
TED: Towards Discovering Top-𝑘 Edge-Diversified Patterns in a
Graph Database

Kai Huang
1,2
, Haibo Hu

1
, Qingqing Ye

1
, Kai Tian

3
, Bolong Zheng

4
, Xiaofang Zhou

2

1
Department of Computer Science and Engineering, The Hong Kong University of Science and Technology

2
Department of Electronic and Information Engineering, Hong Kong Polytechnic University

3
Tencent;

4
Huazhong University of Science and Technology

ustkhuang|zxf@ust.hk,haibo.hu|qqing.ye@polyu.edu.hk,adamtian@tencent.com,zblchris@gmail.com

ABSTRACT

With an exponentially growing number of graphs from disparate

repositories, there is a strong need to analyze a graph database

containing an extensive collection of small- or medium-sized data

graphs (e.g., chemical compounds). Although subgraph enumera-

tion and subgraph mining have been proposed to bring insights into

a graph database by a set of subgraph structures, they often end

up with similar or homogenous topologies, which is undesirable in

many graph applications. To address this limitation, we propose the

Top-k Edge-Diversified Patterns Discovery problem to retrieve a set

of subgraphs that cover the maximum number of edges in a data-

base. To efficiently process such query, we present a generic and

extensible framework called Ted which achieves a guaranteed ap-

proximation ratio to the optimal result. Two optimization strategies

are further developed to improve the performance. Experimental

studies on real-world datasets demonstrate the superiority of Ted

to traditional techniques.

1 INTRODUCTION

The graph database that contains a large collection of small- or

medium-sized data graphs has become increasingly prevalent in a

variety of domains such as biological networks, drug discovery, and

computer vision. Analyzing and mining such a database nurtures

many applications, including graph search and classification. While

graph analysis varies from application to application, a common

phenomenon in these applications is that some subgraph structures

(also known as graph patterns) play a vital role in characterizing

the underlying graph database and building intuitive models for

better understanding complex structures. Consequently, subgraph

enumeration, which aims to enumerate all subgraphs in a graph

database, has been extensively studied in the literature [1–5]. Sub-

graph enumeration is known to be computationally challenging

and memory-consuming since the number of subgraphs in a graph

database is exponential to the database size. Therefore, complete

enumeration and persistence of all subgraphs in a graph database

are infeasible. For instance, more than a million compounds are

available from sources such as PubChem
1
and eMolecules

2
.

Frequent subgraph mining alleviates this problem by generating

only frequent subgraphs instead of all subgraphs [6–11]. Given

1
https://pubchem.ncbi.nlm.nih.gov/

2
https://www.emolecules.com/

Conference’17, July 2017, Washington, DC, USA

2022. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

S

e1

e5

C

C

O

O

s

e7
e9

e2

e3 e4 e6

e8

O
G4

O

OOe9

C

C

O

C

C
e5

C C

C

C C

O

O

O

e7

e10

e2 e3 e4

e6

e8 e11

e12

O

C

C

e1

O
e5

C

C

O C

C
e7

e9 e10

e2 e3

e4

e6 e8

C

C

C

e1
O

e5

NCN

N

e7

e9e10

e2 e3

e4
e6

e8

N

C

N

N
e11e12

G1 G2 G3
Figure 1: A sample graph database.

S

e1

e5

C

C

O

O

s

e7
e9

e2

e3 e4 e6

e8

O

G4

O

OOe9

C

C

O

C

C
e5

C C

C

C C

O

O

O

e7

e10

e2 e3 e4

e6

e8
e11

e12

O

C

C

e1

O
e5

C

C

O C

C
e7

e9 e10

e2 e3

e4

e6 e8

C

C

C

e1
O

e5

NCN

N

e7

e9 e10

e2 e3

e4
e6

e8

N

C

N

N
e11e12

G1 G2 G3

C C

C C C

C C C

C C C
C

C

C C C

C C

g1

g2

g3

g4

g5

g6 C O

C C Og7

C C C

C

g8

Some Frequent Subgraphs (supmin = 0.3)

……

C Cg1

g6 C O
C C Og7

(a) (b)

Top-3 Diversified
Frequent Subgraphs

G1 e1 - e12 12
G2 e1 - e10 10
G3 e1, e2, e6 6
G4 e1 1

GID Covered Edges Num

Coverage Ratio = (12+10+6+1)/43= 67%

P1

Top-3 Edge-Diversified Patterns

G1 e1 - e12 12
G2 e1 - e10 10
G3 e3, e4, e7,e9,e10,e11,e12 7
G4 e1 – e9 9

GID Covered Edges Num

P2

OC

C C C

C OC

C N

P3 S C C

O

Coverage Ratio = (12+10+7+9)/43= 88%

[e1, e3, e7]
[e1, e3, e8]
[e1, e3, e9]
[e1, e2, e4]
[e1, e2, e5]
[e1, e2, e6]

Edges e1 – e9 in
G4 are covered.

Matchings in G4

Figure 2: Frequent (resp. diversified frequent) subgraphs.

a minimum support threshold 𝑠𝑢𝑝𝑚𝑖𝑛
3
, a subgraph 𝑔 is frequent

if the fraction of data graph 𝐺 containing 𝑔 (i.e., 𝑔 is a subgraph

of 𝐺) in a database 𝐷 is no less than 𝑠𝑢𝑝𝑚𝑖𝑛 . Intuitively, as the

threshold decreases, the number of resulting subgraphs increases

dramatically. In contrast, the number of subgraphs decreases as the

threshold increases, making the resulting subgraphs topologically

similar to each other with common substructures and no longer

representational. In other words, the results lack diversity whose

importance has been advocated in the literature [13–16].

Example 1. To illustrate this, consider a graph database contain-

ing 𝐺1 to 𝐺4 in Figure 1. Let the minimum support 𝑠𝑢𝑝𝑚𝑖𝑛 = 0.3.

The database contains many frequent subgraphs, some of which are

shown in Figure 2(a). All these subgraphs except 𝑔6 share a common

subgraph 𝑔1, which is homogenous and thus redundant. A possible

way to alleviate this problem is to select a limited number (e.g., 𝑘) of

diversified ones from all frequent subgraphs such that the maximum

number of edges in the database can be covered. For example, if we

select the top-3 diversified frequent subgraphs (i.e., 𝑔1, 𝑔6 and 𝑔7)

shown in Figure 2(b), they will cover a maximum number of edges

(i.e., 67% edges) in all data graphs from𝐺1 to 𝐺4. As a comparison,

if we just randomly select 3 subgraphs, for example 𝑔3, 𝑔4 and 𝑔5,

users cannot obtain any information on graphs 𝐺3 and 𝐺4 since they

contain none of the subgraphs.

3𝑠𝑢𝑝𝑚𝑖𝑛 ∈ [0, 1] is a user-specified parameter, which is used to eliminate infrequent

subgraph 𝑔 whose frequency of occurrences in a database 𝐷 is less than 𝑠𝑢𝑝𝑚𝑖𝑛 .

Conference’17, July 2017, Washington, DC, USA Kai Huang 1,2 , Haibo Hu 1 , Qingqing Ye 1 , Kai Tian 3 , Bolong Zheng 4 , Xiaofang Zhou 2

F1 = g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 Label

G1 1 1 1 1 1 1 1 1 1 1 1 1 positive

G2 1 1 1 1 1 1 1 1 1 1 1 1 positive

G3 1 1 1 1 0 1 0 0 0 0 0 0 negative

G4 1 1 1 1 1 1 1 1 1 1 1 1 negative

Prunes / / / / G3 / G3 G3 G3 G3 G3 G3

F2 = p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 Label

G1 0 1 0 0 0 0 0 0 0 1 0 0 positive

G2 0 0 1 0 1 0 0 0 1 1 0 0 positive

G3 0 0 1 0 0 1 1 1 1 1 0 0 negative

G4 0 0 1 0 1 0 1 0 1 1 1 0 negative

Prunes G1,
G2,
G3,
G4

G2,
G3,
G4

G1 G1,
G2,
G3,
G4

G1,
G3

G1,
G2,
G4

G1,
G2

G1,
G2,
G4

G1 / G1,
G2,
G3

G1,
G2,
G3,
G4

g1 is a
subgraph

of G3

p1 is not a
subgraph

of G1

be used to
represent G4

p3 is in a
query q and
not in G1, G1

cannot
contain q and

can be
pruned

(a) pattern containment matrix

g12g11g10

g6g5g4g3g2g1

g7 g8 g9

(b) frequent subgraphs F1

p12p11p10

p6p5p4p3p2p1

p7 p8 p9

(c) edge-diversified patterns F2
Figure 3: (a) The pattern containment matrix where each entry indicates if a pattern (i.e., 𝑔𝑖 or 𝑝𝑖) is a subgraph of data graphs,

(b) top-𝑘 frequent subgraphs F1, and (c) edge-diversified patterns F2.

p1

Top-3	Edge-Diversified	Patterns

G1 e1 - e12 12
G2 e1 - e10 10
G3 e3,	e4,	e7,e9,e10,e11,e12 7
G4 e1 – e9 9

GID													Covered	Edges														Num

p2

C C C

C OC

C N

p3 S C C

O

[e1,			e3,				e7]
[e1,			e3,				e8]
[e1,			e3,				e9]
[e1,			e2,				e4]
[e1,			e2,				e5]
[e1,			e2,				e6]

Matchings	in	G4

Edges	e1	– e9	in
G4	are	covered.

Coverage	Ratio	=		(12+10+7+9)/43=	 88%	

Figure 4: Top-𝑘 edge-diversified patterns.

Although these diversified frequent subgraphs𝑔1,𝑔6 and𝑔7 cover

all data graphs (𝐺1 −𝐺4, Figure 1) and 67% of their edges, no edge

in 𝐺4 (except 𝑒1) is covered. Further, 𝑔7 does not cover new edges

that are not covered by 𝑔1 and 𝑔6 (see Figure 2(b)). If we replace 𝑔7
with an infrequent subgraph that contains nodes “S”, “O” and an

edge between them, the percentage of covered edges will increase

from 67% to 81%. This observation motivates us to retrieve, instead

of top-𝑘 frequent subgraphs, the top-𝑘 diversified subgraphs, also

known as edge-diversified patterns, that cover a maximum number

of edges in the graph database. Note that edge-diversified patterns

can contain both frequent and infrequent subgraphs, as shown in

the following example.

Example 2. Reconsider Example 1. Figure 4 presents top-3 edge-

diversified patterns (i.e., 𝑝1, 𝑝2 and 𝑝3) for the sample database in

Figure 1. Only 𝑝1 is a frequent subgraph while 𝑝3 (resp. 𝑝2) exists in

𝐺4 (resp. 𝐺3) only. Although 𝑝3 is infrequent, it has 6 matchings in

𝐺4 and contributes 9 edges to the total edge coverage, as shown in the

figure. As such, the top-3 edge-diversified patterns can cover almost

88% edges in all 4 graphs in the sample database.

Motivated by the aforementioned examples, in this paper, we

study the top-𝑘 edge-diversified patterns discovery problem, which

finds 𝑘 connected subgraphs from a graph database such that the

maximum number of edges in the graph database can be cov-

ered. The main difference between frequent subgraphs and edge-

diversified patterns lies in that a frequent subgraph 𝑔 must be

contained by multiple (at least 𝑠𝑢𝑝𝑚𝑖𝑛) different data graphs even

if 𝑔 has only one occurrence in a data graph 𝐺 , whereas an edge-

diversified pattern can be frequent (e.g., 𝑝1 in Figure 4) or infre-

quent (e.g., 𝑝2 or 𝑝3 in Figure 4), as long as it can reach a wider

edge coverage by covering different parts of data graphs with mul-

tiple occurrences. In other words, a frequent subgraph is measured

independently by its frequency, whereas edge-diversified patterns

are jointly measured by the total edge coverage (see Definition 3).

Since the latter patterns can supplement the former with infrequent

subgraphs covering remaining edges in the graph database, it nat-

urally provides a more comprehensive summary of the database

than using frequent subgraphs alone.

Therefore, top-𝑘 edge-diversified patterns discovery can be ap-

plied in a wide range of applications such as graph indexing and

graph classification. Graph indexing and classification have been

widely studied in the literature [25, 42] and adopted in different

real-world graph databases (e.g., PubChem and eMolecules).

• Graph Indexing. Subgraph query, which finds data graphs that

contain a query subgraph 𝑞, is a popular query type. As a sub-

graph query needs to execute subgraph isomorphism tests (see

Definition 1), it is an NP-complete problem [25]. Since it is time-

consuming to process a query 𝑞 over each data graph 𝐺 in a

database, one can build pattern-based graph indices to filter out

those data graphs that cannot contain 𝑞 and only execute sub-

graph isomorphism tests on the remaining graphs. A graph index

is commonly defined as a map from a pattern 𝑝 to each data graph

𝐺 that contains this pattern. If a query 𝑞 contains a particular

pattern 𝑝 while 𝐺 does not contain 𝑝 , 𝐺 cannot contain 𝑞 and

can be pruned directly.

• Graph Classification. Graph classification, which predicts class

labels of data graphs, is an important problem. Despite its increas-

ing importance, many popular feature-based classifiers cannot be

applied simply due to the lack of vector representation of graphs.

Subgraph patterns can serve as features to vectorize these graphs

and embrace feature-based classifiers.

