
67

Runtime Variation in Big Data Analytics

YIWEN ZHU,Microsoft, USA
RATHIJIT SEN,Microsoft, USA
ROBERT HORTON,Microsoft, USA
JOHN MARK AGOSTA,Microsoft, USA

The dynamic nature of resource allocation and runtime conditions on Cloud can result in high variability
in a job’s runtime across multiple iterations, leading to a poor experience. Identifying the sources of such
variation and being able to predict and adjust for them is crucial to cloud service providers to design reliable
data processing pipelines, provision and allocate resources, adjust pricing services, meet SLOs and debug
performance hazards.

In this paper, we analyze the runtime variation of millions of production SCOPE jobs on Cosmos, an
exabyte-scale internal analytics platform at Microsoft. We propose an innovative 2-step approach to predict
job runtime distribution by characterizing typical distribution shapes combined with a classification model
with an average accuracy of >96%, out-performing traditional regression models and better capturing long
tails. We examine factors such as job plan characteristics and inputs, resource allocation, physical cluster
heterogeneity and utilization, and scheduling policies.

To the best of our knowledge, this is the first study on predicting categories of runtime distributions for
enterprise analytics workloads at scale. Furthermore, we examine how our methods can be used to analyze
what-if scenarios, focusing on the impact of resource allocation, scheduling, and physical cluster provisioning
decisions on a job’s runtime consistency and predictability.

CCS Concepts: • Computer systems organization→ Cloud computing; • Computing methodologies
→ Causal reasoning and diagnostics; • Information systems→ Data analytics.

Additional Key Words and Phrases: big data, variation, predictions, interpretability, clustering

ACM Reference Format:
Yiwen Zhu, Rathijit Sen, Robert Horton, and John Mark Agosta. 2023. Runtime Variation in Big Data Analytics.
Proc. ACM Manag. Data 1, 1, Article 67 (May 2023), 20 pages. https://doi.org/10.1145/3588921

1 INTRODUCTION
Big Data platforms have become ubiquitous over the last decade, enabling scalable data processing
with high efficiency, security, and usability [3, 11, 17, 52, 55, 68, 69, 74]. However, the dynamic
nature of resource provisioning, scheduling, and co-location with other jobs can cause occasional
job slowdowns. Additionally, intrinsic properties of the job such as parameter values and input
data sizes can change across repeated runs leading to variations in runtime. Figure 1 shows a set of
recurring jobs in Cosmos [49], a Big Data analytics platform at Microsoft, submitted with different
frequencies. We can see that some jobs have more stable runtime while some have occasional slow
downs with non-regular patterns. But, it is not apparent why such variations are happening, how

Authors’ addresses: Yiwen Zhu, Microsoft, USA, yiwzh@microsoft.com; Rathijit Sen, Microsoft, USA, rathijit.sen@microsoft.
com; Robert Horton, Microsoft, USA, rhorton@microsoft.com; John Mark Agosta, Microsoft, USA, john-mark.agosta@
microsoft.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/5-ART67 $15.00
https://doi.org/10.1145/3588921

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

ar
X

iv
:2

30
4.

03
42

4v
1

 [
cs

.D
C

]
 7

 A
pr

 2
02

3

https://doi.org/10.1145/3588921
https://doi.org/10.1145/3588921

67:2 Yiwen Zhu et al.

2021-12-13
2021-12-17

2021-12-21
2021-12-25

2021-12-29
2022-01-01

Date

0

1000

2000

3000

4000

Jo
bR

un
tim

e
(s

)

Fig. 1. Recurring jobs with runtime variation.

they can be mitigated, or how likely it is for the next job run to be an outlier compared to historic
runs.
In production systems, jobs are often scheduled or pipelined with strong data dependencies

(jobs using other jobs’ output data as inputs) [13]. Stability and predictability of job runtimes are
important factors that affect the fundamental design and architecture of data processing pipelines.
Unfortunately, they are often neglected by operators due to the difficulties of assessment even
though job slowdowns are inevitable [65]. Even with massive amounts of telemetry data, cloud
providers still default to a manual triage process due to the difficulty of capturing the compounding
factors that impact job runtime and its stability, which is not scalable and error-prone.

Although prior works [20, 56, 85] have empirically characterized runtime variation, they do not
propose methods to predict the variation nor the likelihood of a new run being an outlier compared
to the average or median runtimes. Other works such as Griffon [65] used machine learning models
to predict the minor slowdown in runtimes for a limited number of job templates. They are unable
to predict significant slowdowns that appear as outliers. As ML models are notoriously bad at
handling outliers especially with a low existence, prior time-series based approaches [43, 67] are
not applicable. In this paper, we aim to address this gap for production data analytics systems
by developing a novel and systematic approach for modeling, predicting, and explaining the job
runtime variation, allowing for finer-grained differentiation in characteristics.
For our study, we comprehensively examine the runtime variation for millions of production

SCOPE [11] jobs on Cosmos [49], an exabyte-scale analytics platform at Microsoft that supports a
broad spectrum of Microsoft products [49]. Our key contribution is a framework for systematically
analyzing, predicting and explaining runtime variation that includes:
(1) Descriptive analysis: by examining historic data including intrinsic job properties, resource

allocation, and physical cluster conditions, we provide a better understanding of the factors
affecting runtime variation for each individual job. In particular:
(a) We show that popular scalar metrics, such as Coefficient of Variation (COV) considered by

prior work [56], are not sufficient to characterize variation with the existence of outliers.
Instead, we propose a novel scheme of characterizing variation using properties of the
distribution of normalized runtime of the jobs that provides fine-grained information such
as the probability of outliers, quantiles, and shapes of the distribution. [Section 4]

(b) We make novel use of Shapley values [66] for explaining predictions for variation and
quantitatively analyze the contributions of different features. [Section 6]

(2) Predictive analysis: we develop an innovative approach based on likelihood to identify distinctively-
diverse runtime distributions, and predict the distribution with >96% accuracy, out-performing
previous methods [65]. [Section 5]

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

Runtime Variation in Big Data Analytics 67:3

(3) Prescriptive analysis: based on the predictor, we quantitatively analyze what-if scenarios and
identify potential opportunities to reduce variation by limiting spare tokens, scheduling on
newer generations of machines, and better load balancing. [Section 7]
The rest of this paper is organized as follows. Section 2 discusses challenges in estimating and

predicting runtime variation and our goals and approach in this work. Section 3 gives a brief
overview of SCOPE jobs in Cosmos, potential sources of variation, and the datasets that we study.
Sections 4–7 present the descriptive, predictive and prescriptive analyses as outlined above. Section 8
discusses related work in this space and Section 9 concludes the paper.

2 GOALS, CHALLENGES, AND APPROACH
Reasoning about performance changes is often done manually by experienced engineers with
strong assumptions that can potentially lead to biased results. More recently, the availability of
massive telemetry data in the cloud, that includes both information about job characteristics as
well as status of the physical clusters, and the advent of data analytic methods, raise expectations
that this process can be improved with more systematic and rigorous approaches.

Our goal is to evaluate and predict runtime variation at the individual job level with a customized
and use-case specific measurement that is more insightful for customers for both monitoring
and planning purposes. And this is a highly desired metric from the customer’s point of view, as
validated by several conversations with the program managers (PMs). We also want to provide rich
information regarding variation, such as the probability that a job runtime may exceed an extreme
value, or various quantitative properties of the runtime distributions, e.g., quantiles, outliers, to the
user, which was difficult to capture using traditional ML methods.

Moreover, performance modeling of computational jobs in distributed systems is difficult, espe-
cially when focusing on reliability, due to the following challenges.
• Complex environmental factors (C1): Resource sharing in cloud computing platforms adds
complexity to the modeling of the job runtime due to noisy neighbors and other environmental
changing factors. It is untractable for manual approaches to relay the dynamic condition of each
computation node and unravel the potential issues that result in performance degradation.

• Existence of rare events (C2): For rare events (such as occasional service disruption) that
result in outliers and longer tails of the runtime distributions, it is difficult to collect sufficient
observations of outliers for a recurring job in order to accurately estimate their distributions. It
is therefore crucial to be able to leverage the learning from job instances in other job groups that
have sufficient observation samples.

• Lack of proper metrics (C3): How to measure variation remains a challenge in the case of
the characteristic long-tailed distributions of runtime, for which conventional variance-based
measures do not capture the extreme values of interest. Metrics such as COV that are commonly
used to evaluate the runtime variation are not sufficient to capture detailed characteristics of
various runtime distributions.

