
Conflict Optimization for Binary CSP Applied to
Minimum Partition into Plane Subgraphs and Graph Coloring

Loïc Crombez1, Guilherme D. da Fonseca2, Florian Fontan3, Yan Gerard1, Aldo
Gonzalez-Lorenzo2, Pascal Lafourcade1, Luc Libralesso1, Benjamin Momège3, Jack

Spalding-Jamieson4, Brandon Zhang3, and Da Wei Zheng5

1LIMOS, Université Clermont Auvergne, France
2LIS, Aix-Marseille Université, France

3Independent Researcher
4David R. Cheriton School of Computer Science, University of Waterloo, Canada

5Department of Computer Science, University of Illinois at Urbana-Champaign, USA

Abstract

CG:SHOP is an annual geometric optimization challenge and the 2022 edition proposed
the problem of coloring a certain geometric graph defined by line segments. Surprisingly, the
top three teams used the same technique, called conflict optimization. This technique has
been introduced in the 2021 edition of the challenge, to solve a coordinated motion planning
problem. In this paper, we present the technique in the more general framework of binary
constraint satisfaction problems (binary CSP). Then, the top three teams describe their
different implementations of the same underlying strategy. We evaluate the performance of
those implementations to vertex color not only geometric graphs, but also other types of
graphs.

1 Introduction

The CG:SHOP challenge (Computational Geometry: Solving Hard Optimization Problems) is
an annual geometric optimization competition, whose first edition took place in 2019. The 2022
edition proposed a problem called minimum partition into plane subgraphs. The input is a graph
G embedded in the plane with edges drawn as straight line segments, and the goal is to partition
the set of edges into a small number of plane graphs (Fig. 1) [6]. This goal can be formulated as
a vertex coloring problem on a graph G′ defined as follows. The vertices of G′ are the segments
defining the edges of G, and the edges of G′ correspond to pairs of crossing segments (segments
that intersect only at a common endpoint are not considered crossing).

The three top-ranking teams (Lasa, Gitastrophe, and Shadoks) on the CG:SHOP 2022 chal-
lenge all used a common approach called conflict optimization [7, 26, 3] while the fourth team
used a SAT-Boosted Tabu Search [25]. Conflict optimization is a technique used by Shadoks
to obtain the first place in the CG:SHOP 2021 challenge for low-makespan coordinated motion
planning [4], and the main ideas of the technique lent themselves well to the 2022 challenge.
Next, we describe the conflict optimizer as a metaheuristic to solve constraint satisfaction prob-
lems (CSP) [29]. We start by describing a CSP.

A CSP is a triple of

• variables X = (x1, . . . , xn),

1

ar
X

iv
:2

30
3.

09
63

2v
2

 [
cs

.C
G

]
 2

5
M

ar
 2

02
3

Figure 1: A partition of the input graph of the CG:SHOP2022 instance vispecn2518 into 57
plane graphs. It is the smallest instance of the challenge with 2518 segments. On top left, you
see all 57 colors together. On top right, you see a clique of size 57, hence the solution is optimal.
Each of the 57 colors is then presented in small figures.

2

• domains D = (D1, . . . , Dn), and

• constraints R.

Each variable xi must be assigned a value in the corresponding domain Di such that all con-
straints are satisfied. In general, the constraints may forbid arbitrary subsets of values. We re-
strict our attention to a particular type of constraints (binary CSP), which only involve pairs of
assignments. A partial evaluation is an assignment of a subset of the variables, called evaluated,
with the remaining variables called non-evaluated. All constraints involving a non-evaluated
variable are satisfied by default. We only consider assignments and partial assignments that
satisfy all constraints.

The conflict optimizer iteratively modifies a partial evaluation with the goal of emptying the
set S of non-evaluated variables, at which point it stops. At each step, a variable xi is removed
from S. If there exists a value x ∈ Di that satisfies all constraints, then we assign the value
x to the variable xi. Otherwise, we proceed as follows. For each possible value x ∈ Di, we
consider the set K(i, x) of variables (other than xi) that are part of constraints violated by the
assignment xi = x. We assign to xi the value x that minimizes∑

xj∈K(i,x)

w(j),

where w(j) is a weight function to be described later. The variables xj ∈ K(i, x) become
non-evaluated and added to S.

The weight function should be such that w(j) increases each time xj is added to S, in order
to avoid loops that keep moving the same variables back and forth from S. Let q(j) be the
number of times xj became non-evaluated. A possible weight function is w(j) = q(j). More
generally, we can have w(j) = q(j)p for some exponent p (typically between 1 and 2). Of course,
several details of the conflict optimizer are left open. For example, which element to choose from
S, whether some random noise should be added to w, and the decision to restart the procedure
from scratch after a certain time.

The CSP as is, does not apply to optimization problems. However, we can, impose a max-
imum value k of the objective function in order to obtain a CSP. The conflict optimizer was
introduced in a low makespan coordinated motion planning setting. In that setting, the vari-
ables are the robots, the domains are their paths (of length at most k) and the constraints forbid
collisions between two paths. In the graph coloring setting, the domains are the k colors of the
vertices and the constraints forbid adjacent vertices from having the same color.

