,0, 0, 7). The segments are delimited
by C_pos2, which indicates their starting point. The row number
of each segment is stored in C_idx1: only the valuesi = 0 and i = 2
occur here because row 1 is empty. Alternatively, the dense-sparse
representation, shown in Fig. 1 (b) stores every row, including row
1, and for that reason there is no need to store the vector C_idx1
(since this vector would be (0, 1, 2)), but we only store its length,
C_len1 = 3. The dense-sparse representation is called compressed
sparse row, or CSR, and the sparse-sparse representation is called

doubly CSR, or DCSR. In a later reference [14] the authors extended
the number of choices available at each dimension from 2 to 6.

Tensors as Relations Any d-dimensional tensor can be repre-
sented as a relation with d + 1 attributes. For example, a matrix A
can be represented as a relation R(i, j,v), where i, j is the primary
key, and v the value of A(i, j). A clustered index on (i, j,v) corre-
sponds roughly to a row-major ordering of the matrix; a hash-index
corresponds to a hash-map representation; while a column-oriented
storage [2] corresponds to a COO representation. However, since
relations are unordered, it is not possible to use some of the other
formats, like CSR or CSC.

Semiring Dictionary A semiring is a quintuple (S, +,%,0,1),
where S is a set, the operations +, * are associative with identities
0 and 1 respectively, + is commutative, * distributes over +, and
0#%x = x %0 = 0. For example, the real numbers form a semi-
ring, (R,+,%,0,1). A semiring dictionary, or simply a dictionary,
is a mapping K — S, from a finite set of keys K to values in
some semiring S [42]. If ky, ..., kp, are distinct keys, then {k; —
01,...,km — um} denotes the dictionary that maps each key k;
to the value v;, and maps each key k ¢ {k1,...,kmu} to 0. In other
words, missing keys default to 0; it follows that {k; — 0,kz —
0,...} = { }, in other words a dictionary containing only 0 values is
the same as empty dictionary. In this paper the key space is always

of the form K def [n1) X --- X [ng), and we view interchangeably a
tensor A € RK as a dictionary A : K — R. When d = 0, then the
dictionary is of the form {() — v}, which we identify, with some
abuse, with the scalar value v.

It was observed in [42] that semiring dictionaries generalize K-
relations [20]; the set of semiring dictionaries over a fixed key-set
K forms another semiring, where the plus and multiplication are
defined element-wise. For example, if A, B are two m X n matrices,
then they both can be viewed as dictionaries [m) X [n) — R, and
A+B, AxB denote their element-wise sum and product respectively.
One consequence is that we obtain the following rule:

ifk1 =ky =k
if k1 # ko

{k — v1 + vy}
k +{k =
{k1 = o1} + {k2 — 02} {{k1—>v1,kz—>vz}

Data Admin |
M

TSM Ry RR

e1*(e2+e3) = e1*e2+e1*e3 | | Data
el+e2 = e2+e1 statistics

create tensorAas ...
create tensor B as ...

commpose o IEtA=...in Cost
p sum(<i,v>in A)... estimate
Naive

Plan

NGEq

Data Scientist

STOREL

Figure 2: System’s architecture. TSM=Tensor Storage Map-
ping; TP=Tensor Program; RR=Rewrite Rules.

Another consequence is that one can define nested dictionaries,
by defining a dictionary whose values are other dictionaries. For

example, let S def [[n) — R] denote the set of dictionaries with
keys [n) and real values. A dictionary in S is a vector of length n.
Then, a dictionary A : [m) — S is a vector of length m of vectors
of length n, which is equivalent to a matrix.

SDQL We briefly review here SDQL from [42]. In a nutshell, the
query language SDQL is like Unions of Conjunctive Queries, where
3, A, V are replaced with sum, *, +, and the head variables are moved
to the end of the query expression. We show here side-by-side in CQ
and SDQL how to transform a vector V by removing its negative val-
ues (equivalently: setting them to 0) and multiplying the others by 5:

CQ: SDQL:
sum(<i,v> in V)

if v>0 then { i -> 5*v }
The semantics of SDQL uses the fact that dictionaries form a semir-
ing, i.e. can be “added”. The SDQL query above is executed by
iterating over the pairs < i,o > in V, and summing up singleton
dictionaries. For example, if the vector V is (v, v1, v2, v3, v4), where
00,03,04 > 0 and v1,02 < 0, then the query above returns {0 —
500} + {3 — 503} + {4 — 504} = {0 — 50v¢,3 — 503,4 — 504}. For
another illustration, the following two SDQL queries compute the
dot product }; u;v; and the element-wise product (u;v;); of two
vectors U, V respectively:

sum(<i,u> in U, <i,v> in V) {() -> u*v}
sum(<i,u> in U, <i,v> in V) {i -> uxv}

Q(i,5*0v) :=V(i,0) A (v >0)

The operator * is overloaded to define the multiplication of
scalars and dictionaries. For example, a x V represents a scalar-
vector multiplication and is equivalent to the following SDQL query:

sum(<i,v> in V) {i -> a * v}

3 STOREL

Here we describe architecture of our system STOREL, and its declar-
ative language SDQLite.

3.1 Architecture

The architecture of STOREL is shown in Fig. 2. All yellow-gold
boxes represent SDQLite programs, described below, while the blue
box represents rewrite rules described in Sec. 5. The end user (for
example a data scientist) writes a Tensor Program (TP) in SDQLite.
Separately, the data administrator (possibly the same user) famil-
iar with low level optimizations, writes Tensor Storage Mappings
(TSM), one for each tensor. STOREL composes the two expressions,
by substituting each tensor variable in TP with its corresponding
definition in TSM. This results in a SDQLite expression which we
call the Naive Plan. The Naive Plan is then submitted to the Egg
equality saturation system [54]. Egg has access to a knowledge base
of Rewrite Rules (RR), and applies all rules until saturation, i.e. until
no more rule can be applied. The current collection of rewrite rules
includes about 44 rules, described in Sec. 5. Egg stores all equiva-
lent plans in a very compact data structure called an e-graph. Next,
STOREL uses data statistics and a simple cost model to associate a
cost to each equivalent plan; currently, the user needs to provide
the data statistics manually. Egg then extracts the cheapest plan
from the e-graph, and this plan is finally submitted to the execution
engine. We currently use Julia [8] as our execution engine. Alter-
natively, the optimal plan could be further optimized by applying
schedules, but this is not currently supported in our system.

3.2 SDQLite

STOREL needs a language to express the tensor programs, a formal-
ism for expressing tensor storage formats, an intermediate language
in which to express the optimizations, and a physical language in
which the programs are executed. In this paper we are introducing
a declarative language called SDQLite, which serves the first three
purposes: it can express Tensor Programs (TP), it can express so-
phisticated Tensor Storage Mappings (TSM), and we also use it as
intermediate language for performing optimizations. SDQLite can
be easily converted to physical plans, as we describe in Sec. 5. A
language that satisfies all these goals requires a careful design: we
describe SDQLite in this section, and note that it is derived from
SDQL [42]; we discuss the differences at the end of this section.
The data model for SDQLite consists of scalars (integers or reals),
and nested dictionaries. The latter have type [n) — S, where the
value space S is the set of integers, reals, or another dictionary.
Thus, the data model in SDQLite consists of the following types:

[n1) = [n2) = -+ [ng) > R

[n1) = [n2) = -+ [ng) = Z

where d > 0; when d = 0 then these are scalar types. One can
equivalently view the data model of SDQLite as consisting of real-
and integer-valued tensors. To see this, we recall the curry operation,
which converts a function of type K X K/ — S into a function of
type K — [K’ — S], and the uncurry operation which goes the
other way. By repeatedly uncurrying a nested dictionary, we can
convert it to a ny Xng X - - - X ng tensor. For that reason, in this paper
we blur the distinction between (nested) dictionaries and tensors,
and view the data model of SDQLite as consisting of tensors.
Syntax The expressions in SDQLite are the following:
el+e2, elxe2, {k -> e}, e(i), i1:i2, e(i1:i2),
if (c) then e, let v = el in e2, sum(<k,v> in el) e2

Construct Desugars to Notes
e(el,e2) e(el)(e2) curry
{ (e1, e2) > e } {el>{e2->e}} curry
sum(<(k1,k2),v> in e1) | sum(<k1,w> 1n.e1) uncurry
e2 sum(<k2,v> in w) e2
let vi=el
let vi=el, v2=e2 i
| in let v2=e2
in
in ...
sum(<k1,v1> in el
sum(<k1,v1> in el, (<kT,v1>dn el)
: sum(<k2,v2> in e2)
<k2,v2> in e2) e3
e3
. sum(<k1,v1> in el) k is used
sum(<k,v1> in el, R -
<k,v2> in e2) e3 sum(<k2,v2> in e2) twice in
,v2> in e2) e .
if (k1 == k2) then e3 | LHS

Table 1: Syntatic sugar extensions in SDQLite.

where k, v are variables, e, e1, e2, e3 are dictionary expressions, i, i1,
i2 are index expression, i.e. of type int, and c is a Boolean expres-
sion. Each of the SDQLite expressions above returns a dictionary,
which may, in particular, be a scalar. We also include standard prim-
itive operations over scalars of type real or integer, like division /,
modulo %, exponentiation exp(...) comparison el<e2, etc.
Semantics We briefly describe the semantics of SDQLite. e1+e2
and e1*e2 compute the sum and product of dictionaries; e (i) applies
the dictionary e to the key 1.
The range expression i1:i2 returns the dictionary consisting of
the sum of {i -> i}, for all i in the range i1,...,i2-1,ie.
i1:42 = { i1 -> i1, i1+1 -> i1+1, ..., i2-1 -> i2-1 }
The sub-array expression e(i1:i2) is used for representing seg-
mented arrays and returns the following dictionary:
e(i1:12) = { i1->e(i1),il+1->e(i1+1),...,i2-1->e(i2-1) }
The conditional if (c) then e returns e if c is true, and returns
zero (0 or {} depending on the type of e) otherwise, and the let
construct introduces a temporary variable v, with value e1, which
may be used in e2.
We explain the summation. Assume the value of e1 is:
el = { k1 -> v1, ., kn => vn }
Then the value of sum(<k,v> in el1) e2is:
e2[k1/k,v1/v] + e2[k2/k,v2/v] + ... + e2[kn/k,vn/v]
where e2[k_i/k,v_i/v] represents the result of substituting in e2
the variables k, v with the values k_i and v_i.
Syntactic Sugar We also included some convenient syntactic
sugar extensions in SDQLite, described in Table 1.