• Lack of labeled data (C4): While the majority of machine learning approaches for predictive
analysis require labeled data, there is no label recorded for the causes of runtime distributions or
job slowdowns. Manually evaluating runtime reliability to determine the distribution category
each job belongs to is also infeasible for new jobs with a small number of occurrences.
Our 2-step approach in this work is to characterize and then predict variation based on the

distribution of normalized runtimes of recurring jobs (see Figure 2). Leveraging information both
at the job level and the machine level, we:
• Characterize runtime distributions: Our Clustering Analysis uses a novel scheme of featur-
ization to cluster [5] historic jobs with distinctively-diverse runtime distributions. We associate

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

67:4 Yiwen Zhu et al.

Job Info

Machine Info

Clustering
Analysis
[Section 4]

ML Predictor
[Section 5]

Model
Explainer
[Section 6]

What-if
Scenarios
[Section 7]

Source of
Variation

Potential
Improvements

Runtime Distribution
Prediction

Typical Runtime
Distribution

Fig. 2. Framework.

the job with one distribution it belongs to using an innovative and adaptive posterior likelihood
method. For each type (single-mode, multi-mode) of distribution, we define key metrics to depict
the distribution, and quantify the variation in numeric terms that can be easily understood by
users [challenge C3, Section 4].

• DevelopML predictor: We leverage Machine Learning (ML) classification techniques to predict
which distribution of runtimes the job most likely belongs to, taking into account job properties,
resource allocation, and environmental conditions such as system load that potentially leads
to noisy neighbors [C1]. To overcome the challenges C2 and C4, we develop the model using
the observations of distributions over a long time interval and for jobs with more recurrences
(Dataset D1, Table 1), while the model can be applied to any new jobs. [Section 5]

• Explain predictions: We useModel Explainer based on feature contribution algorithms to better
understand the various factors associated with runtime variation [challenge C1, Section 6].

• Analyze what-if scenarios: Based on the prediction model, we propose hypothetical scenarios
and evaluate the potential improvement of runtime performance quantitatively [Section 7].

While point prediction for the job runtime is an important and challenging problem on its
own [19, 28, 29, 46–48, 51, 82], we want to predict the potential variation in runtimes for recurring
jobs, rather than the absolute runtimes. Thus, direct prediction of job runtimes is a non-goal for
this work.

3 PLATFORM AND DATASETS
Cosmos [49] is an exabyte-scale big data platform developed at Microsoft since 2002, with more
than 300k machines across multiple data centers worldwide [83]. Using a YARN-based [73] resource
manager, the system processes >600k jobs per day from tens of thousands of Microsoft internal
users. It is a big internal shared-cluster where efficiency is paramount. Over the past decades,
a multitude of research projects and engineering efforts have improved its efficiency, security,
scalability and reliability [6–9, 11, 14, 16, 21, 32–34, 50, 52, 64, 76, 80–83, 83].

Cosmos jobs can be authored using a SQL-like dialect, named SCOPE [6] with heavy use of C#
and user-defined functions (UDFs). Upon submission, a job is compiled to an optimized execution
plan as a DAG of operators, and distributed across different machines. Each job consists of multiple
Vertices, i.e., an individual process that will be executed on a container assigned to one physical
machine.

3.1 Job Groups
Our work focuses on understanding and predicting variation in runtimes over repeated runs of
jobs that we assemble into job groups. Variation is meaningful only when jobs recur (i.e., sample
size > 1). Prior studies [14, 33, 82] have shown that 40–60% of jobs on Cosmos are recurring jobs.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

Runtime Variation in Big Data Analytics 67:5

To
ke

n
 U

sa
ge

Job Processing Time

200

160

120

80

40

0:08:24 0:06:47 0:25:11 0:33:34 0:41:58

Fig. 3. Token usage for an example job during its run.

Others [20] have also reported a significant fraction of jobs as recurring on their systems. We
identify recurrences by matching on a key that combines the following.
• The normalized job name, which has specific information like submission time and input dataset
removed [32, 82].

• The job signature [32], which is a hash value computed recursively over the DAG of operators in
the compiled plan. The signature does not include job input parameters.

We thus have job groups with job instances belonging to each group, corresponding to recurrences
of the job. Job instances have the same key value within each job group.

3.2 Sources of Variation
Within each job group, runtimes of job instances can vary due to any of the following reasons:
Intrinsic characteristics. The key used for grouping jobs includes information on the execution
plan (e.g., type of operators, estimated cardinality, dependency between operators) while not
including the job input parameters (e.g., parameters for filter predicates) or input datasets. Different
instances can have different values for these parameters, datasets, and their sizes. This can lead to
different runtimes within the group if the parameter changes are not accompanied by a change
in the compiled plan. In our datasets, we have observed that input data sizes can vary by up to a
factor of 50 within the same job group.
Resource allocation. In Cosmos, the unit of resource allocation is a token [49], which is analogous
to the notion of a container. The number of tokens guaranteed for a job can be specified by users
at the time of job submission or it may be recommended by the system [63]. To further improve
the utilization of the existing infrastructure, unused resources are repurposed as preemptive spare
tokens [7] that can be leveraged by any jobs freely1. The availability of these spare tokens is difficult
to predict, and can have meaningful effects on runtimes. Figure 3 shows the skyline of token usage
for a Cosmos job that was allocated with 66 tokens (dashed line). Including spare tokens, the job
consumed up to 198 tokens in total throughout its processing time.

The maximum number of tokens used by a job depends on how much parallelism it can exploit
subject to the number of tokens allocated. While observing the execution of various workloads on
Cosmos, we have seen maximum token counts vary by a factor of 10 within the same job group.
There is also variation in the characteristics of allocated resources. Tokens map to computational
resources on compute nodes with different Stock Keeping Units (SKUs). Having evolved for over a
decade, the Cosmos cluster consists of 10–20 different SKUs with different processing speeds [83].
In our datasets, we have observed different job instances within the same job group run on one to
nine different SKUs simultaneously.
Physical cluster environment. Finally, physical cluster environment also leads to variations in
runtimes. This includes both the availability of spare tokens (discussed above) and the load on

1The usage of spare tokens is capped by the allocation as specified by users.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

67:6 Yiwen Zhu et al.

Job Runtime

H
is

to
ri

c
M

ed
ia

n 105

103

104

102

102 103 104 105

(a) Median vs instance runtimes
COV

H
is

to
ri

c
C

O
V

100

10-1

10-2

10-2 10-1 100

(b) Historic COV vs COV

Fig. 4. Correlations between historic median and job runtimes (a), and historic COV and COV of all observa-
tions (b).

the individual machines. Higher utilization (load) is likely to cause more contention for shared
resources, and a larger range of loads may increase runtime variation.

3.3 Datasets
To develop insights into the sources of variation as discussed above, we collected data by: i)
extracting information about intrinsic characteristics such as operator counts in the plan, input
data sizes, and cardinalities, costs, etc., estimated by the SCOPE optimizer using the Peregrine
framework [32]; ii) obtaining token usage information from the job execution logs, and SKU and
machine load information using the KEA framework [83]; and iii) joining all this information
together by matching on the job ID, name of the machine that executes each vertex, and the
corresponding vertex start/end time.

Table 1. Datasets used for this study.

Dataset Interval Job Groups Job Instances Support
D1 6 months >9K >3M 20
D2 15 days >11K >700K 3
D3 5 days >11K >200K 3

Table 1 summarizes the datasets that we use for our study. The datasets consist of a subset of
jobs run over the corresponding interval, and are included if the number of instances per group
(support) exceeds a minimum threshold. With a support of minimum 3 occurrences, 53% of jobs are
included. In this research, we only focus on batch jobs as opposed to streaming jobs or interactive
jobs that Cosmos also supports. We use dataset D1 to identify and group distributions of runtimes
(see Section 4.2) for jobs with a large number of occurrences (>20). We used D2 to train a predictor
for runtime variation and D3 to test its accuracy (Section 5).

4 CHARACTERIZING RUNTIME VARIATION
We now discuss how we characterize and quantify runtime variation for recurring jobs. This will
form the basis for our prediction strategy that we discuss in Section 5.

4.1 Scalar Metrics
As outlined previously (Section 1), a job’s average runtime does not give much insight into variations
across repeated runs, or how long the next run of the job will take. Thus, it is not very useful for
characterizing, predicting, or explaining the variations.

Next, we investigate how well a job’s median runtime correlates with runtimes over the different
repetitions of the job. Figure 4a shows how runtimes for individual repetitions of the job compare
with its historic median using dataset D2 in log-scale.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

Runtime Variation in Big Data Analytics 67:7

We observe two distinct patterns in Figure 4a—a set of points are clustered along the diagonal,
indicating a good correlation of individual job instances’ runtimes to the median, and another set
of points are clustered separately in a pattern resembling a stalagmite2. The runs corresponding
to the points in the stalagmite are much slower than the median runtime and contribute to the
(long) tail of the runtime distributions. Such runs are rare (comprising less than 5% of all runs),
with the probability reducing with larger median values. But we have found it to be very difficult
to predict upfront if the time for a new run will end up on the diagonal or on the stalagmite. The
existence of these two patterns, as well as the difficulty of predicting to which pattern a new run
will belong, even if the median runtime is stable and known, makes the median a poor choice to
use for predicting runtimes or for characterizing variations. A similar trend can be found for the
average and 95th percentile of historic runtime.
The Coefficient of Variation (COV) is another commonly-used metric to characterize variation.