The conflict optimizer can be adapted to non-binary CSP, but in that case multiple variables
may be unassigned for a single violated constraint. The strategy has some resemblance to the
similarly named min-conflicts algorithm [21], but notable differences are that a partial evaluation
is kept instead of an invalid evaluation and the weight function that changes over time.

While the conflict optimization strategy is simple, there are different ways to apply it to the
graph coloring problem. The goal of the paper is to present how the top three teams applied it
or complemented it with additional strategies. We compare the relative benefits of each variant
on the instances given in the CG:SHOP 2022 challenge. We also compare them to baselines on
some instances issued from graph coloring benchmarks.

The paper is organized as follows. Section 2 presents the details of the conflict optimization
strategy applied to graph coloring. In the three sections that follow, the three teams Lasa,
Gitastrophe, and Shadoks present the different parameters and modified strategies that they
used to make the algorithm more efficient for the CG:SHOP 2022 challenge. The last section is
devoted to the experimental results.

3

1.1 Literature Review

The study of graph coloring goes back to the 4-color problem (1852) and it has been intensively
studied since the 1970s (see [14, 17] for surveys). Many heuristics have been proposed [10, 13,
19, 23], as well as exact algorithms [5, 12, 18]. We briefly present two classes of algorithms:
greedy algorithms and exact algorithms.

Greedy algorithms. These algorithms are used to find good quality initial solutions in a
short amount of time. The classic greedy heuristic considers the vertices in arbitrary order
and colors each vertex with the smallest non-conflicting color. The two most famous modern
greedy heuristics are DSATUR [2] and Recursive Largest First (RLF) [16]. At each step (until
all vertices are colored), DSATUR selects the vertex v that has the largest number of different
colors in its neighbourhood. Ties are broken by selecting a vertex with maximum degree. The
vertex v is colored with the smallest non-conflicting color. RLF searches for a large independent
set I, assigns the vertices I the same color, removes I from G′, and repeats until all vertices are
colored.

Exact algorithms. Some exact methods use a branch-and-bound strategy, for example ex-
tending the DSATUR heuristic by allowing it to backtrack [24, 8]. Another type of exact method
(branch-and-cut-and-price) decomposes the vertex coloring problem into an iterative resolution
of two sub-problems [20, 12, 9]. The “master problem” maintains a small set of valid colors using
a set-covering formulation. The “pricing problem” finds a new valid coloring that is promising
by solving a maximum weight independent set problem. Exact algorithms are usually able to
find the optimal coloring for graphs with a few hundred vertices. However, even the smallest
CG:SHOP 2022 competition instances involve at least a few thousands vertices.

2 Conflict Optimization for Graph Coloring

Henceforth, we will only refer to the intersection conflict graph G′ induced by the instance.
Vertices will refer to the vertices V (G′), and edges will refer to the edges E(G′). Our goal is to
partition the vertices using a minimum set of k color classes C = {C1, . . . , Ck}, where no two
vertices in the same color class Ci are incident to a common edge.

2.1 Conflict Optimization

We consider the classical problem of coloring the vertices of a graph G′ = (V (G′), E(G′)). We
assume that an initial solution C = {C1, . . . , Ck} has been previously computed (the choice of
the initial solution does not seem to impact the quality of the final solution produced by the
conflict optimizer). The goal of the conflict optimizer is to reduce the number of colors of C
by one. When (and if) the conflict optimizer terminates, it will give such a solution. However,
after a certain amount of time or when a certain situation arrives, we may decide to abort the
execution of the conflict optimizer without any solution, and perhaps try again.

Throughout the execution, we maintain a partial coloring, which is a valid coloring for a
subset of the vertices. The complementary subset of uncolored vertices is called the conflict set
and denoted S. The conflict optimizer proceeds as follows:

1. Pick a color class Ci to be eliminated. Uncolor all vertices in Ci and make S ← Ci. A
valid vertex-coloring is maintained for the set V (G′) \ S. If S is empty, we have a valid
vertex coloring of G′ which uses one fewer color.

4

2. Pick and remove an element v from S. For each color class, compute the conflict score
with v. The conflict score of a color class Cj is

score(Cj) = f(Cj)
∑
u∈Cj

(u,v)∈E(G′)

w(u) (1)

where the weight w(u) is a variable depending on the the number of times that u has
been removed from the conflict set S in previous iterations, and where f(Cj) is a random
variable adding randomness in the process.

3. Pick the color class Cj with the lowest conflict score. Uncolor all vertices in Cj which are
adjacent to v and add those vertices to S. This step is slightly modified when the BDFS
option detailed in the later is activated. In this case, the algorithm does not put in the
conflict set S all the vertices in conflict with S. Some of them are recolored easily so that
they do not enter in the conflict set S. Insert v into Cj .

4. Repeat steps 2 and 3 until the set S is empty.

The three teams provided different variants of the algorithm by playing with different options
of the optimizer.