Example 3.1. For a simple illustration, the following SDQLite
query computes the product of two matrices A and B:
sum(<(i,j),a> in A, <(j,k),b> in B) { (i,k) -> a*b }
It is internally desugared to:
sum(<i,rowA> in A) sum(<j1,a> in rowA)
sum(<j2,rowB> in B) sum(<k,b> in rowB)
if (j1==j2) { i > { k > a*b }}
Notice the power of viewing dictionaries as semirings. The seman-
tics of query above consists of emitting n® singleton dictionaries
of the form {i->{k-a*b}}, which are “added” up and result in only
n? pairs i,k. “Addition” acts like a group-by, in other words we have:

{i -> {k -> ailxb1k}} + {i->{k->ai2*b2k}} + ...
= {i -> {k > ail*b1k} + {k->ai2*b2k} + ... }
= {i -> {k -> ail*blk+ai2xb2k+...}}
Alternatively, if the dimensions of the two matrices are known
to be m X n and n X p, then matrix multiplication can be written as:
sum(<i,_> in @:m, <j,_> in 0:n, <k,_> in 0:p)
{ 3,k > AL, 3)*B(5,k) }

Discussion SDQLite is a declarative language, in that it does
not specify the order of operations. This similar to, say, SQL, where
the order of the tables in the FROM, or the order of the predicates
in the WHERE clause do not specify that the joins, or the evaluation
of predicates, need to be executed in that order. In fact, SDQLite
is basically UCQ, where 3, A, V are replaced with sum, *, +, as we
explained in Sec. 2; UCQ is generally accepted to be a declarative
language, and SDQLite is similarly declarative. While SDQLite bor-
rows several ideas from SDQL [42], it differs in some important
ways, as follows. SDQLite adds subarray expressions (needed in
Sec. 4), the merge operator (needed in Sec. 5.6), and has several syn-
tactic sugar extensions, shown in Table 1. We restricted the keys
to be numbers only (while SDQL allows records and dictionaries),
which is necessary to enable the optimization rules in Sec. 5.2. Fi-
nally, we defined cardinality and cost estimation rules and extended
optimization rules, as described in Sec. 5.

4 TENSOR STORAGE MAPPINGS

We have described in the previous section the declarative tensor
language SDQLite, which can be used to write tensor programs in
a notation close to a mathematical notation; as we discussed, we
use tensors and dictionaries interchangeably in this paper. So far,
all tensors manipulated in SDQLite have only a logical data model,
and we have not defined yet a physical model. In this section we
extend SDQLite with a physical data model, and show how we use
it to define Tensor Storage Mappings (TSM), from a physical to a
logical representation.

The physical data model in SDQLite consists of four data types:
(a) scalar values, which can be of type real or int, (b) arrays of type
int or real, and (c) hash-maps that map tuples of integers to int
or real, or (d) tries, which are trees of hash-maps. The data admin
(Fig. 2) defines named data values using the following syntax:

CREATE [real | int] SCALAR U;

CREATE [real | int] ARRAY A(n);

CREATE [real | int] HASHMAP B(n1, n2, ..., nd);
CREATE [real | int] TRIE C(n1)(n2)...(nd);
Here U, A, B, C are names, i.e. identifiers, n, n1, ..., nd are expressions

of type int. An array is a continuous memory array of fixed size n.
Both a hash-map and a trie logically represent a dictionary [n1) X
-+-X [ng) = R (or - -- — Z), but differ at the physical level. The
hash-map maps a key (i1, ..., ig) to a real or integer value, while a
trie is a hash map that maps a key i; to another hash-map of type
[n2) X --- X [ng) — R. All symbols U, A, B are global symbols, in
contrast to symbols introduced by the let binding, which are local.
Next, the data administrator writes a Tensor Storage Mapping
(TSM) for each logical tensor, using the following statement:
CREATE TENSOR T AS ...;

where the ellipsis represent a SDQLite expressions that uses the
named data values defined earlier, and returns a logical tensor
(dictionary) T.

By combining a simple physical data model with a powerful
tensor language, SDQLite allows the data administrator to define
sophisticated storage mappings, which helps the administrator
exploit the particular characteristics of her tensors.

We illustrate with several TSM examples, showing various for-
mats for representing a matrix C.

Example 4.1. The following TSM defines a dense, row-major
representation of C:
CREATE int SCALAR M, N; CREATE ARRAY V(M#N);
CREATE TENSOR C AS
sum (<i,_> in @:M, <j,_> in @:N) { (i,]) -> V(i*N+j) };

Example 4.2. Suppose we want to store C using the DCSR format
(sparse-sparse) described in Section 2. Then we need to define the
following physical data types, and TSM:

CREATE int ARRAY C_posi(2);

CREATE int ARRAY C_idx1(C_pos1(1));

CREATE int ARRAY C_pos2(C_pos1(1)+1);

CREATE int ARRAY C_idx2(C_pos2(C_pos1(1)));

CREATE real ARRAY C_val(C_pos2(C_pos1(1)));

CREATE TENSOR C AS

sum (<i_pos, i> in C_idx1)
let j_start = C_pos2(i_pos),

j_end = C_pos2(i_pos+1)
in sum(<j_pos, j> in C_idx2(j_start:j_end))
{ (1,3) > C_val(j_pos)}
We then materialize the physical data types as follows:

e C_posl has size 2 and values C_pos1(0)=0, C_pos1(1)= the
number of non-empty rows in the matrix C.

e C_idx1 contains all indexes i of the nonempty rows in C, in
increasing order.

e C_pos2 defines the segments in the arrays C_idx2 and C_val;
there is one segment for each non-empty row in the matrix,
hence the size of C_pos2 is the number of non-empty rows
plus 1. Its last position defines the sizes of C_idx2 and C_val.

e Finally, C_idx2 and C_val contain the segmented arrays that
represent the non-empty rows of C as sparse vectors.

The TENSOR expression defines how to build ¢ from these arrays.
For a similar example, Fig. 1 (c) defines the Tensor Storage Map-
ping from the CSR representation Fig. 1 (b) to the matrix C.

Example 4.3. We briefly illustrate HASHMAP and TRIE. The follow-
ing represents C using a HASHMAP:

CREATE real HASHMAP H(M,N):

CREATE TENSOR C AS sum(<(i,j),v> in H) {(i,j) -> v};
This is commonly known as the Dictionary of Keys (DOK) format
in SciPy [15].

Alternatively, we could store C in a TRIE of depth 2:

CREATE real TRIE T(M)(N);

CREATE TENSOR C AS

sum (<i,row> in T, <j,v> in row) { (i,j) -> v };

The difference is that now the key of the hash-map T is a single
index i, and the value is another hash-map that maps the columns
j to values.

We end this section by emphasizing that storage mappings de-
fined in a declarative language like SDQLite are significantly more
expressive than fixed, predefined storage formats. For example,
it is easy to represent in SDQLite a storage mapping for a dense
lower-triangular matrix A, a band matrix B (where B(i, j)<>0 only
when abs(i-j)<=1), or the Z-order space-filling curve C, although
SDQLite was not explicitly designed for these types of storages:

CREATE real ARRAY A_val(Nx(N+1)/2);

CREATE TENSOR A AS // lower triangular

sum(<i,_> in 0:N, <j,_> in 0:(i+1))
{(1,3) -> A_val(ix(i-1)/2+j)}

CREATE real ARRAY B_val(3x*N-2);
CREATE TENSOR B AS // band matrix
sum(<p,_> in 0:N)
{ (p,p) —> B_val(@*p)} +
if (p<N)
then { (p,p+1) -> B_val(3*p+1),
(p*+1,p) -> B_val(3xp+2) }

CREATE real ARRAY C_val(Nx*N); // N is power of 2
CREATE TENSOR C AS // Z-order curve
sum (<d,v> in C_val)
let i = even_bits(d), // even bits of d
j = odd_bits(d) // odd bits of d
in { (1,5) > v}

5 OPTIMIZATIONS

We have seen that tensor processing in STOREL consists of two
separate tasks: writing the Tensor Program (TP), and writing the
Tensor Storage Mappings (TSM), see Fig. 2. The TP simply refers
to logical tensor names, like A or B or C, while the TSM describes
how these tensors are stored in physical arrays, hash-maps, or
tries. Both programs are expressed at a logical level, in the same
declarative language SDQLite. In this section we describe how
STOREL combines these two into a single, optimized physical plan,
which can be directly executed by an engine; we currently use Julia
as our physical execution engine. In this section we will refer to
any logical SDQLite query as a logical plan. Then, we describe some
refinements of the logical operators into physical operators: a query
expression using the physical operators will be called physical plan.