It is defined as the (unitless) ratio of standard deviation to the average. COV is straightforward to
compute and interpret, and prior work [56] has used COV to characterize variation in job runtimes.
But COV has several limitations:
• Bias: The runtimes of SCOPE jobs that we study range from seconds to days, with significant
differences in the average values. This may cause COV to be biased and one could always observe
very large COV for short-running jobs.

• Instability: The average runtime can increase due to the existence of outliers (in such large
distributed systems, some jobs inevitably run slow occasionally). Thus, COV can be unstable
with addition of more jobs in the dataset. Unlike the average, COV does not converge with a
large sample size thus does not have a consistent estimator [22].

• Coarse-grained: COV does not capture many characteristics of a distribution, such as its shape
(such as unimodal, bimodal, and the existence of outliers). Hence it cannot readily explain
variation in a fine-grained manner.
Figure 4b shows how well the COV computed from historic runs (y-axis) for each job instance

based on dataset D2 compares with the COV of times from all runs (x-axis) based on the observation
in D3. Similar to the discussion for medians above, we see multiple groups of points, with the same
historic COV appearing for different COV values from new runs and it is difficult to predict for a
new run to which group it will belong. Additionally, the COV metric suffers from the limitations
mentioned above.

Overall, we found that scalar metrics such as average, median, quantiles, and COV by themselves
are not sufficient for understanding or predicting runtime variation.

4.2 Distributions
We represent runtime variation for each recurring job group by its runtime distribution. Although
there is a large variety in the runtimes of SCOPE jobs, we found that runtimes of many different
jobs have similar probability distributions. We refer to these as shapes. Knowing a job’s distribution
is sufficient to determine any characteristic of its variation, including the risk that its runtime will
exceed a specified threshold.
To compute the shapes, we first normalize the job runtimes, then compute their empirical

Probability Mass Functions (PMFs, i.e., histogram). Jobs are clustered based on the similarity of their
runtime distributions, and for any new job, we can predict the cluster it belongs to. We identify
the job’s PMF as that of the cluster it belongs to. This methodology allows us to generalize our
analysis across different jobs and work instead with a small number of clusters that can be easily
understood by the users.
2A stalagmite is a rocky formation that arises from the floor of a cave and may reach the ceiling [1].

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

67:8 Yiwen Zhu et al.

We used the following two normalization strategies to transform job runtimes, using medians
computed on “historic” data from Dataset D1 as in Table 1:

Definition 4.1. The Ratio-normalization is defined by the ratio of job runtime to its historic
median, i.e., job runtime / median runtime. And Delta-normalization is defined by the difference,
job runtime - median runtime.

The Ratio-normalization distribution measures relative change in runtimes, while the Delta-
normalization distribution measures the absolute deviation frommedian, measured in seconds. Note
that runtime with various ranges can be normalized more effectively using ratio-normalization.
E.g., absolute variations for long-running jobs are typically higher (1h±10min), whereas those for
short-running jobs can be a lot lower. In this regard, ratio-normalization improves consistency and
lumps together comparable distributions with different runtime ranges. On the other hand, for very
short or very long jobs, it might be less insightful to measure variances in percentage. For short-
running jobs, the percentage can be very large (e.g., 5s±300%). For long jobs, the percentage can be
very small, leading to a very "thin" distribution measured by the ratio-normalization. Therefore, in
this work, we leverage the delta-normalization combined with ratio-normalization to capture the
variation in absolute terms.

Our clustering analysis to recover the “typical” distribution shape across jobs uses dataset D1
where only jobs with >20 occurrences are included for more accurate estimation for their runtime
distribution. For each job group, we derive its histogram for the distribution of normalized runtimes
and then use an unsupervised machine learning algorithm to cluster them. Note that the inputs to
the clustering analysis are the PMF probabilities of each bin of the histogram as opposed to the job
features (e.g., input size, etc.).

Our principal design choices for the runtime distribution clustering method are as follows:

• Bin size and Range: The range should cover the majority of values with relatively fine granu-
larity but not too small to capture fluctuation due to noise. We merge the outliers into one bin
(based on being ≤ or ≥ some thresholds)3. We evaluated 50, 100, 200 and 500 bins, and chose 200
bins that has relatively smooth PMF curves, and different shapes of distributions are observable.

• Clustering algorithm: Hierarchy clustering based on dendrogram [44] and Agglomerative
clustering [54] take different distance metrics, linkage methods, and user-specified number of
clusters. However, they result in imbalanced clusters (some with >90% of the data in one cluster).
K-means clustering [62] resulted in more balanced clusters, so is chosen for the following analysis.

• Number of clusters: It is determined based on: (i) numeric analysis of inertia, defined by the sum
of squared distances between each sample and its cluster centroid (we pick an elbow point where
adding more clusters does not significantly decrease the inertia), and (ii) by visually examining
the clustering results to check if the clusters are sufficiently different from each other and have
unique characteristics.

• Smoothing histograms: The standard clustering algorithms are based on using PMF probabili-
ties as input vectors assuming each dimension is independent. In reality, adjacent density values
of bins (e.g., the probability of a runtime being in the 4th or 5th bin) are correlated. However, with
any distance measurement (e.g., dot product), correlation between adjacent bins is not considered.
Therefore, we introduce a smoothing step after deriving the PMFs to jointly consider any adjacent
bins’ values such that the two smoothed vectors mentioned above will have a higher affinity.

3For Delta-normalization, we use [-900, 900] (where 1% of jobs are 1066s slower than median, we round down to 900s, i.e.,
15 min), and for Ratio-normalization, we use [0, 10] (where 1% of jobs are 10.6x slower than median, we round down to 10x).
Jobs >900s or 10x slower than median are defined as outliers.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

Runtime Variation in Big Data Analytics 67:9

Figure 5 shows the distributions for the 8 clusters using Ratio-normalization andDelta-normalization
policies.We see that some distributions have twomodes (e.g., Cluster 0, 2, 4 using Ratio-normalization)
and with different variances. Table 2 summarizes important statistics for each cluster. For example,
Cluster 0 with Ratio-normalization has a outlier probability of 1.63% (defined by ≥ 10x slower than
median for Ratio-normalization); the difference between 25 and 75th percentile is 0.06; the 95th
percentile of this distribution is 1.41, and the standard deviation is 2.46. The outlier probability
decreases to 0.06% for Cluster 7 with Ratio-normalization. Clusters are ranked according to the
difference between the 25th and 75th percentiles.

0 1 2
0.0

0.5

P
D

F

Cluster 0

0 1 2
0.0

0.5
Cluster 1

0 1 2
0.0

0.5
Cluster 2

0 1 2
0.0

0.5
Cluster 3

0 1 2

Runtime/Median

0.0

0.5

P
D

F

Cluster 4

0 1 2

Runtime/Median

0.0

0.5
Cluster 5

0 1 2

Runtime/Median

0.0

0.5
Cluster 6

0 1 2

Runtime/Median

0.0

0.5
Cluster 7

(a) Ratio-normalization

−200 0 200
0.0

0.5

P
D

F

Cluster 0

−200 0 200
0.0

0.5

Cluster 1

−200 0 200
0.0

0.5

Cluster 2

−200 0 200
0.0

0.5

Cluster 3

−200 0 200

Runtime−Median

0.0

0.5

P
D

F

Cluster 4

−200 0 200

Runtime−Median

0.0

0.5

Cluster 5

−200 0 200

Runtime−Median

0.0

0.5

Cluster 6

−200 0 200

Runtime−Median

0.0

0.5

Cluster 7

(b) Delta-normalization

Fig. 5. Typical distributions of normalized runtime.

Table 2. Statistics for the clusters of runtime distributions.

Ratio Delta

cid outlier
(%)

25−
75th

95th std cid outlier
(%)

25 −
75th (s)

95th
(s)

std (s)

0 1.63 0.06 1.41 2.46 0 1.93 4 28 155
1 0.42 0.11 1.2 0.93 1 0.49 11 19 140
2 1.66 0.16 1.37 2.18 2 0.53 11 23 148
3 0.25 0.17 1.29 1.45 3 0.55 16 33 140
4 1.46 0.17 1.35 1.94 4 0.98 31 63 153
5 0.25 0.19 1.34 0.82 5 0.73 69 128 179
6 0.26 0.20 1.37 0.97 6 2.43 199 408 296
7 0.06 0.29 1.46 0.55 7 24.23 936 1359 2548

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

67:10 Yiwen Zhu et al.