(a) The first option is the choice of the initial color Ci to be eliminated at the first step of
the loop. It is random for Gitastrophe, and the smallest color class for Shadoks and Lasa
variants.

(b) The second option is the way to choose the element v from S in step 2. Random for
Gitastrophe, a fifo queue for Shadoks, and the element that provides the least total conflict
score after its removal for Lasa.

(c) The third option is the choice of the weight function w(·) defined on the vertices. Different
functions can be used, all depending on the parameter q(u) that is defined as the number
of times that a vertex u has been removed from S. Lasa uses w(u) = 1+q(u). Gitastrophe
uses w(u) = 1 + q(u)2. Shadoks uses w(u) = 1 + q(u)p with p ∈ [1, 2]. Shadoks also add a
threshold qmax with w(u) =∞ if q(u) > qmax. Gitastrophe also has such a threshold, but
instead uses it as a heuristic to abort the execution and start again.

(d) The fourth option is the choice of f(Ci). Lasa and Gitastrophe simply set f(Ci) = 1, while
Shadoks use a Gaussian random variable with average 1 for f(Ci). The right amount of
randomness, controlled by the variance σ, has a significant impact on the search time.

(e) The fifth option is that Shadoks add a Bounded Depth-First Search (BDFS) option which
detects vertices that can be recolored easily. These vertices are recolored immediately,
instead of entering S, and consequently does not suffer an increase in the value of q(·).

Some extra options are useful in order to drive the computation.

• Restart: The computation is restarted from step 2 if the size of the conflict set S becomes
too large because the coloring of V (G′) \ S has deteriorated too much to come back to a
valid coloring.

• Multistart: Shadoks also use a multistart option to restart from step 1 with a random
eliminated color Ci and a color shuffle.

The different parameters, options and complementary strategies used by each team are de-
scribed in the next three sections.

5

3 Lasa Team

3.1 Finding Initial Solutions

Lasa team used two approaches to find initial solutions:

1. DSATUR is the classical graph coloring algorithm presented in Section 1.

2. Orientation greedy is almost the only algorithm where the geometry of the segments is
used. If segments are almost parallel, it is likely that they do not intersect (thus forming
an independent set). This greedy algorithm first sorts the segments by orientation, ranging
from −π

2 to π
2 . For each segment in this order, the algorithm tries to color it using the

first available color. If no color has been found, a new color is created for coloring the
considered segment. This algorithm is efficient, produces interesting initial solutions and
takes into account the specificities of the competition.

3.2 Conflict Optimization

TABUCOL inspired neighbourhood One classical approach for the vertex coloring in-
volves allowing solutions with conflicting vertices (two adjacent vertices with the same color). It
was introduced in 1987 [13] and called TABUCOL. It starts with an initial solution, removes a
color (usually the one with the least number of vertices), and assigns uncolored vertices with a
new color among the remaining ones. This is likely to lead to some conflicts (i.e. two adjacent
vertices sharing a same color). The local search scheme selects a conflicting vertex, and tries to
swap its color, choosing the new coloring that minimises the number of conflicts. If it reaches
a state with no conflict, it provides a solution with one color less than the initial solution. The
process is repeated until the stopping criterion is met. While the original TABUCOL algorithm
includes a “tabu-list” mechanism to avoid cycling, it is not always sufficient, and requires some
hyper-parameter tuning in order to obtain a good performance on a large variety of instances. To
overcome this issue, we use a neighbourhood, but replace the “tabu-list” by the conflict optimizer
scheme presented above.

PARTIALCOL inspired neighbourhood PARTIALCOL another local search algorithm
solving the vertex coloring problem was introduced in 2008. This algorithm proposes a new
local search scheme that allows partial coloring (thus allowing uncolored vertices). The goal is
to minimize the number of uncolored vertices. Similarly to TABUCOL, PARTIALCOL starts
with an initial solution, removes one color (unassigning its vertices), and performs local search
iterations until no vertex is left uncolored. When coloring a vertex, the adjacent conflicting
vertices are uncolored. Then, the algorithm repeats the process until all vertices are colored, or
the stopping criterion is met. This neighbourhood was also introduced alongside a tabu-search
procedure. The tabu-search scheme is also replaced by a conflict-optimization scheme. Note
that this neighbourhood was predominantly used by the other teams.

4 Gitastrophe

4.1 Solution Initialization

The gitastrophe team uses the traditional greedy algorithm of Welsh and Powell [30] to obtain
initial solutions: order the vertices in decreasing order of degree, and assign each vertex the
minimum-label color not used by its neighbors. During the challenge Gitastrophe attempted to
use different orderings for the greedy algorithm, such as sorting by the slope of the line segment

6

associated with each vertex (as the orientation greedy initialization presented in Section 3),
and also tried numerous other strategies. Ultimately, after running the solution optimizer for
approximately the same amount of time, all initializations resulted in an equal number of colors.