The following examples illustrates the advantage of top-𝑘 edge-

diversified patterns over top-𝑘 frequent patterns for graph indexing

and classification. Such advantage also exists in other applications

TED: Towards Discovering Top-𝑘 Edge-Diversified Patterns in a Graph Database Conference’17, July 2017, Washington, DC, USA

(i.e., visual subgraph query formulation and exploratory subgraph

search), which will be elaborated in Section 6.

Example 3. Figures 3(b) and (c) present the top-12 frequent sub-

graphs (𝑠𝑢𝑝𝑚𝑖𝑛 = 0.3)F1 = {𝑔1, 𝑔2, ..., 𝑔𝑖 , ..., 𝑔12} and edge-diversified
patterns F2 = {𝑝1, 𝑝2, ..., 𝑝𝑖 , ..., 𝑝12} in PubChem database, respec-

tively. 𝐺1, 𝐺2, 𝐺3 and 𝐺4 are data graphs where the class label of

𝐺1 and 𝐺2 is “positive", and that of 𝐺3 and 𝐺4 is “negative". Figure

3(a) (top, resp. bottom) shows the pattern containment matrix of these

data graphs over F1 (resp. F2). For example, 𝐺3 contains 𝑔1, 𝑔2, 𝑔3,

𝑔4 and 𝑔6, so the corresponding entries (i.e., 4th row, 2nd-5th and 7th

columns) in the matrix are 1.

1) Graph Indexing. Consider a common query 𝑞 4
that contains all

𝑔𝑖 in F1, 𝑝3, 𝑝5, and 𝑝7 − 𝑝11 in F2. If a graph index I is built on F1
(denoted by IF1), it can filter out𝐺3. This is because 𝑔5 (or 𝑔7 −𝑔12) is
a subgraph of 𝑞 but not a subgraph of𝐺3 (Figure 3(a), top). Thus, 𝑞 is

not a subgraph of 𝐺3. As such, three subgraph isomorphism tests are

needed (i.e., testing 𝑞 over 𝐺1, 𝐺2 and 𝐺4). Moreover, IF1 can reduce

at most one subgraph isomorphism test (i.e., 𝑞 over 𝐺3) no matter

what the query 𝑞 is (see the last row of the top table in Figure 3(a)). On

the other hand, if the graph index I is built on F2 (denoted by IF2), it
can filter out all these data graphs. This is because 𝑞 contains 𝑝3, 𝑝5,

and 𝑝7 − 𝑝11, which jointly filter out {𝐺1,𝐺2,𝐺3,𝐺4}. For example,

𝑝3 can filter out𝐺1 and 𝑝5 can prune {𝐺1,𝐺3} (see the last row of the

bottom table in Figure 3(a)). Therefore, no subgraph isomorphism test

is needed.

2) Graph Classification. If F1 is used as vector representations of
data graphs, the feature vector of𝐺1 will be [1, ..., 1] since𝐺1 contains

all 𝑔𝑖 in F1 (see 2nd row of the top table in Figure 3(a)). If F2 is used as
vector representations of data graphs, the feature vector of 𝐺1 will be

[0, 1, 0, ..., 0, 1, 0, 0] since 𝐺1 contains 𝑝2 and 𝑝10 in F2 (see 2nd row
of the bottom table in Figure 3(a)). Given the F2-based feature vectors,
a simple and yet effective classification rule can be obtained: a graph

(e.g., 𝐺3 or 𝐺4) which contains {𝑝3, 𝑝7, 𝑝9, 𝑝10} can be negative. But

it is hard to find such a good classification rule with F1-based feature
vectors, since the negative graph 𝐺4 has the same representation as

that of 𝐺1 or 𝐺2.

As both frequent (e.g., 𝑝3) and infrequent patterns (e.g., 𝑝8) play

an important role in graph indexing and graph classification, edge-

diversified patterns show their advantage over frequent subgraphs.

However, top-k edge-diversified patterns discovery problem in-

troduces non-trivial challenges. First, it is NP-hard. Second, adapt-

ing existing subgraph enumeration and frequent subgraph mining

techniques to this problem is inadequate since they fall short in

handling large databases or guaranteeing patterns’ quality. In this

paper, we address these challenges and propose a novel solution

for top-𝑘 edge-diversified patterns discovery problem. We make

the following contributions.

• To the best of our knowledge, we are the first to study top-k

edge-diversified patterns discovery problem and address it with

two adapted baseline solutions.

• We further present a generic and extensible framework called Ted

for this problem which requires limited memory and achieves a

guaranteed approximation ratio.

4
https://pubchem.ncbi.nlm.nih.gov/compound/2244

Table 1: List of key notations.

Notation Description

𝑔,𝐺 , 𝐷 a subgraph, a graph, a graph database

𝑉 (𝐺) , 𝐸 (𝐺) vertex set of graph𝐺 , edge set of graph𝐺

𝑝 , P a pattern, a pattern set

𝑘 number of edge-diversified patterns

𝑠𝑢𝑝𝑚𝑖𝑛 minimum support

𝐶𝑜𝑣 (𝐺𝑖 ,𝐺 𝑗) cover set of𝐺𝑖 over𝐺 𝑗

|𝐶𝑜𝑣 (𝐺𝑖 ,𝐺 𝑗) | coverage of𝐺𝑖 over𝐺 𝑗

𝐸𝑚𝑎𝑥 maximum number of edges in an edge-diversified pattern

𝑆 , 𝑆𝑓 𝑟𝑒 a set of subgraphs, a set of frequent subgraphs

• Two optimization strategies are developed to improve the per-

formance.

• By using real-world data graph repositories, extensive experi-

mental evaluations are provided to show the superiority of our

methods over two baseline solutions.

The rest of this paper is organized as follows. In Section 2, we

provide some preliminaries and the problem statement. In Section 3,

two baseline solutions are proposed for top-𝑘 edge-diversified pat-

terns discovery problem. In Section 4, our proposed novel frame-

work Ted is presented, followed by two optimization strategies in

Section 5. In Section 6, we employ the demonstration system called

VINCENT to illustrate the application potentials of edge-diversified

patterns. Section 7 shows extensive experimental results. Related

work are in Section 8 and conclusions are made in Section 9.

2 PRELIMINARIES

Table 1 lists the notations and acronyms used in this paper.

2.1 Key Concepts

A simple graph 𝐺 is represented as 𝐺 = (𝑉 , 𝐸) where 𝑉 is a set of

vertices and 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges. For ease of presentation, we

assume 𝐺 is an undirected connected graph whose vertex 𝑣 ∈ 𝑉 is

labeled with 𝑙 (𝑣) and edge 𝑒 ∈ 𝐸 is labeled with 𝑙 (𝑒) 5. In this paper,

we focus on a graph database containing a large collection of graphs

(denoted as 𝐷), each of which is with either dozens or hundreds

of nodes (up to 801, see Table 2, Section 7.1). Therefore, this paper

follows related works [16, 18] to call them small- or medium-sized

graphs. A unique index (i.e., id) is assigned to each graph in 𝐷 . We

denote a graph with index 𝑖 as 𝐺𝑖 ∈ 𝐷 .

Definition 1 (Subgraph isomorphism). Given two graphs

𝐺1 and 𝐺2, a subgraph isomorphism is an injection 𝑓 : 𝑉 (𝐺1) →
𝑉 (𝐺2) such that 1) ∀𝑣 ∈ 𝑉 (𝐺1), 𝑙 (𝑣) = 𝑙 ′ (𝑓 (𝑣)) and 2) ∀(𝑢, 𝑣) ∈
𝐸 (𝐺1), (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸 (𝐺2) and 𝑙 (𝑢, 𝑣) = 𝑙 ′ (𝑓 (𝑢), 𝑓 (𝑣)) where 𝑙
and 𝑙 ′ are the labeling functions of graph 𝐺1 and 𝐺2, respectively.

𝐺1 is subgraph isomorphic to 𝐺2 if there exists at least one sub-

graph isomorphism 𝑓 from𝐺1 to𝐺2. We also say that𝐺2 is covered

by 𝐺1 or that 𝐺2 contains 𝐺1 (denoted by 𝐺1 ⊆ 𝐺2).

Definition 2 (Cover Set andCoverage). Given two graphs

𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) , if 𝐺1 is subgraph isomorphic

to 𝐺2 and the matchings are F , the cover set of 𝐺1 over 𝐺2 is

𝐶𝑜𝑣 (𝐺1,𝐺2) = ∪𝑓 ∈F (𝑓 (𝑢), 𝑓 (𝑣)) and the coverage is |𝐶𝑜𝑣 (𝐺1,𝐺2) |.

5
For the graph with labeled vertex and unlabeled edge, each edge 𝑒 ∈ 𝐸 is labeled

with the concatenation of labels (i.e., a new label joining two labels together) of its

two end vertices (i.e., 𝑙 (𝑒) = 𝑙 (𝑢) .𝑙 (𝑣)).

Conference’17, July 2017, Washington, DC, USA Kai Huang 1,2 , Haibo Hu 1 , Qingqing Ye 1 , Kai Tian 3 , Bolong Zheng 4 , Xiaofang Zhou 2

2.2 Problem Statement

Definition 3 (Top-k Edge-Diversified Patterns Discov-

ery). Given a graph database 𝐷 = {𝐺1,𝐺2, · · · ,𝐺 𝑗 , · · · ,𝐺𝑛} and
an integer 𝑘 , top-𝑘 edge-diversified patterns discovery is to find

𝑘 connected subgraphs P = {𝑝1, 𝑝2, . . . , 𝑝𝑖 , . . . 𝑝𝑘 } from 𝐷 such

that the total coverage of P over 𝐷 (denoted by |𝐶𝑜𝑣 (P, 𝐷) |), i.e.,
| ∪𝑖 ∪𝑗𝐶𝑜𝑣 (𝑝𝑖 ,𝐺 𝑗) |, is maximized, where 𝐶𝑜𝑣 (𝑝𝑖 ,𝐺 𝑗) is the cover
set of 𝑝𝑖 over 𝐺 𝑗 , and the number of edges of 𝑝𝑖 (i.e., |𝐸 (𝑝𝑖) |) is no
more than a given size threshold 𝐸𝑚𝑎𝑥 .

Remark. It seems that when 𝐸𝑚𝑎𝑥 = 1, this problem becomes

the (minimum) edge cover problem, which finds a set of edges C
with the smallest possible size such that each vertex in a graph is

incident with at least one edge in C. However, given a graph 𝐺

(i.e., 𝐷 = {𝐺}), even if 𝐸𝑚𝑎𝑥 = 1, they are not the same, as edge-

diversified patterns discovery is to find a limited number of edges

(i.e., 𝑘) such that their matchings in 𝐺 cover the maximum number

of edges, while the (minimum) edge cover problem finds an edge

set that covers all vertices in𝐺 . For example, let 𝑘 = 1 and𝐷 = {𝐺1}
in Figure 1, top-𝑘 edge-diversified patterns are the edge between

two “C”, but (minimum) edge cover of 𝐺1 is {𝑒3 − 𝑒6, 𝑒9 − 𝑒12}. In
addition, note that |𝐸 (𝑝𝑖) | is not allowed to be larger than a given

threshold 𝐸𝑚𝑎𝑥 . The reasons are two-fold. First, if some graphs in

𝐷 are apparently larger than other graphs, there is a likelihood

that selecting those graphs as the top-𝑘 edge-diversified patterns

is already an optimal solution. Thus, we don’t have to discuss the

problem here. Second, in most applications, such as visual subgraph

query formulation, patterns should not be too large [16], since

pattern budget (e.g., minimum size, maximum size and the number

of patterns) is pre-defined for pattern mining.

Theorem 1. The top-𝑘 edge-diversified patterns discovery problem

is NP-hard.

Proof. Let 𝑘 = 1, the original top-k edge-diversified patterns

discovery problem (TED Problem) becomes to find a single edge-

diversified pattern, i.e., a graph 𝑔 that covers the maximum number

of edges. The reformulated problem (denoted by Simplified TED

Problem), i.e., TED Problem with 𝑘 = 1, can be reduced from the

maximum coverage problem [22], which is a classical NP-hard

optimization problem. □

3 BASELINE SOLUTIONS

In this section, we present two baseline solutions for this problem.

The first one, named as all𝑔 , is to enumerate all subgraphs 𝑆 from

the database𝐷 , and then conduct a greedy search. Given aminimum

support threshold 𝑠𝑢𝑝𝑚𝑖𝑛 , the second solution named as fsg𝑔 first

generates all frequent subgraphs 𝑆𝑓 𝑟𝑒 whose support are no less

than 𝑠𝑢𝑝𝑚𝑖𝑛 , instead of all subgraphs. It then adopts the same greedy

strategy as all𝑔 to find top-𝑘 edge-diversified patterns.

3.1 Baseline Solution all𝑔

By adopting greedy search, we come up with the first baseline so-

lution all𝑔 , whose pseudo-code is shown in Algorithm 1. Given a

graph database 𝐷 = {𝐺1,𝐺2, ...𝐺𝑛} and an integer 𝑘 , it first enumer-

ates all subgraphs 𝑆 = {𝑠1, 𝑠2, ...} from 𝐷 such that |𝐸 (𝑠𝑖) | ≤ 𝐸𝑚𝑎𝑥
(Line 1), by using an existing subgraph enumeration method [1–5].