5 PREDICTING RUNTIME VARIATION
We now develop a prediction model based on explainable ML to predict the shape of runtime
distribution (as in Figure 5) of jobs. We use dataset D2 as training set and D3 as testing set.

5.1 Feature Selection
We consider three classes of predictive features that are available at the job compile time: those
derived from the job execution plan ("intrinsic"), those representing statistics of the job’s past
resource use, and features describing the load in the physical cluster where the job will run. We
describe the classes below.
Intrinsic characteristics.We leverage information on the job execution plan obtained from the
query optimizer [32] at compile time as input, which can be indicative of the query type, data
schema and its potential computation complexity. It includes the number of operators in each type
(e.g., Extract, Filter), estimated cardinality, etc.. For a newly submitted job, its detailed input data
size is unknown, and the estimated cardinality can be quite off [82]. Therefore, using historic job
instances of the same job group, we extract statistics for the total data read, temp data read, as well
as the statistics related to the execution plan as additional input features that can be informative
for the size of the job.

We also derive the fraction of vertices running on each SKU as the input features, which indicates
the resource consumption by each SKU. A previous study [83] shows that, in Cosmos, some newer
SKUs might process data faster than the others; therefore, we believe that the fractions of vertices
executed on different SKUs would impact the runtime distribution.
Resource allocation. The token allocation is a good indicator for the resources being utilized by a
particular job thus impacting the runtime. However, [63] detects that users are often over-allocating
(e.g., user selects to allocate 1000 tokens, but the peak actual usage is only 600). In this work, we
integrated historic token utilization with token allocation as the input. For historic job instances
of the same job group, we extract the resource utilization (min, max, and average token usage
based on the skyline as in Figure 3) and use the historic statistics as features (historic average and
standard deviation). We also created a new variable for spare tokens (historic average). The model
learned to place less importance on token allocation as a feature compared to actual utilization,
and we corroborate this from the Shapley scores in Section 5.2.
Physical cluster environment. The job runtime can be affected by the utilization of the machines
that execute its vertices—a higher utilization level indicates a hotter machine that is likely to have
more severe issues related to noisy neighbors and resource contention. Therefore, we extract the
CPU utilization level of the corresponding machines in each SKU at the job submission time as the
input. Compared to existing methods, such as [65] and [85], incorporating new-real-time machine
status information improves the model accuracy (see Section 5).

Work is ongoing to record the per container usage for both CPU and memory that includes more
targeted information on the particular job and captures more accurately the resource consumption
compared to the machine-level counters [25]. Once available, features can easily be replaced or
added to our models. We expect them to be strong indicators for the job runtime as they capture
more job-level charateristics. They might also reveal if a job that is CPU intensive or memory
intensive is more likely to have large runtime variances.

5.2 Cluster membership prediction
For a new job to be submitted, wewant to predict its runtime distribution shape based on information
that is available at compile time. This naturallymaps to a classification problem, where the prediction

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

Runtime Variation in Big Data Analytics 67:11

target is to map each job to a particular distribution shape (e.g., one among the 8 different shapes
as in Figure 5).
Cluster membership based on posterior likelihood. For each job instance, to determine which
distribution shape it has, we leverage the set of similar job instances in the analyzed period with the
same job group (i.e., same job name and execution plan) to derive the group’s empirical Probability
Mass Function (PMF), i.e., the histogram of the runtime distribution. Based on even a small number
of runtime observations, we derive the posterior likelihood of these observations to be drawn from
any one of the pre-defined distribution shapes as in Figure 5.
Based on Bayes’ Theorem [5], the posterior log-likelihood that a job group with 𝑁 runtime

observations, 𝑥𝑛=1· · ·𝑁 , belongs to a cluster 𝑧𝑖=1· · ·𝐾 can be derived based on the PMF of these 𝑁
observations, 𝜙ℎ=1· · ·𝐻 , and the PMFs of the 𝐾 = 8 pre-defined clusters, \ 𝑖=1· · ·𝐾

ℎ=1· · ·𝐻 , which is adaptive
to larger sample size:

𝑝 (𝑥1, 𝑥2 · · · 𝑥𝑁 |𝑧𝑖) =
∏︂

𝑛=1· · ·𝑁
𝐹 (𝑥𝑛 |\𝑖ℎ=1· · ·𝐻) (1)

=
∏︂

𝑛=1· · ·𝑁
\𝑖
ℎ (𝑥𝑛) (2)

log𝑝 (𝑥1, 𝑥2 · · · 𝑥𝑁 |𝑧𝑖) =
∑︂

𝑛=1· · ·𝑁
log(\𝑖

ℎ (𝑥𝑛)) (3)

𝑝 (𝑧𝑖 |𝑥1, 𝑥2 · · · 𝑥𝑁) =
𝑝 (𝑥1, 𝑥2 · · · 𝑥𝑁 |𝑧𝑖)𝑝 (𝑧𝑖)∑︁

𝑖=1· · ·𝐾 𝑝 (𝑥1, 𝑥2 · · · 𝑥𝑁 |𝑧𝑖)𝑝 (𝑧𝑖)
(4)

=

∏︁
𝑛=1· · ·𝑁 \

𝑖
ℎ (𝑥𝑛)∑︁

𝑖=1· · ·𝐾
∏︁
𝑛=1· · ·𝑁 \

𝑖
ℎ (𝑥𝑛)

(5)

∼
∏︂

𝑛=1· · ·𝑁
\𝑖
ℎ (𝑥𝑛) (6)

log 𝑝 (𝑧𝑖 |𝑥1, 𝑥2 · · · 𝑥𝑁) =
∑︂

𝑛=1· · ·𝑁
log

(︂
\𝑖
ℎ (𝑥𝑛)

)︂
− constant (7)

=
∑︂

ℎ=1· · ·𝐻
𝑛ℎ log

(︂
\𝑖
ℎ

)︂
− constant (8)

∼
∑︂

ℎ=1· · ·𝐻
𝜙ℎ log

(︂
\𝑖
ℎ

)︂
(9)

Where,
𝐻 : number of discrete bins when we derive the PMF for each distribution, a constant

across all distributions.
\ 𝑖=1· · ·𝐾
ℎ=1· · ·𝐻 : parameter of normalized runtime distribution for cluster 𝑖 , specifically, the PMF

value for bin ℎ.
𝜙ℎ=1· · ·𝐻 : parameter of distribution based on observations for a particular job group (i.e.,

𝑥𝑛=1,2· · ·𝑁), specifically, the probability for bin ℎ of the PMF.
ℎ(𝑥𝑛): the bin index that observation 𝑥𝑛 belongs to.
𝑛ℎ : number of observations of runtime (i.e., 𝑥𝑖=1· · ·𝑁) for the job group that belongs to

bin ℎ.
𝑥𝑛=1· · ·𝑁 : runtime observation 𝑛, where 𝑥𝑛=1· · ·𝑁 |𝑧𝑖=1· · ·𝐾 ∼ 𝐹 (\ 𝑖=1· · ·𝐾

ℎ=1· · ·𝐻).
𝑝 (𝑧𝑖): prior on the probability of each cluster, assuming to be a constant across all clusters

(non-informative prior [5]).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

67:12 Yiwen Zhu et al.

0 100 200
JobRuntime - Median

0.0

0.1

pd
f

Cluster 5, log(p): -422.9

(a) Most likely cluster

0 100 200
JobRuntime - Median

0.0

0.5

pd
f

Cluster 0, log(p): -1067.5

(b) Least likely cluster

Fig. 6. Examples of likelihood values (higher values indicate more probable).

It is interesting to point out that the log-posterior-likelihood is proportional to the dot product
of the PMF of observations for the particular job group, i.e. 𝜙ℎ , and the one of the pre-defined 8
clusters (after taking the log), i.e., \ 𝑖

ℎ
(see Equation 9).