4.2 Modifications to the Conflict Optimizer

Taking inspiration from memetic algorithms, which alternate between an intensification and a
diversification stage, the algorithm continually switched between a phase using the above conflict
score, and one minimizing only the number of conflicts. Thus during the conflict-minimization
phase, the random variables f(Cj) and w(u) are both fixed equal to 1 leading to a conflict score

score(Cj) =
∑

u∈Cj ,(u,v)∈E(G′)

1.

Each phase lasted for 105 iterations. Adding the conflict-minimization phase gave minor im-
provements to some of the challenge instances.

5 Shadoks

In this section, we describe the choices used by the Shadoks team for the options described in
Section 2.1.

Option (a) The Shadoks generally chose to eliminate the color with the smallest number of
elements. However, if the multistart option is toggled on, then a random color is used each time.

Option (b) The conflict set S is stored in a queue. The Shadoks tried other strategies, but
found that the queue gives the best results.

Option (c) The weight function used is w(u) = 1 + q(u)p, mostly with p = 1.2. The effect of
the parameter p is shown in Fig. 2. Notice that in all figures, the number of colors shown is the
average of ten executions of the code using different random seeds.

 220

 230

 240

 0 1 2 3 4 5

N
u
m

b
e
r

o
f

co
lo

rs

Running time (CPU hours)

p=0.5 p=1.0 p=1.5 p=2.0 p=3.0 p=5.0

Figure 2: Number of colors over time for the instance vispecn13806 using different values p.
The algorithm uses σ = 0.15, easy vertices, qmax = 59022, but does not use the BDFS nor any
clique.

If q(u) is larger than a threshold qmax, the Shadoks set w(u) =∞ so that the vertex u never
reenters S. If at some point an uncolored vertex v is adjacent to some vertex u of infinite weight
in every color class, then the conflict optimizer is restarted. When restarting, the initial coloring
is shuffled by moving some vertices from their initial color class to a new one.

7

Looking at Fig. 3, the value of qmax does not seem to have much influence as long as it is
not too small. Throughout the challenge the Shadoks almost exclusively used qmax = 2000 ·
(75000/m)2, where m is the number of vertices. This value roughly ensures a restart every few
hours.

 220

 230

 240

 0 1 2 3 4 5

N
u
m

b
e
r

o
f

co
lo

rs

Running time (CPU hours)

qmax=0.5k qmax=5k qmax=50k qmax=100k qmax=250k

Figure 3: Number of colors over time with different values of qmax obtained on the instance
vispecn13806. Parameters are σ = 0.15, p = 1.2, no clique knowledge, and no BDFS.

If the clique option is toggled on, each vertex u in the largest known clique has w(u) = ∞.
The impact of the clique option on the computation is shown in Fig. 4. The idea is that since each
vertex of the clique must have a different color, it is useless to change their color. The algorithm
works by recoloring the other vertices. During the challenge, the Shadoks used several methods
to produce large cliques, including simulated annealing and mixed integer programming.

 220

 230

 240

 0 12 24 36 48 60 72

N
u
m

b
e
r

o
f

co
lo

rs

Running time (CPU hours)

no clique, no BDFS
no clique, BDFS

clique, no BDFS
clique, BDFS

Figure 4: Number of colors over time with and without clique knowledge and BDFS obtained
on the instance vispecn13806. Parameters are σ = 0.15, p = 1.2, and qmax = 1500000.

Option (d) The Shadoks use the function f as a Gaussian random variable of mean 1 and
variance σ. A good default value is σ = 0.15. The effect of the variance is shown in Fig. 5.
Notice that setting σ = 0 gives much worse results.

Option (e) The goal of BDFS is to further optimize very good solutions that the conflict
optimizer is not able to improve otherwise. Fig. 4 shows the influence of BDFS. While on this
figure, the advantages of BDFS cannot be noticed, its use near the end of the challenge improved
about 30 solutions.

The bounded depth-first search (BDFS) algorithm tries to improve the dequeuing process.
The goal is to prevent a vertex in conflict with some adjacent colored vertices from entering in the
conflict set. At the first level, the algorithm searches for a recoloring of some adjacent vertices
which allows us to directly recolor the conflict vertex. If no solution is found, the algorithm

8

 220

 230

 240

 0 1 2 3 4 5

N
u
m

b
e
r

o
f

co
lo

rs

Running time (CPU hours)

σ=0.00 σ=0.05 σ=0.10 σ=0.15 σ=0.20

Figure 5: Number of colors over time for the instance vispecn13806 for different values of σ.
In both figures the algorithm uses p = 1.2, easy vertices, qmax = 59022, but does not use the
BDFS nor any clique. For σ ≥ 0.25, no solution better than 248 colors is found.

could recolor some vertices at larger distances from the conflict vertex. To do so, a local search
is performed by trying to recolor vertices at a bounded distance from the conflict vertex in the
current partial solution.

The BDFS algorithm has two parameters: adjacency bound amax and depth d. In order to
recolor a vertex v, BDFS gets the set C of color classes with at most amax neighbors of v. If a
class in C has no neighbor of v, v is assigned to C. Otherwise, for each class C ∈ C, BDFS tries
to recolor the vertices in C which are adjacent to v by recursively calling itself with depth d− 1.
At depth d = 0 the algorithm stops trying to color the vertices.