5.1 The Naive Logical Plan

The first step of the optimizer consists of composing the Tensor
Program with the Tensor Storage Mappings, to obtain the Naive
Logical Plan, obtained by simply appending the TSM and the TP.
More precisely, if the TP operates over tensors A, B, . . ., and each is
defined by one TSM, then the naive logical plan looks like this:
let A = TSM-for-A
B = TSM-for-B

in TP
The input to the Naive Logical Plan consists of the physical arrays,
hash maps, and tries mentioned in the TSMs. Its output is the final
answer of the TP.

Associativity/Commutativity Rules: Algebraic Simplifications:
Al: el x (e2 * e3) — (el * e2) x e3 L1: e+0 ~ e
A2: { el > e2 xe3 } — {el ->e2} *xe3 L2: ex0 ~ 0
A3: { el >e2 xe3} — e2x{el >e3} L3: ex1 ~ e
A4: if(el) then e2 x e3 <> e2 *x if(el) then e3 L4: -0 ~ 0
Cl: el +e2 o e2 + el IL5: e-0 ~ e
C2: el ==¢e2 o e2 == el L6: e-e ~ 0

Distributivity (Factorization) Rules:

D1: el x e2 + el % e3 — el x (e2 + e3)

D2: sum(<k,v> in el) e2 * e3 if k,vg&FV(e2) « e2 * (&um(<k,v> in el) e3)

D3: sum(<k,v> in el) e2 % e3 if k,vg&FV(e3) « (sum(<k,v> &in el) e2) * e3

D4: sum(<k,v> in el1) { e2 -> e3 } if k,vgFV(e2) < { e2 -> sum(<k,v> in el) e3 }

Fusion Rules:

if(vi==v2) then e3

sum(<k,v> in el) let k = e2 in
F1: if(k == e2) then if k,vg FV(e2) ¢« 1let v = el(k) in
e3 e3
sum(<k1,v1> in sum(<k2,v2> in el)
F2: (sum(<k2,v2> in el) {k2 -> e2})) > let k1=k2, vl=e2 in
e3 e3
sum(<k1,v1> in sum(<k2,v2> in el)
F3: (sum(<k2,v2> in el1) {@unique e2 -> e3})) > let k1=e2, v1=e3 in
e4 e4
sum(<k1,v1> in el) merge(<k1,k2,v1> in <el,e2>)
F4: sum(<k2,v2> in e2) if k1,v1 ¢ FV(e2) < let v2 = v1 in

e3

Dictionary Rules:

T1: sum(<k,v> ine) { k > v }

e

T2: e2(el) + e3(el)

T3: {el >e23}+{el —>e3}

{ el >e2+e3}

T4: (el:e2)(e3)

>
« (e2 + e3)(el)
—
>

if(e3 >= el && e3 < e2) then el + e3

T5: sum(<k,v> in el:e2) e3

Ld sum(<k,_> in el:e2) let v=k+el in e3

Figure 3: Selected transformation rules of the 44 rules that form the basis of our cost-based optimizer.

Evaluating the naive plan directly is very inefficient, because
it involves materializing all tensors in some naive representation,
which is what we wanted to avoid in the first place. Instead, the
system performs a sequence of logical rewritingsin order to optimize
the program.

5.2 Logical Rewritings

Our optimizer is a cost-based optimizer that applies a set of rules
to find expressions equivalent to the given query, then uses a cost
model to select the cheapest expression. It uses Egg [54] for simpli-
fying a SDQLite expression using the rules. Our rule base currently
consists of 44 rules of the form:

Patterni ~> Pattern2
When we assert rules in both directions then we write:

Patterni < Pattern2

We show a few selected rules in Fig. 3. We start by showing some

simple associativity and commutativity rules, followed by algebraic
simplifications rules, which are unidirectional. The factorization
rules allow us to move constant factors in or out of the summation;
as we explain in Sec. 6, this leads to some significant performance
improvements. The next group contains loop fusion rules, which
are known to be of key importance for linear algebra or tensor

algebra [10]. Finally, the dictionary rules capture the way that
summation interacts with dictionaries.

Example 5.1. For a simple illustration, we show how to convert
an iteration into a lookup. Consider the following inner product of
two vectors:

sum (<i,a> in A, <i,b> in B) { () > a*b }

After desugaring the query becomes:

sum (<i,a> in A) sum (<j,b> in B) if (i==j) { () -> a*B }
At this point the optimizer can apply fusion rule F1 and rewrite the
query to:

sum (<i,a> in A) let k=j, v=b(k) in a*v
When A is sparse and B is stored as a hash map, then this expression
is much more efficient, because it iterates only over the non-zero
elements of A, and uses a lookup to retrieve the values of B.

Unique Constraint To increase the power of our optimizer, we
have extended SDQLite with a constraint called @unique, which
may be specified in a dictionary construction:

{ @unique k -> e }
The semantics of @unique is that, in a sum, all keys are asserted to be
distinct. Fusion rule F3 requires the @unique constraint, and allows
two nested loops to be fused into a single loop. The role of @unique
is only to inform the optimizer: it has no effect at runtime.

We explain now the rule F3. Consider the following subexpres-

sion of the LHS of the rule:

sum(<k2,v2> in el) {@unique e2 -> e3}
Suppose that e is a dictionary with n elements. Then the meaning
of the sum is the summation of n terms:

{ @Qunique e2_1 -> e3_1 } + { @unique e2_2 -> e3_2 } + ...
and the @unique constraints guarantees that their keys e2_1, e2_2,
e2_3, ... are distinct. Then, the outer sum will bind the variables
k1,v1 to exactly one pair e2_i,e3_i. Rule F3 fuses the two loops
into a single loop, and uses a let construct to bind k1,v1 to e2,e3.

In some cases the @unique constraint can be inferred from the
query, but in most cases it is data dependent, and must be asserted
by data administrator when defining the TSM. For example, the
TSM for the CSR representation of the tensor C in Fig. 1 (c) should
be written as follows:

CREATE TENSOR C AS sum(<row,_> in 0:C_len1)

{ @unique row ->

sum(<off,col> in C_idx2(C_pos2(row):C_pos2(row+1)))
{ @unique col -> C_val(off) }

}
The expression sum(... <(k,j), C_v> in C ...) ... in Fig. 1 (a)
desugars into two nested iterations, one for k and one for j, and the
optimizer can now use rule F3 twice to fuse these two iteration in
TP with the two iterations in the TSM, leading to the much more
efficient program in Fig. 1 (d).

5.3 Rule Engine: Egg

The rule engine takes as input the naive tensor plan and the col-
lection of rules, and repeatedly applies the rules in order to obtain
all equivalent query plans. This task is non-trivial: the rule engine
needs to memorize all generated plans and check for duplicates,
and also needs to avoid running into an infinite loop. Every cost-
based query optimizer that we are aware of implements its own
rule engine, which does pattern matching, duplicate detection, and
memoization of expressions.

Instead of implementing our own expression manager, we adopt
a state-of-the-art rewriting system called an Equality Saturation
(EQSAT) system [49]. Specifically, we used Egg [54]. An EQSAT
system has access to a collection of rewrite rules, and receives as
input an expression e. It then constructs the plan space by maintain-
ing a data structure, called an e-graph, that compactly represents a
set of expressions, together with an equivalence relation over this
set that can be derived from the rules. The e-graph consists of a
set of e-classes, each e-class consists of a set of e-nodes, and each
e-node is a function symbol with e-classes as children.

For example, Fig. 4 shows the compact representation of all
expressions equivalent to a * {k -> b+c}. The top e-class has 3
operators. The first is -> and has children k and the e-class for a x
(b+c), which corresponds to the associativity rule A3. The second is
a * and its children are a and the e-class for { k -> b + ¢ 3}, repre-
senting the original input. The third is another *, with { k -> a }
and b+c as its children, and corresponds to the associativity rule A2.
This e-graph corresponds to the following equivalent expressions:

{k->ax((btc) =a*x{k->btc }={k ->a3} x (btc)

Figure 4: The e-graphofa * { k -> b + ¢ }.

This e-graph is obtained by only applying the associativity rules
and contains 11 nodes and 9 e-classes. By applying the rest of trans-
formation rules (e.g., distributivity), we obtain a more complicated
e-graph with 28 nodes and 15 classes.

The e-graph (i.e., plan space) is iteratively expanded by applying
all the provided rewrite rules. This process is continued until either
the e-graph is saturated (i.e., applying rewrite rules does not change
the e-graph) or a threshold (e.g., number of iterations or timeout) is
reached. Finally, Egg performs the search for the best plan through
the extraction procedure by a user-provided cost model.

5.4 Managing Free Variables

A major challenge for our cost-based optimizer is that, unlike the
traditional Cascades based framework [19], our rules operate on a
calculus instead of an algebra. This creates significant challenges
for managing the free variables in the expressions.