Figure 6 shows an example of normalized runtime distribution (by Delta-normalization) for a
job with 10 occurrences compared with 2 clusters. The dashed line is the PMF for observations for
this job group, i.e. 𝜙ℎ , and the solid line is for the predefined clusters, \ 𝑖

ℎ
. We see that Cluster 5,

with the highest log-likelihood of -422.9, has the most similar shape (see Figure 6a), while Cluster 0
has the least similar shape (see Figure 6b). Each job instance together with its job group is then
associated with a cluster label with the highest likelihood as the prediction target (label). This
cluster association algorithm will always place a job in the most likely cluster. We observed that
jobs with fewer observations may not be similar to any existing cluster’s runtime distribution.
Therefore, we focus only on job groups with sufficient samples. We employ the inertia curve to
tune the number of clusters as proposed in Section 4.2 to avoid overfitting.
Classificationmodel. Based on the inputs, we conduct (1) passive-aggressive feature selection [78]
based on feature importance to avoid the use of correlated features, (2) parameter sweeping to
select the best hyper-parameters for the classification algorithm, such as the number of trees for
tree-based algorithms, and (3) fitting using RandomForestClassifier [61], LightGBMClassifier [41]
and EnsembledClassifier [57] by combining a set of popular classification algorithms, such as
RandomForestClassifier, LightGBMClassifier, GradientBoostingClassifier [59], GaussianNB [58],
and XGBClassifier [60], using soft voting. Note that RandomForestClassifier and LightGBMClassifier
are well-known to have high accuracy for ML tasks using tabular data, especially for out-of-sample
tests. In this work, among the classifiers, LightGBMClassifier has the highest accuracy, thus we
report its result for the rest of the paper. By analyzing the prediction results, we noticed:
By examining the Gini importance [38] of the input features, we found that features related to

the computation complexity and input data sizes (such as count of vertices, and data read) are
significant and the features related to the historic runtime observations are also significant. The
token utilization (such as the max), and compile time information (such as cardinality estimates)
are also important. The CPU utilization of machines also impacts the prediction, which coincides
with our belief that the physical cluster environment will affect the runtime variation of jobs. We
also noticed that many of the operators turned out to be less important. The total vertex count is
less important than the data size (total data read or cardinality-related metrics). It is possibly due
to the huge variation in data processed by each vertex. In Section 6, we dive into more details on
the contribution of some features.

Insight: The feature importance learned from the model is mostly consistent with our
expectation.

Figure 7a shows the confusion matrix on test data comparing the predicted label (the x-axis) and
the actual label (the y-axis) where each cell shows the portion of jobs of each category. Predictions

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

Runtime Variation in Big Data Analytics 67:13

0 1 2 3 4 5 6 7

Predicted

0
1

2
3

4
5

6
7

A
ct

ua
l

36.56 0.04 0.07 0.01 0.01 0.00 0.00 0.00

0.05 13.52 0.02 0.01 0.01 0.00 0.05 0.00

0.25 0.03 9.49 0.18 0.01 0.03 0.00 0.00

0.02 0.04 0.02 9.89 0.00 0.01 0.00 0.01

0.02 0.02 0.01 0.08 5.47 0.01 0.02 0.01

0.04 0.01 0.03 0.01 0.00 7.82 0.02 0.02

0.00 0.01 0.01 0.01 0.01 0.01 9.59 0.00

0.00 0.00 0.01 0.01 0.01 0.01 0.01 6.38

Runtime / Median

0.0

0.1

0.2

0.3

(a) Confusion matrix

1-
5

6-
10

11
-1

5

16
-2

0

21
-5

0

51
-1

00

≥ 10
1

Job Occurences

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

accuracy

0

2000

4000

6000

N
br

of
Jo

b
G

ro
up

sRuntime / Median

job template count

(b) Accuracy by occurrences

Fig. 7. Prediction accuracy for Ratio-normalization.

0.0 0.5 1.0
Actual

0.01

0.02

0.03

0.04

Pr
ed

ict
ed

 (M
AE

)

(a) Regression

0.0 0.5 1.0
Actual

0.01

0.02

0.03

0.04
Pr

ed
ict

ed
 (M

AE
)

(b) Proposed approach

Fig. 8. Prediction accuracy for Delta-normalization compared with traditional regression model.

using both Ratio and Delta-normalization achieve overall accuracy of >96%. Figure 7b (orange line)
shows the accuracy for jobs with different numbers of historic occurrences. We can see that for
jobs with more historic occurrences, the prediction accuracy is higher, which indicates that the
model prediction can be further refined by adding more observations from the same job group. The
blue bar shows the count of job groups based on the number of job occurrences (1-5, 6-10, etc.). We
can see that most of the jobs have 16-50 historic observations over the analyzed period. Similar
trend can be seen for Delta-normalization.

Insight: Model predictions using both Ratio and Delta-normalization achieve high accu-
racy.

We extended the traditional random forest regression model as proposed in [65] by adding
more query optimizer and near-real-time machine status information as features to predict the job
runtime as the label. Figure 8 compares the predicted distribution for all job runtimes based on the
proposed method (using classification model to predict the distribution shape) and the regression
model against the actual job runtime distribution using Quantile-Quantile Plot [24], plotting the
mean absolute error (MAE) in the y-axis. If two distributions are identical, the plotted quantile
should align and the MAE=0. We can see that the proposed classification model (Figure 8b) has
better accuracy compared with the traditional regression model (Figure 8a) especially for higher
percentiles as it captures better the existence of outliers in the distributions of clusters of jobs
(see Figure 5). The Kolmogorov–Smirnov distance [35] is also reduced by 9.2%, indicating better
accuracy.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

67:14 Yiwen Zhu et al.

Input Size

(a) By Input Size
Index-Lookup Count

(b) By operator counts

Fig. 9. SHAP value distribution.

Insight: The proposed method outperforms existing model in predicting outliers.

6 EXPLAINING RUNTIME VARIATION
In this section, we conduct descriptive analysis to better understand the job characteristics that lead
to different runtime distributions. Starting with the classification models from the previous section,
we use machine learning explanation tools to better understand the sources of runtime variation.

6.1 Shapley Value
Shapley values [39, 66] that explain the contribution of each “player” in a game-theoretic setting
have been adopted for explaining the contribution of features in ML models. In our context,
based on the predictors developed in Section 5, they explain the quantitative contribution of each
feature by randomly permuting other feature values and evaluating the marginal changes of the
predictions [42].
Figure 9a illustrates the distribution of Shapley values with respect to the total input data read,

where each dot corresponds to one job instance. We can see that jobs with large input size are more
likely to be in Cluster 6 (as their feature values lead to higher Shapley values and a thus higher
likelihood of being in Cluster 6) using Delta-normalization. Note that Cluster 6 has a relatively high
variance and high probability of outliers. Similar trends can be found for jobs with fewer tokens.

Insight: Jobs with larger inputs and using fewer tokens are more likely to have a large
variation. A larger number of tokens can potentially evacuate other jobs from the same
machine, which potentially reduces interference and the impact of noisy neighbors.

Similarly, job characteristics such as operator counts significantly impact the prediction, indicating
that the existence of certain operators more likely results in different runtime distributions (see
Figure 9b for Shapley values for Cluster 6 with Delta-normalization).

Insight: Certain operator counts, such as Index-Lookup, Window, and Range, increase
the variation.

Using Ratio-normalization, Cluster 0 has smaller variance and smaller probability of outliers
than Cluster 2, while both have two modes. Focusing on a set of high-importance features, we
compare the Shapley values for predicting these two clusters and found that, with lower CPU
utilization, standard deviation and low usage of spare tokens, jobs are more likely to be in Cluster 0
(with more reliable performance) compared to Cluster 2. In general, we expect that machines with
high utilization levels or standard deviations will have less reliable performance, which coincides

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

Runtime Variation in Big Data Analytics 67:15

with our observations here. The usage of spare tokens (whose availability is less predictable) can
also lead to less stable runtimes.

Insight: Lower CPU utilization (load), lower standard deviation, and less use of spare
tokens can improve runtime reliability.

For Ratio-normalization, increasing the vertex count on Gen5 and Gen6 (newer generations)
tends to shift the prediction to Clusters 0 and 1, indicating that running vertices on those machine
SKUs can potentially help with the runtime variation. Compared with Gen3 and Gen4 machines,
those are in general faster and with large resource capacity [83].

Insight: The model identified certain SKUs where larger vertex count on those machines
increases the likelihood of Clusters 0 and 1, which have smaller variance.

7 CONTROLLING RUNTIME VARIATION
Using the predictive model (Section 5) and drawing from the insights from the Shapley values
(Section 6), we now identify several what-if scenarios for scheduling and resource allocation and
evaluate their performance. Based on the changes of jobs’ runtime, one can quantitatively evaluate
the detailed monetary impact.

7.1 Scenario1: Spare Token allocation
Availability of spare tokens depends on physical cluster conditions that are affected by the execution
of other jobs and hence is a source of variation. Here we use our models to estimate the impact on
runtime variation if spare tokens are not allocated.
With the predictor, we disable spare tokens for all jobs in the test set (dataset D3 as in Table 1).

With Ratio-normalization, 15% of jobs that were predicted in Cluster 2 are now in Cluster 1,
where the outlier probabilities gap between 25th and 75th percentiles, and the 95th percentile of
the normalized runtime are reduced (also see Table 2). The second significant change is from
Cluster 3 to 5 where the gap between 25 and 75th percentile increased slightly from 0.17 to 0.19,
while the standard deviation decreased dramatically (from 1.45 to 0.82). Similar changes can be
seen for Delta-normalization. Based on the predictor, for the set of jobs desiring low variances,
we propose disabling their usage of spare tokens to maximize performance improvement. In the
production system, there has been work ongoing to reduce the maximum number for spare tokens
as a multiplier of the number of allocated tokens. We observed that the jobs with fewer spare tokens
runs slower but with less variance, which agrees with our model predictions.