During the challenge the Shadoks used BDFS with parameters amax = 3 and d = 3. The
depth was increased to 5 (resp. 7) when the number of vertices in the queue was 2 (resp. 1).

Degeneracy order Given a target number of colors k, we call easy vertices a set of vertices Y
such that, if the remainder of the vertices of G′ are colored using k colors, then we are guaranteed
to be able to color all vertices of G′ with k colors. This is obtained using the degeneracy order Y .
To obtain Y we iteratively remove from the graph a vertex v that has at most k − 1 neighbors,
appending v to the end of Y . We repeat until no other vertex can be added to Y . Notice that,
once we color the remainder of the graph with at least k colors, we can use a greedy coloring
for Y in order from last to first without increasing the number of colors used. Removing the
easy vertices reduces the total number of vertices, making the conflict optimizer more effective.
The Shadoks always toggle this option on (the challenge instances contain from 0 to 23% easy
vertices).

6 Results

We provide the results of the experiments performed with the code from the three teams on two
classes of instances. First, we present the results on some selected CG:SHOP 2022 instances.
These instances are intersection graphs of line segments. Second, we execute the code on graphs
that are not intersection graphs, namely the classic DIMACS graphs [15], comparing the results
of our conflict optimizer implementations to previous solutions. The source code for the three
teams is available at:

• Lasa: https://github.com/librallu/dogs-color

• Gitastrophe: https://github.com/jacketsj/cgshop2022-gitastrophe

• Shadoks: https://github.com/gfonsecabr/shadoks-CGSHOP2022

9

https://github.com/librallu/dogs-color
 https://github.com/jacketsj/cgshop2022-gitastrophe
https://github.com/gfonsecabr/shadoks-CGSHOP2022

6.1 CG:SHOP 2022 Instances

We selected 14 instances (out of 225) covering the different types of instances given in the
CG:SHOP 2022 challenge. The results are presented in Table 1. For comparison, we executed
the HEAD [22] code on some instances using the default parameters. The table shows the
smallest number of colors for which HEAD found a solution. We ran HEAD for 1 hour of
repetitions for each target number of colors on a single CPU core (the HEAD solver takes the
target number of colors as a parameter and we increased this parameter one by one). At the
end of the challenge, 8 colorings computed by Lasa, 11 colorings computed by Gitastrophe, and
23 colorings computed by Shadoks over 225 instances have been proved optimal (their number
of colors is equal to the size of a clique).

Table 1: Several CG:SHOP 2022 results. We compare the size of the largest known clique to
the smallest coloring found by each team on a selection of 14 CG:SHOP 2022 instances.

Instance Clique Best HEAD [22] Lasa Gitastrophe Shadoks
rvisp5013 46 49 59 50 49 49
rsqrpecn8051 173 175 207 177 176 175
vispecn13806 77 218 283 224 221 218
rsqrp14364 134 136 174 137 137 136
vispecn19370 169 192 266 197 194 192
rvisp24116 97 104 166 110 105 104
visp26405 78 81 112 83 81 81
sqrp28863 190 190 297 191 191 190
visp38574 118 133 199 138 134 133
sqrpecn45700 460 462 465 465 462
reecn51526 308 310 315 312 310
vispecn58391 305 367 380 369 367
vispecn65831 357 439 453 440 439
sqrp72075 264 269 272 271 269

In order to compare the efficiency of the algorithms, we executed the different implemen-
tations on the CG:SHOP instance vispecn13806. The edge density of this graph is 19%, the
largest clique that we found has 177 vertices and the best coloring found during the challenge uses
218 colors. Notice that vispecn13806 is the same instance used in other Shadoks experiments
in Section 5. Notice also that HEAD algorithm provides 283 colors after one hour compared
to less than 240 colors for the conflict optimizers. We ran the three implementations on three
different servers and compared the results shown in Figure 6. For each implementation, the x
coordinate is the running time in hours, while the y coordinate is the smallest number of colors
found at that time.

6.2 Results on DIMACS Graphs

We tested the implementation of each team on the DIMACS instances [15] to gauge the perfor-
mance of the conflict optimizer on other classes of graphs. We compared our results to the best
known bounds and to the state of the art coloring algorithms HEAD [22] and QACOL [27, 28].

The time limit for Lasa’s algorithms is 1 hour. CWLS is Lasa’s conflict optimizer with the
neighbourhood presented in TABUCOL [13], while PWLS is the optimizer with the neighbour-
hood presented in PARTIALCOL [1]. Gitastrophe algorithm ran 10 minutes after which the
number of colors no longer decreases. Shadoks algorithm ran for 1 hour without the BDFS
option (results with BDFS are worse).

10

Figure 6: Number of colors over time (in hours) for the instance vispecn13806.