For example, consider a let-rule like this:

let x = el ine2 ~ e2[el/x]

There are two important challenges here. First, this rule must match
with its @-equivalent terms, i.e., terms that become equivalent by
substituting their variable names such as let x = el in x * 2 and
let y = el in y * 2. Keeping track of a-equivalence requires a
sophisticated matching strategy that imposes scalability challenges
for equality saturation. Second, e2[e1/x], which represents the re-
sult of substituting x by e1 in e2, is not a valid pattern in Egg. Egg
uses a compact representation of equivalent expressions, which
makes it impossible to express substitution, since different equiva-
lent representations of e2 may or may not have x as a free variable,
or x may mean different things.

We use De Bruijn indexing [17] to provide a nameless repre-
sentation for variables. This way, the term let x = el in x * 2is
represented as let el in %0 * 2, where %0 refers to the variable
introduced by the closest let-binding. It was shown [29] that De
Bruijn indexing can solve the scalability of equality saturation by
avoiding the e-graph to be overloaded with a-equivalent terms.

5.5 Cardinality Estimation

After applying all rules, STOREL uses a cardinality and cost es-
timator to select the best rewriting. We adopt ideas from [28] to

elem(e) = ¢ if card(e) = n[c]
size(e) = n if card(e) = n[c]

card({ el -> e2 }) = 1[card(e2)]
card(@:e1) = m[s]
card(let x = el in e2) = card(e2)
s if card(e2) = s
sel(e1) - n[c] if card(e2) = n|c]
s if card(e2) = s
if card(e2) = n[c]

)

)
card(e1(e2)) = elem(el)
)

) if card(el) = #m
)

card(if(e1) then e2)

card(sum(<k,v> in el) e2) =
size(e1) - n|c]

Figure 5: Cardinality estimation rules.

represent cardinalities of nested dictionaries. A cardinality expres-
sion is given by the following grammar, where s is a symbol that
means that the quantity is a scalar (e.g. has size 1), n is a real number,
and #m represents a scalar expression that stores the size m:

¢ == s|n[c]|#m

For example, if A is a dictionary of type [n1) — [n2) — [n3) —
R, then we may estimate its cardinality as 100[10[50[s]]], which
means: for an estimated 100 indices i, A(i) is non-zero; for each
such i, for an estimated 10 j’s, A(i) (j) is non-zero, and for each of
these, for an estimated 50 k’s, A(i) (j) (k) is non-zero.
We use the rules in Fig. 5 to estimate the cardinality of a SDQLite
expression. For example, consider the cardinality of the expressions:
sum (<i,v> in A) if (v==25) then {i -> i*3}
and assume that the cardinality of A is 1000([s]. Further assume that
the selectivity of the predicate is sel(v==25) = 0.02. Then:
card{(i -> i*3}) =1[s]
card(if (v==25) then {i -> i*3}) =0.02x*1[s] =0.02[s]
card(sum(<i,v> in A) if ...) = 1000 * 0.02[s] = 20(s]
For the cardinality of input tensors (e.g., card(A)) and the se-
lectivity estimates (e.g., sel(e1)), STOREL currently relies on the
information provided by DBAs or uses constants (e.g., 0.1 for se-
lectivity estimates). We leave the usage of histograms and more
advanced cardinality estimation techniques for the future.

5.6 Physical Plans

So far all expressions in SDQLite are logical plans. We describe here
how we convert SDQLite expressions into physical plans, which we
execute on our runtime system, Julia. Simple scalar operators like
a+b or axb get converted immediately into physical operations. Julia
also supports plus and times operators on dictionaries (tensors); if
that were not the case, then we can force the optimizer to write
such operations explicitly as loops, e.g. we rewrite the expression
a*b, where a is a scalar and b is a dictionary, into:

sum (<i,vb> in b) { i -> a*vb }
and assign a cost of oo to + and * operators applied to dictionaries.

The physical operator associated to sum (<k,v> in el) e2isa
for loop iterating over the dictionary e1. To make this loop concrete,
STOREL needs to know how the dictionary e1 is represented. In our
system, there are two choices: as a dense vector, or as a hash-map.
STOREL knows the type of storage for the arrays, hash maps, and
tries of the physical storage, since they were explicitly declared in

cost(el(e2)

cost el > e2 }
cost{(@dense el -> e2 }
cost{@hash el -> e2 }

= cost(e1) + cost(e2) +¥1o0kup(e1)

(o)

cost(e1) + cost(e2) +Yarr—insert(e1, €2)

cost(e1) + cost(e2) +Yhash—insert (€1, €2)
cost(let x = el in e2)=ymarer(e1)-cost(el) + cost(e2)

cost(if(e1) then e2)=cost(el)+sel(e)-cost(e2)

cost(sum(<k,v> in e1) e2)=cost(el)+yiter(e1)-size(el)-cost(e2)

cost(merge(<k1,k2,v> in <el,e2>) e3) =

cost(e1)+cost(e2)+(yirer(e1)-size(e1) + yirer(e2)-size(€2))-cost(e3)

—_ = — — — —

Figure 6: Cost estimation rules.

Tensor Dimensions Density # non-zeros
cant 62K x 62K 1%x1073 2.03M
consph 83K x 83K 9% 1074 3.05M
cop20k_A 121K x 121K 2x 1074 1.36M
pdb1HYS 36K x 36K 3% 1073 2.19M
rmal0 46K x 46K 1% 1073 2.37M
webbase 1M x 1M 3x107° 3.11M
NIPS 24K x 2.8K X 14K 3 x 107> 31.31M
NELL 12K X 92K x 29K 2% 107> 76.88M
Facebook 1.6K x 64K x 64K 1x 1077 0.74 M
Enron 6K X 5.7K x 244K 3x 107 3.10 M

Table 2: Real-world matrices and rank-3 tensors used in the
experiments.

the TSM. For all other constructed dictionaries, STOREL needs to
choose whether to construct a dense vector, or a hash map. We do
this by adding the following two rules to the collection of rules:
{k -> e} ~» { @dense k -> e}
{k -> e} ~» { @hash k -> e}

In the first rule {k -> e} becomes an entry of a dense array, in
the second rule it becomes an entry of a hash-map. We assign a
cost of oo to any expression that still contains a logical dictionary
{k -> e}, thus forcing the optimizer to choose either a dense array
or a hash-map representation.

Finally, we add one additional physical operator to SDQLite:

merge(<k1,k2,v> in <el,e2>) e3

Both e1 and e2 must be dictionaries of real values, in other words
they must be vectors, and, in that case, the semantics of merge is:

sum(<k1,v> in el, <k2,u> in e2) (if (v==u) then e3)

This is captured by the Fusion Rule F4 in Fig. 3.

5.7 Cost Estimate

Finally, the cost of a physical plan is estimated using the rules
shown in Fig.6. These inference rules include parameters that are
dependent on the type of the underlying collection (e.g., Yio0kup
and yjter for a dense-array is smaller than the one for a hash-map).
We notice that a logical plan for which we have not chosen between
a dense array and hash map will have cost co.

6 EXPERIMENTS

In this section we present an empirical evaluation of STOREL, by
running on several common tensor kernels, with a variety of real
and synthetic matrices and tensors, and comparing it with six other
systems. We studied the following questions:

(1) How much do tensor programs over flexible storage benefit
from cost-based optimization?

[Tensor Program [STOREL / Taco[SciPy [NumPy [PyTorch [TensorFlow[DuckDB [Sec. 6.1 Dim.[Sec. 6.2 Dim.]
MMM: Q(i, j) = > A(i, k) - B(k, j) CSR,CSR | CSR, CSR [Dense, Dense[CSR, Dense|[COO, Dense] COO, COO | B:_ x 250 [A:10° x 10,B:_ x 103
SMMM: Q() = 3, . A(i, k) - B(k, J) CSC, CSR | CSR, CSR |Dense, Dense|CSR, Dense|COO, Dense| COO, COO | B: _ x 250 |A:10° x 10°,B:_ x 10°
BATAX: Q(j) = Xix B - A(, J) - A(L k) - X (k) CSR, Dense |CSR, Dense|Dense, Dense|CSR, Dense|COO, Dense| COO, COO X:_ A:10° X 10°, X:_
TIM: Q(i, j, k) = > A(i, j, 1) - B(k.]) CSF, CSC/CSR — — — — COO0, COO B:_x25 —

MTTKRP: Q(i, j) = 21 A(i k. 1) - B(k, j) - C(1, j)|CSF, CSR, CSC — — — — CO0, COO, COO| B:_x 25 —

Table 3: Tensor Programs and their best storage formats for each system. SciPy, NumPy, PyTorch, and TensorFlow do not
support higher-order sparse tensors. DuckDB encodes the tensors as relations, which are comparable to the coordinate (COO)
format in tensor systems. The missing dimensions, denoted by _ or not included, can be inferred from the context (e.g., for
Sec. 6.1 the dimension of A is specified in Table 2 and the number of rows of B is the same as the number of columns of A).

(2) How do different choices of storage formats for different
data sparsities affect the run-time performance, and does
STOREL take best advantage of the given storage format?

(3) How much do specific sets of rewrite rules contribute to the
optimization? In particular we would like to understand the
contribution of loop fusion and factorization.

(4) How complex is the optimization task? How many applica-
tions of rules are needed to optimize Tensor Programs?

(5) How practical is the optimization process? Does the run time
improvement outweight the optimization overhead?