Algorithm 1 Baseline solution all𝑔

Input: graph database 𝐷 = {𝐺1,𝐺2, ...𝐺𝑛 }, integer 𝑘 , and 𝐸𝑚𝑎𝑥

Output: Near-optimal top-𝑘 edge-diversified patterns

1: 𝑆 ← EnumAllSub(𝐷, 𝐸𝑚𝑎𝑥)
2: P ←MaxCover(𝑆, 𝑘) ⊲ call procedure MaxCover

3: return P
4: procedure MaxCover(𝑆, 𝑘)
5: P ← 𝜙
6: for iter = 1 to k do

7: 𝑝 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑝′ ∈𝑆 |𝐶𝑜𝑣 (𝑝′, 𝐷) \𝐶𝑜𝑣 (P, 𝐷) |
8: P ← P ∪ {𝑝 }, 𝑆 ← 𝑆 \ 𝑝
9: return P

Algorithm 2 Baseline solution fsg𝑔

Input: graph database 𝐷 = {𝐺1,𝐺2, ...𝐺𝑛 }, integer 𝑘 , and 𝐸𝑚𝑎𝑥

Output: Heuristic top-k edge-diversified patterns

1: 𝑆𝑓 𝑟𝑒 ← EnumFreSub(𝐷, 𝐸𝑚𝑎𝑥)
2: P ←MaxCover(𝑆𝑓 𝑟𝑒 , 𝑘) ⊲ MaxCover in Algorithm 1

3: return P

Then, MaxCover is invoked to generate top-𝑘 edge-diversified pat-

terns (Line 2). MaxCover follows a iterative procedure (Lines 6-8).

In each iteration, it greedily selects a pattern 𝑝 from 𝑆 such that the

cover set of 𝑝 contains a maximum number of uncovered edges, i.e.,

|𝐶𝑜𝑣 (𝑝′, 𝐷) \𝐶𝑜𝑣 (P, 𝐷) | (Line 7). Once the resulting pattern 𝑝 is

selected, it will be removed from 𝑆 to pattern set P (Line 8).

Observe that MaxCover follows the same greedy strategy used

for solving the max 𝑘-cover problem [22]. Therefore, it can achieve

an approximation ratio of 1 − exp(−1).

Lemma 1. Worst case time and space complexities of all𝑔 are

O(|𝐷 |2𝑚𝑎𝑥 (𝑉 (𝐺))2+𝑘 |𝑆 | |𝐷 |𝑚𝑎𝑥 (𝑉 (𝐺))𝐸𝑚𝑎𝑥) andO(𝑚𝑎𝑥 (𝐸 (𝐺)) |𝐷 |
+ 𝐸𝑚𝑎𝑥 |𝑆 |), respectively, where 𝑚𝑎𝑥 (𝑉 (𝐺)) (resp. 𝑚𝑎𝑥 (𝐸 (𝐺))) is
maximum number of vertices (resp. edges) in graph𝐺 ∈ 𝐷 , and |𝐷 |
(resp. |𝑆 |) is number of graphs in 𝐷 (resp. 𝑆).

3.2 Baseline Solution fsg𝑔

Note that all𝑔 requires searching all subgraphs which may incur

large computational overload. To address this, we further propose

the second baseline solution fsg𝑔 , whose procedure is shown in

Algorithm 2. Instead of enumerating all subgraphs from graph

database𝐷 , fsg𝑔 first adopts frequent subgraphminingmethods [6–

11] to generate frequent subgraphs 𝑆𝑓 𝑟𝑒 (Line 1). Then MaxCover

in Algorithm 1 is invoked to find a pattern set on 𝑆𝑓 𝑟𝑒 (Line 2).

Lemma 2. Worst case time and space complexities of fsg𝑔 are

O(|𝐷 |2𝑚𝑎𝑥 (𝑉 (𝐺))2+𝑘 |𝑆𝑓 𝑟𝑒 | |𝐷 |𝑚𝑎𝑥 (𝑉 (𝐺))𝐸𝑚𝑎𝑥) andO(𝑚𝑎𝑥 (𝐸 (𝐺))
|𝐷 | +𝐸𝑚𝑎𝑥 |𝑆𝑓 𝑟𝑒 |) , respectively, where𝑚𝑎𝑥 (𝑉 (𝐺)) (resp.𝑚𝑎𝑥 (𝐸 (𝐺)))
is maximum number of vertices (resp. edges) in graph 𝐺 ∈ 𝐷 , and

|𝐷 | (resp. |𝑆𝑓 𝑟𝑒 |) is number of graphs in 𝐷 (resp. 𝑆𝑓 𝑟𝑒).

3.3 Limitations of Baseline Solutions

Observe that all𝑔 provides an approximation ratio of 1 − exp(−1)
for final patterns, but it is computationally challenging. Compared

to all𝑔 , fsg𝑔 significantly reduces the computational cost by se-

lecting frequent subgraphs, based on which the final patterns are

derived. However, the pattern quality is not guaranteed since no

approximation bound can be provided as only frequent subgraphs

are considered. Moreover, they suffer from the following problems:

(1) Excessivememory consumption. Both all𝑔 and fsg𝑔 need to store

all subgraphs or a subset of all subgraphs in memory. However,

TED: Towards Discovering Top-𝑘 Edge-Diversified Patterns in a Graph Database Conference’17, July 2017, Washington, DC, USA

the number of subgraphs in a graph database is exponential in

database size. As a graph database continues to grow rapidly in

size, storing those subgraphs in memory will lead to excessive

memory consumption.

(2) A mass of unnecessary computations. Since the (frequent) sub-

graph enumeration and MaxCover procedure are performed

sequentially, all (frequent) subgraphs, no matter whether they

can improve the total coverage of final patternsP, are computed

and stored before invoking MaxCover procedure. Therefore,

there are a mass of unnecessary computations.

4 TED: A NOVEL FRAMEWORK

To address aforementioned limitations, we propose a novel frame-

work called Ted (i.e., Top-𝑘 Edge-Diversified patterns discovery).

The main idea is to integrate the search process for top-𝑘 patterns

into subgraph enumeration. Specifically, it maintains only 𝑘 can-

didate patterns P in memory. These candidates are supposed to

potentially maximize the total coverage. When a new subgraph 𝑔 is

enumerated and considered as a promising candidate (see Sec. 4.1), it

will be added to P by swapping out one of the patterns. Compare to

the above two baseline solutions, Ted has the following advantages:

(i) Limited memory consumption. Ted always maintains only 𝑘

patterns in memory to avoid excessive memory consumption

for storing all subgraphs. As can be seen in Theorem 2, the

space complexity of Ted is O(𝑚𝑎𝑥 (𝐸 (𝐺)) |𝐷 |) which is far

less than that of all𝑔 (O(𝑚𝑎𝑥 (𝐸 (𝐺)) |𝐷 | + 𝐸𝑚𝑎𝑥 |𝑆 |), Lemma
1) and fsg𝑔 (O(𝑚𝑎𝑥 (𝐸 (𝐺)) |𝐷 | + 𝐸𝑚𝑎𝑥 |𝑆𝑓 𝑟𝑒 |), Lemma 2).

(ii) Guaranteed pattern quality. Ted can achieve an approximation

bound of 1/4 and better performance in experimental study.

To this end, it provides a swapping criteria such that each

newly generated subgraph 𝑔 is deliberately swapped with one

existing pattern in P.
(iii) Effective pruning strategies. Ted is able to prune subgraph

search space by integrating the search process for top-𝑘 pat-

terns into subgraph enumeration.

In what follows, we begin with a basic Ted algorithm (denoted

by Ted_base) in this section, which can achieve both (i) and (ii).

Then, two optimization strategies are developed to further realize

(iii) (Section 5).

4.1 The Basic Ted Algorithm

The basic Ted algorithm (Ted_base) generates top-k edge-diversified

patterns by alternately performing subgraph enumeration and a

search process for top-𝑘 patterns. For subgraph enumeration, it

adopts a depth-first search (dfs) strategy to traverse the search

space. For example, 𝑔1,1, 𝑔2,1, 𝑔3,1, and 𝑔4,1 in Figure 5 are traversed

sequentially. Although Apriori-like approaches [6, 7] that adopt

breadth-first search (bfs) strategy have been widely studied, they

require generating a lot of duplicated candidates and testing sub-

graph isomorphism. In contrast, depth-first search (dfs) combines

the pattern generating and isomorphism checking into one process

to address this problem. For top-𝑘 pattern search on the enumerated

subgraphs, a swapping-based strategy is adopted for maintaining

patterns with limited memory consumption.

Ted_base is outlined in Algorithm 3. Given a graph database

𝐷 = {𝐺1,𝐺2, ...𝐺𝑛} and an integer 𝑘 , it first enumerates all 1-sized

Algorithm 3 A basic Ted algorithm (Ted_base)

Input: graph database 𝐷 = {𝐺1,𝐺2, ...𝐺𝑛 }, integer 𝑘 , and 𝐸𝑚𝑎𝑥

Output: Near-optimal top-k edge-diversified patterns

1: P ← 𝜙

2: 𝑆𝑝 ← EnumSub(𝐷, |𝐸 | = 1)
3: for each 𝑔 ∈ 𝑆𝑝 do

4: 𝑆𝑝 ← 𝑆𝑝 \ 𝑔
5: P ← PatternMaintain(P, 𝑔, 𝐷)
6: P𝑔 ← RightMostExtend(𝑔, 𝐷, 𝐸𝑚𝑎𝑥)
7: 𝑆𝑝 ← P ∪ P𝑔
8: procedure PatternMaintain(P, 𝑔, 𝐷)

9: if | P | < 𝑘 then

10: P ← P ∪ {𝑔}
11: return P
12: Score𝐿 , 𝑝𝑡 ← min(genLossScore(P))
13: Score𝐵 ← genBenefitScore(𝑔)
14: if Score𝐵 > (1 + 𝛼)Score𝐿 +

(1−𝛼) |𝐶𝑜𝑣 (P,𝐷) |
𝑘

then

15: P ← P \ 𝑝𝑡 ∪ {𝑔}
16: return P

subgraphs (i.e., edges) and appends them into the set 𝑆𝑝 (Line 2).

Then, an iterative process (Lines 3-7) is performed to generate final

patterns P by taking 𝑆𝑝 and𝐷 as inputs. Specifically, each subgraph

𝑔 ∈ 𝑆𝑝 is first considered and removed from 𝑆𝑝 (Lines 3-4). Then,

the procedure PatternMaintain is performed to update top-𝑘

edge-diversified patterns P with newly enumerated subgraph 𝑔

(Line 5). After that, the right-most extension method (Procedure

RightMostExtend) extends each subgraph 𝑔 ∈ 𝑆𝑝 with one more

edge (Line 6) so that its supergraphs will be considered in the next

iteration. The process repeats until 𝑆𝑝 is empty. More details about

PatternMaintain and RightMostExtend are discussed below.

4.1.1 Pattern Maintenance (PatternMaintain). As discussed above

(Section 3), the max 𝑘-cover problem is a subproblem of top-𝑘 edge-

diversified patterns discovery. However, greedy-search based so-

lutions typically find entire subgraphs and store them in memory

and hence cannot be effectively exploited for large databases. To ad-

dress this, PatternMaintain maintains only 𝑘 patterns in memory

with a swapping-based method motivated by existing maximum

coverage solver in the context of streaming scenario [23–25]. We

first introduce the concepts of loss score and benefit score below to

facilitate exposition.

Definition 4 (Loss score). Given a pattern set P and a data-

base 𝐷 , the loss score of a pattern 𝑝 ∈ P is the decrease of total

coverage caused by removing 𝑝 from P, i.e.,

Score𝐿 (𝑝,P, 𝐷) = | ∪𝑝∈P 𝐶𝑜𝑣 (𝑝, 𝐷) \ ∪𝑝′∈P\𝑝𝐶𝑜𝑣 (𝑝′, 𝐷) |.

Definition 5 (Benefit score). Given a pattern set P and a

database 𝐷 , the benefit score of a pattern 𝑔 ∉ P is the increase of

total coverage caused by adding 𝑔 to P, i.e.,

Score𝐵 (𝑔,P, 𝐷) = | ∪𝑝′∈P∪{𝑔} 𝐶𝑜𝑣 (𝑝′, 𝐷) \ ∪𝑝∈P𝐶𝑜𝑣 (𝑝, 𝐷) |.

PatternMaintain first greedily selects 𝑘 patterns into the pat-

tern set P (Lines 9-11, Algorithm 3). When a new subgraph 𝑔 is

generated, a swapping-based process is developed to determine

if 𝑔 should be swapped into P (Lines 12-15). Specifically, it first

calculates and ranks loss scores for each pattern 𝑝 ∈ P, and then

records the pattern 𝑝𝑡 and its pattern score Score𝐿 such that 𝑝𝑡
has a minimum loss score (Line 12). Meanwhile, the benefit score

Score𝐵 of 𝑔 is also recorded (Line 13). The subgraph 𝑔 is considered

as a promising candidate and swapped into P (Lines 14-15) if the

Conference’17, July 2017, Washington, DC, USA Kai Huang 1,2 , Haibo Hu 1 , Qingqing Ye 1 , Kai Tian 3 , Bolong Zheng 4 , Xiaofang Zhou 2

1-edge

2-edge

3-edge

4-edge

…….