Results are presented in Table 2. We only kept the difficult DIMACS instances. For the
other instances, all the results match the best known bounds. The DIMACS instances had
comparatively few edges (on the order of thousands or millions); the largest intersection graphs
considered in the CG:SHOP challenge had over 1.5 billion edges.

We notice that the conflict optimizer works extremely poorly on random graphs, but it is
fast and appears to perform well on geometric graphs (r250.5, r1000.1c, r1000.5, dsjr500.1c
and dsjr500.5), matching the best-known results [11]. Interestingly, these geometric graphs are
not intersection graphs as in the CG:SHOP challenge, but are generated based on a distance
threshold. On the DIMACS graphs, Lasa implementation shows better performance than the
other implementations.

7 Acknowledgments

We would like to thank the challenge organizers and other competitors for their time, feedback,
and making this whole event possible.

The Shadoks would like to thank Hélène Toussaint, Raphaël Amato, Boris Lonjon, and
William Guyot-Lénat from LIMOS, as well as the Qarma and TALEP teams and Manuel
Bertrand from LIS, who continue to make the computational resources of the LIMOS and LIS
clusters available to our research.

The work of Loïc Crombez has been sponsored by the French government research pro-
gram “Investissements d’Avenir” through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-
25). The work of Guilherme D. da Fonseca is supported by the French ANR PRC grant ADDS
(ANR-19-CE48-0005). The work of Yan Gerard is supported by the French ANR PRC grants
ADDS (ANR-19-CE48-0005), ACTIVmap (ANR-19-CE19-0005) and by the French government
IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25). The work of Aldo Gonzalez-Lorenzo is sup-
ported by the French ANR PRC grant COHERENCE4D (ANR-20-CE10-0002). The work of
Pascal Lafourcade is supported by the French ANR PRC grant MobiS5 (ANR-18-CE39-0019),

11

Table 2: Comparison of our method with state-of-the-art graph coloring algorithms. The conflict
optimizer underperforms except on the geometric graphs r* and dsjr*.

Instance Best HEAD QACOL Lasa Lasa Gitastrophe Shadoks
Instance [22] [27, 28] CWLS PWLS
dsjc250.5 28 28 28 28 29 29 28
dsjc500.1 12 12 12 13 13 13 13
dsjc500.5 47 47 48 49 51 52 50
dsjc500.9 126 126 126 126 130 130 128
dsjc1000.1 20 20 20 21 22 21 21
dsjc1000.5 82 82 82 89 94 93 91
dsjc1000.9 222 222 222 223 240 235 231
r250.5 65 65 65 65 65 65 65
r1000.1c 98 98 98 98 98 98 98
r1000.5 234 245 238 234 234 234 237
dsjr500.1c 84 85 85 85 85 85 85
dsjr500.5 122 - 122 122 122 122 122
le450_25c 25 25 25 26 26 26 26
le450_25d 25 25 25 26 26 26 26
flat300_28_0 28 31 31 31 32 33 32
flat1000_50_0 50 50 - 50 50 91 54
flat1000_60_0 60 60 - 60 92 93 90
flat1000_76_0 81 81 81 88 93 92 90
C2000.5 145 146 145 165 173 173 168
C4000.5 260 266 259 311 320 317 312

DECRYPT (ANR-18-CE39-0007), SEVERITAS (ANR-20-CE39-0005) and by the French gov-
ernment IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25). The work of Luc Libralesso is
supported by the French ANR PRC grant DECRYPT (ANR-18-CE39-0007).

References

[1] Ivo Blöchliger and Nicolas Zufferey. A graph coloring heuristic using partial solutions and a
reactive tabu scheme. Computers & Operations Research, 35(3):960–975, 2008. doi:https:
//doi.org/10.1016/j.cor.2006.05.014.

[2] Daniel Brélaz. New methods to color the vertices of a graph. Communications of the ACM,
22(4):251–256, 1979. doi:https://doi.org/10.1145/359094.359101.

[3] Loïc Crombez, Guilherme Dias da Fonseca, Yan Gerard, and Aldo Gonzalez-Lorenzo.
Shadoks approach to minimum partition into plane subgraphs (CG challenge). In Xavier
Goaoc and Michael Kerber, editors, 38th International Symposium on Computational Ge-
ometry, SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages 71:1–
71:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SoCG.
2022.71.

[4] Loïc Crombez, Guilherme Dias da Fonseca, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal
Lafourcade, and Luc Libralesso. Shadoks approach to low-makespan coordinated motion
planning. ACM J. Exp. Algorithmics, 27:3.2:1–3.2:17, 2022. doi:10.1145/3524133.

12

https://doi.org/https://doi.org/10.1016/j.cor.2006.05.014
https://doi.org/https://doi.org/10.1016/j.cor.2006.05.014
https://doi.org/https://doi.org/10.1145/359094.359101
https://doi.org/10.4230/LIPIcs.SoCG.2022.71
https://doi.org/10.4230/LIPIcs.SoCG.2022.71
https://doi.org/10.1145/3524133

[5] David Eppstein. Small maximal independent sets and faster exact graph coloring. J.
Graph Algorithms Appl, 7(2):131–140, 2002. arXiv:https://doi.org/10.48550/arXiv.
cs/0011009.