7.2 Scenario2: Scheduling on later generation of machines
A job’s vertices can be executed by multiple machines in a distributed manner and as discussed in
Section 3.2, different job instances within the same group can be allocated to many different SKUs.
Here we estimate the impact on runtime variation if we execute more vertices on later generations
of machines.
By shifting all the vertices (both fractions and count) from Gen3.5 to Gen5.2, the most likely

change for 20.95% of jobs is from Cluster 2 to 0, with a significant drop in the gap between 25 and
75th percentile for Ratio-normalization. And for Delta-normalization, the most likely prediction
change is from Cluster 1 to 0 where the gap between 25 and 75th percentile dropped from 11s to 4s.
Hence, it’s better to run more vertices on later generation SKUs. However, our model doesn’t

capture the compounding of changes due to workload re-balancing, such as the changes of CPU
utilization levels. Models that can predict the utilization levels given different workload distributions
can be easily integrated, such as in KEA [83], to quantitatively capture this dynamic impact.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

67:16 Yiwen Zhu et al.

7.3 Scenario3: Improving load balance
As discussed in Section 3.2, physical cluster conditions such as load differences across machines are
a source of runtime variation. Here we estimate this impact of more uniformly distributed loads.

If the standard deviation of CPU utilization could be reduced to 0 (i.e., equal load on all machines
and at all times), with Ratio-normalization, the most likely change is from Cluster 2 to 0 (29.78%
of jobs), with outlier probability reduced from 1.66% to 1.63% and the variation measured by the
difference between the 25th and 75th percentiles reduced from 0.16 to 0.06. Similar improvement
can be seen for Delta-normalization. Thus there is significant monetary value that can be realized
by a better scheduling system that further motivates other research projects for Cosmos.

8 RELATEDWORK
A number of works have studied the problem of predicting job runtimes under different resource
allocations and platform parameter settings [19, 26, 28, 28, 29, 46–48, 51]. Morpheus [33] examines
resource usages of recurring jobs and finds the best-fitting pattern that it uses for better resource
allocation and scheduling, but does not predict the outlier probability for a given job. Runtime
estimation has also been used to infer job scheduling to support policies, such as Shortest Processing
time First (SPF) [23, 36, 70, 84]. Zrigui et al. [85] clustered job instances into small and large based on
runtime and used a classification algorithm to inform their job scheduler with high accuracy. In our
work, we derived a larger number of clusters for delta- and ratio-normalized runtime distributions
with richer information (percentiles, variances, etc.), providing a comprehensive oversight of
customer experiences.

Schad et al. [56] studied performance variation on Amazon EC2 [2] by running benchmarks for
CPU and Memory performance, Disk I/O, and network bandwidth. Feitelson et al. [20] examined
a parallel scientific workload on a 128-node cluster at NASA Ames and presented the changes
of job submission rate, system utilization, and the distributions of job characteristics such as job
type, runtime, and degree of parallelism. However, they do not model or predict the job runtime
variation.

Prior works have proposed automated methods, including ML techniques, for analyzing system
failures, slowdowns, and potential anomalies [4, 12, 18, 65]. Causal inference and dependency/graph
learning may also be used [27, 37, 40, 45, 53, 77, 79] for these applications. However, in our work,
where there is a large number of feature dimensions and complex correlation between groups of
features, such methods require manual input to tune the dependency structure such as adding or
deleting a detected dependency link and might still be biased. In our work, we do not manually
craft dependencies among causes of variation but use Shapley scores for inference.

Huang et al. [30, 31] investigated the causes for query latency variation in transactional databases.
They used variance (and covariance) as the primary metric for quantifying variation and built a
variance tree corresponding to the call graph for gaining insights into the contributors of variance.
In contrast, we use runtime distributions for predicting variation, instead of scalar metrics due to
the insufficiency of the latter in fully characterizing or explaining variation. Additionally, we use
feature importance and Shapley scores to identify the main contributors to the prediction for the
distribution to which a new run of a job may belong.
Prior work has also explored reducing performance variation with concurrent queries. Cres-

cando [71] presents a relational table implementation that prioritizes predictable query performance
over optimal performance through design choices such as having a scan-only architecture without
indexes and new collaborative scan and update-join algorithms. CJOIN [10] introduces a new
join operator and shares computation and resources among concurrent queries to improve both
throughput and performance stability. Augmenting our prescriptive analysis with capabilities for

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

Runtime Variation in Big Data Analytics 67:17

evaluating the impact of computation sharing and other optimizations for concurrent queries is an
interesting direction for future work.
For tuning job performance, Black-box optimization such as Bayesian optimization [5, 15],

gradient descent [72, 75], etc. requires multiple runs of experiments. In this work, we provide a
one-shot method that can directly determine the best course of action.

9 CONCLUSION
In this work, we did an extensive analysis of the runtime variation of recurring production jobs
on Microsoft Cosmos by systematically characterizing, modeling, predicting, and explaining job
runtime variations. Our original 2-step approach computes a posterior likelihood for each job to
associate it with a predefined probability distribution, whose shape differs according to (1) intrinsic
job characteristics, (2) resource allocation and (3) cluster condition when the job is submitted. We
infer the distribution of job runtime with >96% accuracy, out-performing the traditional regression
models and capturing better the long tail of the distribution. Using an interpretable machine learning
algorithm, we examined the sources of variation such as usage of spare tokens, skewed load on
computing nodes, fractions of vertices executed on different SKUs. We quantified the improvement
by adjusting these control variables. Our techniques can be used along with models that capture the
effects on system utilization with workload re-balancing to dynamically optimize the performance
of individual jobs.

REFERENCES
[1] 2022. Stalagmite. Retrieved 2022 from https://en.wikipedia.org/wiki/Stalagmite
[2] Amazon. 2022. Amazon EC2. Retrieved Feb 15, 2022 from https://aws.amazon.com/aws/ec2
[3] Amazon.com, Inc. 2020. Amazon Athena. Retrieved July 4, 2020 from https://aws.amazon.com/athena/
[4] Kanishka Bhaduri, Kamalika Das, and Bryan L Matthews. 2011. Detecting abnormal machine characteristics in cloud

infrastructures. In 2011 IEEE 11th International Conference on Data Mining Workshops. IEEE, 137–144.
[5] Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern recognition and machine learning. Vol. 4. Springer.
[6] Eric Boutin, Paul Brett, Xiaoyu Chen, Jaliya Ekanayake, Tao Guan, Anna Korsun, Zhicheng Yin, Nan Zhang, and

Jingren Zhou. 2015. Jetscope: Reliable and interactive analytics at cloud scale. Proceedings of the VLDB Endowment 8,
12 (2015), 1680–1691.

[7] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian, Ming Wu, and Lidong Zhou. 2014.
Apollo: Scalable and coordinated scheduling for cloud-scale computing. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). 285–300.

[8] Nicolas Bruno, Sameer Agarwal, Srikanth Kandula, Bing Shi, Ming-Chuan Wu, and Jingren Zhou. 2012. Recurring
job optimization in scope. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data.
805–806.

[9] Nicolas Bruno, Sapna Jain, and Jingren Zhou. 2013. Continuous cloud-scale query optimization and processing.
Proceedings of the VLDB Endowment 6, 11 (2013), 961–972.

[10] George Candea, Neoklis Polyzotis, and Radek Vingralek. 2011. Predictable performance and high query concurrency
for data analytics. The VLDB Journal 20, 2 (2011), 227–248.

[11] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Simon Weaver, and Jingren Zhou. 2008.
SCOPE: easy and efficient parallel processing of massive data sets. Proceedings of the VLDB Endowment 1, 2 (2008),
1265–1276.

[12] Roshan Chitrakar and Chuanhe Huang. 2012. Anomaly based intrusion detection using hybrid learning approach
of combining k-medoids clustering and naive bayes classification. In 2012 8th International Conference on Wireless
Communications, Networking and Mobile Computing. IEEE, 1–5.

[13] Andrew Chung, Subru Krishnan, Konstantinos Karanasos, Carlo Curino, and Gregory R Ganger. 2020. Unearthing
inter-job dependencies for better cluster scheduling. In 14th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 20). 1205–1223.

[14] Andrew Chung, Subru Krishnan, Konstantinos Karanasos, Carlo Curino, and Gregory R. Ganger. 2020. Unearthing
inter-job dependencies for better cluster scheduling. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). 1205–1223.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

https://en.wikipedia.org/wiki/Stalagmite
https://aws.amazon.com/aws/ec2
https://aws.amazon.com/athena/

67:18 Yiwen Zhu et al.