C C

C N

C Og1,1

g4,1

g1,2 g1,3

g2,2g2,1
g2,3

g3,3g3,2g3,1

g4,2 g4,3 g4,4

…… ……

g3,3 and its
children
are pruned

Figure 5: The dfs search space.

following swapping criteria is satisfied:

Score𝐵 > (1 + 𝛼)Score𝐿 + (1 − 𝛼) |𝐶𝑜𝑣 (P, 𝐷) |/𝑘 (1)

where 𝛼 ∈ [0, 1] is a swapping threshold to balance Score𝐿 and the

average coverage of the patterns in P (i.e., |𝐶𝑜𝑣 (P, 𝐷) |/𝑘). Note
that there are three variants of the swapping criteria, namely 𝑆𝑤𝑎𝑝1
[23], 𝑆𝑤𝑎𝑝2 [24], and 𝑆𝑤𝑎𝑝𝛼 [25] where 𝛼 = 1, 𝛼 = 0, and 𝛼 ∈ (0, 1),
respectively. By default, we set 𝛼 = 1 and compare it with other

variants in Section 7. The pattern 𝑝𝑡 is swapped out once 𝑔 is

swapped in. The pattern set P is hence updated (Line 15).

4.1.2 Right-Most Extension (RightMostExtend). Ted_base adopts

a depth-first search (dfs) strategy to enumerate all possible sub-

graphs by iteratively performing right-most extension [9] (i.e.,

RightMostExtend). In particular, given a graph 𝑔, we can perform

dfs on it and generate the corresponding dfs trees. The graph𝑔 sub-

scripted with a dfs tree 𝑇 is denoted by 𝑔𝑇 and hence 𝑇 is named

a dfs subscripting of 𝑔. Given 𝑔𝑇 , root vertex is the first visited

vertex (i.e., 𝑉0) and right-most vertex is the last visited vertex (i.e.,

𝑉|𝑉 (𝑔) |−1). The right-most path is then defined as the straight path

from root vertex to right-most vertex. Moreover, the forward edge

contains all edges in the dfs tree 𝑇 (denoted by 𝐸
𝑓

𝑇
). The backward

edge consists of all other edges (denoted by 𝐸𝑏
𝑇
). It is obvious that

(𝑉𝑖 ,𝑉𝑗) ∈ 𝐸 𝑓𝑇 if 𝑖 < 𝑗 , and (𝑉𝑖 ,𝑉𝑗) ∈ 𝐸𝑏𝑇 otherwise.

Definition 6 (Right-most extension). Given an 𝑚-edge

graph 𝑔 and a dfs tree 𝑇 , right-most extension is to extend 𝑔 to an

(𝑚 + 1)-edge graph 𝑔′ with an edge 𝑒 such that at least one of the

following rules is satisfied: 1) forward extension. 𝑒 is extended from

vertices on the right-most path such that an additional vertex is

introduced and 2) backward extension. 𝑒 is extended from right-most

vertex to other vertices on the right-most path.

Figure 5 outlines the dfs search space, where each node rep-

resents an𝑚-edge graph (denoted by 𝑔𝑚,𝑖 , i.e., 𝑖-th graph with𝑚

edges). Each link between two nodes represents a possible right-

most extension. For example, 𝑔1,1, 𝑔2,1, 𝑔3,1, and 𝑔4,1 in Figure 5 are

traversed sequentially. 𝑔4,1 is a right-most extension of 𝑔3,1.

4.2 Fast Pattern Maintenance

A naive method for computing loss score (Line 12, Algorithm 3)

and benefit score (Line 13, Algorithm 3) is to directly calculate

cover set 𝐶𝑜𝑣 (·) according to their definitions, which is obviously

inefficient. In this section, we propose the FastMaintain algorithm

to facilitate fast pattern maintenance. To begin with, the Private-

Edge-Set Index (denoted by PES-Index) is developed to accelerate

loss score and benefit score computation. PES-Index consists of five

components:

• |𝐶𝑜𝑣 (P)|: total coverage of P over 𝐷 (i.e., |𝐶𝑜𝑣 (P, 𝐷) |).
• |𝑝𝐶𝑜𝑣 (𝑝) |: private coverage of 𝑝 . 𝑝𝐶𝑜𝑣 (𝑝) is the set of edges in 𝐷 ,

which is in the cover set of 𝑝 but not in the cover set of 𝑝′ ∈ P\𝑝 ,
i.e., 𝑝𝐶𝑜𝑣 (𝑝) = 𝐶𝑜𝑣 (𝑝, 𝐷) \𝐶𝑜𝑣 (P \ 𝑝, 𝐷).
• 𝑟𝐶𝑜𝑣 (𝑒): reverse cover set of an edge 𝑒 . It refers to a subset of

patterns that contain 𝑒 in the cover set. That is, 𝑟𝐶𝑜𝑣 (𝑒) = {𝑝 |𝑝 ∈
P, 𝑒 ∈ 𝐶𝑜𝑣 (𝑝, 𝐷)}.
• 𝑟𝐶𝑛𝑡 (𝑖): reverse counting set of number of edges. It refers to a set

of patterns such that each pattern 𝑝’s private coverage is 𝑖 . That is,

𝑟𝐶𝑛𝑡 (𝑖) = {𝑝 |𝑝 ∈ P, |𝑝𝐶𝑜𝑣 (𝑝) | = 𝑖} where 𝑖 ∈ [0,∑𝐺∈𝐷 |𝐸 (𝐺) |].
• 𝑝𝑚𝑖𝑛 : the pattern 𝑝 ∈ P withminimumprivate coverage |𝑝𝐶𝑜𝑣 (𝑝) |.

Moreover, four operations, Insert, Delete, Update and Select,

are developed on PES-Index. Specifically, Insert operation is to

insert a newly enumerated subgraph into current pattern set and

update PES-Index; Delete aims to remove a pattern from current

pattern set and update PES-Index; Update is a combination opera-

tion that sequentially calls Delete and Insert operations; Select

supports fast computations for the loss score and benefit score.

Given a graph database 𝐷 , a pattern set P and each enumerated

graph 𝑔, if the number of existing patterns is less than 𝑘 , Insert

operation is performed to updateP, and𝑔 is directly inserted intoP.
For each edge 𝑒 covered by 𝑔 (i.e., 𝑒 ∈ 𝐶𝑜𝑣 (𝑔, 𝐷)), its reverse cover
set is updated by adding𝑔. If its reverse cover set only contains𝑔 (i.e.,

|𝑟𝐶𝑜𝑣 (𝑒) |==1), it indicts that 𝑒 is only covered by 𝑔. Hence, both g’s

private coverage |𝑝𝐶𝑜𝑣 (𝑔) | and the total coverage𝐶𝑜𝑣 (P) increase
by 1. If its reverse cover set contains another pattern 𝑝 , the private

coverage of 𝑝 (i.e., |𝑝𝐶𝑜𝑣 (𝑝) |) should be decreased by 1 since 𝑒 is

also covered by 𝑔. Once |𝑝𝐶𝑜𝑣 (𝑝) | is updated, the reverse counting
set 𝑟𝐶𝑛𝑡 (𝑖) is updated by moving 𝑝 from 𝑟𝐶𝑛𝑡 (|𝑝𝐶𝑜𝑣 (𝑝) | + 1) to
𝑟𝐶𝑛𝑡 (|𝑝𝐶𝑜𝑣 (𝑝) |). The process repeats until all 𝑒 ∈ 𝐶𝑜𝑣 (𝑔, 𝐷) are
considered. Then, 𝑟𝐶𝑛𝑡 (|𝑝𝐶𝑜𝑣 (𝑔) |) is also updated. Based on all

computed 𝑟𝐶𝑛𝑡 (𝑖), we can directly figure out which pattern has

the minimum loss score by selecting one pattern 𝑝𝑚𝑖𝑛 in 𝑟𝐶𝑛𝑡 (𝑖) ≠
𝜙 such that 𝑖 is minimum. With the constructed PES-Index, the

minimum loss score (i.e., Score𝐿) and the corresponding pattern

(i.e., 𝑝𝑡) can be easily obtained (Score𝐿 = |𝑝𝐶𝑜𝑣 (𝑝𝑚𝑖𝑛) | and 𝑝𝑡 =

𝑝𝑚𝑖𝑛). The benefit score Score𝐵 is calculated by counting the cases

where the reverse cover set |𝑟𝐶𝑜𝑣 (𝑒) | of 𝑒 ∈ 𝐶𝑜𝑣 (𝑔, 𝐷) is 0, as
|𝑟𝐶𝑜𝑣 (𝑒) | = 0 indicates that 𝑒 is not covered by existing patterns.

If the swapping criterion is satisfied, the Update operation is

performed by sequentially calling Delete operation for 𝑝𝑡 and

Insert operation for 𝑔. Firstly, 𝑝𝑡 is directly removed from P and

𝑟𝐶𝑛𝑡 (|𝑝𝐶𝑜𝑣 (𝑝𝑡) |). For each edge 𝑒 ∈ 𝐶𝑜𝑣 (𝑝𝑡 , 𝐷), the corresponding
𝑟𝐶𝑜𝑣 (𝑒) should be maintained by removing 𝑝𝑡 , and the total cov-

erage should be decreased by 1 if |𝑟𝐶𝑜𝑣 (𝑒) | is 0. In addition, if the

|𝑟𝐶𝑜𝑣 (𝑒) | of 𝑒 contains only one pattern 𝑝 , the |𝑝𝐶𝑜𝑣 (𝑝) | should
be increased by 1, and the reverse counting set 𝑟𝐶𝑛𝑡 (𝑖) should be

updated by moving 𝑝 from 𝑟𝐶𝑛𝑡 (|𝑝𝐶𝑜𝑣 (𝑝) | −1) to 𝑟𝐶𝑛𝑡 (|𝑝𝐶𝑜𝑣 (𝑝) |).
Remark. Note that PES-Index is motivated by the existing PNP-

Index [46], which was designed for diversified top-k clique search.

The main difference lies in that PNP-Index is to build the relation-

ship between the enumerated clique and the vertices in a single

large data graph. Each clique is exactly one matching in the data

graph and only the vertices in the matching are indexed. In contrast,

TED: Towards Discovering Top-𝑘 Edge-Diversified Patterns in a Graph Database Conference’17, July 2017, Washington, DC, USA

PES-Index aims to index the cover set (i.e., a set of edges) of a par-

ticular edge-diversified pattern over a graph database containing a

set of graphs. Each pattern here has multiple matchings in a graph.

Example 4. Let 𝛼 = 1, 𝑘 = 3, and the current pattern set P =

{𝑔1, 𝑝1, 𝑝3} where 𝑔1 and 𝑝1 (resp. 𝑝3) are shown in Figure 2(a) and

Figure 4, respectively. |𝑝𝐶𝑜𝑣 (𝑔1) |, |𝑝𝐶𝑜𝑣 (𝑝1) | and |𝑝𝐶𝑜𝑣 (𝑝3) | are 2,
10, and 8, respectively, where 𝑝𝐶𝑜𝑣 (𝑔1) = {𝐺3 : 𝑒2, 𝑒6} (i.e., 𝑒2 and 𝑒6
of 𝐺3). In addition, |𝐶𝑜𝑣 (P)| = 33 and 𝑟𝐶𝑛𝑡 (2) = {𝑔1} ≠ 𝜙 . Hence,

𝑝𝑡 = 𝑔1 and the minimum loss score Score𝐿 = |𝑝𝐶𝑜𝑣 (𝑔1) | = 2. When

the graph 𝑝2 (Figure 4) is newly enumerated, its benefit score Score𝐵 =

7, as 𝐶𝑜𝑣 (𝑝2, 𝐷) = {𝐺3 : 𝑒3, 𝑒4, 𝑒7, 𝑒9 − 𝑒12} and |{𝑒 |𝑒 ∈ 𝐶𝑜𝑣 (𝑝2, 𝐷)
and |𝑟𝐶𝑜𝑣 (𝑒) | == 0}| = 7. Since Score𝐵 > (1 + 𝛼)Score𝐿 = 4, 𝑔1
should be removed from P and then |𝐶𝑜𝑣 (P)| = 31. In addition, 𝑝2
should be added into P, i.e., P = {𝑝1, 𝑝2, 𝑝3}. The total coverage is
|𝐶𝑜𝑣 (P)| = 38 as shown in Figure 4.

Theorem 2. Worst case time and space complexities of Ted_base

are O(|𝐷 |2𝑚𝑎𝑥 (𝑉 (𝐺))2) and O(𝑚𝑎𝑥 (𝐸 (𝐺)) |𝐷 |), respectively, where
𝑚𝑎𝑥 (𝑉 (𝐺)) (resp.𝑚𝑎𝑥 (𝐸 (𝐺))) is maximum number of vertices (resp.

edges) in graph 𝐺 ∈ 𝐷 , and |𝐷 | is number of graphs in 𝐷 .

Proof. The main time cost is spent on EnumSub(𝐷, |𝐸 | = 1)
(Line 2, Algorithm 3), PatternMaintain(P, 𝑔, 𝐷) (Line 5) and

RightMostExtend(𝑔, 𝐷, 𝐸𝑚𝑎𝑥) (Line 6). EnumSub(𝐷, |𝐸 | = 1)
is to enumerate all edges and thus takes O(|𝐷 |𝑚𝑎𝑥 (𝐸 (𝐺))) time.