[6] Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Stefan Schirra. Minimum parti-
tion into plane subgraphs: The CG: SHOP Challenge 2022. CoRR, abs/2203.07444, 2022.
URL: https://arxiv.org/abs/2203.07444, arXiv:2203.07444.

[7] Florian Fontan, Pascal Lafourcade, Luc Libralesso, and Benjamin Momège. Local search
with weighting schemes for the CG: SHOP 2022 competition (CG challenge). In Xavier
Goaoc and Michael Kerber, editors, 38th International Symposium on Computational Ge-
ometry, SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages 73:1–
73:6. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SoCG.
2022.73.

[8] Fabio Furini, Virginie Gabrel, and Ian-Christopher Ternier. An improved dsatur-based
branch-and-bound algorithm for the vertex coloring problem. Networks, 69(1):124–141,
2017. doi:10.1002/net.21716.

[9] Fabio Furini and Enrico Malaguti. Exact weighted vertex coloring via branch-and-price. Dis-
crete Optimization, 9(2):130–136, 2012. URL: https://www.sciencedirect.com/science/
article/pii/S1572528612000205, doi:https://doi.org/10.1016/j.disopt.2012.03.
002.

[10] Philippe Galinier and Jin-Kao Hao. Hybrid evolutionary algorithms for graph coloring.
Journal of combinatorial optimization, 3(4):379–397, 1999. doi:https://doi.org/10.
1023/A:1009823419804.

[11] Olivier Goudet, Cyril Grelier, and Jin-Kao Hao. A deep learning guided memetic framework
for graph coloring problems, 2021. arXiv:2109.05948.

[12] Stefano Gualandi and Federico Malucelli. Exact solution of graph coloring problems via con-
straint programming and column generation. INFORMS Journal on Computing, 24(1):81–
100, 2012. doi:https://doi.org/10.1287/ijoc.1100.0436.

[13] Alain Hertz and Dominique de Werra. Using tabu search techniques for graph coloring.
Computing, 39(4):345–351, 1987. doi:https://doi.org/10.1007/BF02239976.

[14] Tommy R. Jensen and Bjarne Toft. Graph coloring problems. John Wiley & Sons, 2011.

[15] David S Johnson and Michael A Trick. Cliques, coloring, and satisfiability: second DIMACS
implementation challenge, October 11-13, 1993, volume 26. American Mathematical Soci-
ety, 1996.

[16] Frank Thomson Leighton. A graph coloring algorithm for large scheduling problems. Journal
of research of the national bureau of standards, 84(6):489, 1979. doi:10.6028/jres.084.
024.

[17] R. M. R. Lewis. A Guide to Graph Colouring: Algorithms and Applications. Springer
Publishing Company, Incorporated, 1st edition, 2015.

[18] C. Lucet, F. Mendes, and A. Moukrim. An exact method for graph coloring. Comput-
ers & Operations Research, 33(8):2189–2207, 2006. URL: https://www.sciencedirect.
com/science/article/pii/S0305054805000080, doi:https://doi.org/10.1016/j.cor.
2005.01.008.

13

http://arxiv.org/abs/https://doi.org/10.48550/arXiv.cs/0011009
http://arxiv.org/abs/https://doi.org/10.48550/arXiv.cs/0011009
https://arxiv.org/abs/2203.07444
http://arxiv.org/abs/2203.07444
https://doi.org/10.4230/LIPIcs.SoCG.2022.73
https://doi.org/10.4230/LIPIcs.SoCG.2022.73
https://doi.org/10.1002/net.21716
https://www.sciencedirect.com/science/article/pii/S1572528612000205
https://www.sciencedirect.com/science/article/pii/S1572528612000205
https://doi.org/https://doi.org/10.1016/j.disopt.2012.03.002
https://doi.org/https://doi.org/10.1016/j.disopt.2012.03.002
https://doi.org/https://doi.org/10.1023/A:1009823419804
https://doi.org/https://doi.org/10.1023/A:1009823419804
http://arxiv.org/abs/2109.05948
https://doi.org/https://doi.org/10.1287/ijoc.1100.0436
https://doi.org/https://doi.org/10.1007/BF02239976
https://doi.org/10.6028/jres.084.024
https://doi.org/10.6028/jres.084.024
https://www.sciencedirect.com/science/article/pii/S0305054805000080
https://www.sciencedirect.com/science/article/pii/S0305054805000080
https://doi.org/https://doi.org/10.1016/j.cor.2005.01.008
https://doi.org/https://doi.org/10.1016/j.cor.2005.01.008

[19] David W. Matula, George Marble, and Joel D. Isaacson. Graph coloring algo-
rithms. In Ronald C. Read, editor, Graph Theory and Computing, pages 109–122.
Academic Press, 1972. URL: https://www.sciencedirect.com/science/article/pii/
B9781483231877500155, doi:https://doi.org/10.1016/B978-1-4832-3187-7.50015-5.