In addition, we discuss our experience with using Egg as our

rule rewrite system at the end of the section.
Experimental Setup. We conducted our experiments on an AWS
t2.2xlarge instance with 8 vCPUs, 32 GBs of RAM, and Ubuntu
22.04 LTS. Our system uses Julia 1.7.3 [8] for executing the gener-
ated code. The other systems we benchmark are Taco [27], NumPy
1.22.3 [22], SciPy 1.8.1 [52], PyTorch 1.11.0, TensorFlow 2.9.1, and
DuckDB 0.3.2 [37]. We use G++ 11.2.0 to compile the generated C
code in Taco, and use Python 3.10.4 for NumPy, SciPy, PyTorch,
and TensorFlow. In DuckDB, all tensors are encoded as relations,
which are comparable to the coordinate (COO) format in tensor
systems, and we provide all relevant indices. In addition, we use an
in-memory database and the Python API to interact with DuckDB.
Python-based frameworks do not support sparse tensors with more
than two dimensions, so we only report the times for kernels that
only contain matrices and vectors. In addition, NumPy only sup-
ports dense storage formats.

All experiments are run on one CPU core, and we report the
average execution time of five runs. In all cases we measure only
the execution time (which includes the assembly time for Taco),
and we exclude from the run time the creation and indexing of
storage format, loading time, compilation time, and optimization
times respectively, for the systems that have these components.
Datasets. We use both real world and synthetic datasets. For the
former, we collected six sparse matrices from the SuiteSparse Matrix
Collection [16], and four rank-3 tensors from the FROSTT Tensor
Collection [45]. Table 2 presents a summary of these datasets. For
synthetic data, we generate random matrices and vectors with
specified sparsity and dimensions.

Workloads. Table 3 presents the tensor programs we consider
in this evaluation. MMM stands for matrix-matrix multiplication;
S MMM computes the summation over a matrix-matrix multiplica-
tion; BATAX was previously studied in [34]; TTM computes the
tensor times matrix multiplication; and MTTKRP stands for ma-
tricized tensor times Khatri-Rao product. Both TTM and MTTKRP
have been studied extensively in papers on Taco (see e.g., [14, 27]).

6.1 Benchmarking Tensor Programs

Here we addressed the first question: how much do tensor programs
over flexible storage benefit from the application of rewrite rules?
We present the benchmark of STOREL, Taco, SciPy, NumPy, Py-
Torch, TensorFlow, and DuckDB on all considered tensor programs.
Storage Formats. Table 3 presents the best storage formats we
found for each considered tensor program and system. For each ex-
periment, the A matrix or tensor in the respective kernel is defined
by one of the datasets in Table 2. All other matrices are synthetically
generated with sparsity 27°.

DuckDB and NumPy only support a single storage format, i.e.,
relations and respectively dense matrices/vectors. For that reason,
we only consider them for the kernels that operate on matrices
and vectors. For SciPy and PyTorch we use the CSR format for
all matrices, because our experiments with CSC matrices were
consistently slower. For TTM, we report the performance for two
storage formats in STOREL. The first uses a CSF tensor and a CSC
matrix, which is the optimal storage specification for this kernel.
Taco, however, fails to compile the kernel with the CSC matrix,
which we reported to the Taco developers. Thus, we also report
the performance for a CSF tensor and a CSR matrix for a direct
comparison of Taco and STOREL. Finally, PyTorch and TensorFlow
have a limited support for sparse matrix operations3. Thus, we
include the results for a hand-optimized plan for the BATAX kernel.
Results. Figure 7 presents our run-time benchmarks for the above
workloads. STOREL is always at least competitive with Taco, and
achieves significant performance improvements for kernels that
benefit from our factorization rewrite rules. This is the case for the
Y>MMM, BATAX, and MTTKRP kernels. For instance, STOREL can
compute BATAX up to 16.4X faster than Taco for webbase. Thus,
our rewrite rules can lead to significant performance improvements
for a variety of tensor programs.

The MMM benchmark is a simple matrix multiplication and of-
fers almost no opportunity for optimization, but instead is a good
benchmark for comparing the physical runtimes of the systems.
SciPy has the best run time of all, while those of STOREL and Taco
are comparable. SciPy has a suite of highly optimized low-level
primitives, like sparse-sparse matrix multiplication. PyTorch and
TensorFlow, however, support sparse-dense matrix multiplication,
and thus show a worse performance for MMM. These frameworks
require the composition of such primitives with costly materializa-
tion of intermediate results for the other benchmarks. We observe
that STOREL can be up to two orders of magnitude faster than
them when high-level optimizations are possible. However, for

3PyTorch and TensorFlow only support a sparse-dense matrix multiplication.

MMM

MMM

BATAX (Hand Optimized)

100000

N STOREL
- TACO

= NumPy
= SciPy

= PyTorch
TensorFlow
= DuckDB

EEN STOREL WM PyTorch
= TACO
. NumPy
m— SciPy

,_.
o
3
3
S

e DuckDB
10000

,a
S
S
S

1000 100

Run time (ms)
Run time (ms)

consph cop20k A pdb1HYS cant

webbase

cant rmal0

T™

TensorFlow

consph cop20k_A pdblHYS

WEN STOREL mmm PyTorch
10000 { === TACO TensorFlow
== DuckDB

1000

100

Run time (ms)

rmal0 webbase rmal0 webbase

MTTKRP

BATAX (Naive)

N STOREL === DuckDB
- TACO

mEm STOREL (CSF,CSC) ~ mmm TACO (CSF,CSR)
BN STOREL (CSF,CSR) W DuckDB

m i
P B
1

Facebook

10000

10000

-
)
3
S

Run time (ms)
Run time (ms)

1000

=
S
S

100

NIPS NELL NIPS

NELL

- 10000000

MM STOREL W SciPy
- TACO = DuckDB
- NumPy

UJdadila
FEIEE PR

1000000

100000

10000

Run time (ms)

1000

100

Facebook Enron cant rmal0 webbase

consph cop20k A pdblHYS

Figure 7: End-to-end run time (in milliseconds) for STOREL, Taco, SciPy, NumPy, PyTorch, TensorFlow, and DuckDB for dif-

ferent kernels and real-world matrices and tensors.

hand-optimized plans (e.g., BATAX) the highly optimized prim-
itives show better performance than the Julia-based runtime of
STOREL. NumPy requires all inputs to be dense, and runs out of
memory for all but four experiments, where STOREL outperforms
it by two orders of magnitude. This exemplifies the importance of
flexible storage.

DuckDB uses quite different physical operators, and a direct
comparison of the wall clock time is not very informative. We ob-
serve, however, that DuckDB is remarkably efficient for the kernels
that do not offer opportunities for cost-based optimization. For
instance, DuckDB has excellent performance for the TTM kernel,
which translates into a simple aggregate-join query. In contrast,
DuckDB is significantly slower for the XMMM, BATAX and MT-
TKRP kernels. For XMMM, this is because DuckDB does not push
the summation past the join. For BATAX and MTTKRP kernels,
DuckDB is not able to factorize the computation, and uses binary
join plans which construct costly intermediate results.

6.2 Effect of the Storage Mapping

Next, we turn our attention to the second question: do different
choices of storage format for different data sparsities affect the
run-time performance, and does STOREL take best advantage of
the given storage format?

We consider the BATAX, MMM, and MMM kernels and present
the run time for STOREL, Taco, NumPy, and SciPy for different
sparsity factors in the input matrices. For STOREL and Taco, we
further consider both the sparse storage format as in Sec. 6.1, as well
as the fully dense storage format. We only use synthetic datasets
for this benchmark. For XMMM and MMM, we vary the sparsity
in both matrices, and we use the same sparsity factor for both. For
BATAX, we consider the naive plan and only the matrix varies the
sparsity, while the vector remains dense.

The results are presented in Figure 8. We observe that STOREL
adapts to the given storage format: the sparse variant is more effi-
cient in most cases, at high densities the dense format becomes more
efficient, as expected. Note that for XMMM and BATAX STOREL
outperforms all other systems independent of the sparsity, due to
the factorization rules. However, for MMM the low-level primitives
of NumPy and SciPy outperform the nested loops generated by
STOREL and Taco. As an example, for higher densities NumPy

outperforms all competitors, thanks to the heavily-tuned low-level
primitive provided by BLAS. We leave the synthesis of such primi-
tives (e.g., BLAS routines), instead of the nested loops, for future.

6.3 Effect of Rewrite Rules

Here we address the third question: study the contribution of two
classes of rewrite rules, loop fusion and factorization, on the overall
optimization. For that purpose we use the BATAX kernel as an
example. The results are presented in Figure 9.

We first consider the case where the input matrix is a nested
hash-map (trie), in which case we only benefit from the factorization
rules. The following expression presents the unoptimized program,
which we use as the baseline (the green line in Figure 9):

sum(<i, Ai> in A)
sum(<j, Aij> in Ai)
sum(<k, Aik> in Ai)
{§ -> beta * Aij * Aik * x(k) }

This kernel has two factorization opportunities. The first rewrit-
ing hoists the construction of the dictionary with key j out of the
inner sum:

sum(<i, Ai> in A)

sum(<j, Aij> in Ai)
{ j -> sum(<k, Aik> in Ai)
beta * Aij * Aik * x(k) }
The rewritten kernel, represented by the blue line, is between one
to two orders of magnitude faster than the non-optimized kernel,
depending on the sparsity.

The second factorization opportunity hoists the inner sum over

k outside the sum over j:
sum(<i, Ai> in A)
let t = (sum(<k, Aik> in Ai) Aik * x(k))
in (sum(<j, Aij> in Ai) { j -> beta * Aij * t})
This optimization can further improve the run time by an order of
magnitude. For very sparse data, however, it is more beneficial to
avoid hoisting the loop outside. This is because the inner sum may
not be executed at all for many i values.