PatternMaintain(P, 𝑔, 𝐷) requires computations for loss score

and benefit score, which take O(|𝐷 |𝑚𝑎𝑥 (𝐸 (𝐺))) time. In the worst

case, total time cost of RightMostExtend(𝑔, 𝐷, 𝐸𝑚𝑎𝑥) is taken on

enumerating all subgraph, which takes O(|𝐷 |2𝑚𝑎𝑥 (𝑉 (𝐺))2) time.

Overall, the worst case time complexity is O(|𝐷 |2𝑚𝑎𝑥 (𝑉 (𝐺))2),
since |𝐷 |2𝑚𝑎𝑥 (𝑉 (𝐺))2 ≫ |𝐷 |𝑚𝑎𝑥 (𝐸 (𝐺)). The space cost is mainly

spent on storing the database 𝐷 , pattern set P and PES-Index.

It is obviously that the former two take O(𝑚𝑎𝑥 (𝐸 (𝐺)) |𝐷 |) and
O(𝑘𝐸𝑚𝑎𝑥)) space, respectively. For PES-Index, the main space

is spent on storing reverse cover set 𝑟𝐶𝑜𝑣 (𝑒), which consumes

O(𝑚𝑎𝑥 (𝐸 (𝐺)) |𝐷 |) space. Therefore, the worst case space complex-

ity is O(𝑚𝑎𝑥 (𝐸 (𝐺)) |𝐷 |) since𝑚𝑎𝑥 (𝐸 (𝐺)) |𝐷 | ≫ 𝑘𝐸𝑚𝑎𝑥 . □

5 OPTIMIZATIONS

Recall that Ted_base integrates the search process for top-𝑘 pat-

terns into subgraph enumeration, which guarantees the pattern

quality with limited memory consumption. However, it does not

explore the potential of reducing the search space and unnecessary

computations to boost the overall effectiveness. Therefore, in this

section, we further propose two optimization strategies, namely,

Promising Right-Most Extension in Section 5.1, and Initial Pattern

Selection in Section 5.2. In short, Promising Right-Most Extension

prunes unpromising patterns based on the covering relationship of

a graph and its descendants. Initial Pattern Selection targets on pro-

moting the quality of initial patterns so that better pruning power

is introduced in the early stage.

5.1 Promising Right-Most Extension (Ted_prm)

Recall that in Ted_base, graphs are enumerated with right-most

extension. As shown in Figure 6(a), an𝑚-edge graph 𝑔 is extended

to an (𝑚+1)-edge graph 𝑔′. Then, 𝑔′ is extended to an (𝑚+2)-edge

g

……g’

g’’

Cov(P, Gi) Cov(P, Gi)

E(Gi)
E(Gi)Cov(g, Gi) Cov(g, Gi)

Cov(g’, Gi) Cov(g’, Gi)

(a) A branch of DFS search space (b) Rule 1 (c) Rule 2

……

Figure 6: Illustration for PRM.

graph 𝑔′′. It is obvious they discard the relationship (see Observa-

tion I) between a subgraph and its descendants.

Observation I. The benefit score of a subgraph 𝑔′ over graph 𝐺𝑖
is at most the number of uncovered edges in 𝐺𝑖 , and the edges in a

graph 𝐺𝑖 covered by 𝑔 but not covered by 𝑔′ will not be covered by

𝑔′′ (i.e., a descendant of 𝑔′).

Motivated by this observation, Promising Right-Most Extension

(PRM) is developed by taking a prudent strategy to extend 𝑔 to 𝑔′

(and descendants of 𝑔′, e.g., 𝑔′′). Specifically, PRM extends 𝑔 to 𝑔′ if
and only if one of the following PRM rules is satisfied.

Definition 7 (PRMRules). 1) Rule 1. If 𝑔 ∈ P, 𝑔′ extends from
𝑔 with one edge if | ∪𝑖∈I (𝐸 (𝐺𝑖) \𝐶𝑜𝑣 (P,𝐺𝑖)) | ≥ (1 + 𝛼)Score𝐿 +
(1 − 𝛼) |𝐶𝑜𝑣 (P, 𝐷) |/𝑘 , where I is the id set of graphs containing 𝑔.

2) Rule 2. If 𝑔 ∉ P, 𝑔′ extends from 𝑔 with one edge if | ∪𝑖∈I (𝐸 (𝐺𝑖) \
(𝐶𝑜𝑣 (P,𝐺𝑖) ∪ (𝐶𝑜𝑣 (𝑔,𝐺𝑖) \𝐶𝑜𝑣 (𝑔′,𝐺𝑖)))) | ≥ (1+𝛼)Score𝐿 + (1−
𝛼) |𝐶𝑜𝑣 (P, 𝐷) |/𝑘 .

Theorem 3. Right-most extension with PRM rules has no effect

on the quality (i.e., coverage) of final patterns.

Proof. Let the current patterns be P and final patterns P𝑓 𝑖𝑛𝑎𝑙 ,
according to the swapping criteria (Equ. (1), Section 4), only the

promising candidate 𝑔 could be kept in P𝑓 𝑖𝑛𝑎𝑙 . Therefore, given a

graph 𝑔, we prove that PRM rules have no effect on the quality (i.e.,

coverage) of final patterns by showing that no promising candidate

is filtered out. □

Owing to the pruning power of PRM rules, we propose an im-

proved Ted algorithm called Ted_prm by introducing PRM into

Ted_base. Instead of executing lines 6 and 7 in Algorithm 3 sequen-

tially, given an𝑚-edge graph 𝑔 and its all potential (𝑚 + 1)-edge
supergraphs P𝑔 , for each 𝑔′ ∈ P𝑔 , if 𝑔′ does not satisfy PRM rules,

𝑔′ will be removed from P𝑔 for further processing.

5.2 Initial Pattern Selection (Ted_ips)

As discussed in Section 4.1, the initial 𝑘 patterns are selected by

traversing the search space in 𝐷𝐹𝑆 manner (Line 6, Algorithm 3).

For example, suppose the search space is shown in Figure 5 and

𝑘 = 3, the initial 𝑘 patterns are 𝑔1,1, 𝑔2,1, and 𝑔3,1. Observe that all of

them contain the same substructure (i.e., 𝑔1,1), they may cover the

same edges in 𝐷 . Therefore, the minimum loss score Score𝐿 may

get small, so that the swapping criterion is easily satisfied (Line

14, Algorithm 3). Although the swapping criterion is satisfied and

a pattern 𝑔 is hence swapped in, the pattern quality may be very

low so that 𝑔 will be swapped out finally. Obviously, frequently

swapping patterns does harm to algorithm performance. To address

Conference’17, July 2017, Washington, DC, USA Kai Huang 1,2 , Haibo Hu 1 , Qingqing Ye 1 , Kai Tian 3 , Bolong Zheng 4 , Xiaofang Zhou 2

this problem, we develop Initial Pattern Selection (IPS) technique

motivated by the following observation.

Observation II. The initial 𝑘 patterns generated by traversing the

search space in 𝐷𝐹𝑆 manner share common substructure and lead

to low loss score. While patterns generated with Breadth-First Search

(i.e., BFS) on the search space tend to be structurally dissimlar to each

other and may imply higher loss score.

Specifically, IPS starts at the first node in first level (e.g., 𝑔1,1,

Figure 5) of the search space. Then, it explores descendant nodes in

second level (e.g., 𝑔2,1) if the extended graph (e.g., 𝑔2,1) has higher

benefit score. The process repeats until no higher benefit score is

obtained or the desirable number of edges (i.e., 𝐸𝑚𝑎𝑥) is derived.

As a result, the first pattern is obtained. After that, IPS adopts the

same technique to generate patterns rooted at the other nodes in

first level (e.g., 𝑔1,2 and 𝑔1,3, Figure 5). Once all patterns rooted at

nodes in first level are generated, the top-𝑘 patterns with maximum

coverage are selected as initial pattern set.

The improved Ted algorithm with IPS (denoted by Ted_ips) is

developed. The only difference between Ted_ips and Ted_base

is that Ted_ips generates initial patterns P with IPS instead of

initializing it with an empty set (Line 1, Algorithm 3).

5.3 Putting Things Together (Ted)

The complete Ted algorithm integrates both two optimizations.

Specifically, IPS is first introduced to improve the initial loss score.

Then, PRM takes a prudent strategy to enumerate potential promis-

ing subgraphs. Theorem 4 ensures that the approximation ratio of

our Ted algorithm is lower bounded by 1/4.

Theorem 4. LetP𝑜𝑝𝑡 be an optimal solution to top-𝑘 edge-diversified

patterns discovery problem. The approximation ratio of patterns P
generated by Ted (and Ted_base) is bounded by

|𝐶𝑜𝑣 (P,𝐷) |
|𝐶𝑜𝑣 (P𝑜𝑝𝑡 ,𝐷) | ≥

1

4
.

Proof. We prove it by reducing our problem from max k-cover

problem [22], which has a
1

4
-approximation solution when the

swapping strategy is adopted [22]. Observe that the problem has the

same setting as our problem if all promising patterns are generated.

In addition, the same swapping strategy [22] is adopted by default.

Hence, the approximation ratio of patterns P generated by Ted is

bounded by |𝐶𝑜𝑣 (P, 𝐷) | / |𝐶𝑜𝑣 (P𝑜𝑝𝑡 , 𝐷) | ≥ 1

4
. □

Theorem 5. Worst case time and space complexities of Ted are

O(|𝐷 |2𝑚𝑎𝑥 (𝑉 (𝐺))2) andO(𝑚𝑎𝑥 (𝐸 (𝐺)) |𝐷 |), where𝑚𝑎𝑥 (𝑉 (𝐺)) (resp.
𝑚𝑎𝑥 (𝐸 (𝐺))) is maximum number of vertices (resp. edges) in graph

𝐺 ∈ 𝐷 , and |𝐷 | is number of graphs in 𝐷 .

Proof. Compared to Ted_base, Ted introduces two optimiza-

tions. Since time complexity of initial pattern selection is not larger

than that of subgraph enumeration and its space complexity is

O(𝑘𝐸𝑚𝑎𝑥), worst case time and space complexities of Ted will not

increase after applying initial pattern selection. The same conclu-

sion is made when applying promising right-most extension. Overall,

worst case time and space complexities of Ted areO(|𝐷 |2𝑚𝑎𝑥 (𝑉 (𝐺))2)
and O(𝑚𝑎𝑥 (𝐸 (𝐺)) |𝐷 |), respectively. □

GUI

Index Constructor Graph
Database

Indices

Query Editor

Query Processor

TED Explorer

ResultsActions

Visual Subgraph Query
Formulation

Exploratory Subgraph
Search

Pattern
Generator

Figure 7: The architecture of VINCENT.

Figure 8: The interface of VINCENT.

6 THE APPLICATION POTENTIALS

In this section, we employ the demonstration system VINCENT [17]

to illustrate the application potentials of edge-diversified patterns

in visual subgraph query formulation and exploratory subgraph

search. Figure 7 shows the architecture of VINCENT, which con-

sists of five modules, Index Constructor,Query Processor, Pattern
Generator,Query Editor, and TED Explorer. In particular, Pattern
Generator takes as input a graph database 𝐷 and parameters (e.g.,

𝑘), and generates top-𝑘 edge-diversified patterns P𝐷 , which are dis-

played on the GUI (e.g., Panel 5, Figure 8). Query Editor provides a
canvas (e.g., Panel 4, Figure 8) to users to visually formulate a query

𝑄 by dragging-and-dropping patterns P𝐷 and node labels in 𝐷

(see Section 6.1). Once the query 𝑄 is formulated, Query Processor
can efficiently process the query with the help of Index Construc-
tor to generate subgraph matching results 𝑅. In particular,Query
Processor performs subgraph isomorphism checking after Index
Constructor filters out irrelevant results with 𝐴2𝐹 and 𝐴2𝐼 indices

[47]. TED Explorer allows users to customize some parameters such

as 𝑘 , invokes Pattern Generator to generate edge-diversified pat-

terns P𝑅 for the query results 𝑅 based on these parameters, and

finally enables users to explore the summarized query results (i.e.,

P𝑅) (see Section 6.2). Based on these modules, the VINCENT sys-

tem enables users to interactively experience visual subgraph query

formulation and exploratory subgraph search, both of which are

elaborated as below, with a focus on how edge-diversified patterns

play a vital role in generating summary for the underlying data-

base 𝐷 (i.e., patterns P𝐷) and query results 𝑅 (i.e., patterns P𝑅),
respectively.

TED: Towards Discovering Top-𝑘 Edge-Diversified Patterns in a Graph Database Conference’17, July 2017, Washington, DC, USA

6.1 Visual Subgraph Query Formulation

Given a query𝑄 and a set of data graphs 𝐷 , subgraph search/query

is to retrieve the data graphs 𝑅 = {𝐺𝑖 } where 𝐺𝑖 ∈ 𝐷 contains 𝑄

(i.e., 𝑄 is subgraph isomorphic to 𝐺𝑖). It consists of two steps. The

first step is subgraph query formulation (i.e., how to construct the

query graph 𝑄). The second step is subgraph query processing (i.e.,

how to find these matched graphs 𝑅, as discussed above).

In contrast to declarative query languages (e.g., sparql and

Cypher), visual subgraph query formulation helps non-programmers

to take advantage of graph querying frameworks through a visual

query interface (also known as GUI) for query construction. The

core component of this interface is a set of subgraph patterns that

allow users to construct multiple nodes and edges in a query 𝑄 by

performing a single click-and-drag action (i.e., pattern-at-a-time

mode) instead of iterative construction of edges one-at-a-time (i.e.,

edge-at-a-time mode). Users are also allowed to delete nodes and

edges from a partially constructed query. The pattern-at-a-time

mode can greatly decrease the time taken to visually construct 𝑄 .