[20] Anuj Mehrotra and Michael A Trick. A column generation approach for graph coloring.
INFORMS Journal on Computing, 8(4):344–354, 1996. doi:https://doi.org/10.1287/
ijoc.8.4.344.

[21] Steven Minton, Mark D Johnston, Andrew B Philips, and Philip Laird. Minimizing con-
flicts: a heuristic repair method for constraint satisfaction and scheduling problems. Arti-
ficial intelligence, 58(1-3):161–205, 1992. doi:https://doi.org/10.1016/0004-3702(92)
90007-K.

[22] Laurent Moalic and Alexandre Gondran. Variations on memetic algorithms for graph color-
ing problems. Journal of Heuristics, 24(1):1–24, 2018. arXiv:https://doi.org/10.48550/
arXiv.1401.2184.

[23] Isabel Méndez-Díaz and Paula Zabala. A branch-and-cut algorithm for graph coloring.
Discrete Applied Mathematics, 154(5):826–847, 2006. URL: https://www.sciencedirect.
com/science/article/pii/S0166218X05003094, doi:https://doi.org/10.1016/j.dam.
2005.05.022.

[24] Pablo San Segundo. A new dsatur-based algorithm for exact vertex coloring. Computers
& Operations Research, 39(7):1724–1733, 2012. doi:https://doi.org/10.1016/j.cor.
2011.10.008.

[25] André Schidler. Sat-based local search for plane subgraph partitions (CG challenge). In
Xavier Goaoc and Michael Kerber, editors, 38th International Symposium on Computational
Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages
74:1–74:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
SoCG.2022.74.

[26] Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng. Conflict-based local search
for minimum partition into plane subgraphs (CG challenge). In Xavier Goaoc and Michael
Kerber, editors, 38th International Symposium on Computational Geometry, SoCG 2022,
June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages 72:1–72:6. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SoCG.2022.72.

[27] Olawale Titiloye and Alan Crispin. Quantum annealing of the graph coloring problem.
Discrete Optimization, 8:376–384, 2011. doi:https://doi.org/10.1016/j.disopt.2010.
12.001.

[28] Olawale Titiloye and Alan Crispin. Parameter tuning patterns for random graph coloring
with quantum annealing. PloS one, 7(11), 2012. doi:https://doi.org/10.1371/journal.
pone.0050060.

[29] Edward P. K. Tsang. Foundations of constraint satisfaction. 1993.

[30] D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a
graph and its application to timetabling problems. The Computer Journal, 10(1):85–86,
01 1967. arXiv:https://academic.oup.com/comjnl/article-pdf/10/1/85/1069035/
100085.pdf, doi:10.1093/comjnl/10.1.85.

14

https://www.sciencedirect.com/science/article/pii/B9781483231877500155
https://www.sciencedirect.com/science/article/pii/B9781483231877500155
https://doi.org/https://doi.org/10.1016/B978-1-4832-3187-7.50015-5
https://doi.org/https://doi.org/10.1287/ijoc.8.4.344
https://doi.org/https://doi.org/10.1287/ijoc.8.4.344
https://doi.org/https://doi.org/10.1016/0004-3702(92)90007-K
https://doi.org/https://doi.org/10.1016/0004-3702(92)90007-K
http://arxiv.org/abs/https://doi.org/10.48550/arXiv.1401.2184
http://arxiv.org/abs/https://doi.org/10.48550/arXiv.1401.2184
https://www.sciencedirect.com/science/article/pii/S0166218X05003094
https://www.sciencedirect.com/science/article/pii/S0166218X05003094
https://doi.org/https://doi.org/10.1016/j.dam.2005.05.022
https://doi.org/https://doi.org/10.1016/j.dam.2005.05.022
https://doi.org/https://doi.org/10.1016/j.cor.2011.10.008
https://doi.org/https://doi.org/10.1016/j.cor.2011.10.008
https://doi.org/10.4230/LIPIcs.SoCG.2022.74
https://doi.org/10.4230/LIPIcs.SoCG.2022.74
https://doi.org/10.4230/LIPIcs.SoCG.2022.72
https://doi.org/https://doi.org/10.1016/j.disopt.2010.12.001
https://doi.org/https://doi.org/10.1016/j.disopt.2010.12.001
https://doi.org/https://doi.org/10.1371/journal.pone.0050060
https://doi.org/https://doi.org/10.1371/journal.pone.0050060
http://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/10/1/85/1069035/100085.pdf
http://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/10/1/85/1069035/100085.pdf
https://doi.org/10.1093/comjnl/10.1.85

	1 Introduction
	1.1 Literature Review

	2 Conflict Optimization for Graph Coloring
	2.1 Conflict Optimization

	3 Lasa Team
	3.1 Finding Initial Solutions
	3.2 Conflict Optimization

	4 Gitastrophe
	4.1 Solution Initialization
	4.2 Modifications to the Conflict Optimizer

	5 Shadoks
	6 Results
	6.1 CG:SHOP 2022 Instances
	6.2 Results on DIMACS Graphs

	7 Acknowledgments