We further consider the case where the matrix is stored with
a CSR format, in which case there is a fusion opportunity. The
two dashed lines in Figure 9 represent the run time of STOREL
with and without the fusion of the CSR matrix, while at the same

BATAX IMMM MMM
106 106
_ 10
10° . e
210t o~ K 1ot - Z 10
£10° / g = g
£ 5102 > £ 100 _
5102 e E L H
~#— STOREL (CSR) ~+= TACO (Dense) _/,_/4/' ~&— STOREL (CSC,CSR) ~+= TACO (Dense) 2 -#— STOREL (CSR) -+= TACO (Dense)
10! —e— STOREL (Dense) SciPy 10° /+ STOREL (Dense) SciPy 10 / —e— STOREL (Dense) Scipy
~+- TACO (CSR) NumPy ~+- TACO (CSC,CSR) NumPy <= TACO (CSR) - NumPy
271 270 277 2% 273 27t 1 271 270 277 2% 273 27t 1 2 27 277 27 273 271 1
Density Density Density
Figure 8: Runtime of STOREL, Taco, SciPy, and NumPy for varying sparsity using sparse and dense storage formats.
100001 —e— Unopt., Hash Fully Fact., CSR, Unfused Kernel | Time (ms) | Iters. | Nodes | Classes | Memos
—e— Part. Fact, Hash -~ Fully Fact., CSR, Fused 445 31 47441 30810 51508
BATAX
5 1000 Fully Fact., Hash 1212 59 | 46456 8043 | 59010
£ 1 6 42 25 42
5 100 SMMM
IS 52 22 2077 530 2698
510
c 10 18 571 135 821
MTTKRP
€ 239 35 | 8414 1130 | 10700
— L 10 11 910 123 1242
S MMM
[p———— . 1708 61 33058 6479 43407
2710 278 276 274 272 M 11 12 1173 140 1480
Density 891 61 15891 3244 23981

Figure 9: Impact of factorization and fusion rules on the
BATAX kernel. The dimension of matrix A is 103 x 103.

time exploiting both factorization opportunities as described above.
We observe that the unfused variant comes with heavy overhead,
because the program first materialized the matrix that is defined
by the storage representation and then executes the program. This
would be 2X worse than the non-optimized baseline, despite the use
of factorization. It is only with the fusion of the storage representa-
tion and the actual program that we achieve the best performance,
which is 3x faster than the optimized hash-based implementation.

6.4 Cost and Complexity of the Rewrite-based
Optimization

Finally, we address here the fourth question: what is the cost and

the complexity of the cost-based optimization? Recall that we have

not included the optimization cost in our experiments so far.

Our rewrite rules define a huge search space, and it proved to be
too large for the current version of Egg to saturate. Our solution was
to restrict the search space by splitting our optimization pipeline
into two stages. First, we apply our rewrite rules to the tensor
program without taking the storage format into account. Then,
we further optimize the resulting program in conjunction with
the provided storage format. We notice that most Cascade-style
optimizers also partition the optimization into several stages, in
order to reduce the search space and make the optimization possible.

Table 4 presents the key metrics for the two optimization passes
in Egg per tensor program. We observe that, even with the sep-
aration of the optimization pipeline, Egg explores a large search
space and constructs an e-graph with tens of thousands of equality
classes. As a result, the optimization time can take up to 1.7 seconds
in total, which is longer than the execution time of the kernel for
small tensors. In the next section, we investigate in more detail the
trade-off between optimization and run time.

6.5 Optimization Overhead

In order to better demonstrate the practiciality of the optimization
process, we compare the run time and optimization time with the

Table 4: Compilation metrics reported by Egg.

) —e— Unoptimized
é 100000 Opt. Phase 1
g Fully Optimized
= 10000 S
c
3
@
+ 1000
<
2
® 100
N
£
a 10
o
Q Q Q Q Q Q Q Q QO
A0 S o 5O N RO S o
A 3 2@ B

Dimension (N)
Figure 10: The total execution time of different versions of
the BATAX kernel. The dimension of matrix A is 10> X N.

following coarse-grained rewrites: (1) storage-independent opti-
mizations, and (2) optimizations that take storage into account.
These two coincide with the optimization stages reported earlier.
As the tensor program, we consider the BATAX kernel because (1)
it has the longest optimization overhead, and (2) it largely benefits
from the two stages of optimization.

Figure 10 shows the total execution time of the BATAX kernel,
including the optimization overhead, by varying the dimension,
for which we considered a time out of five minutes. We observe
that although for smaller matrices the unoptimized program is per-
forming better, for larger matrices the optimization overhead is
amortized by the improved run time. The 1.7 seconds spent for the
fully optimized kernel are well justified. They enable the system
to scale to matrices that are three orders of magnitude larger than
those supported by the kernel with only storage-independent opti-
mizations. Note that, while the optimization time is high, it needs
to be compared to compilers for tensor systems, which typically
take much longer. For instance, the BTO compiler can take several
minutes to find the optimal execution plan [34]. In addition, Egg has
been shown to outperform alternative approaches, such as using
SMT solvers [54]. In the next section, we discuss the implications
of these results.

6.6 Discussion

The use of the Equality Saturation System Egg was of great help for
us. Egg supports the entire functionality needed for a rule engine,
it is an open source system, and it has been developed on solid
theoretical foundations [54]. Nevertheless, Egg is a research project,
still under development, and has limitations that affected our system
STOREL; we discuss them here.

Performance We used Egg version 0.6.0 and its optimizations
adds significant overhead (c.f., Table 4). A very recent version was
reported recently [57], and it improves the matching significantly
by adopting a Worst Case Optimal Join [35], since pattern matching
is, in essence, the same as computing a (usually cyclic) join query.
That version is not yet available.

Cost computation The biggest limitation for us is the way Egg
handles the cost. Egg allows the user to define a cost model, and
uses this cost model to extract the cheapest expression from the
root e-node. However, it does not separate between the cardinality
estimate and the cost, and, worse, the cost can only be a number,
while our cardinality, defined in Sec. 5, has a complex structure.
For that reason we had to use hacks to approximate our cost us-
ing what is available in Egg. We were able to always extract the
optimized plan for the given TSM, but were not able to compare in
a meaningful way plans derived from alternative storage formats,
i.e. alternative TSMs. If this was possible, the programmer could
specify several alternative storage mappings for one tensor. The
system would then optimize the program separately for each of
them and return the cheapest plan.

Other minor limitations The inability of Equality Saturation Sys-
tems in general, and of Egg in particular, to handle expressions with
variables is well known. In addition, a minor limitation is that the
current version of Egg does not have a DSL for the rules, instead
they need to be written in Rust. We are in contact with the Egg
authors and are optimistic that Egg will continue to improve.

7 RELATED WORK

There is a vast literature on tensor and linear algebra systems in
the compilers and HPC communities. However, most of them focus
on dense data (e.g., [13, 34, 36, 39, 46, 47]). Similarly, the database
community studied Array DBMS [7, 48] and SQL extensions for ma-
trices (e.g., [31, 41, 56]), which are also primarily designed for dense
data. Both lines of work are not concerned with different tensor
storage representations and thus orthogonal to this work. Packages
like SciPy [52] or the MATLAB Tensor Toolbox [6] support differ-
ent sparse matrix/tensor representations, but rely on composing
hardcoded operations, which can become a severe bottleneck as
shown in Sec. 6. The closest related work from the tensor systems
literature is the Taco system [14, 26, 27], as highlighted in Sec. 1.
We drew many inspirations from the database literature. At the
top is the classic work on GMAP [50], which pioneered the idea of
using a declarative language for representing physical data layout:
for example, a secondary index can be described as a view obtained
by projecting the relation on the indexed attribute and the primary
key. GMAP uses Local As View (LAV), while our Tensor Storage
Mappings are defined as Global As View (GAV) [21]. More recently
the Hadad system [4] has applied a similar high level principle

for hybrid RA/LA analytics. Hadad uses integrity constraints to
express relationships between hybrid data sources, and uses chase

to optimize a query given those relationships. The chase applies to
relational queries, over the Boolean domain, and does not extend
to queries over semirings, thus, it was not an option for our system.
The SPORES system [53] describes an optimizer for linear algebra,
in the context of SystemML [10]. The key approach in SPORES is to
convert every query into a normal form, which is a sum of sum-of-
products, i.e. similar to Unions of Conjunctive Queries. This is not
possible in SDQLite, which we designed specifically to cope with
complex storage formats. For example see the two quite different
expressions for matrix multiplication in Example 3.1: there is no
unique normal form for that query.

Our work is also related to factorized learning, a line of work that
uses database optimizations to improve the performance of machine
learning tasks [11, 25, 30, 40, 43, 44]. Factorized learning, however,
optimizes for normalized relational data; whereas we optimize for
dense and sparse tensor representations. Normalized schemas are
very different from COO/CSC/CSR/CSF representations. The Sys-
temML optimizer [10] has demonstrated the usefulness of loop
fusion, an optimization that we capture with rule Rule F4 in Fig. 3.
Our optimizer is closest in spirit to SPORES [53], which optimizes
linear algebra expressions by first converting them to relational
algebra, optimizing these, then converting back to linear algebra.
The SPORES optimizer relies on the fact that the queries in that sys-
tem have a unique normal form (since they are, essentially, UCQs).
Our optimization task is harder, because queries in SDQLite do not
have a unique normal form, for example, consider the two matrix
multiplication expressions in Example 3.1, none of which can be
considered to be the “normal form” of the other.