In VINCENT, as shown in Figure 8, edge-diversified patterns are

displayed in Panel 5, and Panel 3 displays the nodes of the underly-

ing database. Users can visually formulate a query by dragging and

dropping patterns from Panel 5 and nodes from Panel 3 to Panel 4.

6.2 Exploratory Subgraph Search

Subgraph search focuses on “lookup” retrieval with the assumption

that users have a clear query intent (i.e., know the exact structure

of query 𝑄) and sufficient knowledge of the underlying database 𝐷

to accurately construct 𝑄 . However, this assumption may become

impractical as the graph database evolves. Exploratory subgraph

search [19, 20, 51] alleviates this problem by supporting not only

lookup retrieval but also exploratory search, which allows users to

iteratively or progressively formulate queries and explore the query

results. In this process, an end user becomes more familiar with

the content and finally identifies the exact query 𝑄 . Suppose an

user wants to query 𝑄 , she may not have the complete query struc-

ture “in her mind” at the very beginning. As VINCENT displays

edge-diversified patterns P𝐷 on the GUI, she may find a pattern 𝑝

interesting while browsing the pattern set, and initiate her query

with 𝑝 (i.e., 𝑄0 = 𝑝). By observing the query results of 𝑄0, she may

iteratively construct 𝑄1, 𝑄2, ... and finally 𝑄 . Without the help of

these patterns, such a bottom-up search is not likely to happen.

Edge-diversified patterns can help in this process because the

query results 𝑅 may contain a huge number of graphs, which hin-

ders gaining insights from the results. To address this, VINCENT

presents TED Explorer. In particular, for user-specified parameters

such as 𝑘 and maximum (resp. minimum) pattern sizeMaxE (resp.

MinE), TED Explorer invokes Pattern Generator to generate edge-

diversified patterns P𝑅 for query results 𝑅, which can be cast as

a summary of query results and displayed on the interface for a

better exploration experience.

7 PERFORMANCE STUDY

In this section, we investigate the performance of Ted and report

the key findings. Ted is implemented with Java (JDK1.8). All ex-

periments are conducted on a 64-bit Windows desktop with AMD

Ryzen 5 3500X 6-Core CPU (3.6GHz) and 32GB of main memory.

Table 2: Datasets.

Datasets 𝐸𝑚𝑎𝑥 𝑉𝑚𝑎𝑥 𝐸𝑎𝑣𝑔 𝑉𝑎𝑣𝑔 |𝐷 |
AIDS 251 222 27.3 25.4 40K

eMol 104 100 15.9 15.5 10K

PubChem 838 801 43.8 42.3 1M

7.1 Experimental Setup

Datasets. The experiments are conducted on three datasets. (1)

The dataset Aids antiviral
6
consists of 40,000 (40K) data graphs.

We also use AidsL to denote the labeled Aids where each graph

is with labeled edges (i.e., bonds). (2) The dataset PubChem
7
con-

sists of many chemical compound graphs. Unless otherwise stated,

PubChem refers to the 23K dataset. Other variants used are 100K,

300K, 500K and 1 million (1M). (3) The dataset eMol
8
consists of

10K chemical compounds. Note that <Y><X> are used to denote

variants of various datasets, where 𝑌 and𝑋 refer to the name of the

dataset and the number of graphs used, respectively. For example,

AIDS10K refers to the dataset AIDS consisting of 10K data graphs.

Their statistics are given in Table 2 where 𝐸𝑚𝑎𝑥 (resp. 𝑉𝑚𝑎𝑥), 𝐸𝑎𝑣𝑔
(resp. 𝑉𝑎𝑣𝑔) and |𝐷 | indicate maximum number of edges (resp. ver-

tices), average number of edges (resp. vertices), and number of

graphs, respectively.

Baselines. We compare Ted against the proposed baselines and

their variants: (1) enumerating all subgraphs and then performing

greedy search (ALL𝑔 , Algorithm 1), (2) integrating enumeration of

all subgraphs and swapping-based search (ALL𝑡 , i.e., a variant of

ALL𝑔), (3) enumerating all frequent subgraphs and then performing

greedy search (FSG𝑔 , Algorithm 2), and (4) integrating enumeration

of all frequent subgraphs and swapping-based search (FSG𝑡 , i.e., a

variant of FSG𝑔). We also compare Ted with its variants (BASE and

PRM) where (1) BASE: Ted_base (Algorithm 3), (2) PRM: BASE +

Ted_prm and (3) TED: PRM + Ted_ips. To illustrate the applica-

tion potentials of edge-diversified patterns, we further compare

Ted against (1) CATAPULT [16], the state-of-the-art visual query

formulation method, and (2) top-𝑘 frequent patterns (denoted as

FS).

Parameter settings. Unless specified otherwise, we set 𝑘 = 5

and 𝐸𝑚𝑎𝑥 = 10.

Performance measures. We use the following measures for

performance evaluation: (1) Processing Time (in second): time taken

to generate the patterns. Note that INF is used to denote the case

that a test does not stop in a time limit (10000 seconds) or memory

limit. In the experiment, we use log scale for the time. (2) Coverage

Rate: the coverage rate of patterns to the total number of edges in a

database 𝐷 ; (3) Index Time (in second): time taken to maintain PES-

index; (4) Index Size (in kilobyte): space consumption for storing

the PES-index. (4) Query Formulation Time (QFT): time taken to

formulate a query; (5) Steps: steps taken to formulate a query; (6)

Reduction Ratio (RR): Ratio of reduced steps when patterns derived

from Ted are used, RR =
𝑆𝑡𝑒𝑝𝑠𝑋 −𝑆𝑡𝑒𝑝𝑠Ted

𝑠𝑡𝑒𝑝𝑋
where 𝑠𝑡𝑒𝑝𝑋 and 𝑠𝑡𝑒𝑝Ted

are the minimum number of steps required to construct a query 𝑄

when patterns P derived from the approach 𝑋 and Ted are used,

respectively. As we discussed above, 𝑋 could be CATAPULT or

top-𝑘 frequent patterns mining. RR > 0 implies that P derived

from Ted required fewer steps than 𝑋 . Note that we follow the

6
https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data

7
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/

8
https://www.emolecules.com/info/plus/download-database

Conference’17, July 2017, Washington, DC, USA Kai Huang 1,2 , Haibo Hu 1 , Qingqing Ye 1 , Kai Tian 3 , Bolong Zheng 4 , Xiaofang Zhou 2

0.7

0.8

0.9

1

3 5 7 9

C
o
v
e
r
a
g
e

R
a
t
e

Number of Patterns

ALLg
ALLt

FSGg
FSGt

TED

(a) Coverage Rate

10-1
100
101
102
103
104

3 5 7 9
P
r
o
c
e
s
s
i
n
g

T
i
m
e
(
s
)

Number of Patterns

ALLg
ALLt

FSGg
FSGt

TED

(b) Processing Time

Figure 9: Effect of Number of Patterns.

0.7

0.8

0.9

1

1 5 10 15

INFC
o
v
e
r
a
g
e

R
a
t
e

Maximum Size of Patterns

ALLg
ALLt

FSGg
FSGt

TED

(a) Coverage Rate

10-1
100
101
102
103
104

1 5 10 15

P
r
o
c
e
s
s
i
n
g

T
i
m
e
(
s
)

Maximum Size of Patterns

ALLg
ALLt

FSGg
FSGt

TED

(b) Processing Time

Figure 10: Effect of Maximum Size of Patterns.

same assumptions in [16] to estimate 𝑆𝑡𝑒𝑝𝑠𝑋 and 𝑆𝑡𝑒𝑝𝑠Ted: (1) a

pattern 𝑝 ∈ P can be used to construct the query 𝑄 iff 𝑝 ⊆ 𝑄 ; (2)

whenmultiple patterns are used to construct𝑄 , their corresponding

isomorphic subgraphs in 𝑄 do not overlap. We shall remove these

assumptions in the user study, where users are allowed to modify

(e.g., delete nodes/edges) patterns when they are used for query

formulations.

7.2 Experimental Results

7.2.1 Comparison with Baselines.

Question 1: How does Ted perform compared to the baselines in the

default parameter settings? And do different parameters (i.e., 𝐸𝑚𝑎𝑥
and 𝑘) affect the results?

Result 1. Ted outperforms baselines in terms of both Processing

Time and Coverage Rate in the default parameter settings (see Exp

2). In general, Ted is comparable to ALL𝑔 and outperforms other

methods in terms of coverage rate, and requires less processing

time (see Exp 1).

Exp 1: Setting of Maximum Size and Number of Patterns.

To evaluate the performance of Ted, we first perform an evaluation

to determine parameter settings. We vary the number of patterns

(i.e.,𝑘) onAIDS5K. Figure 9 plots the results. In general, the coverage

rate and processing time increase with 𝑘 , since more patterns are

introduced and higher coverage will be obtained as 𝑘 increases. The

methods based on greedy search (i.e., ALL𝑔 and FSG𝑔) generally

show better coverage rate and more processing time compared to

swapping-based search methods (i.e.,ALL𝑡 and FSG𝑡), as the former

needs to store all (resp. frequent) subgraphs for further searching.

However, TED is always comparable to ALL𝑔 and better than other

methods in terms of coverage rate (Figure 9(a)), although it is based

on a swapping-based search. As shown in Figure 9(b), TED requires

0.7

0.8

0.9

1

5K 10K 40K

INF INFC
o
v
e
r
a
g
e

R
a
t
e

AIDS

ALLg
ALLt

FSGg0.1
FSGg0.2

FSGt0.1
FSGt0.2

TED

(a) Coverage Rate

10-1
100
101
102
103
104

5K 10K 40K

P
r
o
c
e
s
s
i
n
g

T
i
m
e
(
s
)

AIDS

ALLg
ALLt

FSGg0.1
FSGg0.2

FSGt0.1
FSGt0.2

TED

(b) Processing Time

Figure 11: Baseline comparison on Aids.

less processing time than other methods on all settings. In the

following experiments, we set 𝑘 = 5.

We also study the performance of Ted with different maximum

sizes of patterns (𝐸𝑚𝑎𝑥) on AIDS5K. As shown in Figure 10, TED

is comparable to ALL𝑔 and better than other methods in terms of

coverage rate, but requires less processing time in most cases, espe-

cially for larger 𝐸𝑚𝑎𝑥 . Intuitively, ALL𝑔 can obtain a better coverage

rate compared to other methods except TED since all subgraphs

are enumerated and stored, which makes it memory- and time-

consuming (e.g., INF for 𝐸𝑚𝑎𝑥 = 15). In addition, as 𝐸𝑚𝑎𝑥 increases,

the search space is enlarged, and hence the processing time of these

methods increases. Note that the coverage rate fluctuates within a

narrow range, which is due to the label distribution of edges in the

database. We set 𝐸𝑚𝑎𝑥 = 10 in the following experiments.

Exp 2: Comparison with Baselines. Next, we compare Ted

with baselines and their variants, i.e., ALL𝑔 , ALL𝑡 , FSG𝑔 , and FSG𝑡

in the default setting, and report the results on AIDS dataset in

Figure 11. The results of FSG-based algorithms (i.e., FSG𝑔 and FSG𝑡)

with various supports (0.1 and 0.2) are also reported. As depicted

in Figure 11(a), in terms of coverage rate, Ted outperforms other

baselines and is comparable to ALL𝑔 , which incurs INF on AIDS10K

and AIDS40K. As the size of dataset increases from 5K to 40K,

processing time of ALL𝑔 increases dramatically, while that of our

TED algorithm increases steadily to less than 4minutes onAIDS40K,

as shown in Figure 11(b). Hence, Ted outperforms baselines and

their variants.

To investigate the effect of maximum number of nodes in a graph,

we compare Ted with baselines onDS = {𝐷 (0,20] ,𝐷 (20,50] ,𝐷 (50,80] ,
𝐷 (80,801] } 9 where 𝐷 (𝑟,𝑙] (|𝐷 (𝑟,𝑙] | = 1000) represents the graphs

in 𝑃𝑢𝑏𝐶ℎ𝑒𝑚 whose node sizes are in the range (𝑟, 𝑙]. Figure 12

depicts the results. In general, TED consistently shows comparable

coverage rate to greedy-search based methods, whose processing

time dramatically increases with the maximum number of nodes in

a graph and even incurs INF. We can also observe that the coverage

rate slightly increases with the maximum number of nodes. This

is because total number of edges in each dataset increases more

raipdly than the number of uncovered edges.

Finally, we compare them with the optimal solutions on small

datasets (i.e., 𝑃𝑢𝑏𝐶ℎ𝑒𝑚100 and 𝐴𝐼𝐷𝑆100) and report the results in

Figure 13. We observe that ratio of the coverage rate of TED to that

of optimal solution (denoted by OPT in the figure) is no less than

0.945, which is far better than the theoretical approximation ratio.