[15] Carlo Curino, Neha Godwal, Brian Kroth, Sergiy Kuryata, Greg Lapinski, Siqi Liu, Slava Oks, Olga Poppe, Adam
Smiechowski, Ed Thayer, et al. 2020. MLOS: An infrastructure for automated software performance engineering. In
Proceedings of the Fourth International Workshop on Data Management for End-to-End Machine Learning. 1–5.

[16] Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Sriram Rao, Giovanni M Fumarola, Botong Huang, Kishore
Chaliparambil, Arun Suresh, Young Chen, Solom Heddaya, et al. 2019. Hydra: a federated resource manager for
data-center scale analytics. In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19).
177–192.

[17] Francesco Diaz and Roberto Freato. 2018. Azure Data Lake Store and Azure Data Lake Analytics. In Cloud Data Design,
Orchestration, and Management Using Microsoft Azure. Springer, 327–392.

[18] Songyun Duan, Shivnath Babu, and Kamesh Munagala. 2009. Fa: A system for automating failure diagnosis. In 2009
IEEE 25th International Conference on Data Engineering. IEEE, 1012–1023.

[19] Zhiwei Fan, Rathijit Sen, Paraschos Koutris, and Aws Albarghouthi. 2020. Automated Tuning of Query Degree of
Parallelism via Machine Learning. In Proceedings of the Third International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management. Article 2, 4 pages.

[20] Dror G Feitelson and Bill Nitzberg. 1995. Job characteristics of a production parallel scientific workload on the NASA
Ames iPSC/860. In workshop on job scheduling strategies for parallel processing. Springer, 337–360.

[21] Andrew D Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo Fonseca. 2012. Jockey: guaranteed job
latency in data parallel clusters. In Proceedings of the 7th ACM european conference on Computer Systems. 99–112.

[22] Hans Fischer. 2011. A history of the central limit theorem: From classical to modern probability theory. Springer.
[23] Eric Gaussier, David Glesser, Valentin Reis, and Denis Trystram. 2015. Improving backfilling by using machine

learning to predict running times. In SC’15: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–10.

[24] Ramanathan Gnanadesikan and Martin B Wilk. 1968. Probability plotting methods for the analysis of data. Biometrika
55, 1 (1968), 1–17.

[25] Gregg, Brendan. 2022. CPU Utilization is Wrong. Retrieved Oct 4, 2022 from https://www.brendangregg.com/blog/2017-
05-09/cpu-utilization-is-wrong.html

[26] Jian Guo, Akihiro Nomura, Ryan Barton, Haoyu Zhang, and Satoshi Matsuoka. 2018. Machine learning predictions for
underestimation of job runtime on HPC system. In Asian Conference on Supercomputing Frontiers. Springer, Cham,
179–198.

[27] David Heckerman and John S Breese. 1996. Causal independence for probability assessment and inference using
Bayesian networks. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 26, 6 (1996),
826–831.

[28] Herodotos Herodotou, Fei Dong, and Shivnath Babu. 2011. No One (Cluster) Size Fits All: Automatic Cluster Sizing for
Data-Intensive Analytics (SOCC ’11). Association for Computing Machinery, New York, NY, USA, Article 18, 14 pages.
https://doi.org/10.1145/2038916.2038934

[29] Zhiyao Hu, Dongsheng Li, Dongxiang Zhang, and Yixin Chen. 2020. ReLoca: Optimize Resource Allocation for
Data-parallel Jobs using Deep Learning. In IEEE INFOCOM 2020 - IEEE Conference on Computer Communications.
1163–1171.

[30] Jiamin Huang, Barzan Mozafari, Grant Schoenebeck, and Thomas Wenisch. 2016. Identifying the major sources of
variance in transaction latencies: Towards more predictable databases. arXiv preprint arXiv:1602.01871 (2016).

[31] Jiamin Huang, Barzan Mozafari, Grant Schoenebeck, and Thomas F Wenisch. 2017. A top-down approach to achieving
performance predictability in database systems. In Proceedings of the 2017 ACM International Conference on Management
of Data. 745–758.

[32] Alekh Jindal, Hiren Patel, Abhishek Roy, Shi Qiao, Zhicheng Yin, Rathijit Sen, and Subru Krishnan. 2019. Peregrine:
Workload Optimization for Cloud Query Engines. In Proceedings of the ACM Symposium on Cloud Computing. 416–427.

[33] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur Narayanamurthy, Alexey Tumanov, Jonathan
Yaniv, Ruslan Mavlyutov, Íñigo Goiri, Subru Krishnan, Janardhan Kulkarni, et al. 2016. Morpheus: Towards automated
slos for enterprise clusters. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
117–134.

[34] Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas, Kishore Chaliparambil, Giovanni Matteo Fumarola,
Solom Heddaya, Raghu Ramakrishnan, and Sarvesh Sakalanaga. 2015. Mercury: Hybrid centralized and distributed
scheduling in large shared clusters. In 2015 USENIX Annual Technical Conference (USENIX ATC 15). 485–497.

[35] Marvin Karson. 1968. Handbook of Methods of Applied Statistics. Volume I: Techniques of Computation Descriptive
Methods, and Statistical Inference. Volume II: Planning of Surveys and Experiments. IM Chakravarti, RG Laha, and J.
Roy, New York, John Wiley; 1967, $9.00.

[36] Michael Kuchnik, Jun Woo Park, Chuck Cranor, Elisabeth Moore, Nathan DeBardeleben, and George Amvrosiadis.
2019. This is why ML-driven cluster scheduling remains widely impractical. Tech. rep. (2019).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://doi.org/10.1145/2038916.2038934

Runtime Variation in Big Data Analytics 67:19

[37] Po-Ling Loh and Peter Bühlmann. 2014. High-dimensional learning of linear causal networks via inverse covariance
estimation. The Journal of Machine Learning Research 15, 1 (2014), 3065–3105.

[38] Gilles Louppe, Louis Wehenkel, Antonio Sutera, and Pierre Geurts. 2013. Understanding variable importances in
forests of randomized trees. Advances in neural information processing systems 26 (2013).

[39] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. Advances in neural
information processing systems 30 (2017).

[40] Panagiotis Mandros, Mario Boley, and Jilles Vreeken. 2017. Discovering reliable approximate functional dependencies.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 355–363.

[41] Microsoft Corporation. 2022. LGBMClassifier. Retrieved Feb 4, 2022 from https://lightgbm.readthedocs.io/en/latest/
pythonapi/lightgbm.LGBMClassifier.html

[42] Christoph Molnar. 2020. Interpretable machine learning. Lulu. com.
[43] Mina Naghshnejad and Mukesh Singhal. 2018. Adaptive online runtime prediction to improve HPC applications

latency in cloud. In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE, 762–769.
[44] Frank Nielsen. 2016. Introduction to HPC with MPI for Data Science. Springer.
[45] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. 2019. Interpretml: A unified framework for machine

learning interpretability. arXiv preprint arXiv:1909.09223 (2019).
[46] Ilia Pietri, Gideon Juve, Ewa Deelman, and Rizos Sakellariou. 2014. A performance model to estimate execution time

of scientific workflows on the cloud. In 2014 9th Workshop on Workflows in Support of Large-Scale Science. IEEE, 11–19.
[47] Anish Pimpley, Shuo Li, Rathijit Sen, Soundararajan Srinivasan, and Alekh Jindal. 2022. Towards Optimal Resource

Allocation for Big Data Analytics. In 25th International Conference on Extending Database Technology (EDBT). 338–350.
[48] Anish Pimpley, Shuo Li, Anubha Srivastava, Vishal Rohra, Yi Zhu, Soundararajan Srinivasan, Alekh Jindal, Hiren Patel,

Shi Qiao, and Rathijit Sen. 2021. Optimal Resource Allocation for Serverless Queries. arXiv preprint arXiv:2107.08594
(2021).

[49] Conor Power, Hiren Patel, Alekh Jindal, Jyoti Leeka, Bob Jenkins, Michael Rys, Ed Triou, Dexin Zhu, Lucky Katahanas,
Chakrapani Bhat Talapady, et al. 2021. The Cosmos Big Data platform at Microsoft: over a decade of progress and a
decade to look forward. Proceedings of the VLDB Endowment 14, 12 (2021), 3148–3161.

[50] Shi Qiao, Adrian Nicoara, Jin Sun, Marc Friedman, Hiren Patel, and Jaliya Ekanayake. 2019. Hyper dimension shuffle:
Efficient data repartition at petabyte scale in scope. Proceedings of the VLDB Endowment 12, 10 (2019), 1113–1125.

[51] Kaushik Rajan, Dharmesh Kakadia, Carlo Curino, and Subru Krishnan. 2016. PerfOrator: Eloquent Performance Models
for Resource Optimization. In Proceedings of the Seventh ACM Symposium on Cloud Computing. 415–427.