At the time of writing, TensorFlow develops a graph optimization
system called Grappler [1]; it is currently restricted to dense tensors,
and is heuristic-based, while our system is cost-based. A heuristic-
based optimizer could, for example, prefer some physical plan when
the tensors are dense, and another plan when they are sparse; in
contrast, our cost-based optimizer can consider combinations of
sparse and dense tensors and choose the most appropriate plan
using a cost model.

8 CONCLUSIONS

We have described STOREL, which, to the best of our knowledge, is
the first system to use a cost-based optimizer to optimize tensor pro-
grams over flexible storage. The key contributions are the use of a
common declarative language for both the Tensor Program and the
Tensor Storage Mappings, and a cost-based optimizer that can take
advantage of rich storage formats. We have shown experimentally
that the rule based optimizer can lead to performance improvements
over other systems. In future work, we plan to extend STOREL to
automatically choose between different storage formats. We also
plan to integrate a scheduler, which is inspired by the significant
progress in automating the scheduler in Halide [3, 33].

While our ultimate goal is to optimize entire ML pipelines, ex-
tending the current optimizer to large tensor programs will require
significant engineering effort, and may also requires future research
on how to propagate sparsity information of intermediate results.

ACKNOWLEDGEMENT

The authors would like to thank Remy Wang for his help with the
Egg framework. Shaikhha would like to thank Huawei for their sup-
port of the distributed data management and processing laboratory
at the University of Edinburgh. Suciu was partially supported by
NSF IIS 1907997 and NSF-BSF 2109922. This project was partially
supported by Relational AL

REFERENCES

(1]

[4

flaa

[5

=

G

=

=

(8]

[9

[10

(11

[12]

(13

[14

[15]

[16

[17

(18]

2022. TensorFlow graph optimization with Grappler. https://www.tensorflow.
org/guide/graph_optimization. Accessed: 2022-06-30.

Daniel Abadi, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel
Madden. 2013. The Design and Implementation of Modern Column-Oriented
Database Systems. Found. Trends Databases 5, 3 (2013), 197-280. https://doi.org/
10.1561/1900000024

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,
Michaél Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-
rand, et al. 2019. Learning to optimize halide with tree search and random
programs. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1-12.

Rana Alotaibi, Bogdan Cautis, Alin Deutsch, and Ioana Manolescu. 2021. HADAD:
A Lightweight Approach for Optimizing Hybrid Complex Analytics Queries. Asso-
ciation for Computing Machinery, New York, NY, USA, 23-35. https://doi.org/
10.1145/3448016.3457311

Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Jim Gray,
W. Frank King III, Bruce G. Lindsay, Raymond A. Lorie, James W. Mehl, Thomas G.
Price, Gianfranco R. Putzolu, Mario Schkolnick, Patricia G. Selinger, Donald R.
Slutz, H. Raymond Strong, Paolo Tiberio, Irving L. Traiger, Bradford W. Wade,
and Robert A. Yost. 1979. System R: A Relational Data Base Management System.
Computer 12,5 (1979), 42-48. https://doi.org/10.1109/MC.1979.1658743

Brett W Bader and Tamara G Kolda. 2008. Efficient MATLAB computations with
sparse and factored tensors. SIAM Journal on Scientific Computing 30, 1 (2008),
205-231.

Peter Baumann, Andreas Dehmel, Paula Furtado, Roland Ritsch, and Norbert
Widmann. 1998. The multidimensional database system RasDaMan. In Proceed-
ings of the 1998 ACM SIGMOD international conference on Management of data.
575-5717.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. Julia:
A fresh approach to numerical computing. SIAM review 59, 1 (2017), 65-98.
https://doi.org/10.1137/141000671

Mark Blacher, Joachim Giesen, Séren Laue, Julien Klaus, and Vikor Leis. 2022.
Machine Learning, Linear Algebra, and More: Is SQL All You Need?. In CIDR.
Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexan-
dre V. Evfimievski, and Niketan Pansare. 2018. On Optimizing Operator Fusion
Plans for Large-Scale Machine Learning in SystemML. Proc. VLDB Endow. 11, 12
(2018), 1755-1768. https://doi.org/10.14778/3229863.3229865

Lingjiao Chen, Arun Kumar, Jeffrey F. Naughton, and Jignesh M. Patel. 2017.
Towards Linear Algebra over Normalized Data. Proc. VLDB Endow. 10, 11 (2017),
1214-1225. https://doi.org/10.14778/3137628.3137633

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018, Andrea C. Arpaci-Dusseau and Geoff Voelker (Eds.). USENIX Association,
578-594. https://www.usenix.org/conference/osdi18/presentation/chen
Charisee Chiw, Gordon Kindlmann, John Reppy, Lamont Samuels, and Nick
Seltzer. 2012. Diderot: A Parallel DSL for Image Analysis and Visualization. In
Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (Beijing, China) (PLDI’'12). ACM, 111-120.

Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format Abstrac-
tion for Sparse Tensor Algebra Compilers. Proc. ACM Program. Lang. 2, OOPSLA,
Article 123 (Oct. 2018), 30 pages. https://doi.org/10.1145/3276493

The SciPy community. 2022. scipy.sparse.dok_matrix — SciPy v1.8.0 Reference
Guide. https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_
matrix.html. Accessed: 2022-04-14.

Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),
1-25.

Nicolaas Govert De Bruijn. 1972. Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with application to the
Church-Rosser theorem. In Indagationes Mathematicae (Proceedings), Vol. 75.
Elsevier, 381-392.

Michael J. Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and
Thomas Neumann. 2020. Adopting Worst-Case Optimal Joins in Relational

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

™~
20,

[30]

[31

[33

(34

[35

&
2

[37

Database Systems. Proc. VLDB Endow. 13, 11 (2020), 1891-1904. http://www.vldb.
org/pvldb/vol13/p1891-freitag.pdf

Goetz Graefe. 1995. The Cascades Framework for Query Optimization. IEEE Data
Eng. Bull. 18, 3 (1995), 19-29. http://sites.computer.org/debull/95SEP-CD.pdf
Todd J Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance semir-
ings. In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems. 31-40.

Alon Y. Halevy. 2001. Answering queries using views: A survey. VLDB . 10, 4
(2001), 270-294. https://doi.org/10.1007/s007780100054

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357-362. https:
//doi.org/10.1038/s41586-020-2649-2

Dylan Hutchison, Bill Howe, and Dan Suciu. 2017. LaraDB: A Minimalist Kernel
for Linear and Relational Algebra Computation. In Proceedings of the 4th ACM
SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond, Be-
yondMR@SIGMOD 2017, Chicago, IL, USA, May 19, 2017, Foto N. Afrati and Jacek
Sroka (Eds.). ACM, 2:1-2:10. https://doi.org/10.1145/3070607.3070608

Zhihao Jia, Oded Padon, James J. Thomas, Todd Warszawski, Matei Zaharia, and
Alex Aiken. 2019. TASO: optimizing deep learning computation with automatic
generation of graph substitutions. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30,
2019, Tim Brecht and Carey Williamson (Eds.). ACM, 47-62. https://doi.org/10.
1145/3341301.3359630

Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and
Maximilian Schleich. 2020. Learning Models over Relational Data Using Sparse
Tensors and Functional Dependencies. ACM Trans. Database Syst. 45, 2 (2020),
7:1-7:66. https://doi.org/10.1145/3375661

Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe. 2019.
Tensor algebra compilation with workspaces. In 2019 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE, 180-192.

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-
inghe. 2017. The Tensor Algebra Compiler. Proc. ACM Program. Lang. 1, OOPSLA,
Article 77 (Oct. 2017), 29 pages. https://doi.org/10.1145/3133901

Yannis Klonatos, Andres Notzli, Andrej Spielmann, Christoph Koch, and Victor
Kuncak. 2013. Automatic synthesis of out-of-core algorithms. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data. 133-144.
Thomas Koehler, Phil Trinder, and Michel Steuwer. 2021. Sketch-Guided Equality
Saturation: Scaling Equality Saturation to Complex Optimizations in Languages
with Bindings. arXiv preprint arXiv:2111.13040 (2021).

Arun Kumar, Jeffrey F. Naughton, and Jignesh M. Patel. 2015. Learning Gen-
eralized Linear Models Over Normalized Data. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015, Timos K. Sellis, Susan B. Davidson, and Zachary G.
Ives (Eds.). ACM, 1969-1984. https://doi.org/10.1145/2723372.2723713
Shangyu Luo, Zekai J. Gao, Michael N. Gubanov, Luis Leopoldo Perez, Dimitrije
Jankov, and Christopher M. Jermaine. 2020. Scalable linear algebra on a relational
database system. Commun. ACM 63, 8 (2020), 93-101. https://doi.org/10.1145/
3405470

Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and One
New Dynamic Programming Algorithm for the Generation of Optimal Bushy Join
Trees without Cross Products. In Proceedings of the 32nd International Conference
on Very Large Data Bases, Seoul, Korea, September 12-15, 2006, Umeshwar Dayal,
Kyu-Young Whang, David B. Lomet, Gustavo Alonso, Guy M. Lohman, Martin L.
Kersten, Sang Kyun Cha, and Young-Kuk Kim (Eds.). ACM, 930-941. http:
//dl.acm.org/citation.cfm?id=1164207

Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and
Kayvon Fatahalian. 2016. Automatically scheduling halide image processing
pipelines. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1-11.