9
As shown in Table 2, maximum number of nodes in PubChem is 801.

TED: Towards Discovering Top-𝑘 Edge-Diversified Patterns in a Graph Database Conference’17, July 2017, Washington, DC, USA

0.7

0.8

0.9

1

(0,20] (20,50](50,80](80,801]

INF

C
o
v
e
r
a
g
e

R
a
t
e

ALLg
ALLt

FSGg
FSGt

TED

(a) Coverage Rate

10-1
100
101
102
103
104

(0,20] (20,50] (50,80](80,801]

P
r
o
c
e
s
s
i
n
g

T
i
m
e
(
s
) ALLg

ALLt
FSGg
FSGt

TED

(b) Processing Time

Figure 12: Effect of Maximum Number of Nodes in a Graph.

0.7

0.8

0.9

1

PubChem AIDS

C
o
v
e
r
a
g
e

R
a
t
e

ALLg
ALLt

FSGg
FSGt

TED
OPT

(a) Coverage Rate

10-1
100
101
102
103
104

PubChem AIDS

P
r
o
c
e
s
s
i
n
g

T
i
m
e
(
s
) ALLg

ALLt
FSGg
FSGt
TED
OPT

(b) Processing Time

Figure 13: Baseline comparison on 𝑃𝑢𝑏𝐶ℎ𝑒𝑚100 and 𝐴𝐼𝐷𝑆100.

0.7

0.8

0.9

1

AIDS eMol PubChem

INF

C
o
v
e
r
a
g
e

R
a
t
e

Dataset

BASE PRM TED

(a) Coverage Rate

10-1
100
101
102
103
104

AIDS eMol PubChem

P
r
o
c
e
s
s
i
n
g

T
i
m
e
(
s
)

Dataset

BASE PRM TED

(b) Processing Time

Figure 14: Effect of Optimization Strategies.

To sum up, Ted outperforms baselines in terms of both coverage

rate and processing time.

7.2.2 Effectiveness and Scalability Evaluation.

Question 2: Are the presented techniques (optimizations and swap-

ping criteria) effective? Are the space and time taken to store/maintain

PES-Index acceptable?

Result 2. Both optimizations and swapping criteria are effective as

the former can reduce processing time without decreasing coverage

rate (see Exp 3), and the latter can facilitate Ted in coverage rate and

processing time, regardless of which swapping threshold is used

(see Exp 5). In addition, the space and time taken to store/maintain

PES-Index are acceptable (see Exp 4).

Exp 3: Effect of Optimization Strategies.We further evaluate

the effectiveness of optimization strategies by comparing BASE

and PRM with TED where all optimization strategies are used. The

results are presented in Figure 14. Compared to BASE, and PRM,

TED reduces processing time but does not decrease coverage rate,

as it eliminates unpromising patterns without sacrificing promising

Table 3: Size of PES-Index

Dataset

Aids eMol PubChem

10𝐾 40𝐾 5𝐾 10𝐾 10𝐾 23𝐾

Index Size(KB) 234 1008 89 157 428 1157

Index/Graphs (%) 5.39 5.31 5.40 5.39 5.80 7.58

Table 4: Maintenance Time of PES-Index

Dataset

Aids eMol PubChem

10𝐾 40𝐾 5𝐾 10𝐾 10𝐾 23𝐾

Index Time(s) 0.5 1.88 0.25 0.37 1.1 2.85

Index Time/Total (%) 6.86 1.00 4.12 3.63 0.78 1.39

ones. Thanks to all adopted optimization strategies, TED is the best

one in terms of coverage rate and processing time compared to

BASE and PRM. In addition, we can observe that the processing

time of BASE, PRM, and TED shows a decreasing trend, which

further justifies the effectiveness of optimization strategies.

Exp 4: PES-Index Test. In this experiment, we test the size and

maintenance time of PES-Index. As presented in Table 3, PES-Index

size increases with the size of the dataset. Note that in comparison

with the size of dataset, PES-Index size is very small since only five

components are stored in PES-Index. In particular, for the larger

datasets (e.g., PubcChem23K), the space taken to store PES-Index

is only 5.31% and 7.58% of the size of the underlying dataset.

We also report the maintenance time of PES-Index in Table 4.

Observe that as the size of dataset increases, maintenance time in-

creases accordingly butmakes up less than 7% of the total processing

time. For example, maintenance time of PES-Index on AIDS40K

and PubcChem23K are 1% and 1.39% of the corresponding total

processing time, respectively.

Exp 5: Effect of Swapping Criteria. We investigate the effect

of different swapping criteria (see Section 4), namely 𝑆𝑤𝑎𝑝1, 𝑆𝑤𝑎𝑝2,

and 𝑆𝑤𝑎𝑝𝛼 . The results are reported in Figure 15. In general, Ted

outperforms the baselines in terms of both coverage rate and pro-

cessing time, no matter what swapping criteria are used. Although

FSG𝑔 with 𝑆𝑤𝑎𝑝2 shows a higher coverage rate in eMol, the results

generated by FSG𝑔 are data-dependent and are not theoretically

guaranteed. Furthermore, it may incur INF in larger datasets (e.g.,

PubChem). This experiment further justifies the effectiveness of

Ted algorithm.

7.2.3 Application Potentials Evaluation.

Question 3:Whether top-k edge-diversified patterns can facilitate

existing or potential applications? These patterns may contain infre-

quent subgraphs, why do infrequent patterns remain useful?

Result 3. Top-𝑘 edge-diversified patterns can facilitate both vi-

sual subgraph query formulation and exploratory subgraph search

(see Exp 6). While frequent subgraphs are often useful, infrequent

patterns can also facilitate applications where queries are not nec-

essarily frequent (see Exp 7).

Exp 6: User Study. In this section, we conduct user studies

based on VINCENT to evaluate the application potentials of edge-

diversified patterns. We recruit 15 unpaid volunteers (ages from 20

to 32) in accordance to HCI research that recommends at least 10

participants [27, 28]. Before conducting any user study, all volun-

teers, who have backgrounds in chemistry, chemical engineering,

CS, biology, were trained to use VINCENT. More details on how to

use VINCENT are provided in Section 6.

Conference’17, July 2017, Washington, DC, USA Kai Huang 1,2 , Haibo Hu 1 , Qingqing Ye 1 , Kai Tian 3 , Bolong Zheng 4 , Xiaofang Zhou 2

0.7

0.8

0.9

1

AIDS PubChem eMol

INF INF INFC
o
v
e
r
a
g
e

R
a
t
e

Swap1

ALLg
ALLt

FSGg
FSGt

TED

10-1
100
101
102
103
104

AIDS PubChem eMol
P
r
o
c
e
s
s
i
n
g

T
i
m
e
(
s
)

Swap1

ALLg
ALLt

FSGg
FSGt

TED

0.7

0.8

0.9

1

AIDS PubChem eMol

INF INF INFC
o
v
e
r
a
g
e

R
a
t
e

Swap2

ALLg
ALLt

FSGg
FSGt

TED

10-1
100
101
102
103
104

AIDS PubChem eMol

P
r
o
c
e
s
s
i
n
g

T
i
m
e
(
s
)

Swap2

ALLg
ALLt

FSGg
FSGt

TED

0.7

0.8

0.9

1

AIDS PubChem eMol

INF INF INFC
o
v
e
r
a
g
e

R
a
t
e

Swapα

ALLg
ALLt

FSGg
FSGt

TED

10-1
100
101
102
103
104

AIDS PubChem eMol

P
r
o
c
e
s
s
i
n
g

T
i
m
e
(
s
)

Swapα

ALLg
ALLt

FSGg
FSGt

TED

Figure 15: Effect of Swapping Criteria.

Visual Query Formulation. The first study aims to evaluate

the application potential in visual query formulation (VQF). To this

end, we compare edge-diversified patterns with canned patterns
provided by CATAPULT [16] (the state-of-the-art VQF method),

and frequent patterns (denoted as FS). In particular, we first follow

the existing work [16] to select 5 queries (see Table 5) of size in the

range [30-62], which span a variety of structures (cycles, carbon

chains, etc.) and contain different vertex labels. Each query in a

dataset (AIDS or PubChem) is associated with a unique identifier

(also known as CID, Table 5) in the PubChem repository
10

provided

by National Institutes of Health (NIH). Second, each pattern set

(TED or CATAPULT or FS) is displayed on the GUI (Panel 5 in

Figure 8) for VQF. Volunteers are allowed to visually formulate

queries by dragging and dropping patterns from Panel 5 and nodes

from Panel 3 to Panel 4 to formulate queries. Query Formulation

Time (QFT) and Steps taken are recorded in Panel 2 (Figure 8).

Figure 16 reports the results on PubChem and AIDS. Observe

that compared to CATAPULT and FS, Ted facilitates more efficient

query formulations (shorter QFT and fewer steps). In addition,

we can also observe that some queries (e.g., 𝑄5 in Figure 16(b))

compared to other queries (e.g., 𝑄1 in Figure 16(b)) benefit more

from Ted, i.e., TED can save more QFT and 𝑆𝑡𝑒𝑝𝑠 taken on 𝑄5

than those on 𝑄1 when compared to FS and CATAPULT. The main

reason lies in that TED enjoys more patterns used for formulating

10
https://pubchem.ncbi.nlm.nih.gov/

Table 5: Queries.CID is the unique identifier in the PubChem

repository provided by National Institutes of Health (NIH).

Queries CID, Pubchem (|E|) CID, AIDS (|𝐸 |)
𝑄1 169132 (|𝐸 | = 34) 135398740 (|𝐸 | = 32)

𝑄2 20497364 (|𝐸 | = 30) 565070 (|𝐸 | = 34)

𝑄3 493570 (|𝐸 | = 47) 102034018 (|𝐸 | = 35)

𝑄4 135398658 (|𝐸 | = 52) 14852846 (|𝐸 | = 30)

𝑄5 3324 (|𝐸 | = 42) 154402349 (|𝐸 | = 62)

0

50

100

Q1 Q2 Q3 Q4 Q5
S
t
e
p
s

(a) PubChem

0

50

100

Q1 Q2 Q3 Q4 Q5

S
t
e
p
s

(b) AIDS

0

100

200

300

Q1 Q2 Q3 Q4 Q5

Q
F
T
(
s
)

FS
CATAPULT

TED

0

100

200

300

Q1 Q2 Q3 Q4 Q5

Q
F
T
(
s
)

FS
CATAPULT

TED

Figure 16: Query Formulation Time (QFT) and Steps.

Table 6: Number of Patterns Used in VQF (|P𝑈 |). “Yes” indi-
cates that at least one infrequent pattern can be used.

Queries

PubChem AIDS

FS CATAPULT TED FS CATAPULT TED

𝑄1 2 2 5 1 2 3

𝑄2 3 3 5 (Yes) 1 1 2

𝑄3 3 4 6 (Yes) 2 1 4

𝑄4 4 5 7 (Yes) 1 2 3

𝑄5 2 2 5 (Yes) 2 3 6 (Yes)

𝑄5 (|P𝑈 | (FS)=2 vs |P𝑈 | (CATAPULT)=3 vs |P𝑈 | (TED)=6) than𝑄1

(|P𝑈 | (FS)=1 vs |P𝑈 | (CATAPULT)=2 vs |P𝑈 | (TED)=3), as shown
in Table 6. Note that the number of patterns used to formulate a

query𝑄 indicates how many patterns can be used to cover different

parts of 𝑄 so that it can enjoy the pattern-at-a-time mode (see

Section 6.1) and thus reduce time/step to visually construct 𝑄 .

We use “Yes” in Table 6 to denote that at least one infrequent

(𝑠𝑢𝑝𝑚𝑖𝑛 < 0.2) edge-diversified pattern can be used in VQF and find

that infrequent patterns can also facilitate VQF. This justifies the

rationality of top-𝑘 edge-diversified patterns discovery problem.

Exploratory Subgraph Search. We also conduct a user study

on exploratory subgraph search. As exploratory search activities

have no predetermined goals and are considered as open-ended

[20], in this experiment, queries are user-specified rather than pre-

determined. As discussed in Section 6.2, volunteers are allowed to

enjoy not only the bottom-up search but also TED Explorer, which
helps to explore the query results. Therefore, we divide volunteers

into two groups to iteratively construct user-specified queries and

explore the query results. The first group uses VINCENT with TED
Explorer to display patterns (e.g., edge-diversified patterns), while

the second group cannot use TED Explorer. Compared to the second

group, we observe that the first group takes 20% less time when

displaying edge-diversified patterns, and 10%−14% less time when

TED: Towards Discovering Top-𝑘 Edge-Diversified Patterns in a Graph Database Conference’17, July 2017, Washington, DC, USA

Table 7: Patterns with Biological Importance. CID is the

unique identifier in the PubChem repository provided by

National Institutes of Health (NIH).

Pattern Set Patterns with Biological Importance Total

FS

X-Methylpentane (e.g., CID 7892)),

Carbon Chains (e.g., CID 7843),

CID 6556, CID 241, CID 6360

5

CATAPULT

Carbon Chains, CID 7282, CID 16665,

CID 119440, CID 6380,

CID 19660, CID 702, CID 11507

8

TED

Carbon Chains, CID 10903, CID 12230,

CID 7964, CID 11473,

CID 3034819, CID 702, CID 12338

8

-5

 0

 5

 10

 15

QS0 QS0.1 QS0.2 QS0.3 QS0.4 QS0.5 QS0.6

R
R

 (
%

)

Figure 17: Reduction Ratio (RR).

displaying FS and CATAPULT. This means edge-diversified pat-

terns enhance not only exploration efficiency but query experience.