[52] Raghu Ramakrishnan, Baskar Sridharan, John R Douceur, Pavan Kasturi, Balaji Krishnamachari-Sampath, Karthick
Krishnamoorthy, Peng Li, Mitica Manu, Spiro Michaylov, Rogério Ramos, et al. 2017. Azure data lake store: a hyperscale
distributed file service for big data analytics. In Proceedings of the 2017 ACM International Conference on Management
of Data. 51–63.

[53] Garvesh Raskutti and Caroline Uhler. 2018. Learning directed acyclic graph models based on sparsest permutations.
Stat 7, 1 (2018), e183.

[54] Lior Rokach and Oded Maimon. 2005. Clustering methods. In Data mining and knowledge discovery handbook. Springer,
321–352.

[55] Aurobindo Sarkar and Amit Shah. 2018. Learning AWS: Design, build, and deploy responsive applications using AWS
Cloud components. Packt Publishing Ltd.

[56] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. 2010. Runtime Measurements in the Cloud: Observing,
Analyzing, and Reducing Variance. PVLDB 3, 1–2 (2010), 460–471. https://doi.org/10.14778/1920841.1920902

[57] Scikit-Learn. 2022. EnsembledClassifier. Retrieved Feb 4, 2022 from https://scikit-learn.org/stable/modules/ensemble.
html

[58] Scikit-Learn. 2022. GaussianNB. Retrieved Feb 4, 2022 from https://scikit-learn.org/stable/modules/generated/sklearn.
naive_bayes.GaussianNB.html

[59] Scikit-Learn. 2022. GradientBoostingClassifier. Retrieved Feb 4, 2022 from https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.GradientBoostingClassifier.html

[60] Scikit-Learn. 2022. GradientBoostingClassifier. Retrieved Feb 4, 2022 from https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.GradientBoostingClassifier.html

[61] Scikit-Learn. 2022. RandomForestClassifier. Retrieved Feb 4, 2022 from https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestClassifier.html

[62] David Sculley. 2010. Web-scale k-means clustering. In Proceedings of the 19th international conference on World wide
web. 1177–1178.

[63] Rathijit Sen, Alekh Jindal, Hiren Patel, and Shi Qiao. 2020. AutoToken: Predicting Peak Parallelism for Big Data
Analytics at Microsoft. PVLDB 13, 12 (2020), 3326–3339.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
https://doi.org/10.14778/1920841.1920902
https://scikit-learn.org/stable/modules/ensemble.html
https://scikit-learn.org/stable/modules/ensemble.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

67:20 Yiwen Zhu et al.

[64] Rathijit Sen, Abhishek Roy, Alekh Jindal, Rui Fang, Jeff Zheng, Xiaolei Liu, and Ruiping Li. 2021. AutoExecutor:
predictive parallelism for spark SQL queries. Proceedings of the VLDB Endowment 14, 12 (2021), 2855–2858.

[65] Liqun Shao, Yiwen Zhu, Siqi Liu, Abhiram Eswaran, Kristin Lieber, Janhavi Mahajan, Minsoo Thigpen, Sudhir Darbha,
Subru Krishnan, Soundar Srinivasan, et al. 2019. Griffon: Reasoning about Job Anomalies with Unlabeled Data in
Cloud-based Platforms. In Proceedings of the ACM Symposium on Cloud Computing. 441–452.

[66] S Shapley Ll. 1953. A value for n-person games. Contributions to the Theory of Games II, Annals of Mathematical Studies
28 (1953).

[67] Ozan Sonmez, Nezih Yigitbasi, Alexandru Iosup, and Dick Epema. 2009. Trace-based evaluation of job runtime and
queue wait time predictions in grids. In Proceedings of the 18th ACM international symposium on High performance
distributed computing. 111–120.

[68] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff,
and Raghotham Murthy. 2009. Hive: a warehousing solution over a map-reduce framework. Proceedings of the VLDB
Endowment 2, 2 (2009), 1626–1629.

[69] Jordan Tigani and Siddartha Naidu. 2014. Google BigQuery Analytics. John Wiley & Sons.
[70] Dan Tsafrir, Yoav Etsion, and Dror G Feitelson. 2007. Backfilling using system-generated predictions rather than user

runtime estimates. IEEE Transactions on Parallel and Distributed Systems 18, 6 (2007), 789–803.
[71] Philipp Unterbrunner, Georgios Giannikis, Gustavo Alonso, Dietmar Fauser, and Donald Kossmann. 2009. Predictable

performance for unpredictable workloads. Proceedings of the VLDB Endowment 2, 1 (2009), 706–717.
[72] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017. Automatic database management system

tuning through large-scale machine learning. In Proceedings of the 2017 ACM international conference on management
of data. 1009–1024.

[73] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar, Robert Evans, Thomas
Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, et al. 2013. Apache hadoop yarn: Yet another resource negotiator. In
Proceedings of the 4th annual Symposium on Cloud Computing. ACM, 5.

[74] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion Stoica, et al. 2010. Spark: Cluster computing
with working sets. HotCloud 10, 10-10 (2010), 95.

[75] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing, Yangtao Wang, Tianheng Cheng, Li Liu,
et al. 2019. An end-to-end automatic cloud database tuning system using deep reinforcement learning. In Proceedings
of the 2019 International Conference on Management of Data. 415–432.

[76] Jiaxing Zhang, Hucheng Zhou, Rishan Chen, Xuepeng Fan, Zhenyu Guo, Haoxiang Lin, Jack Y Li, Wei Lin, Jingren
Zhou, and Lidong Zhou. 2012. Optimizing data shuffling in data-parallel computation by understanding user-defined
functions. In Presented as part of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI
12). 295–308.

[77] Yunjia Zhang, Zhihan Guo, and Theodoros Rekatsinas. 2020. A statistical perspective on discovering functional
dependencies in noisy data. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data.
861–876.

[78] Hai-Tao Zheng and Haiyang Zhang. 2015. Online feature selection based on passive-aggressive algorithm with
retaining features. In Asia-Pacific Web Conference. Springer, 707–719.

[79] Pengfei Zheng and Benjamin C Lee. 2018. Hound: Causal learning for datacenter-scale straggler diagnosis. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 2, 1 (2018), 1–36.

[80] Jingren Zhou, Nicolas Bruno, and Wei Lin. 2012. Advanced partitioning techniques for massively distributed computa-
tion. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. 13–24.

[81] Jingren Zhou, Per-Ake Larson, and Ronnie Chaiken. 2010. Incorporating partitioning and parallel plans into the SCOPE
optimizer. In 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010). IEEE, 1060–1071.

[82] Yiwen Zhu, Matteo Interlandi, Abhishek Roy, Krishnadhan Das, Hiren Patel, Malay Bag, Hitesh Sharma, and Alekh
Jindal. 2021. Phoebe: A Learning-Based Checkpoint Optimizer. Proc. VLDB Endow. 14, 11 (jul 2021), 2505–2518.
https://doi.org/10.14778/3476249.3476298

[83] Yiwen Zhu, Subru Krishnan, Konstantinos Karanasos, Isha Tarte, Conor Power, Abhishek Modi, Manoj Kumar, Deli
Zhang, Kartheek Muthyala, Nick Jurgens, et al. 2021. KEA: Tuning an Exabyte-Scale Data Infrastructure. In Proceedings
of the 2021 International Conference on Management of Data. 2667–2680.

[84] Dmitry Zotkin and Peter J Keleher. 1999. Job-length estimation and performance in backfilling schedulers. In Proceedings.
The Eighth International Symposium on High Performance Distributed Computing (Cat. No. 99TH8469). IEEE, 236–243.

[85] Salah Zrigui, Raphael Y de Camargo, Arnaud Legrand, and Denis Trystram. 2022. Improving the performance of batch
schedulers using online job runtime classification. J. Parallel and Distrib. Comput. 164 (2022), 83–95.

Received July 2022; revised October 2022; accepted November 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 67. Publication date: May 2023.

https://doi.org/10.14778/3476249.3476298

	Abstract
	1 Introduction
	2 Goals, Challenges, and Approach
	3 Platform and Datasets
	3.1 Job Groups
	3.2 Sources of Variation
	3.3 Datasets

	4 Characterizing Runtime Variation
	4.1 Scalar Metrics
	4.2 Distributions

	5 Predicting Runtime Variation
	5.1 Feature Selection
	5.2 Cluster membership prediction

	6 Explaining Runtime Variation
	6.1 Shapley Value

	7 Controlling Runtime Variation
	7.1 Scenario1: Spare Token allocation
	7.2 Scenario2: Scheduling on later generation of machines
	7.3 Scenario3: Improving load balance

	8 Related Work
	9 Conclusion
	References