Thomas Nelson, Geoffrey Belter, Jeremy G Siek, Elizabeth Jessup, and Boyana
Norris. 2015. Reliable generation of high-performance matrix algebra. ACM
Transactions on Mathematical Software (TOMS) 41, 3 (2015), 1-27.

Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2013. Skew strikes back: new
developments in the theory of join algorithms. SIGMOD Rec. 42, 4 (2013), 5-16.
https://doi.org/10.1145/2590989.2590991

Markus Piischel, José M. F. Moura, Jeremy R. Johnson, David A. Padua, Manuela M.
Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voro-
nenko, Kang Chen, Robert W. Johnson, and Nicholas Rizzolo. 2005. SPIRAL:
Code Generation for DSP Transforms. Proc. IEEE 93, 2 (2005), 232-275. https:
//doi.org/10.1109/JPROC.2004.840306

Mark Raasveldt and Hannes Miihleisen. 2019. DuckDB: an Embeddable Analytical
Database. In Proceedings of the 2019 International Conference on Management of
Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019,
Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and

https://www.tensorflow.org/guide/graph_optimization
https://www.tensorflow.org/guide/graph_optimization
https://doi.org/10.1561/1900000024
https://doi.org/10.1561/1900000024
https://doi.org/10.1145/3448016.3457311
https://doi.org/10.1145/3448016.3457311
https://doi.org/10.1109/MC.1979.1658743
https://doi.org/10.1137/141000671
https://doi.org/10.14778/3229863.3229865
https://doi.org/10.14778/3137628.3137633
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1145/3276493
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.html
http://www.vldb.org/pvldb/vol13/p1891-freitag.pdf
http://www.vldb.org/pvldb/vol13/p1891-freitag.pdf
http://sites.computer.org/debull/95SEP-CD.pdf
https://doi.org/10.1007/s007780100054
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/3070607.3070608
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3375661
https://doi.org/10.1145/3133901
https://doi.org/10.1145/2723372.2723713
https://doi.org/10.1145/3405470
https://doi.org/10.1145/3405470
http://dl.acm.org/citation.cfm?id=1164207
http://dl.acm.org/citation.cfm?id=1164207
https://doi.org/10.1145/2590989.2590991
https://doi.org/10.1109/JPROC.2004.840306
https://doi.org/10.1109/JPROC.2004.840306

Tim Kraska (Eds.). ACM, 1981-1984. https://doi.org/10.1145/3299869.3320212

[38] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly Barnes, Sylvain

Paris, Marc Levoy, Saman P. Amarasinghe, and Frédo Durand. 2018. Halide:
decoupling algorithms from schedules for high-performance image processing.
Commun. ACM 61, 1 (2018), 106-115. https://doi.org/10.1145/3150211

[39] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo

Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
Acm Sigplan Notices 48, 6 (2013), 519-530.

Maximilian Schleich, Dan Olteanu, Mahmoud Abo Khamis, Hung Q. Ngo, and
XuanLong Nguyen. 2019. A Layered Aggregate Engine for Analytics Workloads.
In Proceedings of the 2019 International Conference on Management of Data, SIG-
MOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, Peter A.
Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim Kraska
(Eds.). ACM, 1642-1659. https://doi.org/10.1145/3299869.3324961

Maximilian E. Schiile, Tobias Gétz, Alfons Kemper, and Thomas Neumann. 2022.
ArrayQL Integration into Code-Generating Database Systems. In Proceedings
of the 25th International Conference on Extending Database Technology, EDBT
2022, Edinburgh, UK, March 29 - April 1, 2022. OpenProceedings.org, 1:40-1:51.
https://doi.org/10.5441/002/edbt.2022.04

Amir Shaikhha, Mathieu Huot, Jaclyn Smith, and Dan Olteanu. 2021. Functional
Collection Programming with Semi-Ring Dictionaries. CoRR abs/2103.06376
(2021). arXiv:2103.06376 https://arxiv.org/abs/2103.06376

Amir Shaikhha, Maximilian Schleich, Alexandru Ghita, and Dan Olteanu. 2020.
Multi-layer optimizations for end-to-end data analytics. In CGO °20: 18th
ACM/IEEE International Symposium on Code Generation and Optimization, San
Diego, CA, USA, February, 2020. ACM, 145-157. https://doi.org/10.1145/3368826.
3377923

Amir Shaikhha, Maximilian Schleich, and Dan Olteanu. 2021. An Intermediate
Representation for Hybrid Database and Machine Learning Workloads. Proc.
VLDB Endow. 14, 12 (2021), 2831-2834. https://doi.org/10.14778/3476311.3476356
Shaden Smith, Jee W Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and
George Karypis. 2017. FROSTT: The formidable repository of open sparse tensors
and tools.

Daniele G Spampinato and Markus Piischel. 2014. A basic linear algebra compiler.
In Proceedings of Annual IEEE/ACM International Symposium on Code Generation
and Optimization. 23-32.

Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. 2015.
Generating Performance Portable Code Using Rewrite Rules: From High-level
Functional Expressions to High-performance OpenCL Code. In Proceedings of
the 20th ACM SIGPLAN International Conference on Functional Programming
(Vancouver, BC, Canada) (ICFP 2015). ACM, New York, NY, USA, 205-217.

Michael Stonebraker, Paul Brown, Donghui Zhang, and Jacek Becla. 2013. SciDB:
A Database Management System for Applications with Complex Analytics. Com-
put. Sci. Eng. 15, 3 (2013), 54-62. https://doi.org/10.1109/MCSE.2013.19

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality
saturation: a new approach to optimization. In Proceedings of the 36th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 264—
276.

Odysseas G. Tsatalos, Marvin H. Solomon, and Yannis E. Ioannidis. 1996. The
GMAP: A Versatile Tool for Physical Data Independence. VLDB 7. 5, 2 (1996),
101-118. https://doi.org/10.1007/s007780050018

Todd L. Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join Algorithm.
In Proc. 17th International Conference on Database Theory (ICDT), Athens, Greece,
March 24-28, 2014, Nicole Schweikardt, Vassilis Christophides, and Vincent Leroy
(Eds.). OpenProceedings.org, 96-106. https://doi.org/10.5441/002/icdt.2014.13
Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Anténio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261-272.
https://doi.org/10.1038/541592-019-0686- 2

Yisu Remy Wang, Shana Hutchison, Dan Suciu, Bill Howe, and Jonathan Leang.
2020. SPORES: Sum-Product Optimization via Relational Equality Saturation
for Large Scale Linear Algebra. Proc. VLDB Endow. 13, 11 (2020), 1919-1932.
http://www.vldb.org/pvldb/vol13/p1919-wang.pdf

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock,
and Pavel Panchekha. 2021. egg: Fast and extensible equality saturation. Proc.
ACM Program. Lang. 5, POPL (2021), 1-29. https://doi.org/10.1145/3434304
Binhang Yuan, Dimitrije Jankov, Jia Zou, Yuxin Tang, Daniel Bourgeois, and Chris
Jermaine. 2021. Tensor Relational Algebra for Distributed Machine Learning
System Design. Proc. VLDB Endow. 14, 8 (2021), 1338-1350. https://doi.org/10.
14778/3457390.3457399

Ying Zhang, Martin Kersten, and Stefan Manegold. 2013. SciQL: Array data pro-
cessing inside an RDBMS. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data. 1049-1052.

Yihong Zhang, Yisu Remy Wang, Max Willsey, and Zachary Tatlock. 2022. Re-
lational e-matching. Proc. ACM Program. Lang. 6, POPL (2022), 1-22. https:
//doi.org/10.1145/3498696

https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3150211
https://doi.org/10.1145/3299869.3324961
https://doi.org/10.5441/002/edbt.2022.04
https://arxiv.org/abs/2103.06376
https://arxiv.org/abs/2103.06376
https://doi.org/10.1145/3368826.3377923
https://doi.org/10.1145/3368826.3377923
https://doi.org/10.14778/3476311.3476356
https://doi.org/10.1109/MCSE.2013.19
https://doi.org/10.1007/s007780050018
https://doi.org/10.5441/002/icdt.2014.13
https://doi.org/10.1038/s41592-019-0686-2
http://www.vldb.org/pvldb/vol13/p1919-wang.pdf
https://doi.org/10.1145/3434304
https://doi.org/10.14778/3457390.3457399
https://doi.org/10.14778/3457390.3457399
https://doi.org/10.1145/3498696
https://doi.org/10.1145/3498696

	Abstract
	1 Introduction
	2 Background
	3 STOREL
	3.1 Architecture
	3.2 SDQLite

	4 Tensor Storage Mappings
	5 Optimizations
	5.1 The Naive Logical Plan
	5.2 Logical Rewritings
	5.3 Rule Engine: Egg
	5.4 Managing Free Variables
	5.5 Cardinality Estimation
	5.6 Physical Plans
	5.7 Cost Estimate

	6 Experiments
	6.1 Benchmarking Tensor Programs
	6.2 Effect of the Storage Mapping
	6.3 Effect of Rewrite Rules
	6.4 Cost and Complexity of the Rewrite-based Optimization
	6.5 Optimization Overhead
	6.6 Discussion

	7 Related Work
	8 Conclusions
	References