Other findings. The most appealing thing to us is that top-𝑘

edge-diversified patterns generated by Ted contain not only pat-

terns with statistical significance (e.g., frequent patterns) but also

patterns with biological importance. In this paper, a pattern is said

to have biological importance if it exists in the PubChem repository

11
, which is maintained by the National Institutes of Health (NIH)

and contains millions of chemical molecules and their activities

against biological assays. Table 7 reports these patterns’ unique

identifies (i.e., CID). We can observe that compared to FS, TED and

CATAPULT contain more such patterns (8 vs 5). For example, the

CID 11473 in TED is an important organic compound Nitrosoben-

zene, which is one of the prototypical organic nitroso compounds.

Therefore, Ted may open up new opportunities in bioinformatics,

drug design, etc.

Exp 7: Effect of Queries. As discussed above, infrequent edge-

diversified patterns can also facilitate visual query formulation

(VQF). The problem becomeswhy infrequent patterns remain useful?

We answer this question by investigating the ratio of reduced steps

for VQF (i.e., RR =
𝑆𝑡𝑒𝑝𝑠FS−𝑆𝑡𝑒𝑝𝑠TED

𝑠𝑡𝑒𝑝𝐹𝑆
, see Section 7.1) between TED

and top-𝑘 frequent patterns (FS) on the query set𝑄𝑆𝜌 (|𝑄𝑆𝜌 | = 100),

where 𝜌 is the fraction of queries that are infrequent. When 𝜌 = 0,

all queries in 𝑄𝑆𝜌 are frequent. We vary 𝜌 in {0, 0.1, 0.2, ..., 0.6}
and report the results in Figure 17. Obviously, TED underperforms

FS on 𝑄𝑆0 (RR < 0) as TED contains a mixture of frequent and

infrequent patterns. Nevertheless, RR increases with 𝜌 and is larger

than 0 at 𝜌 = 0.2. This indicates that in terms of facilitating VQF

of infrequent queries, the performance of TED improves as the

ratio of infrequent queries increases, which explains the reason

why infrequent patterns remain useful.

8 RELATEDWORK

Subgraph enumeration listing all subgraphs or counting all in-

stances of a particular graph in a graph database has been ex-

tensively studied in the literature [1, 2, 4, 5, 29, 32–39]. Instead of

11
https://pubchem.ncbi.nlm.nih.gov/

enumerating all subgraphs, frequent subgraph mining (FSM) is to

generate only frequent subgraphs. Existing FSM methods [6, 7, 9–

12] consider two settings, transactional and single graph such as

[12]. Rather than enumerating all frequent subgraphs, some work

generate only representative subgraphs [16, 30, 31, 40, 40–43, 49],

none of them focus on top-𝑘 edge-diversified problems and their

solutions can not be directly adapted for it. Subgraph matching

[36, 38, 48] finds the matched subgraphs in a data graph for a given

query graph, which is a pattern matching problem instead of pat-

tern mining problem. Diversity problem is the most germane to

this research, which seeks for search results with diversity[13, 44–

46, 50, 52]. [44] presents diversity-aware search method of relevant

documents. Fan et al. [13] aims to retrieve diversified top-𝑘 matches

for a given vertex. The problem of finding redundancy-aware max-

imal cliques is considered by [45]. In addition, [46] further studies

the diversified top-𝑘 clique search problem, which is to find 𝑘 maxi-

mal cliques in a data graph so that the maximum number of vertices

are included. Given a query graph, [52] retrieves diversified top-

𝑘 matches to cover more vertices. To the best of our knowledge,

our work is the first one to study top-𝑘 edge-diversified patterns

discovery problem.

Top-𝑘 edge-diversified patterns discovery problem is also related

to the set cover problem [22]. Given a universal setU of 𝑛 elements

and a collection S = {𝑆1, 𝑆2, ..., 𝑆𝑚} of𝑚 subsets ofU (

⋃
𝑖 𝑆𝑖 = U),

the set cover problem is to find as few subsets as possible from

S such that their union covers U. The edge cover problem is a

special case of set cover problem, in which the elements of the

universe are vertices and each subset covers exactly two elements.

As we discussed in Section 2.2, they are not the same as the edge-

diversified patterns discovery problem.

9 CONCLUSION

In this work, we investigate the top-𝑘 edge-diversified patterns dis-

covery problem, which is to find 𝑘 subgraphs from a graph database

such that the maximum number of edges in the database are cov-

ered. Maximizing total covered edges requires that patterns should

have not only high subgraph coverage (i.e., more data graphs are

covered by the patterns) but also high diversity (i.e., patterns are

diverse to each other to cover different parts of data graphs). This

problem may nurture a lot of applications such as visual query

formulation. To address this problem, we present a novel frame-

work called Ted and an efficient index structure. In addition, three

optimization strategies are developed to improve the performance.

To handle even larger graph databases, a lightweight version called

TedLite is further designed. Ted requires limited memory and

achieves a guaranteed approximation ratio. Extensive experimental

results justify the superiority of Ted over baseline solutions.

10 ACKNOWLEDGMENT

This work was supported by National Natural Science Foundation

of China (Grant No: 62072390, 62102334), and the Research Grants

Council, Hong Kong SAR, China (Grant No: 16202722, 15222118,

15218919, 15203120, 15226221, 15225921, and C2004-21GF). The

research work described in this paper was partially conducted in

the JC STEM Lab of Data Science Foundations funded by The Hong

Kong Jockey Club Charities Trust.

Conference’17, July 2017, Washington, DC, USA Kai Huang 1,2 , Haibo Hu 1 , Qingqing Ye 1 , Kai Tian 3 , Bolong Zheng 4 , Xiaofang Zhou 2

REFERENCES

[1] Alon N, Dao P, Hajirasouliha I, et al. Biomolecular network motif counting and

discovery by color coding. Bioinformatics, 24(13): i241-i249, 2008.

[2] Chiba N, Nishizeki T. Arboricity and subgraph listing algorithms. SIAM J. Comput.,

14(1), 1985.

[3] GonenM, Ron D, Shavitt Y. Counting stars and other small subgraphs in sublinear

time. In SODA, 2010.

[4] Grochow J A, Kellis M. Network motif discovery using subgraph enumeration

and symmetry-breaking. In RECOMB, 2007.

[5] Zhao Z, Khan M, Kumar V S A, et al. Subgraph enumeration in large social

contact networks using parallel color coding and streaming. In ICPP, 2010.

[6] Inokuchi A, Washio T, Motoda H. An Apriori-based Algorithm for Mining Fre-

quent Substructures from Graph Data, In ECML-PKDD, 2000.

[7] Kuramochi M, Karypis G. An Efficient Algorithm for Discovering Frequent Sub-

graphs. TKDE, 16(9):1038-1051, 2004.

[8] Gudes E, Shimony S E, Vanetik N. Discovering Frequent Graph Patterns using

Disjoint Paths. TKDE, 18(11): 1441-1456, 2006.

[9] Yan X, Han J W. gSpan: Graph-based Substructure pattern mining. In ICDM, 2002.

[10] Huan J, Wang W, Prins J. Efficient Mining of Frequent Subgraph in the Presence

of Isomorphism. In ICDM, 2003.

[11] Nijssen S, Kok J N. A Quickstart in Frequent Structure Mining can Make a

Difference. In KDD, 2004.

[12] Elseidy M, Abdelhamid E, Skiadopoulos S, et al. Grami: Frequent subgraph and

pattern mining in a single large graph. In VLDB, 2014.

[13] Fan W, Wang X, Wu Y. Diversified top-k graph pattern matching. PVLDB, 6(13):

1510-1521, 2013.

[14] Gollapudi S, Sharma A. An axiomatic approach for result diversification. In

WWW, 2009.

[15] Qin L, Yu J X, Chang L. Diversifying top-k results. PVLDB, 5(11), 2012.

[16] Huang K, Chua H E, Bhowmick S S, et al. CATAPULT: data-driven selection of

canned patterns for efficient visual graph query formulation. In SIGMOD, 2019.

[17] Huang K, Ye Q, Zhao J, et al. VINCENT: towards efficient exploratory subgraph

search in graph databases. Proceedings of the VLDB Endowment, 15(12): 3634-

3637, 2022.

[18] Bhowmick S S, Huang K, Chua H E, et al. AURORA: Data-driven Construction

of Visual Graph Query Interfaces for Graph Databases. In SIGMOD, 2020.

[19] Huang K, Bhowmick S S, Zhou S, et al. Picasso: exploratory search of connected

subgraph substructures in graph databases. PVLDB, 10(12): 1861-1864, 2017.

[20] White R W, Roth R A. Exploratory search: Beyond the query-response paradigm.

Synthesis lectures on information concepts, retrieval, and services, 1(1): 1-98, 2009

[21] Chua H E, Bhowmick S S, Tucker-Kellogg L. Synergistic target combination

prediction from curated signaling networks: Machine learning meets systems

biology and pharmacology. Methods, 129:60-80, 2017.

[22] Feige U. A threshold of ln n for approximating set cover. Journal of ACM, 45(4):

634-652, 1998.

[23] Saha B, Getoor L. On maximum coverage in the streaming model & application

to multi-topic blog-watch. In SDM, 2009.

[24] Ausiello G, Boria N, Giannakos A, et al. Online maximum k-coverage. In FCT,

2011.

[25] Yuan D, Mitra P, Yu H, Giles C L. Updating graph indices with a one-pass algo-

rithm. In SIGMOD, 2015.

[26] Toivonen H. Sampling large databases for association rules. In VLDB, 1996.

[27] Lazar J, Feng J H, Hochheiser H. Research methods in human-computer interac-

tion. John Wiley & Sons, 2010.

[28] Faulkner, Laura. Beyond the five-user assumption: Benefits of increased sample

sizes in usability testing. Behavior Research Methods, Instruments, & Computers,

35(3), 2003.

[29] Afrati F N, Fotakis D, and Ullman J D. Enumerating subgraph instances using

map-reduce. In ICDE, 2013.

[30] Al Hasan Mohammad, Chaoji Vineet, Salem Saeed, Besson Jeremy, Zaki Mo-

hammed J. Origami: Mining representative orthogonal graph patterns. In ICDM,

2007.

[31] Zhang Shijie, Yang Jiong, Li Shirong. Ring: An integrated method for frequent

representative subgraph mining. In ICDM, 2009.

[32] Lai L, Qin L, Lin X, et al. Scalable subgraph enumeration in mapreduce. VLDBJ,

8(10): 974-985, 2015.

[33] Shao Y, Cui B, Chen L, et al. Parallel subgraph listing in a large-scale graph. In

SIGMOD, 2014.

[34] Kim H, Lee J, Bhowmick S S, et al. Dualsim: Parallel subgraph enumeration in a

massive graph on a single machine. In SIGMOD, 2016.

[35] Sun S, Che Y, Wang L, et al. Efficient parallel subgraph enumeration on a single

machine. In ICDE, 2019.

[36] Qiao M, Zhang H, Cheng H. Subgraph matching: on compression and computa-

tion. In PVLDB, 2017.

[37] Lin W, Xiao X, Xie X, and Li X L. Network motif discovery: A gpu approach. In

ICDE, 2015.

[38] Tran H N, Kim J J, and He B H. Fast subgraph matching on large graphs using

graphics processors. In DASFAA, 2015.

[39] Guo W, Li Y, Sha M, et al. GPU-accelerated subgraph enumeration on partitioned

graphs. In SIGMOD, 2020.

[40] Thomas L T, Valluri S R, and Karlapalem K. MARGIN: Maximal frequent subgraph

mining. In TKDD, 2010.

[41] Yan X and Han J. CloseGraph: mining closed frequent graph patterns. In SIGKDD,

2003.

[42] Yan X, Cheng H, Han J, and Yu P S. Mining significant graph patterns by leap

search. In SIGMOD, 2008.

[43] Ranu S and Singh A K. GRAPHSIG: A scalable approach to mining significant

subgraphs in large graph databases. In ICDE, 2009.

[44] Angel A. and Koudas N. Efficient diversity-aware search. In SIGMOD, 2011.

[45] Wang J, Cheng J, and Fu A. Redundancy-aware maximal cliques. In KDD, 2013.

[46] Yuan L, Qin L, Lin X, Chang L, and Zhang W. Diversified top-k clique search. In

ICDE, 2015.

[47] Jin C, Bhowmick S S, Choi B, et al. Prague: towards blending practical visual

subgraph query formulation and query processing. In ICDE, 2012.

[48] Huang K, Hu H, Zhou S, et al. Privacy and efficiency guaranteed social subgraph

matching. VLDBJ, 31(3): 581-602, 2022.

[49] Huang K, Chua H E, Bhowmick S S, et al. MIDAS: towards efficient and effective

maintenance of canned patterns in visual graph query interfaces. In SIGMOD,

2021.

[50] Zhou A, Wang Y, Chen L. Finding large diverse communities on networks: The

edge maximum k*-partite clique. In PVLDB, 2020.

[51] Yahya M, Berberich K, Ramanath M, Weikum G. Exploratory Querying of Ex-

tended Knowledge Graphs. In PVLDB, 2016.

[52] Yang Z, Fu A, Liu R. Diversified top-𝑘 subgraph querying in a large graph. In

SIGMOD, 2016.

[53] Yang Y, Yan D, Wu H, et al. Diversified temporal subgraph pattern mining. In

SIGKDD, 2016.

[54] Chondrogiannis, Theodoros, et al. Finding k-shortest paths with limited overlap.

VLDBJ, 29(5): 1023-1047, 2020.

